
186

What You Will Learn in This Chapter
•	 Why	do	you	need	a	query	language?
•	 What	are	the	main	tasks	of	a	query	language?
•	 What	business	questions	can	be	answered	with	the	basic	SQL	SELECT	command?
•	 What	is	the	basic	structure	of	a	query?
•	 What	tables	and	columns	are	used	in	the	Pet	Store?
•	 How	do	you	write	queries	for	a	specific	DBMS?
•	 How	do	you	create	a	basic	query?
•	 What	types	of	computations	can	be	performed	in	SQL?
•	 How	do	you	compute	subtotals?
•	 How	do	you	use	multiple	tables	in	a	query?
•	 How	do	you	search	XML	and	complex	text	strings?

Chapter Outline

Data Queries
4Chapter

Introduction,	187
Two-Minute	Chapter,	188
Three	Tasks	of	a	Query	Language,	189
SQL	SELECT	Overview,	190
Four	Questions	to	Retrieve	Data,	191

What Output Do You Want to See?, 191
What Do You Already Know?, 192
What Tables Are Involved?, 192
How Are the Tables Joined?, 193

Sally’s	Pet	Store,	195
Vendor	Differences,	196
Query	Basics,	196

Single Tables, 197
Introduction to SQL, 198
Sorting the Output, 200
Distinct, 200
Criteria, 201
Pattern Matching, 202
Boolean Algebra, 204
DeMorgan’s Law, 206
Useful WHERE Clauses, 208

Computations,	209
Basic Arithmetic Operators, 209
Aggregation, 210
Functions, 212

Subtotals	and	GROUP	BY,	214
Conditions on Totals (HAVING), 216
WHERE versus HAVING, 216
The Best and the Worst, 217

Multiple	Tables,	218
Joining Tables, 219
Identifying Columns in Different Tables,
220
Joining Many Tables, 220
Hints on Joining Tables, 222
Table Alias, 223
Create View, 224

Newer	Searches	and	Patterns,	226
XQuery, 227
Regular Expressions (RegEx) Patterns,
233

Summary,	239
Key	Terms,	240
Review	Questions,	240
Exercises,	241
Web	Site	References,	247
Additional	Reading,	247
Appendix:	SQL	Commands,	248

187Chapter 4: Data Queries

A Developer’s View
 Miranda: Wow that was hard work! I sure

hope normalization gets easier the
next time.

 Ariel: At least now you have a good
database. What’s next? Are
you ready to start building the
application?

 Miranda: Not quite yet. I told my uncle
that I had some sample data. He
already started asking me business
questions; for example, Which
products were backordered most
often? and Which employees sold
the most items last month? I think I

need to know how to answer some
of those questions before I try to
build an application.

 Ariel: Can’t you just look through the data
and find the answer?

 Miranda: Maybe, but that would take forever.
Instead, I’ll use a query system that
will do most of the work for me. I
just have to figure out how to phrase
the business questions as a correct
query.

Introduction
Why do you need a query language? Why not just ask your question in a natural
language like English? Natural language processors have improved, and several
companies have attempted to connect them to databases. Similarly, speech rec-
ognition is improving. Eventually, computers may be able to answer ad hoc ques-
tions using a natural language. However, even if an excellent natural language
processor existed, it still would be better to use a specialized query language. The
main reason for the problem is communication. If you ask a question of a data-
base, a computer, or even another person, you can get an answer. The catch is, did
the computer give you the answer to the question you asked? In other words, you
have to know that the machine (or other person) interpreted the question in ex-
actly the way you wanted. The problem with any natural language is that it can be
ambiguous. If there is any doubt in the interpretation, you run the risk of receiving
an answer that might appear reasonable, but is not the answer to the question you
meant to ask.

Getting Started
Building basic SQL queries requires you to address four questions. (1)
What output (columns and calculations) do you want to see? (2) What
do you know or what constraints are given? (3) What tables are in-
volved? (4) How are the tables joined? A powerful feature of SQL is the
ease of computing subtotals with the GROUP BY statement. Learn the
SELECT statement and use it as a fill-in-the-blanks model:

SELECT
FROM
INNER JOIN
WHERE
GROUP BY
HAVING
ORDER BY

188Chapter 4: Data Queries

A query system is more structured than a natural language so there is less room
for misinterpretation. Query systems are also becoming more standardized, so that
developers and users can learn one language and use it on a variety of different
systems. SQL is the standard database query language. The standard is established
through the ISO (International Organization of Standards) and it is updated every
few years. Most database management systems implement most of the SQL 2003
standard. The draft SQL 2006 standard adopted as SQL 2008 provides definitions
for several important programming concepts and for XML, but most DBMS ven-
dors have continued to use their existing, proprietary definitions. Consequently,
although these standards are accepted by most vendors, there is still room for
variations in the SQL syntax, so queries written for one database system will not
always work on another system. SQL 2011 added a few new elements to the fea-
tures added in 2008. Plus it initiated new definitions for handling time elements.

Most database systems also provide a query by example (QBE) method or
query builder to help beginners create SQL queries. These visually oriented tools
generally let users select items from lists, and handle the syntax details to make it
easier to create ad hoc queries. Although the QBE designs are easy to use and save
time by minimizing typing, you must still learn to use the SQL commands. Many
times, you will have to enter SQL into programming code or copy and edit SQL
statements.

As you work on queries, you should also think about the overall database de-
sign. Chapter 3 shows how normalization is used to split data into tables that can
be stored efficiently. Queries are the other side of that problem: They are used to
put the tables back together to answer ad hoc questions and produce reports.

The first two sections of this chapter provide an overview of queries. The sec-
tions beginning with the Pet Store provide a more detailed explanation of how to
build queries, starting with a single table and basic criteria issues. Overall, this
chapter covers the basic features of the SELECT statement. The focus is on learn-
ing the key SELECT clauses and on translating business questions into SQL que-
ries. Chapter 5 covers more complex business questions that utilize some of the
more complex and more powerful features of SQL.

Two-Minute Chapter
Relational databases were initially created to store large amounts of data efficient-
ly. Putting data into separate tables reduces duplication and simplifies adding new
rows of data. For example, new sales can be added without interfering with exist-
ing sales or even added by multiple people at the same time. But, you might be
wondering, how is it possible to retrieve this data? For example, the Customer
data was split from the Sales data and stored in separate tables, linked by Custom-
erID. Sure, a person could retrieve a row from the Sales table, get the CustomerID
value and then go look up the matching data in the Customer table, but that seems
painful.

The SQL query language was created to answer these questions. The founda-
tions of the SELECT command are covered in this chapter. One strength of SQL
is that it is a declarative language instead of procedural. In a typically procedural
programming language, you would have to write code to open a table, and loop
through all of the rows to find the ones you want. With SQL, you simply tell
(declare to) the DBMS what you want to see. You specify (1) the columns you
want displayed, (2) the conditions you want to apply, (3) the tables involved, and

189Chapter 4: Data Queries

(4) how the tables are connected. Retrieving Sales and Customers in March is a
simple as:
SELECT Customer.CID, Lastname, SaleDate
FROM Customer
INNER JOIN Sale ON Customer.CID = Sale.CID
WHERE (SaleDate BETWEEN ‘3/1/2013’ AND ‘3/31/2013’);

SQL can also handle basic calculations such as price * quantity. More impor-
tantly, it can compute totals with a simple function: Sum(price*quantity). Totals
are computed across all of the specified rows. But SQL also computes subtotals
for any level of grouping using the GROUP BY statement. A critical goal of this
chapter is to be able to read business questions and write the matching SQL state-
ment—particularly for computing subtotals. For instance, to find the best employ-
ee for the month of March, use:

SELECT Employee.EID, Lastname, Sum(Price*Quantity) As
TotalSales
FROM Employee
INNER JOIN Sale ON Employees.EID = Sales.EID
INNER JOIN SaleItem ON Sales.SaleID = SaleItems.SaleID
WHERE (SaleDate BETWEEN ‘3/1/2013’ AND ‘3/31/2013’)
GROUP BY Employee.EID, Lastname
ORDER BY Sum(Price*Quantity) DESC;

Query editors can be used to drag-and-drop tables and columns to create the
JOINs and enter conditions. But you should learn the basic elements of the SE-
LECT command so you can type them by hand when necessary.

Three Tasks of a Query Language
What are the main tasks of a query language? To create databases and build
applications, you need to perform three basic sets of tasks: (1) define the database,
(2) change the data, and (3) retrieve data. Some systems use formal terms to de-
scribe these categories. Commands grouped as data definition language (DDL)
are used to define the data tables and other features of the database. The com-
mon DDL commands include: ALTER, CREATE, and DROP. Commands used
to modify the data are classified as data manipulation language (DML). Com-
mon DML commands are: DELETE, INSERT, and UPDATE. Some systems in-
clude data retrieval within the DML group, but the SELECT command is complex
enough to require its own discussion. The appendix to this chapter lists the syntax
of the various SQL commands. Virtually all tasks can be performed by issuing a
DDL, DML, or query command. This chapter focuses on the SELECT command.
The DML and DDL commands will be covered in more detail in Chapter 5.

The SELECT command is used to retrieve data: It is the most complex SQL
command, with several different options. The main objective of the SELECT
command is to retrieve specified columns of data for rows that meet some criteria.
Database management systems are driven by query systems. Many query systems
support a graphical interface which makes it easier to create queries by reducing
typing and through visualizing the relationships among tables. But, ultimately you
should learn the text versions of the SQL commands.

190Chapter 4: Data Queries

SQL SELECT Overview
What business questions can be answered with the basic SQL SELECT com-
mand? For the most part, SQL is a declarative language, which is unlike tradi-
tional programming procedural languages. You simply have to tell the DBMS
what you want and it determines how to get that data. You do not have to write
loops or conditional statements. The SELECT command is the primary method of
retrieving data from tables. This chapter focuses on its basic elements: (1) choos-
ing columns and making basic calculations, (2) selecting rows of data based on
given information, (3) joining related tables, (4) sorting the results, and (5) com-
puting subtotals. Many business questions rely on these basic tools.

At the simplest level, business questions just need to retrieve data that matches
some basic conditions. Questions such as: List customers who made a purchase
in a specified month or bought a specific product; or Find employees who sold
items to a specific customer. Building a query to answer these basic questions just
involves identifying the tables that hold the desired data, selecting the desired col-
umns to display, and entering the specified filter conditions, and perhaps sorting
the results. It is critical that you learn to build these simple queries correctly.

As a small step up, the SELECT statement can also perform simple computa-
tions. Business problems often need to multiply values in two columns, such as
Price*Quantity, or to subtract two values. The SELECT statement handles basic
arithmetic as well as common mathematical and string functions. These calcula-
tions operate on data held in one row and follow standard rules for mathematical
operations.

The most important capability of SQL in basic business questions is to com-
pute subtotals. A surprising number of business questions involve subtotals. For
instance: Which customer spent the most money last month? Which employee
sold the most items last week? Which product category is the best seller? What are
total sales by month? SQL easily handles subtotals with the GROUP BY clause.
Simply list the column that contains the items to break (group) on, then include
an aggregate function (usually Sum, Avg, Count) as a computation. The DBMS
will find each unique value in the GROUP BY column (such as each employee),
then compute the subtotal indicated in the Sum function for each item. Sorting
the results makes it easy to find the highest or lowest value. To convert a business
question into SQL, you often identify the items to be summed (or counted) and
then determine which columns hold the grouping values. Examine the business
question and look for words such as “by” or “for each.”

What	output	do	you	want	to	see? SELECT	columns
What	tables	are	invovled? FROM	table
How	are	the	tables	joined? INNER	JOIN	table
What	do	you	already	know	(or	what	
constraints	are	given)?

WHERE	conditions

Figure 4.1
Four questions to create a query. Every query is built by asking these four questions.
The SELECT… FROM … INNER JOIN … WHERE … syntax is the SQL form to
creating a query.

191Chapter 4: Data Queries

Four Questions to Retrieve Data
What is the basic structure of a query? Every attempt to retrieve data from a
relational DBMS requires answering the four basic questions listed in Figure 4.1.
The difference among query systems is how you fill in those answers. The figure
also shows the matching SQL clauses for answering the questions.
Notice that in some easy situations you will not have to answer all four questions.
Many easy questions involve only one table, so you will not have to worry about
joining tables. As another example, you might want the total sales for the entire
company, as opposed to the total sales for a particular employee, so there may not
be any constraints.

The SELECT statements can be used as a fill-in-the-blanks type of form. Start
the query by writing down or typing those key words on the left side of the page.
Then fill in the items to the right of the keywords. It is often easiest to begin by
writing down the output that you want to see on the SELECT statement, followed
by the constraints on the WHERE clause. Then you can identify all of the tables
needed and use the relationship diagram to see how the tables are joined.

What Output Do You Want to See?
As an initial step, you can think of a query as a way to filter data—both in terms of
columns you want to see and limiting the rows based on various conditions. You
could just retrieve every column from a table, but it gets hard to wade through
columns that are not important to the business question. So you need to tell the
DBMS which columns you want to see. More importantly, you first have to vi-
sualize your output before you can write the rest of the query. In general, a query
system answers your query by displaying rows of data from various columns. You

EmployeeID LastName Phone
1 Reeves 402-146-7714
2 Gibson 919-245-0526
3 Reasoner 413-414-8275
4 Hopkins 412-524-0814
5 James 407-026-6653
6 Eaton 906-446-7957
7 Farris 615-891-5545
8 Carpenter 212-545-8897
9 O’Conner 203-180-0146
10 Shields 304-607-9081
11 Smith 80-333-9872

SELECT EmployeeID, LastName,Phone
FROM Employee

Figure 4.2
Simple example of a column filter. Use the SELECT clause to choose only the
columns or calculations you want to see.

192Chapter 4: Data Queries

can also ask the DBMS to perform some basic computations, so you also need to
identify any calculations and totals you need.

You generally answer this question by selecting columns of data from the vari-
ous tables stored in the database. Of course, you need to know the names of all
of the columns to answer this question. Generally, the hardest part in answering
this question is to wade through the list of tables and identify the columns you re-
ally want to see. The problem is more difficult when the database has hundreds of
tables and thousands of columns. Queries are easier to build if you have a copy of
the class diagram that lists the tables, their columns, and the relationships that join
the tables.

Figure 4.2 shows a simple example of a SELECT statement using the Employ-
ee table in the Pet Store database. The SELECT clause specifies the columns or
calculations you want to see. You can think of it as a column filter—choosing a
subset of the columns available in the tables. If you want to see all of the columns,
you can simply use SELECT * FROM Employee to show all the columns.

What Do You Already Know?
In most situations you want to restrict your search based on various criteria. For
instance, you might be interested in sales on a particular date or sales from only
one department. The search conditions must be converted into a standard Boolean
notation (phrases connected with AND or OR). The most important part of this
step is to write down all the conditions to help you understand the purpose of the
query.

Figure 4.3 shows that you can think of the WHERE clause as a filtering state-
ment. Rows are displayed in the results only if the data within the row matches
the conditions in the WHERE clause. If multiple conditions are connected with an
“OR” term, the query generally returns more rows because the data can match any
one of the conditions. Connecting the conditions with an “AND” term reduces the
number of rows because each row must match all of the conditions.

What Tables Are Involved?
With only a few tables, this question is easy. With hundreds of tables, it could
take a while to determine exactly which ones you need. A good data dictionary
with synonyms and comments will make it easier for you (and users) to determine

EmployeeID LastName Phone EmploeeLevel
4 Hopins 412-524-9814 3
5 James 407-026-6653 3
7 Farris 615-891-5545 3

SELECT EmployeeID, LastName, phone, EmployeeLevel
FROM Employee
WHERE EmployeeLevel=3;

Figure 4.3
Simple example of a row filter. The WHERE clause limits the rows to be displayed
based on multiple conditions. Connecting conditions with an “OR” statement returns
more rows in the results because each row could meet on many conditions.

193Chapter 4: Data Queries

exactly which tables you need for the query. It is also critical that tables be given
names that accurately reflect their content and purpose.

One hint in choosing tables is to start with the tables containing the columns
listed in the first two questions (output and criteria). Next decide whether other
tables might be needed to serve as intermediaries to connect these tables.

How Are the Tables Joined?
This question relates to the issues in data normalization and is the heart of a rela-
tional database. Tables are connected by data in similar columns. For instance, as
shown in Figure 4.4, a Sales table has a CustomerID column. Corresponding data
is stored in the Customer table, which also has a CustomerID column. In many
cases matching columns in the tables will have the same name (e.g., CustomerID)
and this question is easy to answer. The join performs a matching or lookup for
the rows. You can think of the result as one giant table and use any of the columns
from any of the joined tables. Note that columns are not required to have the same
name, so you sometimes have to think a little more carefully. For example, an
Order table might have a column for SalesPerson, which is designed to match the
EmployeeID key in an Employee table.

Joining tables is usually straightforward as long as your database design is
sound. In fact, most QBE systems will automatically use the design to join any
tables you add. However, two problems can arise in practice: (1) You should ver-
ify that all tables are joined, and (2) Double-check any tables with multiple join
conditions.

