
1

What You Will Learn in This Chapter
•	 What	is	a	database?	
•	 What	do	database	applications	look	like?
•	 How	are	databases	used	to	build	applications?	
•	 What	are	the	major	components	of	a	database	management	system?	
•	 What	are	the	advantages	of	using	a	database	management	system?	
•	 What	are	the	main	database	management	systems?
•	 How	have	database	management	systems	changed	over	time?	
•	 What	potential	problems	exist	with	a	DBMS	approach?	
•	 What	is	an	application?	
•	 What	databases	are	used	with	this	book?	
•	 What	are	the	first	steps	to	start	a	project?

Chapter Outline

Introduction
1Chapter

Introduction,	2
Two-Minute	Chapter,	3
A	Small	Sample	Database	Application,	4
Databases	and	Application	Development,	6
Components	of	a	Database	Management	
System,	10

Database Engine, 10
Data Dictionary, 11
Query Processor, 12
Report Service, 13
Forms Development, 14
Management Utilities and Security, 15

Advantages	of	the	Database	Management	
System	Approach,	16

Focus on Data, 17
Data Independence, 18
Data Independence and Web
Applications, 19

Leading	Commercial	Database	Systems,	
20
The	Evolution	of	Database	Management	
Systems,	21

Hierarchical Databases, 21
Network Databases, 23
Relational Databases, 23

Object-Oriented Databases, 24
Key-Value	Pairs:	Cassandra,	28
Drawbacks	to	Database	Management	
Systems,	29
Application	Development,	30
Introduction	to	this	Book’s	Databases,	31

Sally’s Pet Store, 31
Corner Med, 32
Rolling Thunder Bicycles, 33

Starting	a	Project:	The	Feasibility	Study,	33
Costs, 33
Benefits, 35

Summary,	36
Key	Terms,	37
Review	Questions,	37
Exercises,	38
Web	Site	References,	41
Additional	Reading,	41

2Chapter 1: Introduction

A Developer’s View

Introduction
What is a database? Do you want to build computerized business applications?
Do you want to create business applications that operate in multiple locations? Do
you want to conduct business on the Internet? Do you want to enable customers to
place orders using the Web? If you are going to build a modern business applica-
tion, you need a database management system.

Think about applications that you use: Almost any Web application, student
course registration or billing systems, calendars, even games. All of them need
to store data. If you are creating an application you have to identify the data to be
stored and the best location to store it. You could use file read/write tools to save
the data in a proprietary format that could only be read by your custom applica-
tion. Or, you could store the data using a database management system. database
management system (DBMS) is a software tool created to solve the common
problems of sharing data among multiple users and applications. It has many fea-
tures that make it easy to store and retrieve data efficiently.

The alternative to using a DBMS is to write file storage routines for every ap-
plication that you create. For each application, you could store data in separate
files, but only your application would know how to retrieve that data. Imagine

 Miranda: My uncle just called me and said
his company was desperate. It needs
someone to build an application for
the sales team. The company wants
a laptop system for each salesperson
to enter orders. The system needs to
track the order status over time and
generate notices and weekly reports.
My uncle said that because I know
a lot about computers, I should
call and get the job. His company
is willing to pay $6,000, and I can
work part-time.

 Ariel: Wow! Sounds like a great job.
What’s the problem?

 Miranda: Well, I know how to use basic
computer tools, and I can program a
little, but I’m not sure I can build a
complete application. It could take a
long time.

 Ariel: Why not use a database
management system? It should
be easier than writing code from
scratch.

 Miranda: Do you really think so? What can
a database system do? How does it
work?

Getting Started
You need to choose a DBMS to use for exercises and projects. The
Workbooks support Microsoft Access, Microsoft SQL Server, and Or-
acle. You can also use any SQL-based DBMS for most of the chapters.
If necessary, install the DBMS on your computer—this step can take a
few hours if you need to download the software. This chapter describes
the basic features of a DBMS, but you will learn the details in the later
chapters. You should read the descriptions of the sample databases, in-
stall them, and check out some of the data.

3Chapter 1: Introduction

how difficult it would be for you to write a new application that uses data created
by a program that someone else wrote ten years ago. Also, for every file-based
application, you would have to rewrite the data-handling routines to deal with
multiple users accessing the data at the same time (concurrent access). You would
also have to provide security and data management routines. It is far easier and
more reliable to use a database management system. It already has these features
and more, so you can concentrate on building an application that meets the needs
of the users.

Business applications often utilize common types of data—information about
customers, employees, products, sales, purchases, and so on. A database system is
one of the most powerful tools you can use to build business applications because
it easily handles common business data, supports security controls, and sharing.
Most systems also have query systems, powerful report writers, and application
systems that make it easy to quickly build applications and retrieve data to support
common business needs.

The most important features of a DBMS are the ability to define a database,
store the data efficiently, and retrieve data with a query language. A database is
a collection of data stored in a standardized format designed to be shared by mul-
tiple users. These concepts and the tools are discussed in detail in this book. The
key point to remember now is that a database is independent of any specific appli-
cation. Once you create a database within a DBMS, the data can be accessed with
a variety of tools. The DBMS provides many tools to manage the data including
security controls, data storage options, and backup facilities.

This chapter describes the basic role of a DBMS in application development. It
also describes the major features of a DBMS and how you will use them in build-
ing business applications. It also summarizes the evolution of DBMS technology
so you understand some of the background and can think about possible changes
for future systems. This book focuses on building applications that use databases.
It avoids detailed discussions of how database management systems are written.

Two-Minute Chapter
Chapter 1 is an introduction to databases and what they provide to developers of
business applications. The main purpose is to explain their importance and outline
how this book can be used to learn how to build and create applications using da-
tabase systems. Database management systems are powerful tools that are used in
almost all business applications. They solve many common problems for storing
and accessing data and maintaining the integrity of the data with multiple users
making changes. But, databases must be carefully designed to obtain these ben-
efits. Relational databases are the most common tools in business and a set of nor-
malization rules are used to identify exactly which columns belong in a table and
when data need to be split into multiple tables with additional key columns. Chap-
ters 2 and 3 focus on the rules for designing tables. One of the main strengths of a
DBMS is the separation of the data from the application. By concentrating on the
data storage, the data remains protected and accessible to almost any application.
Tools and applications can change, and the data remains useful and accessible.

Newer key-value pair highly-distributed databases, such as Cassandra, are de-
signed for massive Web sites with millions of users, where performance of a few
specific queries takes priority over everything else. Database design is also critical
for these tools, but it is not as rigid—which means that experience and experi-
mentation are needed to determine how to optimize the storage and retrieval for

4Chapter 1: Introduction

each specific problem. Chapter 13 explores the specific details of key-value pair
databases, but it relies on basic understanding of relational design and queries—at
least chapters 2 and 4.

Most DBMSs include the data storage engine and a query processor. SQL is a
standard language used by most relational systems. Basic queries are straightfor-
ward, but SQL has powerful features to help answer complex business questions.
Chapters 4 and 5 focus on constructing SQL queries to answer common business
questions.

Ultimately, databases are not built in isolation are part of an application. The
database is likely to be invisible to most users. Instead, users interact with the ap-
plication through forms and reports. These tools can be created with desktop tools
or as Web-based forms. The capabilities and tools for building forms and reports
present the greatest differences between database tools. Eventually, developers
need to learn to use at least one set of tools in depth. The basic skills are transfer-
rable to other tools, but a lack of standards requires learning picky details for each
system. Chapters 6, 7, and 8 explain the process in general; but individual details
for specific tools are covered in the accompanying workbooks.

Increasingly, managers are looking to expand their use and understanding of
a huge amount of data being collected. Much of this analysis requires statisti-
cal knowledge and tools that require additional background. However, the data
storage needs are slightly different, so data warehouses and some basic analytical
tools are covered in Chapter 9.

Chapter 10 examines some of the issues involved in setting up and maintaining
a database. Security is important in all business applications today and DBMSs
provide tools for assigning and monitoring various security conditions. Chapter
11 looks at the basic issues involved in distributed systems—where data is stored
across multiple servers to improve performance and reliability. Chapter 12 is a
bridge to computer science. DBMSs use specific methods to store and retrieve
data. These topics are critical in computer science classes, and the chapter briefly
shows how they are used to build the DBMS software; which highlights some of
the strengths and weaknesses of the software.

A Small Sample Database Application
What do database applications look like? You have probably worked with sev-
eral database-oriented applications and were not aware of the role of the database
or the DBMS. In a business application, users do not care about the underlying
data storage mechanism—they are only interested in the final application features
and usability. But a DBMS can provide amazing functionality with less effort than
programming for many applications. Before trying to explain the functions and
benefits of a DBMS it is useful to look at some of the basic application features.
This book uses several sample databases to illustrate the various capabilities and
features. You should download them from the Web site and look through the ap-
plications. Note that the versions in Microsoft Access have more elements (forms
and reports) than those in the server-based systems. These versions are also easier
to examine—but you need a copy of Microsoft Access software.

A couple of examples from the Pet Store database are useful to understand how
a database can be used to create business applications. The Pet Store database is
a partially-completed application. It has all of the tables and a small amount of
sample data. But only a couple of forms and reports were created. The Bicycle
application is much larger and contains several useful and more complex forms.

5Chapter 1: Introduction

The Bicycle case is good for examining detailed features of a mostly finished ap-
plication. But it is easier to see the process of creating an application by looking
at the partially finished Pet Store or CornerMed examples. Figure 1.1 shows a
simple Employee form which is used to add data for new employees or edit values
for existing workers. The form focuses attention on a single Employee at a time. It
contains controls to make some tasks easier including selecting cities (or manag-
ers) from a list.

The Employee form is relatively simple because it shows only one concept:
information about a person. Business applications are often more complex. Figure
1.2 shows a basic purchase order form, where the Pet Store is buying bulk items
from a supplier. This form needs to display information about the order itself:
Dates, the supplier, and total cost. It also needs to collect data on the individual
items being purchased such as the cost and the quantity. The form is also capable
of computing totals automatically. In this example, the repeating Value column,
Subtotal, and Total values are computed based on arithmetic formulas that are
programmed as properties in the form. Many additional features can be added
such as filters to show all orders from a single supplier, orders within a range of
dates, or orders that have not yet been received.

Applications usually have reports that can include tables, subtotals, and charts.
Increasingly, these tools are interactive, where users can click buttons to com-
pare totals across various categories or quickly create charts to see how values

Figure 1.1
Sample Employee form. Users see a form with controls to help them enter and edit
data. The data items are stored in the database but the form could be located on a
single computer, a Web site, or even a mobile application.