CustomerID
LastName
FirstName
Phone

Customer

CustomerID
LastName
FirstName
Phone

Customer

SaleID
SaleDate
CustomerID

Sales

SaleID
SaleDate
CustomerID

Sales

555-5662MarkSmith4

444-2222MiguelJackson3

222-3333MartaSmith2

111-2222MaryJones1

PhoneFirstNameLastNameCustomerID

555-5662MarkSmith4

444-2222MiguelJackson3

222-3333MartaSmith2

111-2222MaryJones1

PhoneFirstNameLastNameCustomerID

15/24

45/23

25/12

15/11

CustomerIDSaleDateSaleID

15/24

45/23

25/12

15/11

CustomerIDSaleDateSaleID

4

3

2

1

SaleID

5/2

5/2

5/1

5/1

SaleDate

1

4

2

1

CustomerID

111-2222MaryJones1

555-5662MarkSmith4

222-3333MartaSmith2

111-2222MaryJones1

PhoneFirstNameLastNameCustomerID

4

3

2

1

SaleID

5/2

5/2

5/1

5/1

SaleDate

1

4

2

1

CustomerID

111-2222MaryJones1

555-5662MarkSmith4

222-3333MartaSmith2

111-2222MaryJones1

PhoneFirstNameLastNameCustomerID

Figure 4.4
Joining tables. A join causes a lookup to match rows across the tables.

194Chapter 4: Data Queries

Technically, it is legal to use tables without adding a join condition. However,
when no join condition is explicitly specified, the DBMS creates a cross join or
Cartesian product between the tables. A cross join matches every row in the first
table to every other row in the second table. For example, if both tables have 10
rows, the resulting cross join yields 10*10 = 100 rows of data. If the tables each
have 1,000 rows, the resulting join has one million rows! A cross join will seri-
ously degrade performance on any DBMS, so be sure to specify a join condition
for every table. The one exception is that it is sometimes used to join a single-row
result with every row in a second table. With only one row in a table, the cross
join is reasonably fast. Figure 4.5 shows the results of a cross join using two small
tables.

Sometimes table designs have multiple relationship connections between ta-
bles. For example, the Pet Store database joins Customer to City and City to Em-
ployee. A query system that automatically adds relationship joins will bring along

CustomerID
LastName
FirstName
Phone

Customer

CustomerID
LastName
FirstName
Phone

Customer

SaleID
SaleDate
CustomerID

Sales

SaleID
SaleDate
CustomerID

Sales

555-5662MarkSmith4

444-2222MiguelJackson3

222-3333MartaSmith2

111-2222MaryJones1

PhoneFirstNameLastNameCustomerID

555-5662MarkSmith4

444-2222MiguelJackson3

222-3333MartaSmith2

111-2222MaryJones1

PhoneFirstNameLastNameCustomerID

15/24

45/23

25/12

15/11

CustomerIDSaleDateSaleID

15/24

45/23

25/12

15/11

CustomerIDSaleDateSaleID

555-5662MarkSmith415/11

111-2222MaryJones125/12

222-3333MartaSmith225/12

444-2222MiguelJackson325/12

2

1

1

1

SaleID

5/1

5/1

5/1

5/1

SaleDate

2

1

1

1

CustomerID

555-5662MarkSmith4

444-2222MiguelJackson3

222-3333MartaSmith2

111-2222MaryJones1

PhoneFirstNameLastNameCustomerID

555-5662MarkSmith415/11

111-2222MaryJones125/12

222-3333MartaSmith225/12

444-2222MiguelJackson325/12

2

1

1

1

SaleID

5/1

5/1

5/1

5/1

SaleDate

2

1

1

1

CustomerID

555-5662MarkSmith4

444-2222MiguelJackson3

222-3333MartaSmith2

111-2222MaryJones1

PhoneFirstNameLastNameCustomerID

8 more rows

Figure 4.5
Cross join. With no join condition, the DBMS performs a cross join and matches
every row in the first table to every row in the second table, often leading to millions
of rows in the result. Be sure to specify a join condition and stay away from cross
joins.

195Chapter 4: Data Queries

every connection. But, you rarely want to use all of the joins at the same time. The
key is to remember that a join represents a restrictive condition. In the Pet Store
case, if you include the two joins from the Customer, City, and Employee tables,
you would be saying that you only want to see customers who live in the same
city as an employee.

Sally’s Pet Store
What tables and columns are used in the Pet Store? The initial Pet Store da-
tabase has been built, and some basic historical data has been transferred from
Sally’s old files. When you show your work to Sally, she becomes very excited.
She immediately starts asking questions about her business, and wants to see how
the database can answer them.

The examples in this chapter are derived from the Pet Store database. The ta-
bles and relationships for this case are shown in Figure 4.6. After reading each
section, you should work through the queries on your own. You should also solve
the exercises at the end of the chapter. Queries always look easy when the answers
are printed in the book. To learn to write queries, you must sit down and struggle
through the process of answering the four basic questions.

SupplierID
Name
ContactName
Phone
Address
ZIPCode
CityID

Supplier

AnimalID
Name
Category
Breed
DateBorn
Gender
Registered
Color
Photo
ImageFile
Imageheight
ImageWidth
AdoptionID
SaleID
Donation

Animal

PONumber
OrderDate
ReceiveDate
SupplierID
EmployeeID
ShippingCost

MerchandiseOrder

AdoptionID
AdoptionSource
ContactName
ContactPhone

AdoptionGroup

CityID
ZIPCode
City
State
AreaCode
Population1990
Population1980
Country
Latitude
Longitude

City

PONumber
ItemID
Quantity
Cost

OrderItem

ItemID
Description
QuantityOnHand
ListPrice
Category

Merchandise

EmployeeID
LastName
FirstName
Phone
Address
ZIPCode
CityID
TaxPayerID
DateHired
DateReleased
ManagerID
EmployeeLevel
Title

Employee

SaleID
SaleDate
EmployeeID
CustomerID
SalesTax

Sale

SaleID
ItemID
Quantity
SalePrice

SaleItem

CustomerID
Phone
FirstName
LastName
Address
ZIPCode
CityID

Customer

Category
Registration

Category

Category
Breed

Breed

Figure 4.6
Tables for the Pet Store database. Notice that animals and merchandise are similar,
but they are treated separately.

196Chapter 4: Data Queries

Chapter 3 notes that data normalization results in a business model of the orga-
nization. The list of tables gives a picture of how the firm operates. Notice that the
Pet Store treats merchandise differently than it treats animals. For example, each
animal is listed separately on a sale, but customers can purchase multiple copies
of merchandise items (e.g., bags of cat food). The reason for the split is that each
animal is unique and can be adopted only once. Also, you need to keep additional
information about the animals that does not apply to general merchandise.

When you begin to work with an existing database, the first thing you need to
do is familiarize yourself with the tables and columns. You should look through
some of the main tables to become familiar with the type and amount of data
stored in each table. Make sure you understand the terminology and examine the
underlying assumptions. For example, in the Pet Store case, an animal might be
registered with a breeding agency, but it can be registered with only one agency. If
it is not registered, the Registered column is NULL (or missing) for that animal.
This first step is easier when you work for a specific company, since you should
already be familiar with the firm’s operations and the terms that it uses for various
objects.

Vendor Differences
How do you write queries for a specific DBMS? The SQL standards present a
classic example of software development trade-offs. New releases of the standards
provide useful features, but vendors face the need to maintain compatibility with
a large installed base of applications and users. Consequently, substantial differ-
ences exist across database products. These differences are even more pronounced
when you look at the graphical interfaces.

Whenever possible, you should use the newer standards because the queries
are easier to read. However, it is likely that you will encounter queries written in
the older syntax, so you should also learn how to read these older versions. The
one catch is that each DBMS vendor had its own proprietary syntax. It is impos-
sible to cover all of the variations in this book. The details of the syntax and the
basic steps for writing and testing queries within a DBMS are explained in the ac-
companying workbooks. Each workbook explores the same issues using a single
DBMS. At a minimum, you should read through and work the examples in one
workbook. If you have time, it is instructive to compare the techniques of several
vendors.

Query Basics
How do you create a basic query? The basic goal is to convert a business ques-
tion into a database query. It is best to begin with relatively easy queries. This
chapter first presents queries that involve a single table to show the basics of cre-
ating a query. Then it covers details on constraints, followed by a discussion on
computations and aggregations. Groups and subtotals are then explained. Finally,
the chapter discusses how to select data from several tables at the same time.

Figure 4.7 presents several business questions that might arise at the Pet Store.
Most of the questions are relatively easy to answer. In fact, if there are not too
many rows in the Animal table, you could probably find the answers by hand-
searching the table. Actually, you might want to work some of the initial questions
by hand to help you understand what the query system is doing.

197Chapter 4: Data Queries

The foundation of queries is that you want to see only some of the columns
from a table and that you want to restrict the output to a set of rows that match
some criteria. For example, in the first query (animals with yellow color), you
might want to see the AnimalID, Category, Breed, and their Color. Instead of list-
ing every animal in the table, you want to restrict the list to just those with a yel-
low color.

Single Tables
The first query to consider is: Which animals were born after August 1? Figure 4.8
shows a QBE approach and the SQL. The two methods utilize the same underly-
ing structure. The QBE approach saves some typing, but eventually you need to
be able to write the SQL statements. If you write down the SQL keywords, you
can fill in the blanks—similar to the way you fill in the QBE grid.

First consider answering this question with a QBE system. The QBE system
will ask you to choose the tables involved. This question involves only one table:
Animal. You know that because all of the data you want to see and the constraint
are based on columns in the Animal table. With the table displayed, you can now
choose which columns you want to see in the output. The business question is a
little vague, so select AnimalID, Name, Category, and DateBorn.

The next step is to enter the criteria that you already know. In this example,
you are looking for animals born after a specific date. On the QBE grid, enter the
condition >’01-Aug-2013’ on the Criteria row under the DateBorn column. There
is one catch: Different DBMSs use different syntax for the way you enter the date.
Most of them will accept the date format and the single quotes shown here. For

•	 Which	animals	were	born	after	August	1?
•	 List	the	animals	by	category	and	breed.
•	 List	the	categories	of	animals	that	are	in	the	Animal	list.
•	 Which	dogs	have	a	donation	value	greater	than	$250?
•	 Which	cats	have	black	in	their	color?
•	 List	cats	excluding	those	that	are	registered	or	have	red	in	their	color.
•	 List	all	dogs	who	are	male	and	registered	or	who	were	born	before	01-

June-2013	and	have	white	in	their	color.
•	 What	is	the	extended	value	(price	*	quantity)	for	sale	items	on	sale	24?
•	 What	is	the	average	donation	value	for	animals?
•	 What	is	the	total	value	of	order	number	22?
•	 How	many	animals	were	adopted	in	each	category?
•	 How	many	animals	were	adopted	in	each	category	with	total	adoptions	of	

more	than	10?
•	 How	many	animals	born	after	June	1	were	adopted	in	each	category	with	

total	adoptions	more	than	10?
•	 List	the	CustomerID	of	everyone	who	bought	or	adopted	something	

between	April	1,	2013	and	May	31,	2013.
•	 List	the	names	of	everyone	who	bought	or	adopted	something	between	

April	1,	2013	and	May	31,	2013.
•	 List	the	name	and	phone	number	of	anyone	who	adopted	a	registered	

white	cat	between	two	given	dates.

Figure 4.7
Sample questions for the Pet Store. Most of these are easier since they involve only
one table. They represent typical questions that a manager or customer might ask.

198Chapter 4: Data Queries

Microsoft Access, do not include any quotation marks. The Access QBE interface
will automatically add # marks instead. It is a good idea to run the query now.
Check the DateBorn result to ensure that the query was entered correctly.

The four basic questions are answered by filling out blanks on the QBE grid.
(1) The output to be displayed is placed as a field on the grid. (2) The constraints
are entered as criteria or conditions under the appropriate fields. (3) The tables
involved are displayed at the top (and often under each field name). (4) The table
joins are shown as connecting lines among the tables. The one drawback to QBE
systems is that you have to answer the most difficult question first: Identifying the
tables involved. The QBE system uses the table list to provide a list of the col-
umns you can choose. Keep in mind that you can always add more tables as you
work on the problem.

Introduction to SQL
SQL is a powerful query language. However, unlike QBE, you generally have to
type in the entire statement. Most systems enable you to switch back and forth
between QBE and SQL, which saves some typing. Perhaps the greatest strength of
SQL is that it is a standard that most vendors of DBMS software support. Hence,
once you learn the base language, you will be able to create queries on all of the
major systems in use today. Note that some people pronounce SQL as “sequel,”
arguing that it descended from a vendor’s early DBMS called quel. Also, “Sequel”
is easier to say than “ess-cue-el.” But with the introduction of CQL for Cassandra
(see Chapter 13) it will be safer to just say SQL.

The most commonly used command in SQL is the SELECT statement, which
is used to retrieve data from tables. A simple version of the command is shown

Figure 4.8
Sample query shown in QBE and SQL. Since there is only one table, only three
questions need to be answered: What tables? What conditions? What do you want to
see?

Field AnimalID Name Category DateBorn
Table Animal Animal Animal Animal
Sort
Criteria >’01-Aug-2013’
Or

SELECT AnimalID,	Name,	Category,	Breed
FROM Animal
WHERE DateBorn >	’01-Aug-2013’;

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

Which	animals	were	born	after	August	1?

199Chapter 4: Data Queries

in Figure 4.9, which contains the four basic parts: SELECT, FROM, JOIN, and
WHERE. These parts match the basic questions needed by every query. In the ex-
ample in Figure 4.8, notice the similarity between the QBE and SQL approaches.
The four basic questions are answered by entering items after each of the four
main keywords. When you write SQL statements, it is best to write down the key-
words and then fill in the blanks. You can start by listing the columns you want to
see as output, then write the constraints in the WHERE clause. By looking at the
columns you used, it is straightforward to identify the tables involved. You can
use the class diagram to understand how the tables are joined.

SELECT Name,	Category,	Breed
FROM Animal
ORDER BY Category,	Breed;

Name Category Breed
Cathy Bird African	Grey

Bird Canary
Debbie Bird Cockatiel

Bird Cockatiel
Terry Bird Lovebird

Bird Other
Charles Bird Parakeet
Curtis Bird Parakeet
Ruby Bird Parakeet
Sandy Bird Parrot
Hoyt Bird Parrot

Bird Parrot

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

Or
Criteria

AscendingAscendingSort
AnimalAnimalAnimalTable
BreedCategoryNameField

Or
Criteria

AscendingAscendingSort
AnimalAnimalAnimalTable
BreedCategoryNameField

SELECT	 columns	 What	do	you	want	to	see?
FROM	 tables	 What	tables	are	involved?
JOIN	 conditions	 How	are	the	tables	joined?
WHERE	 criteria	 What	are	the	constraints?	

Figure 4.10
The ORDER BY clause sorts the output rows. The default is to sort in ascending
order, adding the keyword DESC after a column name results in a descending sort.
When columns like Category contain duplicate data, use a second column (e.g.,
Breed) to sort the rows within each category.

Figure 4.9
The basic SQL SELECT command matches the four questions you need to create
a query. The uppercase letters are used in this text to highlight the SQL keywords.
They can also be typed in lowercase.

200Chapter 4: Data Queries

Sorting the Output
Database systems treat tables as collections of data. For efficiency the DBMS is
free to store the table data in any manner or any order that it chooses. Yet in most
cases you will want to display the results of a query in a particular order. The SQL
ORDER BY clause is an easy and fast means to display the output in any order
you choose. As shown in Figure 4.10, simply list the columns you want to sort.
The default is ascending (A to Z or low to high with numbers). Add the phrase
DESC (for descending) after a column to sort from high to low. In QBE you select
the sort order on the QBE grid.

In some cases you will want to sort columns that do not contain unique data.
For example, the rows in Figure 4.10 are sorted by Category. In these situations
you would want to add a second sort column. In the example, rows for each cat-
egory (e.g., Bird) are sorted on the Breed column. The column listed first is sorted
first. In the example, all birds are listed first, and birds are then sorted by Breed.
To change this sort sequence in QBE, you have to move the entire column on the
QBE grid so that Category is to the left of Breed.

Distinct
The SELECT statement has an option that is useful in some queries. The DIS-
TINCT keyword tells the DBMS to display only rows that are unique. For ex-
ample, the query in Figure 4.11 (SELECT Category FROM Animal) would return
a long list of animal types (Bird, Cat, Dog, etc.). In fact, it would return the cat-
egory for every animal in the table—obviously; there are many cats and dogs. To
prevent the duplicates from being displayed, use the SELECT DISTINCT phrase.

Note that the DISTINCT keyword applies to the entire row. If there are any dif-
ferences in a row, it will be displayed. For example, the query SELECT DISTINCT
Category, Breed FROM Animal will return more than the seven rows shown in

SELECT	Category
FROM	Animal;

Category
Fish
Dog
Fish
Cat
Cat
Dog
Fish
Dog
Dog
Dog
Fish
Cat
Dog
. . .

SELECT	DISTINCT	Category
FROM	Animal;

Category
Bird
Cat
Dog
Fish
Mammal
Reptile
Spider

Figure 4.11
The DISTINCT keyword eliminates duplicate rows of the output. Without it the
animal category is listed for every animal in the database.

201Chapter 4: Data Queries

Figure 4.11 because each category can have many breeds. That is, each catego-
ry/breed combination will be listed only once, such as Dog/Retriever. Microsoft
Access supports the DISTINCT keyword, but you have to enter it in the SQL
statement.