6Chapter 1: Introduction

change over time. These capabilities are often built into the DBMS tools and can
sometimes be created in a few minutes by a skilled developer. In other cases, a
programmer needs to write custom applications that provide tools to the users and
interact with the database to store and retrieve the desired data.

The key thing to remember is that all of the data is handled by the DBMS. Even
if the forms and reports are created with traditional programming tools, the DBMS
stores and controls the data centrally. And the DBMS handles security controls, si-
multaneous access by multiple users, data backup, and data integrity issues—such
as preventing negative values for prices.

Databases and Application Development
How are databases used to build applications? It is rare that someone would
ask you to build a database and just use it to store and retrieve data. In almost all
situations, someone asks you to build an application. The difference is that an ap-
plication is used to perform specific tasks. In the process, you will use the DBMS
to store and retrieve the data, but ultimately, you are building the database as part
of the solution to the user’s problem.

As shown in Figure 1.3, the database itself is just one element of the applica-
tion. Developers define tables to hold the data in the DBMS. Application forms
are screens displayed to the user to collect or display data. The data is stored in the
underlying tables. Reports are structured displays of data from the tables—typi-
cally containing subtotals and charts. In new applications, these forms and reports
are accessible using a Web browser. Applications built with older systems might
require database components installed on each computer.

Figure 1.2
Sample Purchase Order form. The order form is more complex and handles data
entry for the order itself as well as the individual items being purchased in the detail/
repeating section.

7Chapter 1: Introduction

Several different DBMS tools exist today and one of the first decisions you
must make is to select the DBMS for the application being built. In many situa-
tions, this choice has already been made for you. For example, your instructor has
probably already selected a DBMS, or within a large company, one tool is used
as the standard platform. The Workbooks that accompany this textbook provide
details about several specific DBMS platforms, including Microsoft Access, Mi-
crosoft SQL Server, and Oracle. Each of them uses different tools to create forms
and reports, but the Workbooks provide examples and steps for using those tools.

Storing and retrieving data is relatively standard today—most of the DBMSs
use the SQL query language. Designing the database tables and retrieving the data
are critical tasks that are essentially the same regardless of the DBMS. Chapters 2
and 3 of this book focus on database design. Chapters 4 and 5 explore the power
of SQL to retrieve and manipulate data. These chapters and tasks apply to almost
any DBMS.

Building applications sometimes requires writing programming code. Some
tools require more programming than others. Some tools have their own inter-
nal programming language, while others rely on standard languages (such as C++
or Java), and embed the database elements as extensions to the language. In any
case, database applications will be easier to understand if you have already had at
least one programming course.

The development process for a DBMS is somewhat different from traditional
programming. One of the key changes is that your primary focus is on the data
and how it is organized. Later, you can build forms and reports. To gain the ad-
vantages, data must be carefully organized. The query language is also a power-
ful component of a DBMS. It makes it easy to retrieve data—usually with a few

Database	Server

Application	Server

Users

Application	FormsDevelopers	and
Administrators

Database	Tables
Forms,	Reports,
Programs

SQL	Queries

Data

Figure 1.3
Application development with a DBMS. Developers and administrators define the
database in the form of tables. They then create forms and reports on the application
server. Users run the application and enter data or make choices.

8Chapter 1: Introduction

lines of simple commands. Once you understand the concepts of database design,
queries, and application building, you will be able to create complex applications
in a fraction of the time it would take with traditional programming techniques.
Figure 1.4 illustrates the tradeoffs that you face in building applications. It is criti-
cal that you spend time and design your database correctly. You also need to use
the query language (SQL) to do the heavy work in retrieving data. With these two
tools, your application programming becomes easy and you can spend most of
your time building forms and reports with automated tools. It still takes time and
effort, but it is considerably easier than relying on detailed coding.

In the last few years, database systems have become the foundation of almost
all application development projects. From large enterprise resource planning
systems, to e-business Web sites, to standalone business applications, database
systems store and retrieve data efficiently, provide security, and make it easier to
build the applications. Today, when you build or modify an application, you will
first create the database. To understand the capabilities of a DBMS and how you
will use them to create applications, it is best to examine the process used to de-
velop applications.

Organizations typically follow the basic steps outlined in Figure 1.5 when cre-
ating technology applications. Larger projects may require several people in each
phase, whereas smaller projects might be created entirely by one or two develop-
ers. Organizations can rearrange the tasks that fall within each step, but all of the
tasks must be completed for a project to be successful. The feasibility step defines
the project and provides estimates of the costs. During the analysis phase, systems
analysts collect data definitions, forms, and reports from users. These are used to
design the database and all of the new forms, reports, and user interactions. Dur-
ing the development step, the forms, reports, and application features such as help
files are created. Implementation generally consists of the transfer of data, instal-
lation, training, and review.

D
es
ig
n

D
es
ig
n

SQ
L

SQ
L

Pr
og
ra
m

Pr
og
ra
m

Best:
Spend	your	time	on	
design	and	SQL.

D
es
ig
n

D
es
ig
n

SQ
L

SQ
L

Pr
og
ra
m

Pr
og
ra
m

Worst:
Compensate	for	poor	design	and	limited	
SQL	with	programming.

Figure 1.4
Creating business applications. A DBMS can save you hundreds of hours of work
in building applications. However, you must design your database correctly and use
SQL to do the heavy work.

9Chapter 1: Introduction

For database-driven applications, the design stage is critical. Database systems
and the associated development tools are incredibly powerful, but databases must
be carefully designed to take advantage of this power. Figure 1.6 shows that the
business rules and processes are converted into database tables and relationship
definitions. Forms are defined that transfer data into the database, and reports use
queries to retrieve and display data needed by users. These forms and reports,
along with features such as menus and help screens, constitute applications. Users
generally see only the application and not the underlying database or tables.

Designing the database tables and relationships is a key step in creating a data-
base application. The process and rules for defining tables are detailed in Chapters
2 and 3. Using the database requires the ability to retrieve and manipulate the data.
These tasks are handled by the query system, which is described in Chapters 4 and
5. With these foundations, it is relatively easy to use the tools to create forms and
reports and build them into applications as discussed in Chapters 6, 7, and 8.

Implementation

Development

Design

Analysis

Feasibility
Identify scope, costs, and schedule

Transfer data, install, train, review

Create forms, reports, and help; test

Define tables, relationships, forms, reports

Gather information from users

tasks

time

Figure 1.5
Systems development. Particularly for large projects, it is useful to divide application
development into separate steps. They can be used to track the progress of the
development team and highlight the steps remaining. For some projects, it is possible
to overlap or even iterate the tasks, but steps should not be skipped.

10Chapter 1: Introduction

Components of a Database Management System
What are the major components of a database management system? To un-
derstand the value of a DBMS, it helps to see the components that are commonly
provided. This basic feature list is also useful when you evaluate various products
to determine which DBMS your company should use. Each DBMS has unique
strengths and weaknesses. You can evaluate the various products according to
how well they perform in each of these categories. The primary categories are
the database engine, query processor, report service, forms development, manage-
ment tools, and security.

Database Engine
The database engine is the heart of the DBMS. It is responsible for storing, re-
trieving, and updating the data. This component is the one that most affects the
performance (speed) and the ability to handle large problems (scalability). The
other components rely on the engine to store not only the application data but
also the internal system data that defines how the application will operate. Figure
1.7 illustrates the primary relationship between the database engine and the data
tables.

With some systems the database engine is a stand-alone component that can be
purchased and used as an independent software module. For example, the Micro-
soft “jet engine” forms the foundation of Access. Similarly, the database engines
for Oracle and Microsoft SQL Server can be purchased separately.

1. Identify business rules.

2. Define tables and

relationships.

3. Create input forms and

reports.

4. Combine into

applications for users.

Figure 1.6
Steps in database design. The business rules and data are used to define database
tables. Forms are used to enter new data. The database system retrieves data to
answer queries and produce reports. Users see only the application in terms of forms
and reports.

11Chapter 1: Introduction

The database engine is also responsible for enforcing business rules regarding
the data. For example, most businesses would not allow negative prices to be used
in the database. Once the designer creates that rule, the database engine will warn
the users and prevent them from entering a negative value.

As shown in Figure 1.8, the database engine stores data in carefully designed
tables. Tables are given names that reflect the data they hold. Columns represent
simple attributes that describe the object, such as an employee’s name, phone, and
address. Each row represents one object in the table.

Database performance is an important issue. The speed of your application de-
pends on the hardware, the DBMS software, the design of your database, and on
how you choose to store your data. Chapter 12 discusses some popular methods,
such as indexing, that improve the performance of a database application. Perfor-
mance is also affected by how the software is written. Tools such as Microsoft Ac-
cess have limitations on the size of the database and on how the data is processed.
Similarly, free tools, including versions for Microsoft SQL Server, Oracle, and
IBM, have limits on size and processing (such as support for only one processor).
More expensive versions and other software tools remove these limitations.

Data Dictionary
The data dictionary holds the definitions of all of the data tables. It describes
the type of data that is being stored, allows the DBMS to keep track of the data,
and helps developers and users find the data they need. Most modern database
systems hold the data dictionary as a set of system tables. For example, Microsoft
Access keeps a list of all the tables in a hidden system table called MsysObjects.
The larger systems like SQL Server and Oracle also have proprietary tables such
as sys.dba_tables in Oracle. However, most of the vendors (except Oracle) have

Data
Tables

Database
Engine

Product
ItemID Description
887 Dog	food
946 Cat	food

Order
OrderID ODate
9874 3-3-97
9888 3-9-97

Customer
CustomerID Name
1195 Jones
2355 Rojas

Product
ItemID Integer,	Unique
Description Text,	100	char

Customer
CustomerID Integer,	Unique
Name Text,	50	char

SecurityUser Identification
Access Rights

Utilities

Concurrency and
Lock Manager

Backup and
Recovery

Administration

Data
Dictionary

Figure 1.7
Database engine. The engine is responsible for defining, storing, and retrieving the
data. The security subsystem of the engine identifies users and controls access to
data.

12Chapter 1: Introduction

standardized on the Information_Schema queries, such as the Information_Sche-
ma.Tables view. These tools and related administrative issues are described in
Chapter 10. If you need to install your own copy of the DBMS software now, you
should read the basic steps in Chapter 1 of the associated Workbook. You can also
skim through Chapter 10 if you want more detailed explanations.