Criteria
In most questions, identifying the output columns and the tables is straightfor-
ward. If there are hundreds of tables, it might take a while to decide exactly which
tables and columns you want, but it is just an issue of perseverance. On the other
hand, identifying constraints and specifying them correctly can be more challeng-
ing. More importantly if you make a mistake on a constraint, you will still get a
result. The problem is that it will not be the answer to the question you asked—
and it is often difficult to see that you made a mistake.

The primary concept of constraints is based on Boolean algebra, which you
learned in mathematics. In practice, the term simply means that various conditions
are connected with AND and OR clauses. Sometimes you will also use a NOT
statement, which negates or reverses the truth of the statement that follows it.
For example, NOT (Category = N‘Dog’) means you are interested in all animals
except dogs.

Consider the example in Figure 4.12. The first step is to note that two condi-
tions define the business question: dog and donation. The second step is to rec-
ognize that both of these conditions need to be true at the same time, so they are
connected by AND. As the database system examines each row, it evaluates both

Figure 4.12
Boolean algebra. An example of two conditions connected by AND. QBE uses an
AND connector for all conditions listed on the same row. Note the use of the N’…’
notation in SQL Server and Oracle to specify Unicode (National) data for strings. In
Access, simply use double-quote marks without the N.

SELECT AnimalID,	Category,	DateBorn
FROM Animal
WHERE Category=N’Dog’	AND	Donation>250;

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

Field AnimalID Name Category Donation
Table Animal Animal Animal Animal
Sort
Criteria Dog >250
Or

Which	dogs	have	a	donation	
amount	greater	than	$250?.

202Chapter 4: Data Queries

clauses. If any one clause is false, the row is skipped. Notice the use of N’Dog’
statement which converts the entered text to Unicode (national) format. Because
the data table formats were defined as Unicode, it is best to enter this specification
whenever you write a query. If the text in the query processor uses English, the
conversion is usually automatic and you could skip the N prefix. However, it is
always safer to specify the conversion explicitly.

Notice that the SQL statement is straightforward—just write the two conditions
and connect them with an AND clause. The QBE is a little trickier. With QBE,
every condition listed on the same criteria row is connected with an AND clause.
Conditions on different criteria rows are joined with an OR clause. You have to be
careful creating (and reading) QBE statements, particularly when there are many
different criteria rows.

Pattern Matching
Databases are designed to handle many different types of data, including num-
bers, dates, and text. The standard comparison operators (<, >, =, and so on) work
well for numbers, dates, and simple text values. However, larger text fields often
require more powerful comparisons. The SQL standard provides the LIKE com-
mand to handle simple pattern matching tasks. The LIKE command uses two spe-
cial characters to create a pattern that is compared to each selected row of text. In
standard SQL, the percent sign (%) in a pattern matches any character or charac-
ters (including none). The underscore (_) matches exactly one character. Before
exploring patterns, note that Microsoft Access uses an asterisk (*) and question
mark (?) instead. Access does provide the option to use the standard percent sign
and underscore characters, but almost no one activates that option.

You construct a pattern by using the percent or underscore characters. Gener-
ally, you want to search for a specific word or phrase. Consider the request from
a customer who wants a black cat. If you look at the Color column of the Animal
table, you will see that can contain multiple colors for any animal. If you think
about animals for a minute, it is clear that an animal can have multiple colors.
Technically, this choice means that the Color column is probably not atomic; and
you could have specified a completely new table that lists each color on a separate
line. However, color definitions are somewhat subjective, and it is more compli-
cated to enter data and write queries when multiple tables are involved. Conse-
quently, the database is a little more usable by listing the colors in a single column.
But, now you have to search it. If you search using the equals sign (say, WHERE
Color=N’Black’), you will see only animals that are completely black. Perhaps
the customer is willing to settle for a cat that has a few white spots, which might
have been entered as Black/White; and will not show up in the simple equality
search.

The answer is to construct a pattern search that will list a cat that has the word
Black anywhere in the Color column. Figure 4.13 shows the syntax of the query.
The key is the phrase: Color LIKE N‘%Black%’. Placing a percent sign at the
start of the pattern means that any characters can appear before the word Black.
Placing a percent sign at the end of the pattern means that any characters can ap-
pear after the word Black. Consequently, if the word Black appears anywhere in
the color list, the LIKE condition will be true. Note that the simple color “Black”
will also be matched because the percent sign matches no characters. If you leave
off the first percent sign (Color LIKE N‘Black%’), the condition would be true
only if the Color column begins with the word Black (followed by anything else).

203Chapter 4: Data Queries

You can construct more complex conditions using pattern matching, but you
should test these patterns carefully. For instance, you could search a Comment
column for two words using: Comment LIKE N‘%friendly%children%’. This pat-
tern will match any row that has a comment containing both of the words (friendly
and children). There can be other words in front of, behind, or between the two
words, but they must appear in the order listed.

You can also use the single character matching tool (underscore) to create a
pattern. This tool is useful in certain situations. It is most useful when you have a
text column that is created with a particular format. For instance, most automobile
license plates follow a given pattern (such as AAA-999). If a policeman gets a
partial license plate number, he could search for matches. For instance, License
LIKE N‘XQ_-12_’, would search for plates where the third character and third
number are not known. Keep in mind that the single-character pattern will only
match a character that exists. In the example, if a license number has three letters
but only two numbers, the pattern will never match it because the pattern requires
a third number. In business, the single-character pattern is useful for searching
product codes that contain a fixed format. For instance, a department store might
identify products by a three-character department code, a two-character color
code, a two-digit size code, and a five-digit item code: DDDCC11-12345. If you
wanted to find all blue (BL) items of size 9 (09), you could use: ItemCode LIKE
N‘_ _ _BL09-_ _ _ _ _’. Note that spaces were added in the text to show the num-
ber of underscores, but you would need to enter the underscores into the query
without any intervening spaces.

Which	cats	have	black	in	their	color?

SELECT AnimalID,	Name,	Category,	Color
FROM Animal
WHERE Category=’Cat’ AND	Color	LIKE	‘%Black%’;

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

Or
LIKE	‘%Black%’‘Cat’Criteria

Sort
AnimalAnimalAnimalAnimalTable
ColorCategoryNameAnimalIDField

Or
LIKE	‘%Black%’‘Cat’Criteria

Sort
AnimalAnimalAnimalAnimalTable
ColorCategoryNameAnimalIDField

Figure 4.13
Pattern matching. The percent sign matches any characters, so if the word Black
appears anywhere in the Color column the LIKE condition is true.

204Chapter 4: Data Queries

Boolean Algebra
One of the most important aspects of a query is the choice of rows that you want
to see. Most tables contain a huge number of rows, and you want to see only
the few that meet a business condition. Some conditions are straightforward. For
example, you might want to examine only dogs. Other criteria are complex and
involve several conditions. For instance, a customer might want a list of all yel-
low dogs born after June 1, 2013, or registered black labs. Conditions are evalu-
ated according to Boolean algebra, which is a standard set of rules for evaluating
conditions. You are probably already familiar with the rules from basic algebra
courses; however, it pays to be careful.

The DBMS uses Boolean algebra to evaluate conditions that consist of mul-
tiple clauses. The clauses are connected by these operators: AND, OR, NOT. Each
individual clause is evaluated as true or false, and then the operators are applied
to evaluate the truth value of the overall criterion. Figure 4.14 shows how the
primary operators (AND, OR) work. The DBMS examines each row of data and
evaluates the Boolean condition. The row is displayed only if the condition is true.

A condition consisting of two clauses connected by AND can be true only if
both of the clauses (a And b) are true. A statement that consists of two clauses
connected by OR is true as long as at least one of the two conditions is true. Con-
sider the examples shown in Figure 4.15. The first condition is false because it

a	=	3

b	=	-1

c	=	2
(a	>	4)	Or	(b	<	0)

F T
F

(a	>	4)	And	(b	<	0)

F T
T

NOT	(b	<	0)
T

F

Figure 4.15
Boolean algebra examples. Evaluate each clause separately. Then evaluate the
connector. The NOT operator reverses the truth value.

a b a AND b a OR b
T T T T
T F F T
F T F T
F F F F

Figure 4.14
A truth table shows the difference between AND and OR. Both clauses must be
true when connected by AND. Only one clause needs to be true when clauses are
connected by OR.

205Chapter 4: Data Queries

asks for both clauses to be true, and the first one is false (a < 4). The second ex-
ample is true because it requires only that one of the two clauses be true. Consider
an example from the Pet Store. If a customer asks to see a list of yellow dogs, he
or she wants a list of animals where the category is Dog AND the color is yellow.

As shown in Figure 4.16, conditions that are more complex can be created by
adding additional clauses. A complication arises when the overall condition con-
tains both AND connectors and OR connectors. In this situation the resulting truth
value depends on the order in which the clauses are evaluated. You should always
use parentheses to specify the desired order. Innermost parentheses are evaluated
first. In the example at the top of Figure 4.16, the AND operation is performed
before the OR operation, giving a result of true. In the bottom example, the OR
connector is evaluated first, leading to an evaluation of false.

If you do not use parentheses, the operators are evaluated from left to right.
This result may not be what you intended, yet the DBMS will still provide a re-
sponse. To be safe, you should build complex conditions one clause at a time.
Check the resulting selection each time to be sure you get what you wanted. To
find the data matching the conditions in Figure 4.16, you would first enter the (a
> 4) clause and display all of the values. Then you would add the (b < 0) clause
and display the results. Finally, you would add the parentheses and then the (c >
1) clause.

No matter how careful you are with Boolean algebra there is always room for
error. The problem is that natural languages such as English are ambiguous. For
example, consider the request by a customer who wants to see a list of “All dogs
that are yellow or white and born after June 1.” This staement can be intrepreted
two ways:

1. (dogs AND yellow) OR (white AND born after June 1).
2. (dogs) AND (yellow OR white) AND (born after June 1).

F T
F

T

((a	>	4)	AND	(b	<	0)) OR	(c	>	1)
T
T

F T

F
F

(a	>	4)	AND	((b	<	0)	OR	(c	>	1))
T

T

a	=	3

b	=	-1

c	=	2

Figure 4.16
Boolean algebra mixing AND and OR operators. The result changes depending on
which operator is applied first. You must set the order of evaluation with parentheses.
Innermost clauses are evaluated first.

206Chapter 4: Data Queries

These two requests are significantly different. The first interpretation returns all
yellow dogs, even if they are older. The second interpretation requests only young
dogs, and they must be yellow or white. Most people do not use parentheses when
they speak—although pauses help indicate the desired interpretation. A good de-
signer (or salesperson) will ask the customer for clarification.

DeMorgan’s Law
Designing queries is an exercise in logic. A useful technique for simplifying com-
plex queries was created by a logician named Augustus DeMorgan. Consider the
Pet Store example displayed in Figure 4.17. A customer might come in and say,
“I want to look at a cat, but I don’t want any cats that are registered or that have
red in their color.” Even in SQL, the condition for this query is a little confusing:
(Category = N’Cat’) AND NOT ((Registered is NOT NULL) OR (Color LIKE
N’%Red%’)). The negation (NOT) operator makes it harder to understand the
condition. It is even more difficult to create the QBE version of the statement.

The solution lies with DeMorgan’s law, which explains how to negate condi-
tions when two clauses are connected with an AND or an OR. DeMorgan’s law
states that to negate a condition with an AND or an OR connector, you negate
each of the two clauses and switch the connector. An AND becomes an OR, and
vice versa. Figure 4.17 shows how to handle the negative condition for the Pet
Store customer. Each condition is negated (NOT NULL becomes NULL, and red
becomes NOT red). Then the connector is changed from OR to AND. Figure 4.18
shows that the final truth value stays the same when the statement is evaluated
both ways.

The advantage of the new version of the condition is that it is a little easier
to understand and much easier to use in QBE. In QBE you enter the individual
clauses for Registration and Color. Placing them on the same line connects them

Customer: "I	want	to	look	at	a	cat,	but	I	
don’t	want	any	cats	that	are	registered	
or	that	have	red	in	their	color."	

SELECT AnimalID,	Category,	Registered,	Color
FROM Animal
WHERE (Category=‘Cat’)	AND

NOT ((Registered	is	NOT	NULL)	
OR (Color	LIKE	‘%Red%’)).	

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

Is	Null

Animal
Registered

Or
Not	Like	‘%Red%’‘Cat’Criteria

Sort
AnimalAnimalAnimalTable
ColorCategoryAnimalIDField

Is	Null

Animal
Registered

Or
Not	Like	‘%Red%’‘Cat’Criteria

Sort
AnimalAnimalAnimalTable
ColorCategoryAnimalIDField

Figure 4.17
Sample problem with negation. Customer knows what he or she does not want. SQL
can use NOT, but you should use DeMorgan’s law to negate the Registered and Color
statements.

207Chapter 4: Data Queries

T F
T

F

NOT	((Registered	is	NOT	NULL)	OR	(Color	LIKE	‘%Red%’))

Registered=ASCF
Color=Black

(Registered	is	NULL)	AND	NOT	(Color	LIKE	‘%Red%’)
F

T
F

or

not

and
Fnot

Figure 4.18
DeMorgan’s law. Compound statements are negated by reversing each item and
swapping the connector (AND for OR). Use truth tables to evaluate the examples.

Figure 4.19
Boolean criteria—mixing AND and OR. Notice the use of parentheses in SQL to
ensure the clauses are interpreted in the right order. Also note that QBE required
duplicating the condition for “Dog” in both rows.

List	all	dogs	who	are	male	and	registered	or	who	were	
born	before	6/1/2013	and	have	white	in	their	color.

SELECT AnimalID,	Category,	Gender,	Registered,	DateBorn,	Color
FROM Animal
WHERE ((Category=N‘Dog’)	AND

(((Gender=N‘Male’)	AND (Registered	Is	Not	Null))	OR
((DateBorn<’01-Jun-2013’)	AND (Color	Like	N‘%White%’))));

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

Field AnimalID Category Gender Registered DateBorn Color
Table Animal Animal Animal Animal Animal Animal
Sort
Criteria ‘Dog’ ‘Male’ Is	Not	Null
Or ‘Dog’ <	’01-Jun-2013’ Like	‘%White%’

208Chapter 4: Data Queries

with AND. In natural language the new version is expressed as follows: A cat that
is not registered and is not red. In practice DeMorgan’s law is useful to simplify
complex statements. However, you should always test your work by using sample
data to evaluate the truth tables.

Criteria can become more complex when you mix clauses with AND and OR in
the same query. Consider the question in Figure 4.19 to list all dogs who are male
and registered or who were born before June 1 and have white in their color.

First, note that there is some ambiguity in the English statement about how to
group the two clauses. Figure 4.20 shows the two possibilities. The use of the sec-
ond who helps to clarify the split, but the only way to be absolutely certain is to
use either parentheses or more words.

The SQL version of the query is straightforward—just be sure to use paren-
theses to indicate the priority for evaluating each phrase. Innermost clauses are
always evaluated first. A useful trick in proofreading queries is to use a sample
row and mark T or F above each condition. Next, combine the marks based on the
parentheses and connectors (AND, OR). Then read the statement in English and
see whether you arrive at the same result.

With QBE you list clauses joined by AND on the same row, which is equivalent
to putting them inside one set of parentheses. Separate clauses connected by OR
are placed on a new row. To interpret the query, look at each criteria row sepa-
rately. If all of the conditions on one line are true, then the row is determined to be
a match. A data row needs to match only one of the separate criteria lines (not all
of them).

A second hint for building complex queries is to test just part of the criteria at
one time—particularly with QBE. In this example, you would first write and test
a query for male and registered. Then add the other conditions and check the re-
sults at each step. Although this process takes longer than just leaping to the final
query, it helps to ensure that you get the correct answer. For complex queries it is
always wise to examine the SQL WHERE clause to make sure the parentheses are
correct.

Useful WHERE Clauses
Most database systems provide the comparison operators displayed in Figure
4.21. Standard numeric data can be compared with equality and inequality op-
erators. Text comparisons are usually made with the LIKE operator for pattern
matching. For all text criteria, you need to know if the system uses case-sensitive
comparisons. By default, Microsoft Access and SQL Server are not case-sensitive,
so you can type the pattern or condition using any case. On the other hand, Oracle

List	all	dogs	who	are	male	and	registered	or	who	were	born	before	
6/1/2007	and	have	white	in	their	color.

1:	(male	and	registered)	or	(born	before	June	1	and	white)
2:	(male)	and	(registered	or	born	before	June	1)	and	(white)

Figure 4.20
Ambiguity in natural languages means the sentence could be interpreted either way.
However, version (1) is the most common interpretation.

209Chapter 4: Data Queries

is case-sensitive by default so you have to be careful to type the case correctly. If
you do not know which case was used, you can use the UPPER function to con-
vert to upper case and then write the pattern using capital letters.

The BETWEEN clause is a useful way to handle common date conditions.
The clause (SaleDate BETWEEN ’15-Aug-2013’ AND ’31-Aug-2013’ is equiva-
lent to (SaleDate >= ’15-Aug-2013’ AND SaleDate <= ’31-Aug-2013’). The date
syntax shown here can be used on most database systems. Some systems allow
you to use shorter formats, but on others, you will have to specify a conversion
format. These conversion functions are not standard. For example, Access can
read almost any common date format if you surround the date by pound signs (#)
instead of quotes. Oracle often requires the TO_DATE conversion function, such
as SaleDate >= TO_DATE(‘8/15/13’, ‘mm/dd/yy’). Be sure that you test all date
conversions carefully, especially when you first start working with a new DBMS.

Another useful condition is to test for missing data with the NULL comparison.
Two common forms are IS NULL and IS NOT NULL. Be careful—the statement
(City = NULL) will not work with most systems, because NULL is not really
a value. You must use (City IS NULL) instead. Unfortunately, conditions with
the equality sign are not flagged as errors. The query will run—it just will never
match anything.

Computations
What types of computations can be performed in SQL? For the most part you
would use a spreadsheet or write separate programs for serious computations.
However, queries can be used for two types of computations: aggregations and
simple arithmetic on a row-by-row basis. Sometimes the two types of calculations
are combined. Consider the row-by-row computations first.

Basic Arithmetic Operators
SQL and QBE can both be used to perform basic computations on each row of
data. This technique can be used to automate basic tasks and to reduce the amount

Comparisons Examples
Operators <,	=,	>,	<>,	>=,	BETWEEN,	LIKE,	IN
Numbers AccountBalance	>	200
Text
		Simple
		Pattern	match	one
		Pattern	match	any

Name	>	‘Jones’
License	LIKE	‘A_	_82_’
Name	LIKE	‘J%’

Dates SaleDate	BETWEEN	‘15-Aug-2013’	AND	
‘31-Aug-2013’

Missing	Data City	IS	NULL
Negation Name	IS	NOT	NULL
Sets Category	IN	(‘Cat’,	‘Dog’,	‘Hamster’)

Figure 4.21
Common comparisons used in the WHERE clause. The BETWEEN clause is useful
for dates but can be used for any type of data.

210Chapter 4: Data Queries

of data storage. Consider a common order or sales form. As Figure 4.22 shows,
the basic tables would include a list of items purchased: SaleItem(SaleID, ItemID,
SalePrice, Quantity). In most situations you would need to multiply SalePrice by
Quantity to get the total value for each item ordered. Because this computation
is well defined (without any unusual conditions), there is no point in storing the
result—it can be recomputed whenever it is needed. Simply build a query and
add one more column. The new column uses elementary algebra and lists a name:
SalePrice*Quantity AS Extended. Remember that the computations are performed
for each row in the query.

Most systems provide additional mathematical functions. For example, basic
mathematical functions such as absolute value, logarithms, and trigonometric
functions are usually available. Although these functions provide extended capa-
bilities, always remember that they can operate only on data stored in one row of
a table or query at a time.

Aggregation
Databases for business often require the computation of totals and subtotals.
Hence, query systems provide functions for aggregation of data. The common
functions listed in Figure 4.23 can operate across several rows of data and return
one value. The most commonly used functions are Sum and Avg, which are simi-
lar to those available in spreadsheets.

With SQL, the functions are simply added as part of the SELECT statement.
With QBE, the functions are generally listed on a separate Total line. With Mi-
crosoft Access, you first have to click the summation (∑) button on the toolbar to
add the Total line to the QBE grid. In both SQL and QBE, you should provide a
meaningful name for the new column.

The Count function is useful in many situations, but make sure you understand
the difference between Sum and Count. Sum totals the values in a numeric col-
umn. Count simply counts the number of rows. If you supply a column name to
the Count function, you should use a primary key column or an asterisk (*).

The difficulty with the Count function lies in knowing when to use it. You
must first understand the English question. For example, the question How many
employees does the Pet Store have? would use the Count function: SELECT
Count(*) From Employee. The question How many units of Item 9764 have been
sold? requires the Sum function: SELECT Sum(Quantity) FROM OrderItem. The

SaleItem(SaleID,	ItemID,	SalePrice,	Quantity)

Select	SaleID,	ItemID,	SalePrice,	Quantity,	
SalePrice*Quantity	As	Extended
From	SaleItem;

SaleID ItemID Price Quantity Extended
24 25 2.70 3 8.10
24 26 5.40 2 10.80
24 27 31.50 1 31.50

Figure 4.22
Computations. Basic computations (+ - * /) can be performed on numeric data in a
query. The new display column should be given a meaningful name.

211Chapter 4: Data Queries

difference is that there can be only one employee per row in the Employee table,
whereas a customer can buy multiple quantities of an item at one time. Also keep
in mind that Sum can be used only on a column of numeric data (e.g., Quantity).

In many cases you will want to combine the row-by-row calculations with an
aggregate function. The example in Figure 4.24 asks for the total value of a par-
ticular order. To get total value, the database must first calculate Quantity * Cost
for each row and then get the total of that column. The example also shows that it
is common to specify a condition (WHERE) to limit the rows used for the total. In
this example, you want the total for just one order.

There is one important restriction to remember with aggregation. You cannot
display detail lines (row by row) at the same time you display totals. In the order
example you can see either the detail computations (Figure 4.22) or the total value
(Figure 4.24). In most cases it is simple enough to run two queries. However, if
you want to see the detail and the totals at the same time, you need to create a
report. Some of the most recent SQL standard extensions include provisions for
displaying totals and details, but it is almost always easier to create a report.

Note that you can compute several aggregate functions at the same time. For
example, you can display the Sum, Average, and Count at the same time: SE-
LECT Sum(Quantity), Avg(Quantity), Count(Quantity) From OrderItem. In fact,
if you need all three values, you should compute them at one time. Consider what
happens if you have a table with a million rows of data. If you write three separate
queries, the DBMS has to make three passes through the data. By combining the
computations in one query, you cut the total query time to one-third. With huge
tables or complex systems, these minor changes in a query can make the differ-
ence between a successful application and one that takes days to run.

Sometimes when using the Count function, you will also want to include the
DISTINCT operator. For example, SELECT COUNT (DISTINCT Category)

Figure 4.23
Aggregation functions. Sample query in QBE and SQL to answer: What is the
average sale price for all animals? Note that with Microsoft Access you have to click
the summation button on the toolbar (∑) to display the Total line on the QBE grid.

SELECT Avg(Donation) AS AvgOfDonation
FROM Animal;

AnimalID
Name
Category
Donation

Animal

Field SalePrice
Table SaleAnimal
Total Avg
Sort
Criteria
Or

Sum
Avg
Min
Max
Count
StDev	or	
StdDev
Var

212Chapter 4: Data Queries

FROM Animal will count the number of different categories and ignore dupli-
cates. Although the command is part of the SQL standard, some systems (notably
Access) do not support the use of the DISTINCT clause within the Count state-
ment. To obtain the same results in Access, you would first build the query with
the DISTINCT keyword. Save the query and then create a new query that com-
putes the Count on the saved query.

Functions
The SELECT command also supports functions that perform calculations on the
data. These calculations include numeric forms such as the trigonometric func-
tions, string function such as concatenating two strings, date arithmetic func-
tions, and formatting functions to control the display of the data. Unfortunately,
these functions are not standardized, so each DBMS vendor has different func-
tion names and different capabilities. Nonetheless, you should learn how to per-
form certain standard tasks in whichever DBMS you are using. Figure 4.25 lists
some of the common functions you might need. Even if you are learning only one
DBMS right now, you should keep this table handy in case you need to convert a
query from one system to another.

String operations are relatively useful. Concatenation is one of the more pow-
erful functions, because it enables you to combine data from multiple columns
into a single display field. It is particularly useful when you want to combine a
person’s last and first names. Other common string functions convert the data to
all lowercase or all uppercase characters. The length function counts the number
of characters in the string column. A substring function is used to return a selected
portion of a string. For example, you might choose to display only the first 20
characters of a long title.

SELECT Sum(Quantity*Cost)	AS	OrderTotal
FROM OrderItem
WHERE (PONumber=22);

PONumber
ItemID
Quantity
Cost

OrderItem

Total

Or
=22Criteria

Sort

OrderItemOrderItemTable
OrderTotal:	Quantity*CostPONumberField

Total

Or
=22Criteria

Sort

OrderItemOrderItemTable
OrderTotal:	Quantity*CostPONumberField

OrderTotal
1798.28

Figure 4.24
Computations. Row-by-row computations (Quantity*Cost) can be performed within
an aggregation function (Sum), but only the final total will be displayed in the result.

213Chapter 4: Data Queries

The powerful date functions are often used in business applications. Date col-
umns can be subtracted to obtain the number of days between two dates. Addition-
al functions exist to get the current date and time or to extract the month, day, or
year parts of a date column. Date arithmetic functions can be used to add (or sub-
tract) months, weeks, or years to a date. One issue you have to be careful with is
entering date values into a query. Most systems are sensitive to the fact that world
regions have different standards for entering and displaying dates. For example,
5/1/2013 is the first day in May in the United States, but it is the fifth day in Janu-
ary in Europe. To make sure that the DBMS understands exactly how you want a
date interpreted, you might have to use a conversion function and specify the date
format. Additional formatting functions can be used for other types of data, such
as setting a fixed number of decimal points or displaying a currency sign.

A DBMS might have dozens of numeric functions, but you will rarely use more
than a handful. Most systems have the common trigonometric functions (e.g., sine
and cosine), as well as the ability to raise a number to a power. Most also provide
some limited statistical calculations such as the average and standard deviation,
and occasionally correlation or regression computations. You will have to con-
sult the DBMS documentation for availability and details on additional functions.
However, keep in mind that you can always write your own functions and use
them in queries just as easily as the built-in functions.

Task Access SQL Server Oracle
Strings
		Concatenation
		Length
		Upper	case
		Lower	case
		Partial	string

FName	&	“	“	&	LName
Len(LName)
UCase(LName)
LCause(LName)
MID(LName,2,3)

FName	+	‘	‘	+	LName
Length(LName)
Upper(LName)
Lower(LName)
Substring(LName,2,3)

Fname	||	‘	‘	||	LName
LENGTH(LName)
UPPER(LName)
LOWER(LName)
SUBSTR(LName,2,3)

Dates
		Today
		Month
		Day
		Year
		Date	arithmetic

Date(),	Time(),	Now()
Month(myDate)
Day(myDate)
Year(myDate)
DateAdd
DateDiff

GetDate()
DateName(month,	myDate)
DatePart(day,	myDate)
DatePart(year,	myDate)
DateAdd
DateDif

SYSDATE
TRUNC(myDate,	‘mm’)
TRUNC(myDate,	‘dd’)
TRUNC(myDate,	‘yyyy’)
ADD_MONTHS
MONTHS_BETWEEN
LAST_DAY

Formatting Format(item,	format) Str(item,	length,	decimal)
Cast,	Convert

TO_CHAR(item,	format)
TO_DATE(item,	format)

Numbers
		Math	functions
		Exponentiation
		Aggregation
		Statistics

Cos,	Sin,	Tan,	Sqrt
2	^	3
Min,	Max,	Sum,	Count,	
Avg,	StDev,	Var

Cos,	Sin,	Tan,	Sqrt
Power(2,	3)
Min,	Max,	Sum,	Count,
Avg,	StDev,	Var,	
LinRegSlope,	Correlation

COS,	SIN,	TAN,	SQRT
POWER(2,	3)
MIN,	MAX,	SUM,	COUNT,	
REGR,	CORR

Figure 4.25
Differences in SQL functions. This table shows some of the differences that are
commonly encountered when working with these database systems. Queries are often
used to perform basic computations, but the syntax for handling these computations
depends on the specific DBMS.

214Chapter 4: Data Queries

Subtotals and GROUP BY
How do you compute subtotals? To look at totals for only a few categories, you
can use the Sum function with a WHERE clause. For example you might ask
How many cats are in the animal list? The query is straightforward: SELECT
Count (AnimalID) FROM Animal Where (Category = N’Cat’). This technique
will work, and you will get the correct answer. You could then go back and edit
the query to get the count for dogs or any other category of animal. However,
eventually you will get tired of changing the query. Also, what if you do not know
all the categories?

Consider the more general query: Count the number of animals in each cat-
egory. As shown in Figure 4.26, this type of query is best solved with the GROUP
BY clause. This technique is available in both QBE and SQL. The SQL syntax
is straightforward: just add the clause GROUP BY Category. The GROUP BY
statement can be used only with one of the aggregate functions (Sum, Avg, Count,
and so on). With the GROUP BY statement, the DBMS looks at all the data, finds
the unique items in the group, and then performs the aggregate function for each
item in the group.

By default, the output will generally be sorted by the group items. However, for
business questions, it is common to sort (ORDER BY) based on the computation.
The Pet Store example is sorted by the Count, listing the animals with the highest
count first. Be careful about adding multiple columns to the GROUP BY clause.
The subtotals will be computed for each distinct item in the entire GROUP BY

SELECT Category,	Count(AnimalID)	AS	CountOfAnimalID
FROM Animal
GROUP BY Category
ORDER BY Count(AnimalID)	DESC;

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

CountGroup ByTotal

Or
Criteria

DescendingSort

AnimalAnimalTable
AnimalIDCategoryField

CountGroup ByTotal

Or
Criteria

DescendingSort

AnimalAnimalTable
AnimalIDCategoryField

Category CountOfAnimalID
Dog 100
Cat 47
Bird 15
Fish 14
Reptile 6
Mammal 6
Spider 3

Figure 4.26
GROUP BY computes subtotals and counts for each type of animal. This approach is
much more efficient than trying to create a WHERE clause for each type of animal.
To convert business questions to SQL, watch for phrases such as by or for each
which usually signify the use of the GROUP BY clause.

215Chapter 4: Data Queries

clause. If you include additional columns (e.g., Category and Breed), you might
end up with a more detailed breakdown than you wanted.

Microsoft added a useful feature that can be used in conjunction with the OR-
DER BY statement. Sometimes a query will return thousands of lines of output.
Although the rows are sorted, you might want to examine only the first few rows.
For example, you might want to list your 10 best salespeople or the top 10 percent
of your customers. When you have sorted the results, you can easily limit the
output displayed by including the TOP statement; for example, SELECT TOP
10 SalesPerson, SUM(Sales) FROM Sales GROUP BY SalesPerson ORDER BY
SUM(Sales) DESC. This query will compute total sales for each salesperson and
display a list sorted in descending order. However, only the first 10 rows of the
output will be displayed. Of course, you could choose any value instead of 10.
You can also enter a percentage value (e.g., TOP 5 PERCENT), which will cut the
list off after 5 percent of the rows have been displayed. These commands are use-
ful when a manager wants to see the “best” of something and skip the rest of the
rows. Oracle does not support the TOP condition, but you can use the internal row
numbers to accomplish the same task. The command syntax relies on subqueries
covered in the next chapter, but you might want to reduce your output rows, so an
example is given here:
SELECT * FROM (SELECT … FROM …) WHERE ROWNUM <= 10;

SELECT Category,	Count(AnimalID)	AS	CountOfAnimalID
FROM Animal
GROUP	BY Category
HAVING Count(AnimalID)	>	10
ORDER	BY Count(AnimalID)	DESC;

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

CountGroup	ByTotal

Or
>10Criteria
DescendingSort

AnimalAnimalTable
AnimalIDCategoryField

CountGroup	ByTotal

Or
>10Criteria
DescendingSort

AnimalAnimalTable
AnimalIDCategoryField

Category CountOfAnimalID
Dog 100
Cat 47
Bird 15
Fish 14

Figure 4.27
Limiting the output with a HAVING clause. The GROUP BY clause with the Count
function provides a count of the number of animals in each category. The HAVING
clause restricts the output to only those categories having more than 10 animals.

216Chapter 4: Data Queries

The 2011 SQL standard expanded a clause to do the same thing but the syntax
is slightly different and it might take a while to be fully supported. The new clause
is the FETCH statement added to the end of the SELECT clause. For example, the
salesperson query would be written as:

SELECT SalesPerson, SUM(Sales) FROM Sales GROUP BY
SalesPerson ORDER BY SUM(Sales) DESC
FETCH FIRST 10 ROWS WITH TIES

Conditions on Totals (HAVING)
The GROUP BY clause is powerful and provides useful information for making
decisions. In cases involving many groups, you might want to restrict the output
list, particularly when some of the groups are relatively minor. The Pet Store has
categories for reptiles and spiders, but they are usually special-order items. In ana-
lyzing sales the managers might prefer to focus on the top-selling categories.

One way to reduce the amount of data displayed is to add the HAVING clause.
The HAVING clause is a condition that applies to the GROUP BY output. In the
example presented in Figure 4.27, the managers want to skip any animal category
that has fewer than 10 animals. Notice that the SQL statement simply adds one
line. The same condition can be added to the criteria grid in the QBE query. The
HAVING clause is powerful and works much like a WHERE statement. Just be
sure that the conditions you impose apply to the computations indicated by the
GROUP BY clause. The HAVING clause is a possible substitute in Oracle which
lacks the TOP statement. You can sort a set of subtotals and cut off the list to dis-
play only values above a certain limit.

WHERE versus HAVING
When you first learn QBE and SQL, WHERE and HAVING look very similar,
and choosing the proper clause can be confusing. Yet it is crucial that you under-
stand the difference. If you make a mistake, the DBMS will give you an answer,
but it will not be the answer to the question you want.

The key is that the WHERE statement applies to every single detail row in the
original table. The HAVING statement applies only to the subtotal output from a
GROUP BY query. To add to the confusion, you can even combine WHERE and
HAVING clauses in a single query—because you might want to look at only some
rows of data and then limit the display on the subtotals.