These meta-data tables are used by the system, but most database systems also
provide visually-oriented administration tools so you do not have to memorize
commands. For example, it is relatively easy to obtain a list of tables using the
basic administration tools for Access, SQL Server, Oracle, and DB2. For inde-
pendent tools like MySQL, you will probably have to track down and install a
separate management utility.

Query Processor
The query processor is a fundamental component of the DBMS. It enables devel-
opers and users to store and retrieve data. In some cases the query processor is the
only connection you will have with the database. That is, all database operations
can be run through the query language. Chapters 4 and 5 describe the features and
power of query languages—particularly standard SQL.

Queries are derived from business questions. The query language is necessary
because natural languages like English are too vague to trust with a query. To
minimize communication problems and to make sure that the DBMS understands

Figure 1.8
Database tables in Access. Tables hold data about one business entity. For example,
each row in the Animal table holds data about a specific animal.

13Chapter 1: Introduction

your question, you should use a query language that is more precise than English.
As shown in Figure 1.9, the DBMS refers to the data dictionary to create a query.
When the query runs, the DBMS query processor works with the database engine
to find the appropriate data. The results are then formatted and displayed on the
screen.

Report Service
Most business users want to see summaries of the data in some type of report.
Many of the reports follow common formats. A report writer enables you to set
up the report on the screen to specify how items will be displayed or calculated.
Most of these tasks are performed by dragging data onto the screen. Profession-
al-level writers enable you to produce complex reports in a short time without
writing any program code. Chapter 8 describes several of the common business
reports and how they can be created with a database report writer. Increasingly,
vendors are shipping report services that run as Web applications to make it easy
to deliver your reports to users without relying on paper. Users can choose to ex-
plore the data interactively, or print the report on their own printer.

The process of exploring data interactively is increasingly important. The sys-
tem demands for this type of application are quite different from traditional trans-
actions and reporting systems. Consequently, most companies rely on separate
report services and online analytical processing (OLAP), and statistical data
mining tools. Database designs and application tools are relatively new and sub-
stantially different from traditional database applications, so they are examined
separately in Chapter 9.

The report writer can be integrated into the DBMS, or it can be a stand-alone
application that the developer uses to generate code to create the needed report. As

CountGroup	ByTotals
Descending

Animal
AnimalID

Or
Criteria
Sort

AnimalTable
CategoryField

CountGroup	ByTotals
Descending

Animal
AnimalID

Or
Criteria
Sort

AnimalTable
CategoryField

AnimalID
Name
Category
Breed

Animal

All Data

Database Engine
Data Dictionary

Query Processor

3Spider
6Mammal
6Reptile
14Fish
15Bird
47Cat
100Dog
CountOfAnimalIDCategory

3Spider
6Mammal
6Reptile
14Fish
15Bird
47Cat
100Dog
CountOfAnimalIDCategory

Figure 1.9
Database query processor. The data dictionary determines which tables
and columns should be used. When the query is run, the query processor
communicates with the database engine to retrieve the requested data.

14Chapter 1: Introduction

shown in Figure 1.10, the developer creates a basic report design. This design is
generally based on a query. When the report is executed, the report writer passes
the query to the query processor, which communicates with the database engine to
retrieve the desired rows of data. The report writer then formats the data according
to the report template and creates the report complete with page numbers, head-
ings and footers.

Figure 1.11 shows the report writer that Microsoft SQL Server provides with its
Business Intelligence Reporting Services tool. The report writer generates reports
that are posted to a Web site to be run by other users. You set up sections on the
report and display data from the database. The report writer includes features to
perform computations and format the columns. You also have control over colors,
you can place images on the report (e.g., logos), and you can draw lines and other
shapes to make the report more attractive or to call attention to specific sections.

Forms Development
A forms builder or input screen editor helps the developer create input forms.
As described in Chapter 7, the goal is to create forms that represent common user
tasks, making it easy for users to enter data. The forms can include graphs and
images. The forms builder enables developers to create forms by dragging and
dropping items on the screen. Figure 1.12 shows that forms make heavy use of the
query processor to display data on the form.

Many database systems also provide support for traditional, third-generation
languages (3GL) to access the database. The issues in writing programs and ac-
cessing data through these programs are directly related to the topics discussed in
Chapter 7.

One of the most important questions you need to address for new projects is
whether the application needs to be built as a Web site. Today, most new develop-

Figure 1.10
Database report writer. The design template sets the content and layout of the report.
The report writer uses the query processor to obtain the desired data. Then it formats
and prints the report.

All	Data

Database	Engine
Data	Dictionary

Query	Processor

Report
Format

and	Query

Report	Writer

15Chapter 1: Introduction

ments are based on Web pages. However, the tools for building Web sites varies
greatly depending on the underlying platform. For example, Microsoft uses its
ASP.Net server to create and deliver pages, Java platforms (including Oracle) use
the Java language and Java application servers, other tools use the open-source
Apache server and often the PHP or Python programming languages to develop
Web forms. The overall approach to building forms and reports is similar in these
tools, but the methods and details are quite different.

Management Utilities and Security
Because data is so important to organizations, the DBMS includes several mecha-
nisms and tools to protect the data and assign security permissions. As a result,
someone needs to be in charge of assigning security, monitoring the database, and
performing other management chores. A DBMS typically provides command-line
tools as well as visual tools to help you perform these jobs. Chapter 10 describes
the various tasks and introduces some of the commonly available tools. Typical
features include backup and recovery, user management, data storage evaluation,
and performance-monitoring tools.

Figure 1.11
Oracle Reports report writer. The Data Model is used to create a query and select the
data to be displayed. Then Reports creates the basic report layout. You can modify
the layout and add features to improve the design or highlight certain sections.

16Chapter 1: Introduction

For security to work, it has to be embedded into the database engine. Conse-
quently, you will encounter some security questions before you reach Chapter 10.
In most cases, you will have a separate security account that has the permissions
needed to complete most of the exercises in the book. However, if you need to
share a database with dozens of other students, you might be denied the ability to
perform some tasks, such as deleting data or tables. The challenge is even greater
in Chapter 10. If you are serious about learning database administration tasks, you
will need to install your own copy of the DBMS so that you have complete access
and the ability to alter detailed elements.

Advantages of the Database Management System Approach
What are the advantages of using a database management system? Many
business applications need the same features (efficient storage and retrieval of
data, sharing data with multiple users, security, and so on). Rather than re-create
these features within every application program, it makes more sense to purchase
a database management system that includes these basic facilities. Then develop-
ers can focus on creating applications to solve business problems. The primary
benefits provided by a DBMS are shown in Figure 1.13.

First, the DBMS stores data efficiently. As described in Chapters 2 and 3, if you
set up your database according to a few basic rules, the data will be stored with
minimal wasted space. Additionally, the data can be retrieved rapidly to answer
any query. Although these two goals seem obvious, they can be challenging to
handle if you have to write programs from scratch every time.

The DBMS also has systems to maintain data consistency with minimal effort.
Most systems enable you to create basic business rules when you define the data.
For example, price should always be greater than zero. These rules are enforced

Figure 1.12
Database form. A form is used to collect data. It is designed to match the tasks of the
user, making it easy to enter data and look up information. The query processor is
used to obtain related data and fill in look-up data in combo boxes.

All	Data
Database	Engine
Data	DictionaryQuery	Processor

Form	Builder

Input
Form
Design

17Chapter 1: Introduction

for every form, user, or program that accesses the data. With traditional programs,
you would have to force everyone to follow the same rules. Additionally, these
rules would be stored in hundreds or thousands of separate programs—making
them hard to find and hard to modify if the business changes.

The DBMS, particularly the query language, makes it easy to integrate data.
For example, one application might collect data on customer sales. Another ap-
plication might collect data on customer returns. If programmers created sepa-
rate programs and independent files to store this data, combining the data would
be difficult. In contrast, with a DBMS any data in the database can be easily re-
trieved, combined, and compared using the query system.

Focus on Data
With the old programming-file method, developers focused on the process and
the program. Developers started projects by asking these kinds of questions: How
should the program be organized? What computations need to be made? The da-
tabase approach instead focuses on the data. Developers now begin projects by
asking: What data will be collected? This change is more than just a technicality.
It alters the entire development process.

Think about the development process for a minute. Which component changes
the most: programs (forms and reports) or the data? Yes, companies collect new
data all the time, but the structure of the data is relatively constant. And when it
does change, the reason is usually that you are adding new elements—such as cel-
lular phone numbers. In particular, business data is intentionally kept similar to
enable comparisons over time. Sales, Costs, Inventory, and so on are stable num-
bers that are always collected. On the other hand, users constantly need modifica-
tions to forms and reports.

As shown in Figure 1.14, the database approach concentrates on the data. The
DBMS is responsible for defining, storing, and retrieving the data. All requests
for data must go through the database engine. Hence the DBMS is responsible
for efficient data storage and retrieval, concurrency, data security, and so on.
Once the data structure is carefully defined, additional tools like the report writer,
forms generator, and query language make it faster and easier to develop business
applications.

•	 Minimal	data	redundancy
•	 Data	consistency
•	 Integration	of	data
•	 Sharing	of	data
•	 Enforcement	of	standards
•	 Ease	of	application	development
•	 Uniform	security,	privacy,	and	integrity
•	 Data	independence

Figure 1.13
Advantages of a DBMS. The DBMS provides a solution to basic data
storage and retrieval problems. By using a DBMS to handle data storage
problems, programmers can concentrate on building applications—saving
time and money in developing new systems and simplifying maintenance of
existing applications.

18Chapter 1: Introduction

Data Independence
The other important feature of focusing on the data is the separation of the data
definition from the program—known as data independence. Data independence
enables you to change the data definition without altering the program. Similarly,
data can be moved to new hardware or a completely different machine. Once the
DBMS knows how to access the data, you do not have to alter the forms, reports,
or programs that use that data. Similarly, you can alter individual programs with-
out having to change the data definitions.

There are exceptions to this idealistic portrayal. Obviously, if you delete entire
chunks of the database structure, some of your applications are not going to work
properly. Similarly, if you make radical changes to the data definitions—such as
changing phone number data storage from a numeric to a text data type—you will
probably have to alter your reports and forms. However, a properly designed data-
base rarely needs these radical changes.

Consider the problem of adding cell phone numbers to an Employee table. Fig-
ure 1.15 shows part of the data definition for employees. Regardless of how many
forms, reports, or programs exist, the procedure is the same. Simply go to the

All Data

DBMS

Program1 Program2Queries
Reports

Figure 1.14
DBMS focus on data. First, define the data. Then all queries, reports, and programs
access the data through the DBMS. The DBMS always handles common problems
such as concurrency and security.