Consider the question in Figure 4.28 that counts the animals born after June
1, 2013, in each Category, but lists only the Category if there are more than 10
of these animals. The structure of the query is similar to the example in Figure
4.25. The difference in the SQL statement is the addition of the WHERE clause
(DateBorn > #6/1/2013#). This clause is applied to every row of the original data
to decide whether it should be included in the computation. Compare the count for
dogs in Figure 4.26 (30) with the count in Figure 4.25 (100). Only 30 dogs were
born after June 1, 2013. The HAVING clause then limits the display to only those
categories with more than 10 animals.

The query is processed by first examining each row to decide whether it meets
the WHERE condition. If so, the Category is examined and the Count is increased
for that category. After processing each row in the table, the totals are examined
to see whether they meet the HAVING condition. Only the acceptable rows are
displayed. The same query in QBE is a bit more confusing. Both of the conditions
are listed in the criteria grid. However, look closely at the Total row, and you will

217Chapter 4: Data Queries

see a Where entry for the DateBorn column. This entry is required to differentiate
between a HAVING and a WHERE condition. To be safe, you should always look
at the SQL statement to make sure your query was interpreted correctly.

The Best and the Worst
Think about the business question, Which product is our best seller? How would
you build a SQL statement to answer that question? To begin, you have to decide
if “best” is measured in quantity or revenue (price times quantity). For now, sim-
ply use quantity. A common temptation is to write a query similar to: SELECT
Max(Quantity) FROM SaleItem. This query will run. It will return the individual
sale that had the highest sale quantity, but it will not sum the quantities. A step
closer might be: SELECT ItemID, Max(Sum(Quantity)) FROM SaleItem GROUP
BY ItemID. But this query will not run because the database cannot compute the
maximum until after it has computed the sum. So, the best answer is to use: SE-
LECT ItemID, Sum(Quantity) FROM SaleItem GROUP BY ItemID ORDER BY
Sum(Quantity) DESC. This query will compute the total quantities purchased for
each item and display the result in descending order—the best-sellers will be at
the top of the list.

Note that this query displays more than the simple “best” answer. It displays all
of the totals. The advantage to this approach is that it shows other rows that might

Figure 4.28
WHERE versus HAVING. Count the animals born after June 1, 2007, in each
category, but list the category only if it has more than 10 of these animals. The
WHERE clause first determines whether each row will be used in the computation.
The GROUP BY clause produces the total count for each category. The HAVING
clause restricts the output to only those categories with more than 10 animals.

SELECT Category,	Count(AnimalID)	AS	CountOfAnimalID
FROM Animal
WHERE DateBorn >	’01-Jun-2013’
GROUP	BY Category
HAVING Count(AnimalID)	>	10
ORDER	BY Count(AnimalID)	DESC;

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

Field Category AnimalID DateBorn
Table Animal Animal Animal
Total Group	By Count Where
Sort Descending
Criteria >10 >’01-Jun-2013’
Or

CategoryCountOfAnimalID
Dog 30
Cat 18

218Chapter 4: Data Queries

be close to the “best” entry, which is information that might be valuable to the
decision maker. The one drawback to this approach is that it returns the complete
list of items sold. Generally, most businesspeople will want to see more than just
the top or bottom item, so it is not a serious drawback—unless the list is too long.
In that case, you can use the TOP or HAVING command to reduce the length of
the list.

Multiple Tables
How do you use multiple tables in a query? All the examples so far have used
a single table—to keep the discussion centered on the specific topics. In practice,
however, you often need to combine data from several tables. In fact, the strength
of a DBMS is its ability to combine data from multiple tables.
Chapter 3 shows how business forms and reports are dissected into related tables.
Although the normalization process makes data storage more efficient and avoids
common problems, ultimately, to answer the business question, you need to re-
combine the data from the tables. For example, the Sale table contains just the
CustomerID to identify the specific customer. Most people would prefer to see the
customer name and other attributes. This additional data is stored in the Customer
table—along with the CustomerID. The objective is to take the CustomerID from
the Sale table and look up the matching data in the Customer table.

Figure 4.29
List the CustomerID of everyone who bought something between April 1, 2013
and May 31, 2013. Most people would prefer to see the name and address of the
customer—those attributes are in the Customer table.

SELECT	DISTINCT	CustomerID
FROM	Sale
WHERE	(SaleDate Between	’01-Apr-2013’	

And	’31-May-2013’)
ORDER	BY	CustomerID;

SaleID
SaleDate
EmployeeID
CustomerID
SalesTax

Sale

Field CustomerID SaleDate
Table Sale Sale
Sort Ascending
Criteria Between	’01-Apr-2013’	

And	’31-May-2013’
Or

CustomerID
6
8
14
19
22
24
28
36
37
38
39
42
50
57
58
63
74
80
90

219Chapter 4: Data Queries

Joining Tables
With modern query languages, combining data from multiple tables is straightfor-
ward. You simply specify which tables are involved and how the tables are con-
nected. QBE is particularly easy to use for this process. To understand the process,
first consider the business question posed in Figure 4.29: list the CustomerID of
everyone who bought something between 4/1/2013 and 5/31/2013. Because some
customers might have made purchases on several days, the DISTINCT clause can
be used to delete the duplicate listings.

Most managers would prefer to see the customer name instead of CustomerID.
However, the name is stored in the Customer table because it would be a waste of
space to copy all of the attributes to every table that referred to the customer. If
you had these tables only as printed reports, you would have to take the Custom-
erID from the sale reports and find the matching row in the Customer table to get
the customer name. Of course, it would be time-consuming to do the matching by
hand. The query system can do it easily.

As illustrated in Figure 4.30, the QBE approach is somewhat easier than the
SQL syntax. However, the concept is the same. First, identify the two tables in-
volved (Sale and Customer). In QBE, you select the tables from a list, and they are
displayed at the top of the form. In SQL, you enter the table names on the FROM
line. Second, you tell the DBMS which columns are matched in each table. In this
case you match CustomerID in the Sale table to the CustomerID in the Customer
table. Most of the time the column names will be the same, but they could be
different.

Figure 4.30
Joining tables causes the rows to be matched based on the columns in the JOIN
statement. You can then use data from either table. The business question is, List the
last name of customers who bought something between April 1, 2013, and May 31,
2013.

SELECT	DISTINCT	Sale.CustomerID,	Customer.LastName
FROM	Customer
INNER	JOIN	Sale	ON	Customer.CustomerID =	Sale.CustomerID
WHERE	(SaleDate Between	’01-Apr-2013’	And	’31-May-2013’)
ORDER	BY	Customer.LastName;

SaleID
SaleDate
EmployeeID
CustomerID

Sale

Field CustomerID LastName SaleDate
Table Sale Customer Sale
Sort Ascending
Criteria Between	’01-Apr-2013’	

And	’31-May-2013’
Or

CustomerID LastName
22 Adkins
57 Carter
38 Franklin
42 Froedge
63 Grimes
74 Hinton
36 Holland
6 Hopkins
50 Lee
58 McCain
…	

CustomerID
Phone
FirstName
LastName

Customer

220Chapter 4: Data Queries

In SQL tables are connected with the JOIN statement. This statement was
changed with the introduction of SQL 92—however, you will encounter many
older queries that still use the older SQL 89 syntax. With SQL 89 the JOIN condi-
tion is part of the WHERE clause. Most vendors have converted to the SQL 92
syntax, so this text will rely on that format. As Chapter 5 shows, the SQL 92 syn-
tax is much easier to understand when you need to change the join configuration.

The syntax for a JOIN is displayed in Figure 4.31. An informal syntax similar
to SQL 89 is also shown. The DBMS will not accept statements using the infor-
mal syntax, but when the query uses many tables, it is easier to jot down the in-
formal syntax first and then add the details needed for the proper syntax. Note that
with both QBE and SQL, you must specify the tables involved and which columns
contain matching data.

Identifying Columns in Different Tables
Examine how the columns are specified in the SQL JOIN statement. Because the
column CustomerID is used in both tables, it would not make sense to write Cus-
tomerID = CustomerID. The DBMS would not know what you meant. To keep
track of which column you want, you must also specify the name of the table:
Sale.CustomerID. Actually, you can use this syntax anytime you refer to a col-
umn. You are required to use the full table.column name only when the same col-
umn name is used in more than one table.

Joining Many Tables
A query can use data from several different tables. The process is similar regard-
less of the number of tables. Each table you want to add must be joined to one
other table through a data column. If you cannot find a common column, either the
normalization is wrong or you need to find a third table that contains links to both
tables.

Consider the example in Figure 4.32: List the name and phone number of any-
one who adopted a registered white cat between two given dates. An important
step is to identify the tables needed. For large problems involving several tables, it
is best to first list the columns you want to see as output and the ones involved in
the constraints. In the example, the name and phone number you want to see are

SQL 92/Current Syntax
FROM	Table1
INNER	JOIN	Table2
		ON	Table1.Column	=	Table2.Column

SQL 89/Old Sytnax
FROM	Table1,	Table2
WHERE	Table1.Column	=	Table2.Column

Informal Syntax for Notes
FROM	Table1,	Table2
JOIN	Column

Figure 4.31
SQL 92 and SQL 89 syntax to join tables. The informal syntax cannot be used with a
DBMS, but it is easier to read when you need to combine many tables.

221Chapter 4: Data Queries

in the Customer table. The Registration status, Color, and Category (Cat) are all in
the Animal table. The SaleDate is in the Sale table. The Animal table connects to
the Sale table through the SaleID column in the Animal table.

 When the database contains a large number of tables, complex queries can be
challenging to build. You need to be familiar with the tables to determine which
tables contain the columns you want to see. For large databases, an entity-relation-
ship diagram (ERD) or a class diagram can show how the tables are connected.
Chapter 3 explains how Access sets referential integrity for foreign key relation-
ships. Access uses the relationships to automatically add the JOINs to QBE when
you choose a table. You can also use the class diagram to help users build queries.

When you first see it, the SQL 92 syntax for joining more than two tables can
look confusing. In practice, it is best not to memorize the syntax. When you are
first learning SQL, understanding the concept of the JOIN is far more important
than worrying about syntax. Figure 4.33 shows the syntax needed to join three
tables. To read it or to create a similar statement, start with the first table and JOIN
it to a second table with the corresponding ON condition. Then JOIN the next
table with a matching ON statement. Just be sure that the new table can be joined
to one of the existing tables. Unfortunately, this syntax will not work in Microsoft
Access, which requires the addition of parentheses. Figure 4.33 also shows an
easier syntax that is faster to write when you are first developing a query or when
you are in a hurry—perhaps on an exam. It is similar to the older SQL 89 syntax
(but not exactly correct) where you list all the tables in the FROM clause and then
join them in the WHERE statement.

Figure 4.32
Joining multiple tables. QBE makes joining multiple tables relatively easy—just
connect the tables with a line. With SQL, just start with two tables and expand
outward; for example, start with (Animal INNER JOIN SaleAnimal ON Animal.
malID = SaleAnimal.AnimalID), and then add a third table (Sale) with its JOIN.

SELECT	Customer.LastName,	Customer.Phone
FROM	Customer	
INNER	JOIN	Sale	ON	Customer.CustomerID=Sale.CustomerID
INNER	JOIN	Animal	ON	Sale.SaleID=Animal.SaleID
WHERE	((Animal.Category=N‘Cat’)	AND	(Animal.Registered Is	Not	Null)
AND	(Color	Like	N‘%White%’)		AND	(SaleDate Between	’01-Jun-2013’	And	’31-Dec-2013’));

SaleID
SaleDate
EmployeeID
CustomerID

Sale

Field LastName Phone Category Registered Color SaleDate
Table Customer Customer Animal Animal Animal Sale
Sort Ascending
Criteria ‘Cat’ Is	Not	Null Like	‘%White%’ Between	’01-Jun-2013’	

And	’31-Dec-2013’
Or

CustomerID
Phone
FirstName
LastName

Customer
AnimalID
Name
Category
SaleID

Animal

222Chapter 4: Data Queries

Hints on Joining Tables
Joining tables is closely related to data normalization. Normalization splits data
into tables that can be stored and searched more efficiently. Queries and SQL are
the reverse operation: JOINs are used to recombine the data from the tables. If the
normalization is incorrect, it might not be possible to join the tables. As you build
queries, double-check your normalization to make sure it is correct. Students of-
ten have trouble with JOINs, so this section provides some hints to help you un-
derstand the potential problems.

Remember that any time you use multiple tables, you must join them together.
Most database query systems will accept a query even if the tables are not joined.
They will even give you a result. Unfortunately, the result is usually meaningless.
The joined tables also create a huge query result. Without any constraints most
query systems will produce a cross join, where every row in one table is paired
with every row in the other table.

 Where possible, you should double-check the answer to a complex query. Use
sample data and individual test cases in which you can compute the answer by
hand. You should also build a complex query in stages. Start with one or two
tables and check the intermediate results to see if they make sense. Then add new
tables and additional constraints. Add the summary calculations last (e.g., Sum,
Avg). It’s hard to look at one number (total) and decide whether it is correct. In-
stead, look at an intermediate listing and make sure it includes all of the rows you
want; then add the computations.

Columns used in a JOIN are often key columns, but you can join tables on any
column. Similarly, joined columns may have different names. For example, you
might join an Employee.EmployeeID column to a Sale.SalesPerson column. The
only technical constraint is that the columns must contain the same type of data
(domain). In some cases, you can minimize this limitation by using a function to
convert the data. For example, you might use Left(ZipCode,5) = ZipCode5 to re-
duce a nine-digit ZipCode string to five digits. Just make sure that it makes sense
to match the data in the two columns. For instance, joining tables on Animal.Ani-
malID = Employee.EmployeeID would be meaningless. The DBMS would actu-
ally accept the JOIN (if both ID values are integers), but the JOIN does not make
any sense because an Employee can never be an Animal (except in science-fiction
movies).

SQL 92 Syntax for Three Tables
FROM	Table1
		INNER	JOIN	Table2	ON	Table1.ColA	=	Table2.ColA
		INNER	JOIN	Table3	ON	Table2.ColB	=	Table3.ColB

Easier notation, But Not Correct Syntax
FROM	Table1,	Table2,	Table3
JOIN											ColA						ColB

Figure 4.33
Joining multiple tables. With SQL 92 syntax, first join two tables within parentheses
and then add a table and its JOIN condition. When you want to focus on the tables
being joined, use the easier notation—just remember that it must be converted to
SQL 92 syntax for the computer to understand it.

223Chapter 4: Data Queries

Avoid multiple ties between tables. This problem often arises in Access when
you have predefined relationships between tables. Access QBE automatically uses
those relationships to join tables in a query. If you select the four tables shown in
Figure 4.34 and leave all four JOINs, you will not get the answer you want. The
four JOINs will return Sales only where the Employee placing the order has the
same CityID as the Customer! If you only need the City for the Customer, the so-
lution is to delete the JOIN between Employee and City. In general, if your query
uses four tables, you should have three JOINs (one less than the number of tables).

Sometimes it is helpful to remember that a JOIN condition also works as a row
filter. The standard join will only return rows from a table that match those in
the first table. For example, Sale.CustomerID = Customer.CustomerID will return
customer data but only if those customers have already participated in a sale.

Table Alias
Consider the preceding Employee/Customer/City example in more detail. What if
you really want to display the City for the Customer and the City for the Employ-
ee? Of course, you want to allow the cities to be different. The answer involves a
little-known trick in SQL: just add the City table twice. The second “copy” will
have a different name (e.g., City_1). You give a table a new name (alias) within
the FROM clause: FROM City AS City_1. As shown in Figure 4.35, the City table
is joined to the Customer. The City_1 table is joined to the Employee table. Now
the query will perform two separate JOINs to the same table—simply because it
has a different name.

SaleID
SaleDate
EmployeeID
CustomerID

Sale

CustomerID
Phone
Name
CityID

Customer

EmployeeID
Name
Phone
TaxPayerID
DateHired
CityID
ManagerID

Employee

CityID
ZipCode
City
State

City

1

1

1

1

*
*

*

*

Figure 4.34
A query with these four tables with four JOINS would return only rows where the
Employee had the same CityID as the Customer. If you need only the Customer city,
just delete the JOIN between Employee and CityID. If you want both cities, add a
second copy of the City table as a fifth table.

224Chapter 4: Data Queries

Create View
Any query that you build can be saved as a view. Microsoft simply refers to them
as saved queries, but SQL and Oracle call them views. In either case the DBMS
analyzes and stores the SQL statement so that it can be run later. If a query needs
to be run many times, you should save it as a view so that the DBMS has to ana-
lyze it only once. Figure 4.36 shows the basic SQL syntax for creating a view. You
start with any SELECT statement and add the line (CREATE VIEW …).

The most powerful feature of a view is that it can be used within another query.
Views are useful for queries that you have to run many times. You can also create
views to handle complex questions. Users can then create new, simpler queries
based on the views. In the example in Figure 4.36, you would create a view (Kit-

CREATE	VIEW	Kittens	AS
SELECT	*
FROM	Animal
WHERE	(Category	=	‘Cat’	AND	(Today-DateBorn	<	180);

Figure 4.35
Table alias. The City table is used twice. The second time, it is given the alias City_1
and treated as a separate table. Hence, different cities can be retrieved for Customer
and for Employee.

Figure 4.36
Views. Views are saved queries that can be run at any time. They improve
performance because they have to be entered only once, and the DBMS has to
analyze them only once.

CID Customer.CityID City.City EID LastName Employee.CityID City_1.City
15 11013 Galveston 1 Reeves 11060 Lackland AFB
53 11559 Beaver Dam 2 Gibson 9146 Roanoke Rapids
38 11701 Laramie 3 Reasoner 8313 Springfield
66 7935 Danville 8 Carpenter 10592 Philadelphia
5 9175 Fargo 3 Reasoner 8313 Springfield

SELECT	Customer.CustomerID,	Customer.CityID,	City.City,	Sale.EmployeeID,	
Employee.LastName,	Employee.CityID,	City_1.City
FROM	(City	INNER	JOIN	(Customer	INNER	JOIN	(Employee	INNER	JOIN	Sale	ON	
Employee.EmployeeID =	Sale.EmployeeID)	ON	Customer.CustomerID =	
Sale.CustomerID)	ON	City.CityID =	Customer.CityID)	INNER	JOIN	City	AS	City_1 ON	
Employee.CityID =	City_1.CityID;

EmployeeID
LastName
ZipCode
CityID

Employee

CityID
ZipCode
City
State

City_1

CustomerID
Phone
Name
CityID

Customer

CityID
ZipCode
City
State

City

SaleID
SaleDate
EmployeeID
CustomerID

Sale

225Chapter 4: Data Queries

tens) that displays data for Cats born within the last 180 days. As shown in Figure
4.37, users could search the Kittens view based on other criteria such as color.

As long as you want to use a view only to display data, the technique is straight-
forward. However, if you want a view that will be used to change data, you must
be careful. Depending on how you create the view, you might not be able to up-
date some of the data columns in the view. The example shown in Figure 4.38 is
an updatable view. The purpose is to add new data for ordering items. The user
enters the OrderID and the ItemID. The corresponding description of that Item is
automatically retrieved from the Item table.

Figure 4.39 illustrates the problem that can arise if you are hasty in choosing
the columns in a view. Here the OrderLine view uses the ItemID value from the
Item table (instead of from the OrderItem table). Now you will not be able to add
new data to the OrderLine view. To understand why, consider what happens when
you try to change the ItemID from 57 to 32. If it works at all, the new value is
stored in the Item table, which simply changes the ItemID of cat food from 57 to
32.

To ensure that a view can be updated, the view should be designed to change
data in only one table. The rest of the data is included simply for display—such
as verifying that the user entered the correct ItemID. You should never include
primary key columns from more than one table. Also, to remain updatable, a view
cannot use the DISTINCT keyword or contain a GROUP BY or HAVING clause.

Views have many uses in a database. They are particularly useful in helping
business managers work with the database. A database administrator (DBA) or
MIS worker can create views for the business managers, who see the section of
the database expressed only in the views. Hence, you can hide the view’s com-
plexity and size. Most important, you can hide the JOINs needed to build the
view, so managers can work with simple constraints. By keeping the view updat-
able, managers never need to use the underlying raw tables.

Figure 4.38
Updatable view. The OrderLine view is designed to change data in only one table
(OrderItem). The Description from the Item table is used for display to help the user
verify that the ItemID was entered correctly.

SaleItem(SaleID,	ItemID,	Quantity) Merchandise(ItemID,	Description)

SaleLine(SaleID,	ItemID,	Description,	Quantity)

Figure 4.37
Queries based on views. Views can be used within other queries.

SELECT	Avg(ListPrice)
FROM	Kittens
WHERE	(Color	LIKE	‘%Black%’);

226Chapter 4: Data Queries

Note that some database systems place restrictions on commands allowed with-
in a view. For example, older Oracle and newer SQL Server systems do not allow
you to use the ORDER BY clause in a saved view. The reason for this restriction
was to enable the system to provide better performance by optimizing the query.
To sort a result, you had to add the ORDER BY statement to a new query that
called the saved view. Finally, no matter how careful you are at constructing a
view with a JOIN statement, the DBMS might still refuse to consider it update-
able. When the DMBS accepts it, updateable views can save some time later when
building forms. But, at other times you have to give up and go with simpler forms.

Newer Searches and Patterns
How do you search XML and complex
text strings? Over time, companies have
found the need to store complex data in
databases. Although most DBMSs can
store new and different types of data, it
also becomes important to retrieve that
data. The standard WHERE conditions
apply only to the basic data types (simple
numbers and text). A few types of com-
plex data have become important and common enough that vendors have adopted
standard methods to search these new data types. The two most common types of
data are: XML hierarchies and long text.

XML is stored as tagged data, and an entry is commonly organized as a hier-
archy. A parent node can have multiple child nodes. For instance, an <Order> tag
can have multiple <Item> tags to indicate which items are being ordered. Devel-
opers and users need a common method to search an XML tag, including the abil-
ity to drill down and list elements within the hierarchy. XQuery was developed as
a standard to perform these searches. Today, the SQL 2006 standard and most of
the big DBMSs support the XML data type and the use of XQuery to search XML
data.

Note: This section covers XQuery
and RegEx searches for XML data
and text strings. It could be skipped
or covered later. Be sure you under-
stand basic SQL commands before
dealing with this material.

Figure 4.39
Nonupdatable view. Do not mix primary keys from different tables. If this view
works at all, it will not do what you want. If you try to change the ItemID from 57
to 32, you will only change the ItemID of cat food. You will not be able to enter new
data into the OrderItem table.

SaleItem(SaleID,	ItemID,	Quantity) Merchandise(ItemID,	Description)

SaleLine(SaleID,	Item.ItemID,	Description,	Quantity)

121 57 3
121 82 2
122 57 1

57 Cat	food
58 Dog	food
59 Bird	food

121 57 Cat	food 3
121 82 Bird	feeder 2
122 57 Cat	food 1

32

227Chapter 4: Data Queries

The basic pattern matching provided by the SQL standard is somewhat simplis-
tic. With only two search symbols (all text or one character), it is relatively easy
to use. But it is not very powerful. Programmers have long had a powerful string
search tool called regular expressions. Technically, regular expressions were add-
ed to the SQL 1999 standard, but only recently have vendors added it as a feature.

XQuery
XQuery is a standardized method for retrieving values from an XML string. XML
uses tags to mark each item and the designer can create almost any terms for the
tags. But the XML string has to be well-formed and can be validated against a
schema that specifies the data model. An XML data model is essentially a hierar-
chical definition of the data and repeating elements that can be stored in the XML
string. Figure 4.40 shows a simple XML file with sample data. When vendors ship
products to Sally’s Pet Store, they are asked to send this XML file that contains
the shipping invoice data. The vendor provides a ShipID and the ShipDate to ref-
erence their data in case questions arise later. The repeating Items section contains
a list of the items that were shipped along with the quantity and price paid. This
example is intentionally kept simple. A real-world invoice could have many levels
and options. Note that all XML tags are case-sensitive.
 For illustration, Figure 4.41 shows a simple version of the XML schema for
the sample data. The schema is the data definition and it can be used to create
and to validate XML data files. Note how the hierarchical form is defined through
the nested elements. In this case, the reference to Items is listed within the main
shipment. Also, note that each data point is defined by an element and the ele-

Figure 4.40
Sample XML data. Assume vendors send a shipping invoice file when they send
products. The sample data shows a single shipment that contains a ShipID and
ShipDate. The repeating section contains a list of items and the quantity that were
shipped.

<shipment>
<ShipID>1573</ShipID>
<ShipDate>15-May-2010</ShipDate>
<Items>
		<Item>
				<ItemID>15</ItemID>
				<Description>Leash</Description>
				<Quantity>20</Quantity>
				<Price>8.95</Price>
		</Item>
		<Item>
				<ItemID>32</ItemID>
				<Description>Collar</Description>
				<Quantity>25</Quantity>
				<Price>14.50</Price>
		</Item>
		</Items>
</shipment>

228Chapter 4: Data Queries

ment specifies the type of data. The default data type is text. XML and schemas
support considerably more complex data specifications, but it is best to start with
the simple formats. One way to create an XML data file and a schema definition
is to export a table from Microsoft Access as an XML file. This approach adds
some overhead to define a few Office/Access features; but it is a relatively pain-
less method to create an XML schema.
Storing XML Data
Unfortunately, Microsoft Access tables do not directly support the XML data type
and XQuery. You will need to use SQL Server or Oracle to work with the remain-
ing examples. A few standalone tools found on the Web can also be used to learn
and experiment with XQuery.

SQL Server (and Oracle) can handle XML both as data stored within a table
and as a data variable within the programming language. The underlying concepts
are the same, but since this chapter focuses on tables and queries, the examples
here use XML data placed into a table. Figure 4.42 shows the CREATE TABLE
and INSERT commands to create a new ShippingInvoice table and insert the sam-
ple data. Notice that the entire XML string is inserted into a single cell (row/col-
umn) of the ShippingInvoice table. That is, the table contains one row to represent
the single invoice and all of the XML data goes into the XML Contents column.
Retrieving XML Data with XQuery
XML data is basically a large string. You can retrieve the entire XML string with
a relatively standard SELECT statement, simply by specifying the desired row.

Figure 4.41
Simple XML schema for sample data. Note the hierarchical definition through the
nested elements.

<xsd:schema	xmlns:xsd=“http://www.w3.org/2001/XMLSchema”	>
		<xsd:element	name=“shipment”>
				<xsd:complexType>
						<xsd:element	name=“ShipID”	minOccurs=“0”	type=“xsd:int”	/>
						<xsd:element	name=“ShipDate”	minOccurs=“0”	type=“xsd:date”	/>
						<xsd:sequence>
								<xsd:element	ref=“Items”	minOccurs=“0”	maxOccurs=“unbounded”	/>
						</xsd:sequence>
				</xsd:complexType
		</xsd:element>
		<xsd:element	name=“Items”>
				<xsd:complexType>
						<xsd:sequence>
								<xsd:element	name=“ItemID”	minOccurs=“0”		type=“xsd:int”	/>
								<xsd:element	name=“Description”	minOccurs=“0”	/>
								<xsd:element	name=“Quantity”	minOccurs=“0”	type=“xsd:int”	/>
								<xsd:element	name=“Price”	minOccurs=“0”	type=“xsd:double”	/>
						</xsd:sequence>
				</xsd:complexType>
		</xsd:element>
</xsd:schema>

229Chapter 4: Data Queries

Figure 4.43
Simple XQuery example. The SQL SELECT statement specifies the desired row and
column that contains the XML data. The .query(‘shipment/Items’) term is a new
element that builds the XML query.

SELECT	Contents.query(‘shipment/Items’)	As	ItemList
FROM	ShippingInvoice
WHERE	ShippingID=1;
<Items>
		<Item>
				<ItemID>15</ItemID>
				<Description>Leash</Description>
				<Quantity>20</Quantity>
				<Price>8.95</Price>
		</Item>
		<Item>
				<ItemID>32</ItemID>
				<Description>Collar</Description>
				<Quantity>25</Quantity>
				<Price>14.50</Price>
		</Item>
</Items>

Figure 4.42
SQL Server table with XML data and INSERT command.

CREATE	TABLE	ShippingInvoice	(
	 ShippingID	int	IDENTITY(1,1)	NOT	NULL,
	 InvoiceDate	date	NULL,
	 OrderID	int	NULL,
	 Contents	xml	NULL,
	CONSTRAINT	pk_ShippingInvoice	PRIMARY	KEY	(ShippingID)
)
GO
INSERT	INTO	ShippingInvoice	(InvoiceDate,	OrderID,	Contents)
VALUES	(’19-May-2013’,	12,	‘
<shipment>
<ShipID>1573</ShipID>
<ShipDate>15-May-2013</ShipDate>
<Items>
	<Item><ItemID>15</ItemID><Description>Leash</Description>
				<Quantity>20</Quantity><Price>8.95</Price></Item>
	<Item><ItemID>32</ItemID><Description>Collar</Description>
				<Quantity>25</Quantity><Price>14.50</Price></Item>
		</Items>
</shipment>
‘);

230Chapter 4: Data Queries

However, you will often need to use XQuery to extract particular elements from
the XML string. Figure 4.43 shows one of the simplest XQuery examples. The
SQL SELECT statement is used to specify the desired row (ShippingID=1) and
the column (Contents) of the XML document. The .query(‘shipment/Items’) is the
new term that activates XQuery. XQuery supports several relatively complex ca-
pabilities for searching an XML document. Only a few commonly-used examples
are given here. Once you understand the basic structure of XML and XQuery,
you can study the reference documents to create more complex queries. However,
keep in mind that instead of building a hugely complex XQuery, it is often better
to extract all of the XML data and store it directly in relational tables. Then you
can use the power and speed of SQL to retrieve the data.

The simplest form of an XQuery is to retrieve a segment of the XML docu-
ment. The clearest way to do that is to simply specify the desired segment from
the top down. In the sample data, “shipment” is the root node and “Items” is the
repeating section. Hence, the query ‘shipment/Items’ returns the entire entry under
the “Items” node.

What if you want to retrieve data based on a specific value stored within a
node? For instance, you want to retrieve all of the information for ItemID 15 in
the sample data. XQuery has a couple of methods for retrieving this data. Figure
4.44 shows the simplest approach: /shipment/Items/Item[ItemID=15]. Specify the
hierarchical structure and then enter the desired condition in square brackets [].

Another useful trick is to return just a single element within a node. In the prior
example, instead of returning the entire entry for ItemID 15, it might be useful
to retrieve only the Quantity shipped. Figure 4.45 shows the syntax for specify-
ing a single node. Simply add the node name after the brackets: /shipment/Items/
Item[ItemID=15]/Quantity.

Complex search conditions are available, including a “contains” function to
search text elements for specific values. Elements can also include attributes,
such as <Price currency=”USD”>8.95</Price>, which uses a currency attribute
to specify the monetary units. (USD is the standard symbol for U.S. Dollar). To
search for this particular attribute, you could use a query of the form: /shipment/

SELECT	Contents.query(‘
		/shipment/Items/Item[ItemID=15]
‘)	As	ItemList
FROM	ShippingInvoice
WHERE	ShippingID=1;

<Item>
		<ItemID>15</ItemID>
		<Description>Leash</Description>
		<Quantity>20</Quantity>
		<Price>8.95</Price>
</Item>

Figure 4.44
XQuery to retrieve entry based on value stored within an element. Find entry for
ItemID 15.

231Chapter 4: Data Queries

Items/Item/Price[@currency=”USD]; which will return only those items where
the price currency is directly specified as USD.

Several other search options are available, but they use a somewhat cryptic an-
notation mechanism. XQuery also supports a relatively flexible search language
that is often easier to read. It is abbreviated as FLWOR: for, let, where, order by,
return. Figure 4.46 shows an example of the “for” loop that examines all of the
items, searching for an entry with ItemID equal to 15. Note the use of an internal
variable ($item) that is used to temporarily hold the values of each node being
examined. The query also uses the data function to extract the value and return
the simple number (20) without its XML tags. This data function could have been
used in the prior examples as well. The point of the “for” loop is that it returns all
of the nodes that meet the specified criteria, so it can return multiple “rows” of
data—although all of the “rows” are stored within the single XML document. The
return statement also supports an if/then/else construct so you can return modified
results based on a conditional test.
XQuery in Oracle
Oracle support for XML and XQuery is similar to the examples in this section,
but the syntax is slightly different. First, the data type needed is XMLType. Also,
note that “contents” is a reserved word in Oracle, so the column name in the Ship-
pingInvoice table should be changed to xContents. If you create a sequence and an
insert trigger for the table, the existing INSERT command will work. However, it

Figure 4.45
Extract a single element from the found node by adding the element name (/Quantity)
after the brackets.

SELECT	Contents.query(‘
		for	$item	in	/shipment/Items/Item
				where	$item/ItemID=15
		return	data($item/Quantity)
‘)	As	ItemList
FROM	ShippingInvoice
WHERE	ShippingID=1;

20

Figure 4.46
Using FLWOR commands to search nodes and return a single value. Also uses the
data function to return the value without the XML tags.

SELECT	Contents.query(‘
		/shipment/Items/Item[ItemID=15]/Quantity
‘)	As	ItemList
FROM	ShippingInvoice
WHERE	ShippingID=1;

<Quantity>20</Quantity>

232Chapter 4: Data Queries

is probably easier to just modify the INSERT command to include the ShippingID
and specify the ShippingID value as 1. So, the setup commands are:
CREATE TABLE ShippingInvoice (
 ShippingID number NOT NULL,
 InvoiceDate date,
 OrderID number,
 xContents XMLType,
 CONSTRAINT pk_ShippingInvoice PRIMARY KEY (ShippingID)
);
INSERT INTO ShippingInvoice (ShippingID, InvoiceDate,
OrderID, xContents)
VALUES (1, ‘19-May-2013’, 12, ‘
<shipment>
<ShipID>1573</ShipID>
<ShipDate>15-May-2013</ShipDate>
<Items>
 <Item><ItemID>15</ItemID><Description>Leash</
Description>
 <Quantity>20</Quantity><Price>8.95</Price></Item>
 <Item><ItemID>32</ItemID><Description>Collar</
Description>
 <Quantity>25</Quantity><Price>14.50</Price></Item>
 </Items>
</shipment>
‘);

The syntax for calling XQuery is also somewhat different. However, the XQue-
ry functions are mostly standardized. The basic command matching Figure 4.43
shows the difference using the extract function:
SELECT extract(xContents, ‘
 /shipment/Items
‘) As ListResult
FROM ShippingInvoice
WHERE ShippingID=1;

Once you understand the syntax, the method of using XQuery is the same as
the other examples. But always be sure to test everything.
Summary
XQuery is a powerful tool for searching XML data trees. However, keep in mind
that all searches through XML are based on string values and they are rarely (if
ever) indexed. Consequently, XQuery searches can be quite slow. Additionally,
you have to be cautious and test all of your queries to ensure they are retrieving
exactly the requested data and not missing anything. If XML data needs to be
searched often, it is better to extract the individual elements and put them into
standard relational tables. Then use SQL to perform the searches. XQuery could
be used to perform the data extraction. Remember that XQuery works on data in
one row and one cell at a time.