Field Name Data Type Description
EmployeeID
TaxpayerID
LastName
FirstName
…
Phone
…

Number
Text
Text
Text

Text

Generated
Federal	ID

CellPhone Text Cellular	number

Figure 1.15
Adding cellular phone numbers to the Employee table. Adding a new element to a
table does not affect the existing queries, reports, forms or programs.

19Chapter 1: Introduction

table definition and insert the entry for CellPhone. The existing queries, forms, re-
ports, and programs will function exactly as they did before. Of course, they will
ignore the new phone number entry. If you want to see the new values on a report,
you will have to insert the new field onto the report. With a modern report writer,
this change can be as simple as dragging the CellPhone item to the appropriate
location on the form or report.

The focus on data and careful design enable database systems to avoid the
problems experienced with traditional programming-file methods. The consolida-
tion of common database functions within one application enables experts to cre-
ate powerful database management systems and frees application programmers to
focus on building applications that solve business problems.

Data Independence and Web Applications
For several years, business applications were built on a client-server model, where
personal computers ran heavy applications such as DBMS and spreadsheet soft-
ware. Data was shared with other users by placing it in a central database server
and the individual applications connected across a network to retrieve and update
the data. With the expanding use of the Web, the approach to business applica-
tions is changing. It is increasingly popular to build applications to run completely
on centralized servers. With the Web approach, users only need access to a Web
browser that can connect to the application server, which stores data in a database
server. In many cases, the Web browser could run on simple inexpensive hard-
ware, including cell phones. Although it raises new security issues, the Web ap-
proach also means that users can get access to the business data from almost any
location.

More importantly, the Web approach makes it easier to modify the application.
As shown in Figure 1.16, the data and the application forms and reports are all
stored in a central location. It is easy to create new versions and change the soft-
ware. In many cases, it is even possible to change the entire DBMS and the un-

Developers

Database

Web	Server

Web	forms
and	reports

data
Users

Reports

Figure 1.16
Web databases. Developers build forms and reports that are stored on a central server.
Users access the data and display reports using a standard Web browser.

20Chapter 1: Introduction

derlying hardware. Instead of sending patches and new versions to hundreds or
thousands of users, the developers simply update the single copy sitting on the
application server.

Developers can create new applications without altering the database. Simi-
larly, they can expand the database or even move it to multiple servers, and the
applications remain the same. Users continue to work with their familiar personal
computer applications. Developers retain control over the data. The DBMS can
monitor and enforce security and integrity conditions to protect the data, yet still
give access to authorized users. Chapter 11 discusses the use of distributed data-
base systems in more detail, including building client/server systems on the World
Wide Web.

Leading Commercial Database Systems
What are the main database management systems? Figure 1.17 lists some of
the leading database systems, including Oracle, DB2, and SQL Server. Many of
the systems are available for multiple platforms. The PostgreSQL and MySQL
tools are generally available free or at a low cost. Many other systems and tools
exist, but these are the most common ones you will encounter. All of them have
different strengths and weaknesses. Although the big three (Oracle, DB2, and
SQL Server) can carry high price tags, the vendors can provide detailed support.
All three of the vendors also provide inexpensive (or free) versions that are par-
ticularly useful for learning to use the systems. The free versions have various
performance restrictions, but generally support fairly active smaller databases.
You can download the free copies from the company Web sites.

Choosing a database system can be a major challenge. Many larger organiza-
tions standardize on a major vendor, negotiate reduced license costs, and make
it available throughout the organization for all projects. However, if you need to
choose a DBMS for a specific project, you want to carefully investigate the ven-
dor options.

The premiere database systems are useful for large projects, offer extensive
options and control over thousands of detailed features. However, these options
make it difficult for beginners to understand the major concepts. It is general-
ly best if you begin your studies with a simpler database system or stick with a
smaller subset of options.

Vendor Product
Oracle Oracle
Microsoft SQL	Server

Access
IBM DB2

Informix
Open	source PostgreSQL
MySQL	(Oracle) MySQL

Figure 1.17
Commercial DBMS vendors. These are the leading DBMS products that you are
likely to encounter. Many older systems exist, and dozens of smaller vendors provide
complete systems and other tools.

21Chapter 1: Introduction

The Evolution of Database Management Systems
How have database management systems changed over time? Developers
quickly realized that many business applications needed a common set of fea-
tures for sharing data, and they began developing database management systems.
Developers gradually refined their goals and improved their programming tech-
niques. Many of the earlier database approaches still survive, partly because it
is difficult to throw away applications that work. It is worth understanding some
of the basic differences between these older methods. The following discussion
simplifies the concepts and skips the details. The purpose is to highlight the dif-
ferences between these various database systems—not to teach you how to design
or use them.

The earliest database management systems were based on a hierarchical meth-
od of storing data. The early systems were an extension of the COBOL file struc-
ture. To provide flexible access, these systems were extended with network data-
bases. However, the relational database approach originated by E. F. Codd eventu-
ally became the dominant method of storing and retrieving data. As programming
methodologies changed to object-oriented techniques, developers started looking
for ways to save internal object data in databases and some OO databases were
created.With the high popularity of some Web sites such as social networks, new
systems have been created to handle the huge amounts of specialized data. In par-
ticular, data is often stored in simple key-value pairs. A user uploads content, the
application generates an ID value and the content is stored in a specialized DBMS
to be quickly retrieved using the generated key value.

Hierarchical Databases
The hierarchical database approach begins by claiming that business data often
exhibits a hierarchical relationship. For example, a small office without computers

Customers

Orders

Item Description Quantity
998 Dog	Food 12
764 Cat	Food 11

Items

Customer

Order

Items	Ordered

Figure 1.18
Hierarchical database. To retrieve data, the DBMS starts at the top (customer). When
it retrieves a customer, it retrieves all nested data (order, then items ordered).

22Chapter 1: Introduction

might store data in filing cabinets. The cabinets would be organized by customer.
Each customer section would contain folders for individual orders, and the orders
would list each item being purchased: Customer -> Orders -> Items. To store or
retrieve data, the database system must start at the top—with a customer in this
example. As shown in Figure 1.18, when the database stores the customer data, it
stores the rest of the hierarchical data with it.

The hierarchical database approach is relatively fast—as long as you only want
to access the data from the top. The most serious problem related to data storage
is the difficulty of searching for items in the bottom or middle of the hierarchy.
For example, to find all of the customers who ordered a specific item, the database
would have to inspect each customer, every order, and each item.

The hierarchical model is an old concept in management. Many people are fa-
miliar with hierarchical objects and have a tendency to classify items using hier-
archies. Consequently, hierarchical methods come into fashion every few years.
However, the relational approach is substantially better at storing and retrieving
data; so you have to be careful when you encounter new data formats. Exten-
sible markup language (XML) is a good example. XML is a standard defined
to support the transfer of data between diverse machines and companies. All data
is marked with tags using angle brackets. The person or group transferring the
data is free to create any labels or structure for the tags. For example, you might
define an <Order> tag to transfer purchase order data. The structure of an XML
file tends to be hierarchical instead of relational. It is designed to be parsed or
searched from the top down. Most DBMSs have implemented the XML data type
that enables you to store the raw XML file as a single unit within the database.
This approach keeps the hierarchical structure of the XML file. If you use this
approach, you need a way to search within the XML file. Many DBMSs support
the standard XQuery tool for searching XML data. With this approach, you first
use the relational database to locate a particular XML file, and then call XQuery
to find individual items within that file. In effect, it squeezes a hierarchical dataset
into a single cell in a relational database table. This approach has limitations but

Customer

Order Items
Ordered

Items

Entry	point

Entry	point

Figure 1.19
Network database. All data sets must be connected with indexes as indicated by the
arrows. Likewise, all entry points (starting point for a query) must be defined and
created before the question can be answered.

23Chapter 1: Introduction

works if you really need to keep the XML file in one piece. On the other hand,
most DBMS vendors recommend that if you want to search the data received in
an XML file, you should parse the data out and store the individual elements into
relational database tables. Essentially, you should generally use XML as a transfer
mechanism and not a storage method.

Network Databases
The network database has nothing to do with physical networks (e.g., local area
networks). Instead, the network model is named from the network of connections
between the data elements. The primary goal of the network model was to solve
the hierarchical problem of searching for data from different perspectives.

Figure 1.19 illustrates the Customer, Order, and Item data components in a net-
work model. First, notice that the items are now physically separated—typically
stored in separate files. Second, note that they are connected by arrows. Finally,
notice the entry points, which are indicated with arrows. The entry points are pre-
defined items that can be searched. In all cases the purpose of the arrows is to
show that once you enter the database, the DBMS can follow the arrows to find
and display matching data. As long as there is an arrow, the database can make an
efficient connection.

Although this approach seems to solve the search problem, the cost is high.
All arrows must be physically implemented as indexes or embedded pointers. Es-
sentially, an index duplicates every key data item in the associated data set and
associates the item with a pointer to the storage location of the rest of the data.
The problem with the network approach is that the indexes must be built before
the user can ask a question. Consequently, the developer must anticipate every
possible question that users might ask about the data. Worse, building and main-
taining the indexes can require huge amounts of processor time and storage space.

Relational Databases
E. F. Codd originated the relational database approach in the 1970s, and within
several years three elements came together to make the relational database the pre-
dominant method for storing data. First, theoreticians defined the basic concepts
and illustrated the advantages. Second, programmers who built database manage-
ment system software created efficient components. Third, hardware performance
improved to handle the increased demands of the system.

Figure 1.20 illustrates how the four basic tables in the example are represented
in a relational database. The key is that the tables (called “relations” by Codd) are
sets of data. Each table stores attributes in columns that describe specific entities.

Customer(CustomerID,	Name,	…)	
Order(OrderID,	CustomerID,	OrderDate,	…)
ItemsOrdered(OrderID,	ItemID,	Quantity,	…)
Items(ItemID,	Description,	Price,	…)

Figure 1.20
Relational database. Data is stored in separate sets of data. The tables are not
physically connected; instead, data is linked between columns. For example, when
retrieving an order, the database can match and retrieve the corresponding customer
data based on CustomerID.

24Chapter 1: Introduction

These data tables are not physically connected to each other. The connections ex-
ist through the matching data stored in each table. For example, the Order table
contains a column for CustomerID. If you find an order that has a CustomerID of
15, the database can automatically find the matching CustomerID and retrieve the
related customer data.