Ultimately, a designer must make the decision of whether to extract XML data
into relational tables or to leave it stored as a single XML document. If the data
is rarely used except for occasional searches, it can probably be left as an XML
document. However, it will still be necessary to have someone around who can

233Chapter 4: Data Queries

write and test XQuery code for those times when a manager does need to search
the data. As shown in the examples, it is possible to prebuild SQL views that con-
tain XQuery searches. These views can be saved and run later. The tools include
the ability to reference SQL parameter variables within the XQuery so these views
can be controlled through other code. However, because of the complexity and
tricky nature of XML queries, avoid giving users the ability to create their own
XQuery searches.

Regular Expressions (RegEx) Patterns
Increasingly, applications are being built that contain unstructured text data. For
instance, a database might hold open-ended comments entered by workers or cus-
tomers; or a database might be built to hold boilerplate paragraphs for use in con-
tracts or negotiations. Think in terms of the open content on the Web, but it is
data stored in internal databases. Now think about how people will want to search
this data. Many times, they will want to enter keywords or phrases or even more
complex conditions to find matches to sophisticated patterns. If the data consists
of HTML or PDF pages stored on an internal Web server, it is possible to purchase
commercial search engines to help index and find pages. But how are you going to
create searches for text stored in a relational database? Basic SQL pattern match-
ing was discussed in an earlier section of this chapter. It consists of two wildcard
characters (% and _ in the standard) that match any characters or any single char-
acter. This basic approach is not going to be enough. To address these issues, SQL
1999 added support for regular expressions, usually abbreviated RegEx. It has
taken vendors a few years, but the big systems now support regular expression
searches.

Figure 4.47
Steps to create a CLR project in SQL Server and enable CLR functions in the
database.

1.	 Start	Visual	Studio.
2.	 Open	a	New	Project:	Visual	C#,	Database,	SQL	Server:	Visual	

C#	SQL	CLR	Database	Project.
3.	 Choose	the	Pet	Store	database.
4.	 Right-click	the	project	name,	Add,	User	Defined	Function:	

RegexMatch.cs.
5.	 If	using	VS	2010,	right-click	project	name,	Properties.	Change	

.NET	version	from	4.0	down	to	3.5	(not	the	client).	
6.	 Modify	or	replace	the	function	code	(in	the	next	figure).
7.	 Build	then	Build,	Deploy.
8.	 In	SQL	Server	Management	Studio,	open	the	database	and	

enable	CLR	functions.

EXEC	sp_configure	‘show	advanced	options’	,	‘1’;	
reconfigure;	
EXEC	sp_configure	‘clr	enabled’	,	‘1’	;
reconfigure;	
EXEC	sp_configure	‘show	advanced	options’	,	‘0’;	
reconfigure;

234Chapter 4: Data Queries

Regular expressions were created many years ago and were heavily used by
programmers—particularly on UNIX-based systems. Today, most programming
languages support them, and the big DBMSs also support their usage for matching
text values. Microsoft Access does not support them for table searches; however,
any code written in one of the Microsoft languages (Visual Basic, C#, C++ and so
on) has regular expression processing which can be applied to the rows retrieved
from queries.

Some systems, such as MySQL, support regular expressions directly as part of
the query. For example, Oracle defines functions for Regexp_Count, Regexp_In-
str, Regexp_Like, and Regexp_Replace. The Regexp_Like function is similar to
an extended Like command used in the WHERE clause. SQL Server is more com-
plicated to set up, but SQL server also has a simpler option that extends the stan-
dard LIKE command.

Regular expressions have powerful options supporting many complex types of
searches. On the simple side, a pattern can search for a single word. More com-
plex patterns can be created to see if an entered string is an e-mail address. Pat-
terns can be written to search for repeating characters or phrases.
SQL Server Setup
Beginning with SQL Server 2005, Microsoft added the ability to create user-de-
fined common-language runtime (CLR) functions in SQL Server. CLR func-
tions are written in a Visual Studio language, such as C#, compiled and installed
into the database so that they can be used as functions within SQL. The process
takes a few steps to set up the function, but once the function is installed, it is used

using	System;
using	System.Data;
using	System.Data.SqlClient;
using	System.Data.SqlTypes;
using	System.Text.RegularExpressions;
using	Microsoft.SqlServer.Server;

public	partial	class	UserDefinedFunctions
{
				public	static	readonly	RegexOptions	Options	=
				RegexOptions.IgnorePatternWhitespace	|
				RegexOptions.Singleline;

				[Microsoft.SqlServer.Server.SqlFunction]
				public	static	SqlBoolean	RegexMatch(
								SqlChars	input,	SqlString	pattern)
				{
								Regex	regex	=	new	Regex(pattern.Value,	Options);
								return	regex.IsMatch(new	string(input.Value));
				}
};

Figure 4.48
Microsoft C# function to create the RegexMatch function for use in SQL Server.

235Chapter 4: Data Queries

much like the functions in the other database systems. Figure 4.47 outlines the
steps needed to create a CLR function and enable it to work within the database.

Figure 4.48 shows the entire C# code needed to create the RegexMatch func-
tion. Visual Studio generates much of the code automatically, but it needs to be
edited. It might be easier to use copy-and-paste to replace the entire function.

Use the Build option to compile the function and correct any errors. Use the
Build | Publish menu option and Visual Studio will compile the function and in-
stall it in the database. From that point, you can use the new function (Regex-
Match) to examine any string or table column for patterns.
RegEx Patterns
Regular expressions are powerful search tools, but they can be cryptic and hard to
follow. This section presents only the basic concepts to get started. Once you are
comfortable with these tools, you can use tutorials and reference documents on
the Web to learn more detailed techniques if you need them. For example, RegEx
also supports search and replace for patterns, but this option is not covered here.

The regex function uses two string parameters: (1) The text to be searched,
and (2) A regex pattern. In a database context, the text to be searched can be a
column from a table and the function can be written into the SELECT clause or
the WHERE clause. For instance, consider searching the Merchandise table in the
Pet Store database. Figure 4.49 illustrates using the RegEx function to search for
any description containing the word “Small.” A plain string is the simplest search
pattern. Note that patterns are case-sensitive by default. The simple pattern will
match a row if the pattern exists exactly as written anywhere within the column
data.

One useful tool of RegEx is the ability to specify a range of characters using
square brackets. For example, as shown in Figure 4.50, the pattern [a-z] would
match a single letter between “a” and “z” and only in lower-case form. The hy-
phen is a range indicator but it is also possible to specify individual characters.
For example, the pattern [AEIOU] would match any one of the vowels in the list,
or [123] would match one of the three digits.

The Microsoft SQL Server LIKE command also supports the square brackets—
even without implementing the regular expression function. Hence, if all you need
is a simple pattern to check for individual characters or ranges of characters, you

SELECT	*
FROM	Merchandise
WHERE	dbo.RegexMatch(Description,	N’Small’)	<>	0;

1	 Dog	Kennel-Small	 11	 45.00	 Dog
5	 Cat	Bed-Small	 36	 25.00	 Cat
32	 Collar-Dog-Small	 47	 12.00	 Dog

Figure 4.49
A simple text pattern search using RegEx in the LIKE clause. By default, RegEx
comparisons are case-sensitive. Entering a simple string will try to match that pattern
anywhere within the Description column.

236Chapter 4: Data Queries

can use the square brackets directly within the LIKE clause. For example, con-
sider the clause:
 WHERE LastName LIKE N‘Sm[iy]th’

This clause will match either Smith or Smyth because the brackets accept either
the “i” or the “y” character.

RegEx has several special characters—many of which handle common ranges
that are useful for various comparisons. Figure 4.51 shows the most commonly-
used characters. Note the case-sensitive characters. Upper-case letters generally
mean the negation or reverse of the lower-case symbol, such as “d” for digits and
“D” for anything except digits. The caret (^) and dollar sign ($) are useful because
they anchor the string comparison to the start or end of the input text. Without
these, the pattern is always tested at any point within the text string. For instance,

.	(dot) Match	any	single	character.
\n Match	newline	character.
\t Match	the	tab	character.
\d Match	a	digit	[0-9].
\D Match	a	non-digit	[^0-9].
\w Match	an	alphanumeric	character.
\W Match	a	non-alphanumeric	character.
\s Match	a	whitespace	character.
\S Match	a	non-whitespace	character.
\ Escape	special	characters,	such	as	\.
^ Match	the	beginning	of	the	input.
$ Match	the	end	of	the	input.

Figure 4.50
Groups of characters using square brackets. Will match if a single character matches
one of the pattern characters. The example would find customers with a last name of
Hill or Hall. The caret (^) negates the pattern.

Figure 4.51
Special characters. Many of them match commonly-used ranges such as digits or
alphanumeric characters.

[a-z]
[AEIOU]
[123]
[^0-9]

Match	one	lower-case	letter.
Match	one	of	the	vowels.
Match	one	of	the	numbers.
Match	a	character	not	a	digit.

SELECT	*
FROM	Customer
WHERE	dbo.RegexMatch(LastName,	N’H[ai]ll’)	<>	0;
78			(505)	646-2748			Elaine			Hall	…

237Chapter 4: Data Queries

a simple pattern “One” would be tested and could appear at any point in the search
text. However, the pattern “^One” will only match if the word “One” appears ex-
actly at the start of the input.

So far, the patterns apply to a single character or word at a time. In many cas-
es, it is useful to allow a digit or character to repeat. RegEx has several ways to
quantify the number of characters. Three special characters are useful: * ? +. The
asterisk (*) matches any number of what falls before it—from zero to infinity. The
question mark (?) matches zero or one of the pattern preceding it. The plus sign
(+) matches one or more of the pattern before it. Figure 4.52 summarizes these
differences and provides an example of the difference between the asterisk and the
plus sign. You should run the two queries and check the results. Almost all of the
merchandise rows will appear when using the asterisk because the “n” is optional
and most rows contain the letter “e”.

These special characters cover cases of zero, one, and infinite repetition. In
some cases, you want the ability to specify exactly how many times a pattern
should repeat. The RegEx pattern for that is to put the number in curly braces,
such as: \d{3}. The letter \d specifics a numeric digit and the {3} repetition anno-
tation says exactly three digits must exist. Figure 4.53 shows an example of using
the fixed repetition to test a U.S. Social Security number. This example comes
from Microsoft’s MSDN article. U.S. Social Security numbers consist of nine dig-
its, commonly written in three groups separated by hyphens, such as 123-45-6789.
The RegEx pattern is straightforward. For example, the term \d{3} tests for the
presence of exactly three digits. In the full pattern, note the use of the start (^) and
end ($) markers to prevent the introduction of extraneous characters.

RegEx patterns can be much more complex. One useful feature is the ability to
group characters together using parentheses (). Figure 4.54 shows some straight-
forward examples of creating groups. Anything placed in parentheses is treated
as a group, so the pattern (ab)+ searches for at least one occurrence of the two

*	 Match	zero	or	infinite	of	the	pattern	before	the	asterisk.
?	 Match	zero	or	one	of	the	pattern	before.
+	 Match	one	or	more	of	the	pattern	before.

SELECT	*
FROM	Merchandise
WHERE	dbo.RegexMatch(Description,	N’n*e’)<>0;
>>>>	Match	any	description	that	contains	the	letter	“e”.
(Because	the	*	means	the	n	is	optional.

SELECT	*
FROM	Merchandise
WHERE	dbo.RegexMatch(Description,	N’n+e’)<>0;
>>>>	Match	any	description	that	contains	the	letter	“n”	followed	by	any	
characters	and	then	the	letter	“e”.
(Because	the	+	means	the	n	is	required.

Figure 4.52
Repetition Characters. The characters apply to the pattern immediately preceding
the character. Notice that the asterisk is less useful than it appears because the zero
means the pattern does not have to exist.

238Chapter 4: Data Queries

characters “ab” together. The figure also shows that grouping is more powerful
when the “Or” connector (|) is added. The pattern (aa|bb)+ searches for at least
one occurrence of either “aa” or “bb” (or both). Be careful to note the difference
between square brackets and parentheses. Brackets represent a single character
to be matched while parentheses require the entire term to be matched. In the
example, [ab] would match either the letter a or b, so the string “acb” would be
matched as true because it contains an “a” (and a “b”). However the pattern (ab)
does not match the string “acb” because the parentheses require an exact match of
the entire term and the pattern “ab” does not exist in the string “acb”.
Summary
This section is merely an introduction to regular expressions. Several other fea-
tures exist, and you can find many tutorials and reference works on the Web. How-
ever, before trying to learn, and memorize, the many features of expressions you
need to practice the simpler versions so that you completely understand these fea-
tures. Regular expressions are often combined into long, complex pattern strings.
These patterns can be difficult to read and debug. They are even harder when
someone else has written the pattern. Whenever you create regular expression
patterns, be sure you document them and explain the objectives. Better yet, you
should always create sample test cases before you try to write a RegEx pattern.
Create or find real-world sample data that includes several cases that you do and
do not want to match. As you build the pattern, you can test it in sections against
the sample data. More importantly, if anyone modifies the patterns later, they can
be re-tested against the data to ensure they are still correct.

Be cautious when creating regular expressions—particularly if they are intend-
ed for use at restricting data entry. For example, it is tempting to create a pattern
to force people to enter telephone numbers in a specific manner. But, what hap-

(ab)+	matches	ab,	abab,	tab,	but	not	acb.
(aa|bb)+	matches	aa,	bbcc,	bbddaa,	but	not	abab.	

Figure 4.54
Grouping patterns with parentheses and using the Or connector: |.

Figure 4.53
Exact repetition. Enter the exact number of repetitions in curly braces. A useful
method when a data element must have an exact number of digits, spaces, or
characters.

{#}	such	as	{3}	 Exact	number	of	repetitions.

SELECT	dbo.RegexMatch(N’123-45-6789’,	N’^\d{3}-\d{2}-\d{4}$’)

Pattern	to	test	a	U.S.	Social	Security	Number.	The	string	must	begin	with	3	
digits,	then	a	hyphen,	then	2	digits,	another	hyphen,	and	end	with	exactly	4	
digits.

239Chapter 4: Data Queries

pens when someone needs to enter a phone number that does not match the pat-
tern? For example, international phone numbers require more digits (international
code), and generally do not follow the same pattern as U.S. phone numbers. Simi-
larly, be cautious writing patterns for e-mail addresses. Data formats and usages
change over time.

Regular expressions are powerful tools, but they carry a price. Because of their
complexity, they are difficult to optimize and rarely used with indexes. In most
cases, the query processor needs to retrieve every single row, apply the pattern,
and then decide whether the row is included in the results. This process can be
time consuming if the query retrieves millions, billions, or trillions of rows of
data. When users truly need to search everything, the delay is probably accept-
able. However, it is best to try and write a query without using regular expres-
sions—particularly for queries with multiple tables and JOINs.

Summary
The key to creating a query is to answer four questions: (1) What output do you
want to see? (2) What constraints do you know? (3) What tables are involved? (4)
How are the tables joined? The essence of creating a query is to use these four
questions to get the logic correct. The WHERE clause is a common source of
errors. Be sure that you understand the objectives of the query. Be careful when
combining OR and AND statements and use DeMorgan’s law to simplify the
conditions.

Always test your queries. The best method to build complex queries is to start
with a simpler query and add tables. Then add conditions one at a time and check
the output to see whether it is correct. Finally, enter the computations and GROUP
BY clauses. When performing computations, be sure that you understand the dif-
ference between Sum and Count. Remember that Count simply counts the number
of rows. Sum produces the total of the values in the specified column.

Joining tables is straightforward. Generally the best approach is to use QBE to
specify the columns that link the tables and then check the syntax of the SQL com-
mand. Remember that JOIN columns can have different names. Also remember
that you need to add a third (or fourth) table to link two tables with no columns in
common. Keep the class diagram handy to help you determine which tables to use
and how they are linked to each other.

A Developer’s View
As Miranda noted, SQL and QBE are much easier than writing programs to re-
trieve data. However, you must still be careful. The most dangerous aspect of
queries is that you may get a result that is not really an answer to the business
question. To minimize this risk, build queries in pieces and check the results at
each step. Be particularly careful to add aggregation and GROUP BY clauses
last, so that you can see whether the WHERE clause was entered correctly. If
you name your columns carefully, it is easier to see how tables should be joined.
However, columns do not need the same names to be joined. For your class proj-
ect, you should identify some common business questions and write queries for
them.