The strength of the relational approach is that the designer does not need to
know which questions might be asked of the data. If the data is carefully defined
(see Chapters 2 and 3), the database can answer virtually any question efficiently
(see Chapters 4 and 5). This flexibility and efficiency is the primary reason for the
dominance of the relational model. Most of this book focuses on building applica-
tions for relational databases.

Object-Oriented Databases
An object-oriented (OO) database is a
different method of organizing data. The
OO approach began as a new method to
create programs. The goal is to define
objects that can be reused in many pro-
grams—thus saving time and reducing er-
rors. As illustrated in Figure 1.21, a class
or object has three major components: a
name, a set of properties or attributes, and
a set of methods or functions. The proper-
ties describe the object—just as attributes
describe an entity in the relational database. Methods are short programs that de-
fine the actions that each object can take. For example, the code to add a new

Note: This section contains a rela-
tively detailed description of object-
oriented databases and could be
skipped for an introductory class. Or
read it now and return to it later. Ob-
ject features add a level of complex-
ity to problems that can be confus-
ing to beginners.

Customer
CustomerID
Name
…

Add	Customer
Drop	Customer
Change	Address

Order
OrderID
CustomerID
…

NewOrder
DeleteOrder
…

OrderItem
OrderID
ItemID
…

OrderItem
DropOrderItem
…

Item
ItemID
Description
…

New	Item
Sell	Item
Buy	Item	…

Government
Customer

ContactName
ContactPhone
Discount,	…

NewContact

Government
Customer

ContactName
ContactPhone
Discount,	…

NewContact

Commercial
Customer

ContactName
ContactPhone
…

NewContact

Commercial
Customer

ContactName
ContactPhone
…

NewContact

Figure 1.21
Object-oriented database. Objects have properties—just as relational entities have
attributes— that hold data to describe the object. Objects have methods that are
functions the objects can perform. Objects can be derived from other objects.

25Chapter 1: Introduction

customer would be stored with the Customer object. The innovation is that these
methods are stored with the object definition.

Figure 1.21 also hints at the power of the OO approach. Note that the base
objects (Order, Customer, OrderItem, and Item) are the same as those for the re-
lational approach. However, with the OO approach, new objects can be defined in
terms of existing objects. For example, the company might create separate classes
of customers for commercial and government accounts. These new objects would
contain (inherit) all of the original Customer properties and methods, and also add
variations that apply only to the new types of customers.

Two basic approaches are used to handle true object-oriented data: (1) extend
the relational model to include typical OO features or (2) create a new object-
oriented DBMS. Today, most commercially successful database systems follow
the first approach by adding object features to the relational model.

The approach that adds OO features to the relational model is best exemplified
by the American National Standards Institute (ANSI). Object-oriented features
were a major component to the SQL 99 version. The SQL 2003 standard clarified
some of the OO issues as well. In 1997 the SQL3 development group merged with
the Object Database Management Group (ODMG). Three features are suggested
to add OO capabilities: (1) abstract data types, (2) subtables, and (3) persistent
stored modules. DBMS vendors have implemented most of these features.
Object Properties
The first issue involves defining and storing properties. In particular, OO pro-
grammers need the ability to create new composite properties that are built from
other data types. SQL supports abstract data types to enable developers to create

GeoPoint
Latitude
Longitude
Altitude

GeoLine
NumberOfPoints
ListOfGeoPoints

Procedure:	DrawRegion
{
Find	region	components.
SQL:	Select	…

For	each	component	{
Fetch	MapLine
Set	line	attributes
MapLine.Draw

}
}

Europe…France222
Europe…Spain394
World…Europe12

…MapLineSupersetSizeNameRegionID

Europe…France222
Europe…Spain394
World…Europe12

…MapLineSizeNameRegionID Superset

Figure 1.22
Abstract data types or objects. A geographic information system needs to store and
share complex data types. For example, regions are defined by geographic line
segments. Each segment is a collection of points, which are defined by latitude,
longitude, and altitude. Using a database makes it easier to find and share data.

26Chapter 1: Introduction

new types of data derived from existing types. This technique supports inheritance
of properties. The type of data stored in a column can be a composite of several
existing abstract types. Consider the example shown in Figure 1.22, which shows
part of a database for a geographic information system (GIS). The GIS defines
an abstract data type for location (GeoPoint) in terms of latitude, longitude, and
altitude. Similarly, a line segment (e.g., national boundary), would be a collection
of these location points (GeoLine). By storing the data in tables, the application
can search and retrieve information based on user requirements. The database also
makes it easier to share and to update the data. In the GIS example, the database
handles the selection criteria (Region = Europe). The database can also match and
retrieve demographic data stored in other tables. The advantage to this approach
is that the DBMS handles the data storage and retrieval, freeing the developer to
concentrate on the application details.

The abstract data type enables developers to create and store any data needed
by the application. The abstract data type can also provide greater control over
the application development. First, by storing the data in a DBMS, it simplifies
and standardizes the way that all developers access the data. Second, the elements
within the data type can be encapsulated. By defining the elements as private, ap-
plication developers (and users) can only access the internal elements through the
predefined routines. For example, developers could be prevented from directly
modifying the latitude and longitude coordinates of any location by defining the
elements as private.

SQL provides a second method to handle inheritance by defining subtables.
A subtable inherits all the columns from a base table and provides inheritance
similar to that of the abstract data types; however, all the data is stored in separate
columns. The technique is similar to the method shown in Figure 1.21, which
stores subclasses in separate tables. The difference is that the OO subtables will
not need to include the primary key in the subtables. As indicated in Figure 1.23,
inheritance is specified with an UNDER statement. You begin by defining the

CREATE	SET	TABLE	CommercialCustomer
(

Contact VARCHAR,
VolumeDiscount NUMERIC(5,2)

)
UNDER	Customer;

CREATE	SET	TABLE	Customer
(

CustomerID INTEGER,
Address VARCHAR,
Phone CHAR(15)

)

CustomerID
Address
Phone

Customer

Contact
VolumeDiscount

CommercialCustomer

Inherits	columns
from	Customer.

Figure 1.23
SQL subtables. A subtable inherits the columns from the selected supertable. Queries
to the CommercialCustomer table will also retrieve data for the CustomerID,
Address, and Phone columns inherited from the Customer table.

27Chapter 1: Introduction

highest level tables (e.g., Customer) in the hierarchy. Then when you create a new
table (e.g., CommercialCustomer), you can specify that it is a subtable by adding
the UNDER statement. If you use the unified modeling language (UML) triangle-
pointer notation, or an IS-A icon for inheritance, it will be easy to create the tables
in SQL. Just define the properties of the table and add an UNDER statement if
there is a “pointer” to another table.

Do not worry about the details of the CREATE TABLE command. Instead, it is
important to understand the difference between abstract data types and subtables.
An abstract data type is used to set the type of data that will be stored in one col-
umn. With a complex data type, many pieces of data (latitude, longitude, etc.) will
be stored within a single column. With a subtable the higher level items remain in
separate columns. For example, a subtable for CommercialCustomer could be de-
rived from a base Customer table. All the attributes defined by the Customer table
would be available to the CommercialCustomer as separate columns.
Object Methods
Each abstract data type can also have methods or functions. In SQL, the routines
are called persistent stored modules. They can be written as SQL statements.
The SQL language is also being extended with programming commands—much
like Oracle’s PL/SQL extensions. Routines are used for several purposes. They
can be used as code to support triggers, which have been added to SQL. Persistent
routines can also be used as methods for the abstract data types. Designers can
define functions that apply to individual data types. For example, a GIS location
data type could use a subtraction operator that computes the distance between two
points.

 To utilize the power of the database, each abstract data type should define two
special functions: (1) to test for equality of two elements and (2) to compare ele-
ments for sorting. These functions enable the DBMS to perform searches and to
sort the data. The functions may not apply to some data types (e.g., sound clips),
but they should be defined whenever possible.
Object-Oriented Languages and Sharing Persistent Objects
The development of true OODBMS models was initiated largely in response to
OO programmers who routinely create their own objects within memory. They
needed a way to store and share those objects. Although the goals may appear
similar to the modified-relational approach, the resulting database systems are
unique.

Most OO development has evolved from programming languages. Several lan-
guages were specifically designed to utilize OO features. Common examples in-
clude C++, Smalltalk, and Java. Data variables within these languages are defined
as objects. Each class has defined properties and methods. Currently, develop-
ers building applications in these languages must either create their own storage
mechanisms or translate the internal data to a relational database.

Complex objects can be difficult to store within relational databases. Most lan-
guages have some facility for storing and retrieving data to files, but not to data-
bases. For example, C++ libraries have a serialize function that transfers objects
directly to a disk file. There are two basic problems with this approach: (1) it is
difficult to search files or match data from different objects, and (2) the developer
is responsible for creating all sharing, concurrency, and security operations. How-
ever, this approach causes several problems because data is now intrinsically tied
to the programs and is no longer independent.

28Chapter 1: Introduction

Essentially, OO programmers want the ability to create persistent objects, that
is, objects that can be saved and retrieved at any time. Ideally, the database would
standardize the definitions, control sharing of the data, and provide routines to
search and combine data. The basic difficulty is that no standard theory explains
how to accomplish all these tasks. Nonetheless, as shown in Figure 1.24, several
OODBMS exist, and users have reportedly created many successful applications
with these tools. But, most of these tools have minimal market share and may no
longer exist.

The key to an OODBMS is that to the programmer it simply looks like ex-
tended storage. An object and its association links are treated the same whether
the object is stored in RAM or shared through the DBMS. Clearly, these systems
make development easier for OO programmers. The catch is that you have to be
an OO programmer to use the system at all. In other words, if your initial focus
is on OO programming, then a true OODBMS may be useful. If you started with
a traditional relational database, you will probably be better off with a relational
DBMS that has added OO features.

In theory, the 1997 agreements between ANSI and ODMG were designed to
bring the SQL and OODBMS models closer to a combined standard. In practice,
it could take a few years and considerable experimentation in the marketplace. For
now, if you are serious about storing and sharing objects, you will have to make a
choice based on your primary focus: OO programming or the relational database.
As of 2010, the relational database approach with some OO extensions appears to
have won out over pure OO database systems. Otherwise, programmers simply
write data objects to individual files. If speed is an overriding issue, simple files
are often the best answer.