240Chapter 4: Data Queries

Key Terms

Review Questions
1. What are the three basic tasks of a query language?
2. What are the four questions used to create a query?
3. What is the basic structure of the SQL SELECT command?
4. What is the purpose of the DISTINCT operator?
5. Why is it important to use parentheses in complex (Boolean) WHERE

clauses?
6. How is pattern matching used to select rows of data?
7. What is DeMorgan’s law, and how does it simplify conditions?
8. How do you compute subtotals using SQL?
9. How do the basic SQL arithmetic operators (+, -, etc.) differ from the

aggregation (SUM, etc.) commands?
10. What basic aggregation functions are available in the SELECT command?
11. What is the difference between Count and Sum? Give an example of how

each would be used.
12. What is the difference between the WHERE and HAVING clauses? Give an

example of how each would be used.
13. What is the SQL syntax for joining two tables?
14. How do you identify a column when the same name appears in more than

one table?
15. What is XQuery and when would you use it?
16. What are regular expressions? What are their strengths and weaknesses?

aggregation
alias
BETWEEN
Boolean algebra
common-language runtime (CLR)
cross join
data definition language (DDL)
data manipulation language (DML)
DeMorgan’s law
DESC
DISTINCT
FETCH
FROM
GROUP BY
HAVING

JOIN
LIKE
NOT
NULL
ORDER BY
query by example (QBE)
regular expression (RegEx)
row-by-row calculations
SELECT
SQL
TOP
view
WHERE
XML schema
XQuery

241Chapter 4: Data Queries

Exercises

Sally’s Pet Store
1. Which employee still working for the store was hired the most recently?
2. What is the largest quantity of items ever ordered/purchased by the store at

one time?
3. List all cats with no black in their coloring.
4. List customers from Tennessee (TN) who bought cat merchandise.
5. List employees who participated in adoptions of female dogs in March.
6. List customers who bought a dog kennel in March.
7. List the name and contact information for suppliers in Nebraska (NE).
8. List the items sold in May with no duplicates.
9. List the name and phone number of each customer who adopted an animal in

February.
10. List the adoption groups with phone number who placed cats in October.
11. List all of the employees who are managed by Katy Reasoner.
12. What is the largest value of sale ever made?

SupplierID
Name
ContactName
Phone
Address
ZIPCode
CityID

Supplier

AnimalID
Name
Category
Breed
DateBorn
Gender
Registered
Color
Photo
ImageFile
Imageheight
ImageWidth
AdoptionID
SaleID
Donation

Animal

PONumber
OrderDate
ReceiveDate
SupplierID
EmployeeID
ShippingCost

MerchandiseOrder

AdoptionID
AdoptionSource
ContactName
ContactPhone

AdoptionGroup

CityID
ZIPCode
City
State
AreaCode
Population1990
Population1980
Country
Latitude
Longitude

City

PONumber
ItemID
Quantity
Cost

OrderItem

ItemID
Description
QuantityOnHand
ListPrice
Category

Merchandise

EmployeeID
LastName
FirstName
Phone
Address
ZIPCode
CityID
TaxPayerID
DateHired
DateReleased
ManagerID
EmployeeLevel
Title

Employee

SaleID
SaleDate
EmployeeID
CustomerID
SalesTax

Sale

SaleID
ItemID
Quantity
SalePrice

SaleItem

CustomerID
Phone
FirstName
LastName
Address
ZIPCode
CityID

Customer

Category
Registration

Category

Category
Breed

Breed

242Chapter 4: Data Queries

13. Which adoption group has placed the most animals?
14. Which day of the week (Sun/Mon/…) has the highest total sales value? Hint:

In Access use the function Format(date, “ddd”) to obtain the day of the week.
15. Are male dogs more likely to be registered than the females?
16. What was the most popular item sold in May (by quantity)?
17. By total value, which supplier has the highest sales for the year?
18. Does the store have more money tied up in inventory (quantity on hand) for

dog items or cat items?
19. On average by supplier, how long does it take to receive an order from

suppliers?
20. By value, which category of items were sold the most in the second quarter

of the year?
21. Which employee sold the most quantity of items in March?
22. By count of state, where are most of the customers located?
23. Which category of items had the highest sales value in May?
24. From which supplier did the store purchase the most cat merchandise by

value?
25. Which sale had the highest total discount (ListPrice – SalePrice)*Quantity?

243Chapter 4: Data Queries

Rolling Thunder Bicycles
Write the SQL statements that will answer questions 26 through 50 based on the
tables in the Rolling Thunder database.

26. List customers (name, phone) who bought race bikes in 2012 with a frame
size greater than 60 cm.

27. List the component product number and weight that are in the SRAM Red
2012 groupo.

28. Which full suspension bikes sold in 2012 were equipped with SRAM
(manufacturer) cranks?

29. List the employees who sold race bikes with a sale price of more than $9000
in 2010.

30. List the retail stores (ID > 2) that participated in selling hybrid bikes in 2012.
31. List the phone number of all women who purchased race bikes with white in

the color in 2012.
32. For future correlation analysis, list the sale price, most recent population and

per capita income for the city where it was purchased in 2013.
33. List all of the employees who placed purchase orders with Shimano

(manufacturer) in 2012 with a total list value over 120,000.

CustomerID
Phone
FirstName
LastName
Gender
Address
ZIPCode
CityID
BalanceDue

Customer

SerialNumber
CustomerID
ModelType
PaintID
FrameSize
OrderDate
StartDate
ShipDate
ShipEmployee
FrameAssembler
Painter
Construction
WaterBottleBrazeOn
CustomerName
LetterStyleID
StoreID
EmployeeID
TopTube
ChainStay
HeadTubeAngle
SeatTubeAngle
ListPrice
SalePrice
SalesTax
SaleState
ShipPrice
FramePrice
ComponentList

Bicycle

CustomerID
TransactionDate
EmployeeID
Amount
Description
Reference

CustomerTrans

StoreID
StoreName
Phone
ContactFirstName
ContactLastName
Address
ZIPCode
CityID

RetailStore

State
TaxRate

StateTaxRate

ModelType
Description
ComponentID

ModelType

PaintID
ColorName
ColorStyle
ColorList
DateIntroduced
DateDiscontinued

Paint

EmployeeID
TaxpayerID
LastName
FirstName
HomePhone
Address
ZIPCode
CityID
DateHired
DateReleased
CurrentManager
SalaryGrade
Salary
Title
WorkArea

Employee

WorkArea
Description

WorkArea

CityID
ZIPCode
City
State
AreaCode
Population2000
Population1990
Population1980
Country
Latitude
Longitude
SelectionCDF
FIPS
Income2004
Division
StateCode
MSACMSA
MASC
CMSA
<more>

City

SerialNumber
TubeID
Quantity

BicycleTubeUsae

ModelType
Msize
TopTube
ChainStay
TotalLength
GroundClearance
HeadTubeAngle
SeatTubeAngle

ModelType

LetterStyleID
Description

LetterStyle

PurchaseID
EmployeeID
ManufacturerID
TotalList
ShippingCost
Discount
OrderDate
ReceiveDate
AmountDue

PurchaseOrder

ManufacturerID
ManufacturerName
ContactName
Phone
Address
ZIPCode
CityID
BalanceDue

Manufacturer

ManufacturerID
TransactionDate
EmployeeID
Amount
Description
Reference

ManufacturerTrans

PurchaseID
ComponentID
PricePaid
Quantity
QuantityReceived

PurchaseItem

SerialNumber
ComponentID
SubstituteID
Location
Quantity
DateInstalled
EmployeeID

BikeParts

SerialNumber
TubeName
TubeID
Length

BikeTubes

ComponentGroupID
GroupName
BikeType
Year
EndYear
Weight

Groupo

ComponentID
ManufacturerID
ProductNumber
Road
Category
Length
Height
Width
Weight
Year
EndYear
Description
ListPrice
EstimatedCost
QuantityOnHand

Component

TubeID
Material
Description
Diameter
Thickness
Roundness
Weight
Stiffness
ListPrice
Construction
IsActive

TubeMaterial

GroupID
ComponentID

GroupComponent

ComponentName
AssemblyOrder
Description

ComponentName

244Chapter 4: Data Queries

34. Looking for tall riders, list all customers who purchased road bikes in 2012
with a frame size greater than or equal to 62 cm for men and 60 cm for
women.

35. Find the greatest percentage discount (Discount/TotalList) received on a
purchase order placed in 2013.

36. Compute the total price of components installed on each Road bike sold in
2013 (without using the ComponentList value in the Bicycle table).

37. Compute the average price paid for Campy Record 11 cranks purchased in
2013.

38. What was the most popular letter style in 2012 on all Mountain bikes?
39. How many Race bikes were sold to women in each state in 2013?
40. On average, not counting frames, what is the most expensive (list price)

category of component carried for the 2012 component year?
41. In 2012, which model type carried the highest average sale price?
42. For the years 2010-2013 (inclusive), did men or women pay higher average

prices for Road bikes?
43. Compute the total value and count of sales by month for 2010 through

2013. Hint: In Access, use the format string “yyyy-mm”, or Year(…
)*100+Month(…) for others.

44. Which customer purchased the most number of Road and Race bikes
combined (for all dates)?

45. Show how the average weight of rear derailleurs for Road bikes has changed
over time.

46. What is the total tax value collected and owed to each state for bikes sold in
2013?

47. Which employee sold the most bikes by value in November 2012?
48. What is the average percentage of shipping cost per total list by manufacturer

for orders placed in 2013?
49. For 2013, did the average percent discount on bike prices vary significantly

based on model type?
50. Which manufacturer made the most popular crank installed on Race bikes in

2013?

245Chapter 4: Data Queries

Corner Med
51. Which patient paid the most amount of money directly for a single visit in

April 2013?
52. List all of the drugs prescribed on June 24, 2013.
53. List the employees who treated patients on July 4, 2013; without duplicates.
54. List the female patients who do not use tobacco and were between 50 and 55

at the time of the visit. Hint: Use the DateDiff function to compute the age.
55. List all of the procedures and amounts charged for patients treated by Dr.

Johnson on May 15.
56. List any patients who were older than 60 and had a systolic pressure below

120 (but not zero).
57. List all of the ICD10 diagnostic codes that refer to the esophagus.
58. List the visits where the patient paid nothing up front and the insurance

company took longer than 90 days to pay the bill (DateInsurancePaid –
DateBillSubmitted).

59. List all of the physicians who prescribed the drug Ambien in October.
60. List all of the patients (name and phone) seen by Dr. Sanchez in February.
61. What was the most commonly used insurance company in March?
62. What was the highest total amount billed for a single visit in August?
63. What were the total amounts charged for each week in the year?
64. Compare the total number of visits by day of the week for the year.
65. Based on the first seven letters of the trade name, what was the most

commonly prescribed drug in July?
66. For December, which group performed more total procedures: Physicians or

everyone else?

Corner
Med

Corner
Med

246Chapter 4: Data Queries

67. Which employee took the most total vacation time for the year?
68. Which patient was prescribed the most number of drugs (count) in

September?
69. Which 2-level ICD10 treatment procedure was most common in January –

March?
70. What was the total amount charged to each insurance company for the month

of November?
XQuery
71. Create the ShippingInvoice table and add the sample data. Run the sample

queries from the figures and verify the results.
72. Create an XQuery that retrieves the items with a quantity of more than 20.
73. Create an XQuery that retrieves the price for any description equal to

“Collar.”
74. Create an XQuery that retrieves the Item Descriptions shipped where

ShippingID=1 and ItemID is 15. Use the text() function to return just the
value without the tags.

75. Write an XQuery using the “for” statement that returns all of the ItemIDs
in ascending order from the first shipment. Hint: The result should be:
<ItemID>15</ItemID><ItemID>32</ItemID>.

Regular Expressions
76. If you are using SQL Server, write the code to create and deploy the Visual

Studio C# RegexMatch function and enable the CLR code in the Pet Store
database. In all cases, create and test the RegEx expressions from the figures
in the chapter.

77. Create a regular expression pattern that retrieves all Merchandise items that
refer to dry food which might be written as in either order (dry…food or
food…dry).

78. Create a regular expression pattern that retrieves all Merchandise items with
a weight of 10 pounds. Do not include 100 pound items and do not assume
there is a space after the 10.

79. Get a list of customers who have a street address that contains less than 4
digits. Hint: The number must appear at the start of the Address and look up
the options for the { } repeating specification.

80. Check the breed entries to list all of the Terriers, but also check for
misspellings that use only a single “r” (Terier).

81. Using the CornerMed database and RegEx, list all of the Descriptions in the
ICD10 procedures that include the words (Left, Artery, and Endoscopic) in
any order. Hint: Search for RegEx lookahead examples.

82. Using the CornerMed database and RegEx, list all of the patients with a last
name of McCarthy; which might be spelled with or without a space between
the “C”s and might have only one C.

247Chapter 4: Data Queries

Web Site References

http://www.jcc.com/sql.htm Blog	on	SQL	Standards
http://jtc1sc32.org/
http://www.wiscorp.com/SQLStandards.html

Standards	documents.
Free	versions	of	some	drafts.

http://www.sqlmag.com Magazine	with	SQL	emphasis.
http://www.sqlteam.com SQL	hints	and	comments.
http://www.sqlcourse.com Online	SQL	notes.
http://www.w3.org/TR/xquery/ XQuery	reference
http://docs.oracle.com/cd/E13214_01/wli/docs92/
xref/xqlangxml.html		

Oracle	XML	documentation

http://www.aivosto.com/vbtips/regex.html One	regex	tutorial
http://msdn.microsoft.com/en-us/magazine/
cc163473.aspx	

Microsoft	article	with	the	CLR	regex	
function.

Additional Reading
Gulutzan, P. and T. Pelzer, SQL-99 Complete, Really, Gilroy, CA: CMP Books,

2000. [In depth presentation of the SQL-99/SQL3 standard.]
Melton, J. and A. R. Simon. SQL 1999: Understanding Relational Language

Components, 2002. San Mateo: Morgan Kaufmann Publishers, 1993. [An
in-depth presentation of SQL 1999, by those who played a leading role in
developing the standard.]

http://jtc1sc32.org/
http://www.sqlmag.com
http://www.sqlteam.com

248Chapter 4: Data Queries

Appendix: SQL Syntax

SQL Commands

Alter Table
ALTER	TABLE	table
	 ADD	COLUMN	column	datatype	(size)
	 DROP	COLUMN	column

Commit Work
COMMIT	WORK

Create Index
CREATE	[UNIQUE]	INDEX	index
ON	table	(column1,	column2,	…)
WITH	{PRIMARY	|	DISALLOW	NULL	|	IGNORE	NULL}

Create Table
CREATE	TABLE	table
(
	 column1	datatype	(size)	[NOT	NULL]	[index1],
	 column2	datatype	(size)	[NOT	NULL]	[index2],
	 …	,
	 CONSTRAINT	pkname	PRIMARY	KEY	(column,	…),
	 CONSTRAINT	fkname	FOREIGN	KEY	(column)
	 	 REFERENCES	existing_table	(key_column)
	 	 ON	DELETE	CASCADE
)

Create Trigger
CREATE	TRIGGER	triggername	{	BEFORE	|	AFTER	}	
	 {DELETE	|	INSERT	|	UPDATE}
	 ON	table	{	FOR	EACH	ROW	}
	 {	program	code	block}

Create View
CREATE	VIEW	viewname	AS
SELECT	…

Delete
DELETE
FROM	table
WHERE	condition

Drop Index
DROP	INDEX	index	ON	table

249Chapter 4: Data Queries

Drop Table
DROP	TABLE	table	name

Drop Trigger
DROP	TRIGGER	trigger	name

Drop View
DROP	VIEW	view	name

Insert
INSERT	INTO	table	(column1,	column2,	…)
VALUES	(value1,	value2,	…)

Insert (copy multiple rows)
INSERT	INTO	newtable	(column1,	column2,	…)
SELECT	…

Grant
GRANT	privilege
ON	object
TO	user	|	PUBLIC

Revoke
REVOKE	privilege
ON	object
FROM	user	|	PUBLI

Privileges for Grant and Revoke
ALL,	ALTER,	DELETE,	INDEX,
INSERT,	SELECT,	UPDATE

Rollback
ROLLBACK	WORK
TO	savepoint

SavePoint
SAVEPOINT	savepoint

250Chapter 4: Data Queries

Select
SELECT	DISTINCT	table.column	{AS	alias},	…
FROM	table/view
INNER	JOIN	table/view	ON	T1.ColA	=	T2.ColB
WHERE	(condition)
GROUP	BY	column
HAVING	(group	condition)
ORDER	BY	table.column
{	UNION,	INTERSECT,	EXCEPT,	…	}

Select Into
SELECT	column1,	column2,	…
INTO	newtable
FROM	tables
WHERE	condition

Update
UPDATE	table
SET	column1	=	value1,	column2	=	value2,	…
WHERE	condition

	Chapter 4: Data Queries
	Introduction
	Two-Minute Chapter
	Three Tasks of a Query Language
	SQL SELECT Overview
	Four Questions to Retrieve Data
	What Output Do You Want to See?
	What Do You Already Know?
	What Tables Are Involved?
	How Are the Tables Joined?

	Sally’s Pet Store
	Vendor Differences
	Query Basics
	Single Tables
	Introduction to SQL
	Sorting the Output
	Distinct
	Criteria
	Pattern Matching
	Boolean Algebra
	DeMorgan’s Law
	Useful WHERE Clauses

	Computations
	Basic Arithmetic Operators
	Aggregation
	Functions

	Subtotals and GROUP BY
	Conditions on Totals (HAVING)
	WHERE versus HAVING
	The Best and the Worst

	Multiple Tables
	Joining Tables
	Identifying Columns in Different Tables
	Joining Many Tables
	Hints on Joining Tables
	Table Alias
	Create View

	Newer Searches and Patterns
	XQuery
	Regular Expressions (RegEx) Patterns

	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading
	Appendix: SQL Syntax