Key-Value Pairs: Cassandra
The expanding use of highly-popular Web sites has created a need for high-per-
formance, specialized data storage. With hundreds of millions of users uploading
megabytes of data every hour (or minute), banks of servers are needed to handle
the heavy demands. In many cases, the data to be stored is also non-traditional—it
consists of complex objects including photos, raw files, blog entries, or various
text items. Time is also a common feature, where people want to store multiple
versions or organize data by the time an object was created. Initially, most big
sites created proprietary storage methods to handle their unique situation. More
recently, some people have started sharing portions of their ideas and works. One
tool has gained some popularity and illustrates some of the features useful in these
situations. The database system is called Cassandra and is available as an open

•	 InterSystems	Caché	
•	 Progress	Software	ObjectStore
•	 Objectivity
•	 McObject	Perst
•	 Versant
•	 JADE

Figure 1.24
OODBMS vendors and products. Each tool has different features and goals. Contact
the vendors for details or search the Web for user comments.

29Chapter 1: Introduction

source project for several different hardware systems—although Linux-based sys-
tems are the most popular.

Storing data in Cassandra is unlike any of the earlier methods. Cassandra does
borrow ideas from several advanced features of relational systems but trying to
compare it with relational systems leads to confusion for beginners, so the details
are not covered in this chapter. The two most important points are that data values
are stored and accessed via a key item, and that the data is deliberately designed to
be spread across multiple servers. By eliminating “relationships” data can be split
into mostly independent pieces. Spreading these pieces across multiple servers
enables the system to harness the power of massively parallel systems to perform
storage, retrieval, and searches simultaneously on thousands of machines working
independently. Chapter 13 explores the issues of design and querying for non-
relational systems, including examples for Cassandra.

Drawbacks to Database Management Systems
What potential problems exist with a DBMS approach? The discussion of
OO systems brings up the most common criticism of a DBMS: performance. The
DBMS is a layer of complex software between the application and the data stor-
age. Although this layer provides many useful features, it can slow down the stor-
age and retrieval of huge amounts of data. And huge amounts of data are where
the problems arise. Automated systems can easily generate gigabytes of data per
hour or even faster. Writing massive amounts of data to a disk drive taxes the
transfer capabilities even for fast servers. Pushing the data through a DBMS adds
overhead for backup-and-recovery, concurrency controls, and indexes. It is pos-
sible for a DBMS to add two-to-three times the amount of data written for each
byte of original data.

The high-end DBMSs provide tools to analyze data storage and to improve
read/write times for large data transfers. But, you must always consider the possi-
bility that it might be necessary to bypass the DBMS and store some data directly
to the file system.

For example, it is possible to store images and even video data directly into a
database table. However, in many applications—particularly Web-based ones—it
is better to store the raw data in separate files and then store just the filename in
the database. One reason this approach works is because this data rarely needs to
be altered—once a file is stored, it is rarely edited, or the editing is not relevant
to the DBMS. Consequently, there is little need to control for multiple users or to
create repeated backups.

The problem of overhead created by the DBMS arises every few years in the
industry. For example, around 2010 several writers began pushing the value of
“non-SQL” database systems. The term is inaccurate because the query language
SQL is not really the problem. Instead, some examples of extremely large da-
tabases create performance issues in terms of storage. Creating storage mecha-
nisms for extremely large databases is difficult. But, before discarding the DBMS
approach, you must seriously consider what features you are willing to give up.
DBMS performance is slower than directly writing data to a disk largely because
the DBMS provides safety through backup logs and concurrency controls. Alter-
native storage methods that bypass these features can provide faster performance,
but you often give up the safety and security controls. When you evaluate alterna-
tives, be sure that you understand exactly what features are being removed to pro-

30Chapter 1: Introduction

vide performance increases. And then determine whether you need those features
or how they might be provided through other methods.

The examples used in this book, and the Workbooks, are small enough that per-
formance is not an issue. All of the data can be stored in individual tables. How-
ever, you should learn to recognize potential problems so that when you work on
large-scale applications, you can choose the appropriate time to bypass the DBMS
and store files directly to a server.

The other major drawback to a DBMS is the cost of the software. For rela-
tively small projects, this cost can be small or even zero. Microsoft Access works
for small projects. You can also obtain free copies of software for Oracle, SQL
Server and IBM’s DB2. These copies have size and performance limitations but
work for many smaller projects. You can also obtain open-source software such
as MySQL (now controlled by Oracle) and PostgreSQL. These two have been
used for relatively large-scale commercial Web sites. However, keep in mind that
“open-source” ultimately means that you pay for maintenance and support—ei-
ther by paying a third party or by hiring more people. So, open-source is not actu-
ally a zero-cost option.

Application Development
What is an application? If you carefully examine Figures 1.16, 1.17, and 1.18,
you will notice that they all have essentially the same data sets. This similarity is
not an accident. Database design methods described in Chapters 2 and 3 should
be followed regardless of the method used to implement the database. In other
words, any database project begins by identifying the data that will be needed and
analyzing that data to store it as efficiently as possible.

The second step in building applications is to identify forms and reports that
the users will need. These forms and reports are based on queries, so you must
create any queries or views that will be needed to produce the reports and forms as
described in Chapters 4 and 5. Then you use the report writer and forms generator
to create each report and form as described in Chapters 6 and 7. As described in
Chapter 8, the next step is to combine the forms and reports into an application
that handles all of the operations needed by the user. The goal is to create an ap-
plication that matches the jobs of the users and helps them to do their work.

Chapter 7 describes how to deal with common problems in a multiuser envi-
ronment to protect the integrity of the data and support transactions. Chapter 9
shows one more design method of storing data: the data warehouse. To deal with
large databases, transaction processing systems use indexes and other features to
optimize storage tasks. Today, managers want to retrieve and analyze the data.
Data warehouses provide special designs and tools to support online analytical
processing (OLAP).

When the application is designed and while it is being used, several database
administration tasks have to be performed. Setting security parameters and con-
trolling access to the data is one of the more important tasks. Chapter 10 discusses
various administration and security issues.

As an organization grows, computer systems and applications become more
complex. An important feature in modern organizations is the need for users to
access and use data from many different computers throughout the organization.
At some point you will need to increase the scope of your application so that it can
be used by more people in different locations. Distributed databases discussed in
Chapter 11 are a powerful way to create applications that remove the restrictions

31Chapter 1: Introduction

of location. The Internet is rapidly becoming a powerful tool for building and
implementing database applications that can be used by anyone around the world.
The same technologies can be used for applications that are accessed only by in-
house personnel. Systems that use Internet technology but limit access to insiders
are called intranets.

Chapter 12 introduces the considerations of how the DBMS physically stores
data. This chapter is particularly helpful for students who have a background in
programming, but the topics are presented carefully so that non-programmers can
understand the issues as well. The basic point is that high-end DBMSs allow the
administrator to control how the data is stored in operating system files. This level
of control is sometimes needed to improve the performance of large databases.

Introduction to this Book’s Databases
What databases are used with this book? Several databases are used as ex-
amples in this book. The workbook has an additional database as well but it is
described in the workbook. These databases are important because they provide
concrete examples of various issues in database design, queries, and application
development. You can study the databases to help you understand the topics dis-
cussed in this book. Bear in mind that the databases are not completed. In fact,
each database is at a different level of completion so that you can see how an ap-
plication is built in stages.

The main database in this book is Sally’s Pet Store. The design is complete, and
some forms and reports have been created, but many application features need to
be added. The Corner Med database is newer and it is designed to be a smaller
application and to provide more examples and exercises that illustrate some com-
mon issues in the healthcare industry. Rolling Thunder Bicycles is a relatively
large database, in terms of design, application, and data. It was originally devel-
oped in Microsoft Access and contains many detailed forms. Scripts exist to build
the data tables in other DBMSs, but the forms and reports have not been convert-
ed. The All Powder Board and Ski Shop in the Workbooks has similarities to Roll-
ing Thunder, and many of the forms and reports have been developed for multiple
DBMSs. Keep in mind that the purpose of the Workbook is to show you all of the
steps in building an application.

Sally’s Pet Store
A young lady with a love for animals is starting a new type of pet store. Sally
wants to match pets with owners who will take good care of the animals. The Pet
Store database was changed for this edition of the book. Specifically, the store no
longer “sells” animals. Instead, animals are brought in for adoption by various lo-
cal adoption organizations. Customers donate money to the organization to adopt
an animal. The donations are handled by the store clerks at checkout time and the
accumulated donations are paid to the adoption organizations. This approach cuts
down on “backyard breeders,” and enables Sally and her customers to support lo-
cal charitable organizations that help find homes for animals.

At the moment Sally has only one store, but she dreams of expanding into ad-
ditional cities. She wants to hire and train workers to be “animal friends,” not
salespeople. These friends will help customers choose the proper animal. They
will answer questions about health, nutrition, and pet behavior. They will even be
taught that some potential customers should be convinced not to buy an animal.

32Chapter 1: Introduction

Because the workers will spend most of their time with the customers and ani-
mals, they will need technology to help them with their tasks. The new system
will also have to be easy to use, since little time will be available for computer
training.

Even based on a few short discussions with Sally, it is clear that the system
she wants will take time to build and test. Fortunately, Sally admits that she does
not need the complete system immediately. She has decided that she first needs a
basic system to handle the store operations: sales, orders, customer tracking, and
basic animal data. However, she emphasizes that she wants the system to be flex-
ible enough to handle additional features and applications.

Details of Sally’s Pet Store will be examined in other chapters. For now, you
might want to visit a local pet store or talk to friends to get a basic understanding
of the problems they face and how a database might help them.

Corner Med
Corner Med is currently a small medical office with big plans. Eventually, the
owners want to franchise the concept and create a chain of walk-in medical offices
that are affordable and accessible to customers in cities around the country. Cur-
rently, the company is run by a handful of physicians, supported by nurses and a
few clerical staff. For the most part, the physicians focus on family practice and
handle routine medical exams and common problems. More complex cases are
referred to specialists, but the doctors at Corner Med are often responsible for the
initial diagnosis and generally participate in the long-term care of the patients.

The company has a small medical lab and can perform simple tests, such as ba-
sic blood workups and routine x-rays. More complex tests and procedures such as
CT scans and MRIs are handled by specialty firms available in every major city.

In terms of a business application, Corner Med wants to keep basic patient in-
formation in a database instead of thousands of paper folders. Of course, security
and privacy issues become critical—particularly if the company eventually de-
cides to centralize the data for multiple offices. One simplifying aspect of medi-
cal management and billing is that insurance companies along with various gov-
ernments, and ultimately, the World Health Organization (WHO), have defined
a common set of numbers used to define diagnoses (conditions) and procedures
(treatments). The main reference is the International Disease Classification sys-
tem. It is commonly referenced by its initials and the version number. The most
commonly-used version is ICD-9. However, ICD-10 has been introduced and the
U.S. government is currently stating that all medical organizations are supposed to
switch to ICD-10 by 2013.

The version of the database for this edition has been modified to use the ICD-
10 diagnosis and procedure codes (two sets). These codes are available for down-
load from the U.S. government Web sites. The database also uses a DrugListing
file which contains registered drugs directly from the FDA Web site. However, the
original ICD-9 codes have been kept in the database tables to provide examples in
converting data from the older codes to the newer ones.

The sample data for patient visits is derived from a U.S. physician survey. The
names are fictional, but gender and diagnoses and procedures were created by ran-
domly drawing data from that survey. The fees and payments are weak estimates
and are likely to be inaccurate, but they illustrate the concepts.

Physicians are familiar with the diagnostic and procedure terms, but they rarely
memorize the entire list of ICD codes. Many hospitals and large practices hire

Corner
Med

Corner
Med

33Chapter 1: Introduction

medical encoders to translate the physician’s descriptions into the proper codes.
In some ways, the codes simplify the medical database. But, as you will see, they
complicate the user interface because you have to find a way to make the list easy
to use.

Rolling Thunder Bicycles
The Rolling Thunder Bicycle Company builds custom bicycles. Its database ap-
plication is much more complete than the Pet Store application, and it provides an
example of how the pieces of a database system fit together. This application also
contains many detailed forms that illustrate the key concepts of creating a user
interface. Additionally, most of the forms contain programming code that handles
common business tasks. You can study this code to help you build your own ap-
plications. The Rolling Thunder application has a comprehensive help system that
describes the company and the individual forms. The database contains realistic
data for hundreds of customers and bicycles.

One of the most important tasks at the Rolling Thunder Bicycle Company is
to take orders for new bicycles. Several features have been included to help non-
experts select a good bicycle. As the bicycles are built, the employees record the
construction on the Assembly form. When the bicycle is shipped, the customers
are billed. Customer payments are recorded in the financial forms. As components
are installed on bicycles, the inventory quantity is automatically decreased. Mer-
chandise is ordered from suppliers, and payments are made when the shipments
arrive.

The tasks performed at Rolling Thunder Bicycles are similar to those in any
business. By studying the application and the techniques, you will be able to cre-
ate solid applications for any business.

Starting a Project: The Feasibility Study
What are the first steps to start a project? Ideas for information systems can
come from many sources: users, upper management, information system analysts,
competitors, or firms in other industries. Ideas that receive initial support from
several people might be proposed as new projects. If the project is small enough
and easy to create, it might be built in a few days. Larger projects require more
careful study. If the project is going to involve critical areas within the organiza-
tion, require expensive hardware, or require substantial development time, then a
more formal feasibility study is undertaken.
Feasibility studies are covered in detail within systems analysis texts. However,
because of their unique nature, it is helpful to examine the typical costs and ben-
efits that arise with the database approach.

The goal of a feasibility study is to determine whether a proposed project is
worth pursuing. The study examines two fundamental categories: costs and po-
tential benefits. As noted in Figure 1.25, costs are often divided into two catego-
ries: up-front or one-time costs and ongoing costs once the project is operational.
Benefits can often be found in one of three categories: reduced operating costs,
increased value, or strategic advantages that lock out competitors.

Costs
Almost all projects will entail similar up-front costs. The organization will often
have to purchase additional hardware, software, and communication equipment
(such as a Web server or expand a local area network). The cost of developing the

34Chapter 1: Introduction

system is listed here, including the cost for all additional studies. Other one-time
costs include converting data to the new system and initial training of users. Data-
base management systems are expensive software items. For example, for larger
projects, the cost for software such as Oracle can easily run to several million
dollars. You will also have to purchase “maintenance” upgrades of the software at
least on an annual basis.

Hardware and software costs can be estimated with the help of vendors. As
long as you know the approximate size of the final system (e.g., number of users),
vendors can provide reasonably accurate estimates of the costs. Data conversion
costs can be estimated from the amount of data involved. The biggest challenge
often lies in estimating the costs of developing the new system. If an organization
has experience with similar projects, historical data can be used to estimate the
time and costs based on the size of the project. Otherwise, the costs can be esti-
mated based on the projected number of people and hours involved.

Once the project is completed and the system installed, costs will arise from
several areas. For example, the new system might require additional personnel
and supplies. Software and hardware will have to be modified and replaced—en-
tailing maintenance costs. Additional training and support might be required to
deal with employee turnover and system modifications. Again, most of these costs
are straightforward to estimate—as long as you know the size of the project.

Unfortunately, information system (IS) designers have not been very successful
at estimating the costs. For example, in January 1995 PC Week reported that 31
percent of new IS projects are canceled before they are completed. Additionally,
53 percent of those that are completed are 189 percent over budget. This pattern
is not unique. A study published in MIS Quarterly in 2000 also estimated that
30-40 percent of projects “escalated” into late or over budget status. The greatest
difficulty is in estimating the time it takes to design and develop new software.
Every developer is different with large variations in programmer productivity. In

Costs
	 Up-front/one-time
	 	 Software
	 	 Hardware
	 	 Communications
	 	 Data	conversion
	 	 Studies	and	design
	 	 Training
	 Ongoing	costs
	 	 Personnel
	 	 Software	upgrades
	 	 Supplies
	 	 Support
	 	 Hardware	maintenance

Benefits
	 Cost	savings
	 	 Software	maintenance
	 	 Fewer	errors
	 	 Less	data	maintenance
	 	 Less	user	training
	 Increased	value
	 	 Better	access	to	data
	 	 Better	decisions
	 	 Better	communication
	 	 More	timely	reports
	 	 Faster	reaction	to	change
	 	 New	products	and	services
	 Strategic	advantages
	 	 Lock	out	competitors

Figure 1.25
Common costs and benefits from introducing a database management system. Note
that benefits can be hard to measure, especially for tactical and strategic decisions.
But it is still important to list potential benefits. Even if you cannot assign a specific
value, managers need to see the complete list.

35Chapter 1: Introduction

large projects, where the staff members are constantly changing, accurately pre-
dicting the amount of time needed to design and develop a new system is often
impossible. Nonetheless, managers need to provide some estimate of the costs.
On a related note, building anything new can be difficult to estimate in terms of
time and cost. The Boeing 787 “Dreamliner” took several years longer and mil-
lions of extra dollars to design and build than originally anticipated. The problem
in estimating information systems and physical systems is that you need to predict
the future, and it is probably impossible to anticipate every possible problem that
might arise.

Benefits
In many cases benefits are even more difficult to estimate. Some benefits are tan-
gible and can be measured with a degree of accuracy. For instance, transaction
processing systems are slightly easier to evaluate than a decision support system,
since benefits generally arise from their ability to decrease operations costs. A sys-
tem might enable workers to process more items, thus allowing the firm to expand
without increasing labor costs. A database approach might reduce IS labor costs
by making it easier for workers to create and modify reports. Finally, a new infor-
mation system might reduce errors in the data, leading to improved decisions.

Many benefits are intangible and cannot be assigned specific monetary values.
For instance, benefits can arise because managers have better access to data. Com-
munication improves, better decisions are made, and managers can react faster to
a changing environment. Similarly, the new system might enable the company to
produce new products and services or to increase the sales of ancillary products to
existing customers. Similarly, firms might implement systems that provide a com-
petitive advantage. For example, an automated order system between a firm and
its customers often encourages the customers to place more orders with the firm.
Hence the firm gains an advantage over its competitors.

When information systems are built to automate operations-level tasks and the
benefits are tangible, evaluating the economic benefits of the system is relatively
straightforward. The effects of improving access to data are easy to observe and
measure in decreased costs and increased revenue. However, when information
systems are implemented to improve tactical and strategic decisions, identifying
and evaluating benefits is more difficult. For instance, how much is it worth to a
marketing manager to have the previous week’s sales data available on Monday
instead of waiting until Wednesday?

In a database project benefits can arise from improving operations—which
leads to cost savings. Additional benefits occur because it is now easier and faster
to create new reports for users, so less programmer time will be needed to modify
the system. Users can also gain better access to data through creating their own
queries—instead of waiting for a programmer to write a new program.

Database projects can provide many benefits, but the organization will receive
those benefits only if the project is completed correctly, on time, and within the
specified budget. To accomplish this task, you will have to design the system care-
fully. More than that, your team will have to communicate with users, share work
with each other, and track the progress of the development. You need to follow a
design methodology.

36Chapter 1: Introduction

Summary
One of the most important features of business applications is the ability to share
data with many users at the same time. Without a DBMS sharing data causes sev-
eral problems. For example, if data definitions are stored within each separate pro-
gram, making changes to the data file becomes very difficult. Changes in one pro-
gram and its data files can cause other programs to crash. Every application would
need special code to provide data security, concurrency, and integrity features.
By focusing on the data first, the database approach separates the data from the
programs. This independence makes it possible to expand the database without
crashing the programs.

A DBMS has many components. Required features include the database en-
gine to store and retrieve the data and the data dictionary to help the DBMS and
the user locate data. Other common features include a query language, which is
used to retrieve data from the DBMS to answer business questions. Application
development tools include a report writer, a forms generator, and an application
generator to create features like menus and help files. Advanced database systems
provide utilities to control secure access to the data, cooperate with other software
packages, and communicate with other database systems.

Database systems have evolved through several stages. Early hierarchical da-
tabases were fast for specific purposes but provided limited access to the data.
Network databases enabled users to build complex queries but only if the links
were built with indexes in advance. The relational database is currently the lead-
ing approach to building business applications. Once the data is defined carefully,
it can be stored and retrieved efficiently to answer any business question. The OO
approach is a new technique for creating software. Object-oriented systems en-
able you to create your own new abstract data types. They also support subtables,
making it easier to extend a class of objects without redefining everything from
scratch. Recently, key-value databases are being developed to handle massive
loads of complex data types but they are still evolving.

Regardless of the type of database implemented, application development fol-
lows similar steps. First, identify the user requirements, determine the data that
needs to be collected, and define the structure of the database. Then, develop the
forms and reports that will be used, and build the queries to support them. Next,
combine the various elements into a polished application that ties everything to-
gether to meet the user needs. If necessary, distribute the database across the orga-
nization or through an Internet or intranet. Additional features can be provided by
integrating the database with powerful analytical and presentation tools, such as
spreadsheets, statistical packages, and word processors.

37Chapter 1: Introduction

Key Terms

Review Questions
1. What features does a DBMS provide that make application development

easier?
2. What are the basic components of a DBMS?
3. Why is data independence important and how is it achieved with a DBMS?
4. Why is the relational database approach better than earlier methods?
5. How do relational databases implement object-oriented features?
6. What potential drawbacks exist to a DBMS?
7. What are the main steps in application development with a database system?
8. What is the purpose of a feasibility study?
9. Why do many of the biggest Web sites use non-relational databases?

abstract data types
data dictionary
data independence
data mining
database
database engine
database management system
(DBMS)
extensible markup language (XML)
feasibility study
forms development
hierarchical database

intranets
network database
object-oriented (OO) database
online analytical processing (OLAP)
persistent objects
persistent stored modules
relational database
report services
report writer
subtable
XQuery

A Developer’s View
For Miranda to start on her database project, she must first know the strengths of
the tools she will use. At the starting point of a database project, you should col-
lect information about the specific tools that you will use. Get the latest reference
manuals. Install the latest software patches. Set up work directories and project
space. For a class project, you should log on, get access to the DBMS, make sure
you can create tables, and learn the basics of the help system.

38Chapter 1: Introduction

Exercises
1. Create a new database with the two tables shown in the figure. Feel free to

add more data. Be sure to set a primary key for the underlined columns. Be
sure to create a relationship that links the two tables. Use a report wizard to
create the report shown. You should be able to use a visual tool to create the
tables. Otherwise, check Chapter 3 for the syntax of the CREATE TABLE
command.

2. Read the documentation to your DBMS and write a brief outline that explains
how to:
 a) Create a table.
 b) Create a simple query.
 c) Create a report.

3. Describe two business or Web applications that could use a DBMS. Identify
some of the main data elements that would be collected.

Report

Ant,	Adam	 5/5/1964
	 Brown,	Laura	 225.24
	 Chen,	Charles	 47.34
	 	 	 712.58
Bono,	Sonny
	 Dieter,	Jackie	 664.90
	 Jones,	Joe	 114.32
	 	 	 779.22

Employee
EmployeeID LastName FirstName Address DateHired
332
442
553
673
773
847

Ant
Bono
Cass
Donovan
Moon
Morrison

Adam
Sonny
Mama
Michael
Keith
Jim

354	Elm
765	Pine
886	Oak
421	Willow
554	Cherry
676	Sandalwood

5/5/1964
8/8/1972
2/2/1985
3/3/1971
4/4/1972
5/5/1968

Client
ClientID LastName FirstName Balance EmployeeID
1101
2203
2256
4456
5543
6673
7353
7775
8890
9662
9983

Jones
Smith
Brown
Cieter
Wodkoski
Sanchez
Chen
Hagen
Hauer
Nguyen
Martin

Joe
Mary
Laura
Jackie
John
Paula
Charles
Fritz
Marianne
Suzie
Mark

113.42
993.55
225.44
664.90
984.00
194.87
487.34
595.55
627.39
433.88
983.31

442
673
332
442
847
773
332
673
773
553
847

39Chapter 1: Introduction

4. Find a reference or check Web sites so you can compare the specifications
on three free DBMS products. At least one of the products should be from a
major commercial vendor and one from an open-source or free source.

5. Describe how a university club or student organization could use a database
to improve its service operations.

6. A company wants you to build a custom Web site to support sales of
computer cables over the Internet. The company anticipates receiving an
average of 100 orders per business day, with an average of $57.19 per order.
Gross profit margins (including credit card costs) are about 15 percent.
Shipping costs are priced directly so do not affect profits. No new workers
will be needed to package and ship the orders, but the company expects
to hire a designer with a salary of about $25,000, to keep the product list
up to date with photos and descriptions. The initial costs include cost of
the computer hardware and software ($10,000) and the development cost
($35,000). The ISP costs will be about $400 per month. Annual maintenance
costs are expected to be $1000 per year. Assuming a project life of five years
and an interest rate of 8 percent, compute the economic feasibility of the
project. Compare the costs and benefits to the alternative of selling the items
through Amazon instead.

7. You have just been hired by a company and have wandered around talking
to people. A few accountants have developed a database-driven application
to handle fixed-assets and track depreciation. They claim the system has
enabled them to function with one less accounting clerk ($30,000/year).
A guy in finance has created a custom database in Microsoft Access to
generate reports on a set of financial investments. Much of the data comes
from brokerage firms and he notes that he is able to save 10 hours a week in
clerical time (minimum wage). However, he complained about the difficulty
of loading data from the main company database and says he spends 2 hours
a week typing in data from printed reports. Two people in marketing have
created separate databases to track survey and sales results for their projects.
They claim the projects have not saved any labor costs, but enhance sales
by at least $1 million a year. Yesterday, your manager said that all of these
people complained about their existing systems and the inability to get data
from the corporate database. You need to define projects for each group,
identify the cost of developing a new system and the potential benefits. Rank
the projects by economic return and make a recommendation to management.

8. Find two companies that provide Web-based database hosting and compare
the basic costs for running an online relational database with 500 GB of data,
a medium-sized server, and 2 TB of monthly data transfer.

9. Find a company, government agency, or a Web site (perhaps through an
article or blog) and briefly explain the data collected and how the database is
used.

10. Use articles or blogs to identify a Web site that relies on a non-relational
(NoSQL) database and briefly explain the benefits of using that approach
over a relational DBMS in this situation.

40Chapter 1: Introduction

Sally’s Pet Store
11. Install the Pet Store database or find it on your local area network if it has

already been installed. Print out (or write down) the list of the tables used in
the database. Use the Help command to find the version number of Microsoft
Access that you are using.

12. Visit a local pet store and make a list of 10 merchandise items and five
animals for sale. Enter this data into the appropriate Pet Store database tables.

13. Identify the hardware and software that would be required to install this
system in a typical Pet Store. Estimate the costs and the time required to
build and install the system.

14. Outline the basic tasks that take place in running a pet store. Identify some of
the basic data items that will be needed.

15. Find an online pet store and estimate the number of different products for
sale. Assume the company has 500,000 customers and handles 1,000 sales a
day with about 3 items per sale. Assume it takes 300 bytes to store data for
one product, 80 bytes for a customer, and 500 bytes for a sale. Estimate the
amount of data needed to be saved in one year.

Rolling Thunder Bicycles
16. Install the Rolling Thunder database or find it on your local area network if it

has already been installed. Using the BicycleOrder form, create an entry for a
new bicycle.

17. Use the Rolling Thunder Help system, or the Web site description, to briefly
describe the firm and its major processes. Identify the primary business
entities in the company.

18. Use Web sites or visit a local bike shop to find prices for at least two
bicycles. Try to find the most expensive bicycle you can.

19. Refer to the relationship/class diagram to explain what a Component is and
how it is connected to a Bicycle. Give an example from the data.

20. Use the Employee table and Excel to compute the company’s total salary
costs. What problems might you encounter if you tried a similar approach for
a table with 5 million customers?

Corner Med
21. Install the Corner Med database if necessary. Use the Patient form to enter

data for a new patient.
22. Use the Patient Visit form to enter data for a patient with at least one

diagnostic code and one procedure code. Describe any usability or
performance issues that might arise.

23. Make a list with a brief description of other items that the company might
want to store in the database.

Corner
Med

Corner
Med

41Chapter 1: Introduction

24. Check the U.S. government Web sites (e.g., Health and Human Services) to
see when the conversion to ICD-10 is going to be required. Also, check the
Web site to see what information is available for vendors and developers.
What problems are likely to arise with the conversion from ICD9 to ICD10
codes?

25. Look at the design for the Corner Med database. Briefly explain the purpose
of the three tables: VisitDiagnoses, VisitProcedures, and VisitMedications.
Why is it necessary to have three separate tables instead of combining them
into a single table?

Web Site References

http://office.microsoft.com/en-us/access/		 Microsoft	Access
http://www.microsoft.com/en-us/sqlserver/default.
aspx	

Microsoft	SQL	Server

http://www.oracle.com Oracle
http://www.oracle.com/technetwork Oracle	technology	network	with	software	

downloads
hhttp://www-01.ibm.com/software/data/db2/ IBM	DB2
http://www.mysql.com Free	DBMS	now	controlled	by	Oracle
	http://www.postgresql.org A	better	free	DBMS
http://www.acm.org Association	for	Computing	Machinery
http://groups.google.com/groups/
dir?sel=usenet%3Dcomp.databases
http://dbforums.com
http://dbasupport.com
http://www.devx.com/outgoing/databasefeed.xml
http://www.sqlservercentral.com

Newsgroups	for	database	questions.

http://www.cms.gov/Medicare/Coding/ICD10/index.
html

U.S.	government	Web	site	(HHS)	with	
ICD-10	codes.

Additional Reading
Keil, M., J. Mann, and A. Rai, “Why Software Projects Escalate,” MIS

Quarterly,24(4), 2000. [Estimates 30-40 percent of IT development projects
escalate above budget.]

Perry, J. and Post, G. Introduction to Oracle 10g, Englewood Cliffs: Prentice-
Hall, 2007. [A step-by-step introduction to Oracle 10g with several
databases.]

Perry, J. and Post, G. Introduction to SQL Server 2005, Englewood Cliffs:
Prentice-Hall, 2008. [A step-by-step introduction to SQL Server 2005 and
Visual Studio 2005.]

Zikopoulos, P.C. and R.B. Melnyk, DB2: The Complete Reference, McGraw-Hill,
2001. [One of few reference books on DB2 and written by IBM employees.]

http://www.oracle.com
http://otn.oracle.com
http://www.software.ibm.com/data/db2/
http://www.mysql.com
http://www.postgresql.org
http://www.acm.org
http://dbforums.com
http://dbaclick.com

	Chapter 1: Introduction
	Introduction
	Two-Minute Chapter
	A Small Sample Database Application
	Databases and Application Development
	Components of a Database Management System
	Database Engine
	Data Dictionary
	Query Processor
	Report Service
	Forms Development
	Management Utilities and Security

	Advantages of the Database Management System Approach
	Focus on Data
	Data Independence
	Data Independence and Web Applications

	Leading Commercial Database Systems
	The Evolution of Database Management Systems
	Hierarchical Databases
	Network Databases
	Relational Databases
	Object-Oriented Databases

	Key-Value Pairs: Cassandra
	Drawbacks to Database Management Systems
	Application Development
	Introduction to this Book’s Databases
	Sally’s Pet Store
	Corner Med
	Rolling Thunder Bicycles

	Starting a Project: The Feasibility Study
	Costs
	Benefits

	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading

