
251

What You Will Learn in This Chapter
•	 How can SQL be used to answer more complex questions?
•	 Why are some business questions more difficult than others?
•	 What common uses for subqueries?
•	 How do you find something that did not happen?
•	 How do you include rows from tables in a join even if the rows do not match?
•	 What are correlated subqueries?
•	 What tricky problems arise and how do you handle them in SQL?
•	 What are the SQL data definition commands?
•	 What SQL commands alter the data stored in tables?
•	 How do you know if your query is correct?

Chapter Outline

Advanced Queries and
Subqueries

5Chapter

Introduction, 252
Two-Minute Chapter, 253
Sally’s Pet Store, 254
Outer Joins (LEFT JOIN), 255
Subqueries: IN and NOT IN, 258
Subqueries, 261

Calculations or Simple Lookup, 262
Calculations for Percentages, 262
Subqueries and Sets of Data , 264
Subquery with ANY, ALL, and EXISTS,
266

Correlated Subqueries, 268
More Features and Tricks with SQL
SELECT, 270

UNION, INTERSECT, EXCEPT, 270
Multiple JOIN Columns, 272
Reflexive Join, 273
CASE Function, 275
Inequality Joins, 276
Exists and Crosstabs, 277
SQL SELECT Summary, 280

SQL Data Definition Commands, 280
SQL Data Manipulation Commands, 283

INSERT and DELETE, 283

UPDATE, 284
Quality: Testing Queries, 285
Summary, 287
Key Terms, 288
Review Questions, 289
Exercises, 290
Web Site References, 295
Additional Reading, 295
Appendix: Programming, 296
Variable Scope, 297
Computations, 298
Standard Internal Functions, 300
Input and Output, 300
Conditions, 301
Loops, 303
Subroutines, 304
Summary, 305

252Chapter 5: Advanced Queries and Subqueries

A Developer’s View

	 Ariel:	Hi Miranda. You look happy.

	Miranda:	I am. This query system is
great. I can see how it will help
the managers. Once I get the
application done, they can get
answers to any questions they
have. They won’t have to call me
for answers every day. Plus, I can
really see how the query system
relates to data normalization. With
normalization I split the tables
so the database could store them
properly. Now the query system
helps me rejoin them to answer my
questions.

	 Ariel:	Does that mean you’re finally ready
to create the application?

	Miranda:	Close, but I’m not quite ready.
Yesterday my uncle asked me a
question that I don’t know how to

answer.

	 Ariel:	Really, I thought you could do
anything with SQL. What was the
question?

	Miranda:	Something about customers who
did not order anything last month. I
tried several times to get it to work,
but the answers I get just aren’t
right.

	 Ariel:	It doesn’t sound like a hard
question.

	Miranda:	I know. I can get a list of customers
and orders that were placed any
time except last month. But every
time I join the Customer table to
the Order table, all I get are the
customers who did place orders. I
don’t know how to find something
that’s not there.

Introduction
How can SQL be used to answer more complex questions? Now that you un-
derstand the basics of the SQL SELECT statement as described in Chapter 4, it
is time to study more complex questions. The basic SELECT statement you have
learned is useful for returning filtered rows and columns of data and for comput-
ing subtotals.However, some business questions are more complex than those ex-
amples. For instance, how would you find items that were not sold? The database
only stores things that did happen and note that when tables are joined, only the
rows with matching data are returned. How can you get to the data that is not
matched—that is, data in one table (Merchandise) but not in the other (SaleItem)?
Also, what if you need to combine data from multiple queries? A classic example
is percentages. To compute percentages within a group, you must first compute
the group totals and then divide by the overall total. One of the most powerful
features of the SQL SELECT command is known as a subquery or nested query.

Getting Started
SQL has several powerful capabilities, including subqueries (the abil-
ity to nest a query inside another one), and outer joins (returning all
rows from one table in a join instead of ignoring unmatched data). You
need to think of data and questions in terms of sets. To answer complex
questions, break it into pieces and create a query to return the data set
for each piece. Then combine the pieces using joins, subqueries, or set
operations.

253Chapter 5: Advanced Queries and Subqueries

This feature enables you to ask complex questions that entail retrieving different
types of data or data from different sources.

SQL is also more than a query language. The language can be used to create
tables, as well as insert, delete, and update data. It can be used to create the entire
database (data definition language). SQL has powerful commands to alter the data
(data manipulation language). SQL also has a couple of commands to set security
conditions (data control language).

Two key points will help you learn how to use subqueries: (1) SQL was de-
signed to work with sets of data—avoid thinking in terms of individual rows, and
(2) you can split nested queries into their separate parts and deal with the parts
individually. Sometimes it is helpful to write a query to answer part of a question
and save it. This saved query or view can then be used in part of a second query.

The features of SQL covered in Chapter 4 are already quite powerful. Why do
you need more features? Consider this common business question for Sally’s Pet
Store: Which merchandise items have not been sold? Think about how you might
answer that question using the SQL you know to this point.
The first step might be to choose the tables: Merchandise and SaleItem appear

to be likely choices. Second, select the columns as output: ItemID and Descrip-
tion. Third, specify a condition. Fourth, join the tables. These last two steps cause
the most problems in this example. How do you specify that an item has not been
sold? The big catch is that you have to be careful when examining data in the
SaleItem table. Because the item has not been sold, the SaleItem table will not
contain any entries for it. The SaleItem table records things that have happened.
You are looking for something that has not happened.

Actually, the fourth step (joining the tables) causes even more problems. Say
you wrote a query like this: SELECT ItemID, Name FROM Merchandise IN-
NER JOIN SaleItem ON (Merchandise.ItemID = SaleItem.ItemID). As soon as
you write that JOIN condition, you eliminate all the items you want to see. The
JOIN clause restricts the output—just like a WHERE clause would. In this ex-
ample, you told the DBMS to return only those items that are listed in both the
Merchandise and SaleItem tables. But only items that have been sold are listed in
the SaleItem table, so this query can never tell you anything about items that have
not been sold. The following sections describe two solutions to this problem: ei-
ther fix the JOIN statement so that it is not as restrictive or use a subquery.

Two-Minute Chapter
Some business questions are harder to answer than they first appear. Chapter 4
showed how to create basic SQL queries—selecting columns and rows, making
basic calculations, and computing aggregations such as averages and sums. Com-
puting subtotals using the GROUP BY statement is an important part of many
queries. This foundation is used again in this chapter, but with a few twists. From
a SQL perspective, four primary elements are added in this chapter: (1) subque-
ries, where you can embed a second SELECT statement into another one to look
up different data, (2) LEFT JOINs, which keep rows of data from a table even if
no values are matched on the other side of the join, (3) inequality JOINs where
values can be compared using conditions beyond a simple equals sign, and (4)
data manipulation language commands that enable you to INSERT, UPDATE, and
DELETE data, not just retrieve it.

Just looking at the SQL capabilities, it is not always clear why these new fea-
tures are needed. But some business questions can be tricky. How do you find

254Chapter 5: Advanced Queries and Subqueries

something that did not happen? A database table only stores things that did hap-
pen, so you need a way to find items in one list that are not in a second list. For in-
stance, find Employees who did not make a Sale in a specific month. This question
can be answered with a NOT IN subquery, or using a LEFT JOIN to connect the
tables. Some business questions require separate sets of data—such as listing cus-
tomers who bought items in March and June. Those lists have to be defined with
separate queries and then combined—either through subqueries or as two saved
views. Similarly, subqueries are useful when you need to compute percentage val-
ues—such as the percentage of total monthly sales attributed to each employee. At
almost any point in SQL where you need a new value (divide by total), you can
add parentheses and write a new SELECT statement to retrieve that value.

SQL contains a full set of commands to CREATE and DROP tables, indexes,
and other items. It also has commands to UPDATE, INSERT, or DELETE rows
of data. When working with these commands it is best to think in terms of sets of
data. Using the power of the WHERE command (including subqueries) you can
modify specific collections of data with one command.

When working with complex SQL commands, it is critical to build queries in
pieces and test each piece along the way. The scariest part of SQL is that in most
cases, a SELECT statement will return values—but you need to be sure that the
query was interpreted the way you intended and the values accurately answer the
business question.

Sally’s Pet Store
Why are some business questions more difficult than others? Figure 5.1 shows
some more business questions that Sally needs to answer to manage her business.
Again, think about how you might answer these questions using the basic SQL of

•	 Which items have not been sold?
•	 Which items were not sold in July 2013?
•	 Which cat merchandise sold for more than the average sale price of cat

merchandise?
•	 Compute the merchandise sales by category in terms of percentage of total sales.
•	 List all of the customers who bought something in March and who bought

something in May. (Two tests on the same data!)
•	 List dog merchandise with a list price greater than the sale price of the cheapest cat

product.
•	 Has one salesperson made all of the sales on a particular day?
•	 Use Not Exists to list customers who have not bought anything.
•	 Which merchandise has a list price greater than the average sale price of

merchandise within that category?
•	 List all the managers and their direct reports.
•	 Convert age ranges into categories.
•	 Classify payments by number of days late.
•	 Which employees sold merchandise from every category?
•	 List customers who adopted dogs and also bought cat products.

Figure 5.1
Harder questions. Even though there are few constraints on the problems, these
questions are more complex. To answer many of them, we need to use subqueries or
outer joins.

255Chapter 5: Advanced Queries and Subqueries

Chapter 4. At first glance they do not seem too difficult. However, even the easi-
est question—to identify cats that sold for more than the average price—is harder
than it first appears.

The common feature of these questions is that they need to be answered in mul-
tiple steps. All of these questions require an additional tool: the subquery. Actual-
ly, you can also answer multi-step questions by writing and saving the first part as
a view and then using the view in another query. However, you should generally
try to use subqueries so the DBMS query optimizer can use the complete query to
find the most efficient solution.

Outer Joins (LEFT JOIN)
How do you find something that did not happen? One question that commonly
arises in business settings is illustrated in Figure 5.2 with the question: Which
merchandise has not been sold? This question is deceptive. At first glance it looks
like you could just join the Merchandise table to the SaleItem table. But then
what? The standard INNER JOIN statement will display only that merchandise
that appears in both the Merchandise and SaleItem tables. As soon as you enter
the JOIN statement, you automatically restrict your list to only that merchandise
that has been sold.

Figure 5.2
INNER JOIN is a filter. Rows that are not in both tables are ignored. Because
SaleItem includes only merchandise that has been sold, INNER JOIN discards the
very data that you want to see.

Which items have not been sold?
Try:
SELECT *
FROM Merchandise
INNER JOIN SaleItem
 ON Merchandise.ItemID = SaleItem.ItemID

But INNER JOIN is a filter that returns only rows that exist in both tables.

ItemID Description
1 Dog Kennel-Small
2 Dog Kennel-Medium
3 Dog Kennel-Large
4 Dog Kennel-Extra Large
5 Cat Bed-Small
6 Cat Bed-Medium
7 Dog Toy
8 Cat Toy
9 Dog Food-Dry-10 pound
10 Dog Food-Dry-25 pound
11 Dog Food-Dry-50 pound
12 Cat Food-Dry-5 pound
13 Cat Food-Dry-10 pound
14 Cat Food-Dry-25 pound
15 Dog Food-Can-Regular

SaleID ItemID
4 1
4 36
6 20
6 21
7 5
7 19
7 40
8 11
8 16
8 36
10 23
10 25
10 26
10 27

SaleItem Merchandise

256Chapter 5: Advanced Queries and Subqueries

One way to solve this problem is to change the behavior of the JOIN command.
SQL provides the OUTER JOIN specifically to include the data that would other-
wise be ignored with the INNER JOIN. In particular, the OUTER JOIN describes
what should happen when values in one table do not exist in the second table.

In joining two tables, you have to consider two basic situations: (1) A value
might exist in the left table with no matching value in the right table, or (2) a value
might exist in the right table with no matching value in the left table. Of course, it
really does not matter which table is on the left or right. However, you have to be
careful about not mixing them up after you list the tables.

The query in Figure 5.3 illustrates a typical LEFT JOIN. With a LEFT JOIN,
all rows in the table on the left will be displayed in the results, regardless of what
rows exist in the other table. If there is no matching value from the table on the

M.ItemID Description SA.ItemID SaleID
1
2
3
4
5
6
7
8
9
10
11
12
13

Dog Kennel-Small
Dog Kennel-Medium
Dog Kennel-Large
Dog Kennel-Extra Large
Cat Bed-Small
Cat Bed-Medium
Dog Toy
Cat Toy
Dog Food-Dry-10 pound
Dog Feed-Dry-25 pound
Dog Food-Dry-50 pound
Cat Food-Dry-5 pound
Cat Food-Dry-10 pound

1
2
3
4
5
6
7
8
9
10
11

4
54
17
18
7
46
64
13
48
60
8

Figure 5.4
Partial results from the left outer join. Note the missing (Null) values for items that
have not been sold. To list just a single SaleID, use GROUP BY and use the FIRST
option to pick a single SaleID.

Which merchandise has not been sold?
SELECT Merchandise.ItemID, Merchandise.Description, SaleItem.
SaleID
FROM Merchandise
LEFT JOIN SaleItem ON Merchandise.ItemID = SaleItem.ItemID
WHERE SaleItem.SaleID Is Null;

ItemID
12
13

Description
Cat Food-Dry-5 pound
Cat Food-Dry-10 pound

SaleID

Figure 5.3
LEFT JOIN. The left outer join includes all rows from the Merchandise (left) table
and any matching rows from the SaleItem table. If an item has not been sold, there
will be no entry in the SaleItem table, so the corresponding entries will be NULL.

257Chapter 5: Advanced Queries and Subqueries

right, NULL values will be inserted into the output. Note how the LEFT JOIN re-
solves the problem of identifying items that have not been sold. Because the query
will now list all Merchandise items, the rows where the SaleID is Null represent
items that are not in the SaleItem table and have not been sold.

Figure 5.4 shows the sample data without the “Is Null” condition. The data has
also been reduced using a GROUP BY and First statement to focus on the indi-
vidual Merchandise items. Notice the two values with the missing or null values.

The RIGHT JOIN behaves similarly to the LEFT JOIN. The only difference
is the order of the tables. If you want to use all the rows from the table on the
right side, use a RIGHT JOIN. Why not just have a LEFT JOIN and simply rear-
range the tables? Most of the time, that is exactly what you will do. However, if
you have a query that joins several tables, it is sometimes easier to use a RIGHT
JOIN instead of trying to rearrange the tables. And with visual tools such as the
Microsoft Access query editor, the position of the displayed table does not have
to match the SQL statement. In every case, the Left/Right applies to the way the
SQL statement is written.

Another join is the full OUTER JOIN (FULL JOIN) that combines every row
from the left table and every row from the right table. Where the rows do not
match (from the ON condition), the join inserts NULL values into the appropriate
columns. Many systems do not support the FULL or OUTER JOIN on both tables
at the same time. If you encounter a question that requires both a left and right
join, you can use a LEFT JOIN and a RIGHT JOIN against a full list of the ID
values--which can be obtained using a saved UNION query.

Warning: Be careful with OUTER JOINs—particularly full joins. With two
large tables that do not have much data in common, you end up with a very large
result that is not very useful. Also be careful when using outer joins on more than
two tables in one query. You get different results depending on the order in which
you join the tables. Many times you will find it necessary to create a view with
only two tables to create an outer join. You can then use that view in other queries
to add more tables.

Finally, note that these examples rely on the SQL 92 syntax, which is fairly
easy to read and understand. Unfortunately, you will most likely encounter some
queries that use older, proprietary syntax for outer joins. Figure 5.5 shows the
query using the syntax for SQL Server and Oracle. SQL Server uses *= to indi-

SELECT *	 	 (SQL Server)
FROM Merchandise, SaleItem
WHERE Merchandise.ItemID *= SaleItemID.ItemID
And SaleItem.SaleID Is Null

SELECT *	 	 (Oracle)
FROM Merchandise, SaleItem
WHERE Merchandise.ItemID = SaleItemID.ItemID (+)
And SaleItem.SaleID Is Null

Figure 5.5
Older syntax for LEFT JOIN. Note the asterisk in SQL Server to indicate the LEFT
side table. Note the plus-sign in Oracle and note that it is on opposite side from what
you would expect.

258Chapter 5: Advanced Queries and Subqueries

cate a left join, where the asterisk can be interpreted as the “all rows” side of the
join. Oracle uses a plus sign, and it confusingly puts it on the opposite side of the
equals sign. Be careful when reading older queries to look for the asterisk or plus
sign. The query results are quite different if you ignore these left join indicators.
Fortunately, all of the major systems now accept the newer syntax, so you should
convert older queries to the new syntax to improve readability.

Subqueries: IN and NOT IN
How is a subquery used for IN and NOT IN conditions? There is another way
to answer the question of which items have not been sold. This new approach has
considerable power and can be used for many types of questions. The main tool
is the subquery, but for the problem of finding things that did not happen it is tied
to a special WHERE condition known as the IN statement. So this section begins
with a brief explanation of the IN function.function. The IN function defines a
set of values. You can think of it as a shortcut way of combining several entries
with an “Or” condition. For example, say you want to search for a Customer but
you are not certain about his first name. You think it might be “Tim” or “David”
or “Dale.” As shown in Figure 5.6, you could build a query using “Or” condi-
tions: WHERE FirstName=”Tim” or FirstName=”David” or FirstName=”Dale”.
However, the figure also shows an easier way to write the query using the IN
function. Simply list all possible values separated by commas and enclose them in
parentheses. The IN function essentially defines a set of possible matches. It can

List Merchandise based on ItemID that has been sold.
SELECT * FROM Merchandise
WHERE ItemID IN (1,2,3,4,5,6,7,8,9,10,11,14,15);
SELECT *
FROM Merchandise
WHERE ItemID IN
 (SELECT ItemID FROM SaleItem);

Figure 5.6
IN function. The IN function compares a column to a set of values. The WHERE
condition is true if the column/row matches any one of the entries.

Figure 5.7
Subquery to find data for an IN set of values. This subquery essentially functions as
a JOIN condition. Matching ItemID in the Merchandise table to the ItemID in the
SaleItem table.

Find a Customer with first name of Tim, David, or Dale
SELECT *
FROM Customer
WHERE FirstName=N'Tim' Or FirstName=N'David' Or FirstName=N'Dale'
SELECT *
FROM Customer
WHRE FirstName IN (N'Tim', N'David', N'Dale')

259Chapter 5: Advanced Queries and Subqueries

be used in many situations, just be sure to match the data types with the search
column. In this case, the set contains possible FirstName values.

Now consider a more relevant set of data shown in Figure 5.7, using a different
question: List Merchandise where ItemID is one of 1,2,3,4,5,6,7,8,9,10,11,14,15.
The list of items is a bit long, but the process is identical to that used for the
names: SELECT * FROM Merchandise WHERE ItemID IN (1,2,3,4,5,6,7,8,9,10,1
1,14,15). Using the raw numbers, this list is not particularly interesting. However,
rewrite the query as shown in the second half of the figure. Instead of a fixed list
of numbers, use a new query (SELECT ItemID FROM SaleItem) to retrieve a list
of ItemID values. This subquery is embedded directly into the main query; how-
ever, note that it is surrounded by parentheses. Also, the subquery text is indented
to make it easier to read. The parentheses are required, the indentation is not. This
subquery performs the same role as an INNER JOIN statement. Rows from the
Merchandise table will be returned only if the ItemID exists in the SaleItem table.
Notice that with this formulation, only data from the top-most query (Merchan-
dise) can be displayed. The subquery acts as a filter, but data from the subquery
table cannot be displayed in the results.

Finally, as shown in Figure 5.8, it is possible to answer the original question:
List the merchandise that has not been sold. Note that the previous version list-
ed merchandise that was sold. That is, list the Merchandise items that are in the

List Merchandise that has not been sold.
SELECT *
FROM Merchandise
WHERE ItemID NOT IN
 (SELECT ItemID FROM SaleItem);

ItemID Description
1 Dog Kennel-Small
2 Dog Kennel-Medium
3 Dog Kennel-Large
4 Dog Kennel-Extra Large
5 Cat Bed-Small
6 Cat Bed-Medium
7 Dog Toy
8 Cat Toy
9 Dog Food-Dry-10 pound
10 Dog Food-Dry-25 pound
11 Dog Food-Dry-50 pound
12 Cat Food-Dry-5 pound
13 Cat Food-Dry-10 pound
14 Cat Food-Dry-25 pound
15 Dog Food-Can-Regular

Merchandise

Figure 5.8
NOT IN. The top-level query retrieves items from the complete list (Merchandise)
and subtracts items that are in the second list (SaleItem). Leaving the results of items
in the first list that are not in the second list—or things that did not happen.

260Chapter 5: Advanced Queries and Subqueries

SaleItem table. To answer the main question, start with the main list (Merchan-
dise) and subtract the items that were sold (SaleItem). The process is similar to
the way you would answer the question by hand if you had only paper lists. You
would begin with the main Merchandise list, go through the SaleItem list and
cross off all of the entries that you found. The ones that remain are the Merchan-
dise items that never appeared on the SaleItem list so they were not sold.

When would you use the NOT IN subquery versus the LEFT JOIN? Ultimately,
there is no fixed rule—use whichever method you feel is easiest to answer the
question correctly. There are often multiple ways to write complex queries. Ini-
tially, the most important aspect is that you build the query correctly to answer the
question. But, is one method faster to process than the other? Possibly, but ulti-
mately that answer is up to the specific DBMS you are using. The high-end query
processors automatically optimize every query, sometimes rewriting it to make
it more efficient. On the other hand, if you work with a lower-end DBMS, you
might have to rewrite some queries yourself to make them faster—particularly if
the query needs to be run multiple times on large datasets.
Consider one more example to point out some other difficulties in creating que-

ries that search for things not in the database. Which merchandise was not sold in
July 2013? The change is to add the date condition. First, look at the subquery ap-

Which merchandise was not sold in July 2013?
SELECT Merchandise.*
FROM Sale
INNER JOIN (Merchandise
 LEFT JOIN SaleItem ON Merchandise.ItemID = SaleItem.ItemID)
 ON Sale.SaleID = SaleItem.SaleID
WHERE SaleDate BETWEEN ’01-JUL-2013’ AND ’31-JUL-2013’;

Figure 5.10
LEFT JOIN. This query might not run, and if it does, it might not return the correct
results. The problem is that the question requires filtering the data rows in the
SaleItem table first and then performing the LEFT JOIN.

Which merchandise was not sold in July 2013?
SELECT *
FROM Merchandise
WHERE ItemID NOT IN
 (SELECT ItemID
 FROM SaleItem
 INNER JOIN Sale ON Sale.SaleID=SaleItem.SaleID
 WHERE SaleDate BETWEEN
 ’01-JUL-2013’ AND ’31-JUL-2013’
);

Figure 5.9
Subquery with a Date condition. Subqueries can be relatively complex. They can
even be nested several levels deep. Often, subqueries can be used to write a single
complex query that would need to be broken into pieces if handled differently.

261Chapter 5: Advanced Queries and Subqueries

proach. Figure 5.9 shows how to answer the question with a subquery. Essentially,
the approach is the same as before—with a more complex subquery. Simply add
the Sale table to the subquery and add the date condition. The overall structure is
the same. Running the query results in 27 rows or items that were not sold in July.

  Now consider writing the same query using the LEFT JOIN approach. As
shown in Figure 5.10, try building the query directly. Note that it requires three
tables: Merchandise, Sale, and SaleItem. Sale and SaleItem are connected with an
INNER JOIN and Merchandise with a LEFT JOIN. Because of these links, it is
likely that this query will not run. Even if it does return results, they might not be
the correct results. The problem is that the question requires that the data be ex-
tracted in a specific order—and SQL does not guarantee that processing is handled
in a specific sequence. To work correctly, the query must first filter the rows in the
Sale+SaleItem tables to just sales that took place in July. This result must then use
an outer join with the Merchandise table.

If you want (or need) to use LEFT JOIN to answer the question, you should
build the query in two steps. As shown in Figure 5.11, in step 1, create and save a
view that retrieves the ItemID for merchandise sold in July. In step 2, LEFT JOIN
the Merchandise table to the new view. The result should be the same 27 items
found using the subquery. The key to this query is that the view is created to en-
sure that the rows for sales in July are extracted first and then the LEFT JOIN is
applied to the Merchandise table.

Subqueries
What are the common uses for subqueries? The most difficult step in creating
a query is determining the overall structure. Chapter 4 shows you how to use the
four big questions to determine the structure of simple queries. But you need to
recognize when subqueries are needed. If you fail to use a subquery, you are likely
to end up with bad results, and waste considerable time in the process. This sec-
tion presents the most common situations that require the use of subqueries. The
main situations are: (1) Calculations or lookup comparisons, (2) matching sets of
data, (3) existence checks, and (4) finding items that are not in a list. The last ex-
ample was covered in the previous section.

Which merchandise was not sold in July 2013?
CREATE VIEW JulyItems AS
SELECT Sale.SaleID, ItemID
FROM Sale
INNER JOIN SaleItem ON Sale.SaleID=SaleItem.SaleID
WHERE SaleDate BETWEEN ’01-JUL-2013’ AND ’31-JUL-2013’;
SELECT Merchandise.*
FROM Merchandise
LEFT JOIN JulyItems ON Merchandise.ItemID=JulyItems.ItemID
WHERE JulyItems.Sale Is Null;

Figure 5.11
Saved View. To ensure the proper sequencing, save the view that filters the list of sale
items to July.

262Chapter 5: Advanced Queries and Subqueries

Calculations or Simple Lookup
Perhaps the easiest way to see the value of a subquery is to consider the relatively
simple question: Which cat merchandise sold for more than the average price of
cat merchandise? If you already know the average sale price of cat merchandise
(say, $9), the query is easy, as shown in the top half of Figure 5.12.

Chapter 4 showed that it is also straightforward to write a query to compute the
average price of cat merchandise. If you do not know anything about subqueries,
you could write the average value on a piece of paper and then enter it into the
main query in place of the 9. However, with a subquery, you can go one step fur-
ther: The result (average) from the query can be transferred directly to the original
query. Simply replace the value ($9) with the complete SELECT AVG query as
shown in the lower half of Figure 5.12. In fact, anytime you want to insert a value
or comparison, you can use a subquery instead. You can even go to several lev-
els, so a subquery can contain another subquery and so on. The DBMS generally
evaluates the innermost query first and passes the results back to the higher level.

Calculations for Percentages
Typically, subqueries for calculations arise in WHERE clauses similar to the prior
example when you need to make a comparison. You can also add subqueries to the
SELECT statement to retrieve a value for a calculation. For instance, you might
issue a subquery to retrieve a tax rate that is multiplied times a total.

Another interesting business problem is the need to compute percentages. Fig-
ure 5.13 shows a typical question to compute the percentage of merchandise sales
by category. The first step is to compute the total sales by category—which is a
straightforward question from Chapter 4. That query contains the subtotal calcula-

Which cat merchandise sold for more than the average sale price of cat
merchandise?
SELECT Merchandise.ItemID, Merchandise.Description, Merchandise.
Category, SaleItem.SalePrice
FROM Merchandise
INNER JOIN SaleItem ON Merchandise.ItemID = SaleItem.ItemID
WHERE Merchandise.Category=N’Cat’ AND SaleItem.SalePrice > 9;
SELECT Merchandise.ItemID, Merchandise.Description, Merchandise.
Category, SaleItem.SalePrice
FROM Merchandise
INNER JOIN SaleItem ON Merchandise.ItemID = SaleItem.ItemID
WHERE Merchandise.Category=N’Cat’ AND SaleItem.SalePrice >
 (SELECT Avg(SaleItem.SalePrice) AS AvgOfSalePrice
 FROM Merchandise
 INNER JOIN SaleItem ON Merchandise.ItemID = SaleItem.ItemID
 WHERE Merchandise.Category=N’Cat’)

Figure 5.12
Subqueries for calculation. If you know the average price is 9, the query is
straightforward. If you do not know the average price, you can use a subquery to
compute it. The subquery is always written inside a separate set of parentheses. The
subquery in parentheses replaces the 9 in the original query).

263Chapter 5: Advanced Queries and Subqueries

tion: Sum([Quantity]*[SalePrice]). To compute the percentages, add a new column
that uses the same subtotal and divides by the overall total. The trick is that the
overall total is computed using a subquery: SELECT Sum([Quantity]*[SalePrice])
FROM SaleItem. So the entire calculation becomes:
SELECT ... Sum([Quantity]*[SalePrice]) /
 (SELECT Sum([Quantity]*[SalePrice] FROM SaleItem)
GROUP BY Category...

Of course, most problems are even more complex and trying to jam everything
into one query can lead to mistakes. So you might want to first create a saved
query that computes totals by category and use a second query to compute per-
centages, which makes it easier to check the results. Once the subtotals have been
computed and saved, the small addition to compute percentages is almost always
the same.

You should realize by now that there are other ways to answer the original
question. For example, keep the first view that computes the subtotals. Create a
second view to compute the overall total. This second view will contain only one
row as a result. Now build a third query that joins these two results. Simply do not
enter a JOIN condition—let the DBMS build a cross-join so that the overall total
is matched to every row of the first query. Figure 5.14 shows the new view and
the query that performs the cross join and division. The results should match those
with the subquery method.

Two useful practices you should follow when building subqueries are to indent
the subquery to make it stand out so humans can read it and to test the subquery
before inserting it into the main query. Fortunately, most modern database systems
make it easy to create a subquery and then cut and paste the SQL into the main

Compute the merchandise sales by category in terms of percentage of total
sales.
CREATE VIEW CategorySubtotals AS
SELECT Merchandise.Category, Sum([Quantity]*[SalePrice]) AS [Value]
FROM Merchandise
INNER JOIN SaleItem ON Merchandise.ItemID = SaleItem.ItemID
GROUP BY Merchandise.Category;
SELECT CategorySubtotals.Category, CategorySubtotals.Value,
[Value] /
 (SELECT Sum(Value) FROM CategorySubtotals) AS Percentage
FROM CategorySubtotals;

Category
Bird
Cat
Dog
Fish
Mammal

Value
$631.50
$1,293.30
$4,863.49
$1,597.50
$90.00

Percentage
7.45063292035315E-02
0.152587546411603
0.573809638983505
0.188478006179955
1.06184792214059E-02

Figure 5.13
To obtain percentages, first compute the group subtotals and save the view. Select the
values from the saved view and use a subquery in the SELECT clause to divide by
the total. Ultimately, format the new percentage column to make it readable.

264Chapter 5: Advanced Queries and Subqueries

query. Similarly, if you have problems getting a complex query to work, cut out
the inner subqueries and test them separately. And always remember to enclose
the subquery in parentheses.
The main drawback to subqueries is that they are difficult to read and under-

stand. It is easy to make mistakes and it is difficult to read complex queries cre-
ated by other developers. You should always document your work when creating
complex queries. Whenever possible, use the SQL comment characters (--) to add
notes to the query to explain its purpose and how it is supposed to work. Some-
times, it is better to store complex subqueries as views and use a final query to
retrieve data from the carefully-named views.

The other trick you will quickly learn is that QBE grids are not very useful
when designing subqueries. You almost always need to work with plain SQL
statements. If you want to save some typing, you can use QBE to write the join
statements, but eventually, you need to copy and paste the SQL text.

Subqueries and Sets of Data
A key to understanding SQL is to focus on sets of data. Complex queries generally
can be broken down into multiple pieces, where each piece of the question refers
to a set of data. Then you have to figure out how to combine those sets to answer
the business question. So far you have seen two ways to combine sets of data: (1)
By saving each piece and using a JOIN statement, or (2) Using a subquery, typi-
cally with an IN function. In effect, these two methods work the same way. Which
one you choose depends on which is easiest or fastest to use. Keep in mind that
subqueries enable you to put the entire SQL into a single query, which reduces the
risk of someone accidentally deleting a supporting saved view—because no one
knew what it was for.

To understand the issue of sets of data, think about an apparently simple ques-
tion: List all of the customers who bought something in March and in May. As
shown in Figure 5.15, a beginner might try to answer the question by creating a
simple query with the WHERE clause: SaleDate Between 01-Mar And 31-Mar
AND SaleDate Between 01-May and 31-May. What is wrong with this approach?
Try it. The query will run, but you will not get any matches. Why not? Because
the clause is asking the DBMS to return rows where the SaleDate is in March and
in May, at the same time! It is not possible for a date to be in two months at the
same time.

Compute the merchandise sales by category in terms of percentage of
total sales.
CREATE VIEW TotalItemSales AS
SELECT Sum(Value) AS MainTotal
FROM CategorySubtotals;
SELECT Category, Value, Value/MainTotal AS Percentage
FROM CategorySubtotals, TotalItemSales;

Figure 5.14
Percentages using a cross join. Create a view to compute the total. A third query uses
a cross join to connect this single value to every row in the subtotal query and then
divide to get the percentage.

265Chapter 5: Advanced Queries and Subqueries

The answer to the question lies in realizing that you need to get two separate
lists of people: those who bought something in March and those who bought
something in May. Then you combine the lists to identify the people in both sets.
You can answer this question with a subquery, or you can create two separate
views and join them. The subquery illustrates the set operations.

Figure 5.16 shows the subquery approach. The outermost (top) query retrieves
customers who bought something in March, and the subquery retrieves ID num-
bers for customers who bought something in May. Either month could be tested
first, but it is critical to recognize that you need two separate queries to create the
two separate WHERE clauses. The IN operator performs the matching so that the
final query displays only those customers who fall in both sets of data.

Figure 5.17 shows how to answer the same query with a JOIN statement on
saved views. The views are used to retrieve the desired sets, and they highlight
that the sets are separate. The final query uses the JOIN command to retrieve only
the values that exist in both of the saved views (March and May).

Both approaches (subquery and saved views) provide the same answer and you
generally get to choose which approach you want to use. The drawback to saving
views is that you end up with a huge collection of views, and no one remembers

List all of the customers who bought something in March and who
bought something in May.
SELECT Customer.LastName, Customer.FirstName
FROM Customer INNER JOIN Sale ON Customer.CustomerID =
Sale.CustomerID
WHERE (SaleDate Between ’01-MAR-2013’ And ‘31-MAR-2013’)
AND Customer.CustomerID IN
 (SELECT CustomerID
 FROM Sale
 WHERE (SaleDate Between ‘01-MAY-2013’ And ’31-MAY-2013’));

Figure 5.16
Combining two separate lists. The question requires you to create two separate lists
and then compare the matching values. This query uses the IN statement to find the
customers that appear in both lists.

Figure 5.15
The wrong approach. Why does this query always return no rows? Because it is
checking the date on each row to see if it falls in March AND May. No date can be in
two months at the same time.

List all of the customers who bought something in March and who
bought something in May.
SELECT Customer.CustomerID, Customer.Phone, Customer.
LastName, Sale.SaleDate
FROM Customer
INNER JOIN Sale ON Customer.CustomerID = Sale.CustomerID
WHERE Sale.SaleDate Between ’01-MAR-2013’ And ’31-MAR-2013’
 AND Sale.SaleDate Between ’01-MAY-2013’ And ’31-MAY-2013’;

266Chapter 5: Advanced Queries and Subqueries

which views depend on other views. Some administrator could accidentally delete
a view that is required by another query. On the other hand, the views could be re-
used in multiple queries, which might save a developer time on a different project.
The bottom line is that you need to know how to write the queries both ways, and
choose the method that is best in each situation.

Subquery with ANY, ALL, and EXISTS
The ANY and ALL operators combine comparison of numbers with subsets. In
the previous sections, the IN operator compared a value to a list of items in a
set: however, the comparison was based on equality. The test item had to exactly
match an entry in the list. The ANY and ALL operators work with a less than (<)
or greater than (>) operator and compare the test value to a list of values.
Figure 5.18 illustrates the use of the ANY query. It is hard to find a solid busi-

ness example that needs the ANY operator. In the example, it would be just as
easy to use the subquery to find the minimum value (MIN function) in the list
and then do the comparison. However, sometimes it is clearer to use the ANY
operator.

The ALL operator behaves similarly, but the test value must be greater than
all of the values in the list. In other words, the test value must exceed the largest
value in the list. Hence, the ALL operator is much more restrictive.

The ALL operator can be a powerful tool—particularly when used with an
equals (=) comparison. For instance, you might want to test whether one salesper-
son made all of the sales on a particular day. Figure 5.19 shows that the WHERE
clause contains the statement: EmployeeID = ALL (SELECT EmployeeID FROM
Sale WHERE SaleDate = ‘28-MAR’). The subquery returns a list of IDs for all
employees who sold something on that date. The “= ALL” clause checks to see if
all of the values are the same and match a single employee. This query is some-

Figure 5.17
Combining two separate lists with JOIN. You can save separate lists as views and use
the JOIN command to retrieve only the values that match.

List all of the customers who bought something in March and who
bought something in May. (Saved views.)
CREATE VIEW MarchCustomers AS
SELECT CustomerID
FROM Sale
WHERE (SaleDate Between ’01-MAR-2013’ And ’31-MAR-2013’);

CREATE VIEW MayCustomers AS
SELECT CustomerID
FROM Sale
WHERE (SaleDate Between ’01-MAY-2013’ And ’31-MAY-2013’);

SELECT Customer.LastName, Customer.FirstName
FROM Customer
INNER JOIN MarchCustomers ON Customer.
CustomerID=MarchCustomers.CustomerID
INNER JOIN MayCustomers ON MarchCustomers.
CustomerID=MayCustomers.CustomerID;

267Chapter 5: Advanced Queries and Subqueries

what contrived, but it can be useful when you need to find a specific answer. The
alternative in this situation is to count the number of sales by each employee on
the specified date and visually check to see if there is more than one value. But,
sometime you might want to find the exact answer using the ANY query.
Sometimes it is difficult to control the details returned from a subquery. Per-

haps the data exists in a table created by someone else, such as a system table. In
these cases, only the WHERE clause matters. Does the query return any rows that
match the conditions? The EXISTS key word handles these situations. It is true if
the subquery returns any rows of data—otherwise it is false. The specific columns
returned are irrelevant. Figure 5.20 shows a simple example. In actual practice,
the example would be better written with a JOIN statement, but it does illustrate
how the EXISTS term works. The EXISTS term is useful when you need to see if
rows are retrieved in a subquery but you do not want to match the actual values.

Figure 5.18
Subquery with ANY and ALL. The example identifies any animal that sold for more
than any of the prices of cats. Effectively, it returns values greater than the smallest
entry in the subquery list.

List dog merchandise with a list price greater than the sale price of the
cheapest cat product.
SELECT Merchandise.ItemID, Merchandise.Description,
Merchandise.Category, Merchandise.ListPrice
FROM Merchandise
WHERE Category=N'Dog'
AND ListPrice > ANY
 (SELECT SalePrice
 FROM Merchandise
 INNER JOIN SaleItem ON Merchandise.ItemID=SaleItem.ItemID
 WHERE Merchandise.Category=N'Cat')
;

Has one salesperson made all of the sales on a particular day (Mar 28)?
SELECT Employee.EmployeeID, Employee.LastName
FROM Employee
WHERE EmployeeID = ALL
 (SELECT EmployeeID
 FROM Sale
 WHERE SaleDate = '28-MAR-2013')
;

Figure 5.19
Subquery with All and equality test. The subquery returns a list of EmployeeID
values who made sales on the specified date. The “= ALL” test checks to see if they
are all the same value and returns the matching employee.

268Chapter 5: Advanced Queries and Subqueries

Correlated Subqueries
What are correlated subqueries? Recall the example in Figure 5.12 that asked:
Which cat merchandise sold for more than the average sale price of cat merchan-
dise? This example used a subquery to first find the average sale price of cat mer-
chandise and then examined all sales of cat merchandises to display the ones that
had higher prices. It is a reasonable business question to extend this idea to other
categories of animals. Managers would like to identify all merchandise that was
sold for a price greater than the average price of other merchandise within their
respective categories (dog merchandise compared to other dog merchandise, fish
compared to fish, and so on).

As shown in Figure 5.21, building this query is tricky. The merchandise cat-
egory in the subquery has to match that in the outer query. This task is accom-
plished by setting the categories equal to each other. But, the Merchandise table is
used in both queries, so the condition can only be written by assigning aliases to
the Merchandise table in both queries. Here, it is renamed as Merchandise1 and

Which merchandise has a list price greater than the average sale price of
merchandise within that category?
SELECT Merchandise1.ItemID, Merchandise1.Description,
Merchandise1.Category, Merchandise1.ListPrice
FROM Merchandise AS Merchandise1
WHERE Merchandise1.ListPrice>
(
SELECT Avg(SaleItem.SalePrice) AS AvgOfSalePrice
FROM Merchandise As Merchandise2 INNER JOIN SaleItem ON
Merchandise2.ItemID = SaleItem.ItemID
WHERE Merchandise2.Category=Merchandise1.Category
);

Figure 5.21
Correlated subquery. The condition in the subquery depends on values in the
outermost query. In some query systems, this query could run slowly if large tables
are involved.

Use Not Exists to list customers who have not bought anything.
SELECT Customer.CustomerID, Customer.Phone, Customer.
LastName
FROM Customer
WHERE NOT EXISTS
 (SELECT SaleID, SaleDate
 FROM Sale WHERE Sale.CustomerID=Customer.CustomerID);

Figure 5.20
Subquery with Exists. If the only thing that matters is the WHERE clause, you can
use the EXISTS phrase to test if rows are returned or not. It is also useful when the
details of the subquery are difficult to change.

269Chapter 5: Advanced Queries and Subqueries

Merchandise2, but any distinct names would work. This type of query is called a
correlated subquery, because the subquery refers to data rows in the main query.
The query in Figure 5.21 will run. However, it might be inefficient. Perfor-

mance depends on the query optimizer, but systems might have problems comput-
ing this query for large sets of data. Even on a fast computer, queries of this type
have been known to run for several days without finishing. If the query is run
as written, the calculation in the subquery must be recomputed for each entry in
the main table. The problem is illustrated in Figure 5.22. Consider an inefficient
DBMS that starts at the top row of the Merchandise table. When it sees the cat-
egory is Dog, it computes the average sale price of dog merchandise ($23.32).
Then it moves to the next row and computes the average sale price for dogs again.
In the worst case, the DBMS recomputes the average for every single row in the
Merchandise table. Recomputing the average sale price for every single row in
the main query is time-consuming. To compute an average, the DBMS must go
through every row in the SaleItem table that has the same category of animal.
Consider a relatively small query of 100,000 rows and five categories of animals.
On average, there are 20,000 rows per category. To recompute the average each
time, the DBMS will have to retrieve 100,000 * 20,000 or 2,000,000,000 rows!

Unfortunately, you cannot just tell the manager that it is impossible to answer
this important business question. Is there an efficient way to answer this question?
Some query processors can automatically cache the averages. In other cases, you
will have to do it yourself. The answer illustrates the power of SQL and highlights
the importance of thinking about the problem before you try to write a query. The
problem with the correlated subquery lies in the fact that it has to continually
recompute the average for each category. Think about how you might solve this
problem by hand. You would first make a table that listed the average for each
category and then simply look up the appropriate value when you needed it. As
shown in Figure 5.23, the same approach can be used with SQL. Just create the
query for the averages using GROUP BY and save it. Then join it to the Merchan-
dise table to do the comparison.

1 Dog $45.00
2 Dog $65.00
3 Dog $85.00
4 Dog $110.00
5 Cat $25.00
6 Cat $35.00
7 Dog $4.00
8 Cat $3.00
9 Dog $7.50

Compute Avg: $23.32
Compute Avg: $23.32
Compute Avg: $23.32
Compute Avg: $23.32
Compute Avg: $8.99
Recompute average
for every row in the
main query!

MerchID Category ListPrice

Figure 5.22
Potential problem with correlated subquery. The average is recomputed for every row
in the main query. Every time the DBMS sees a dog product, it computes the average
to be $23.32. It is inefficient and slow to force the machine to recalculate the average
each time.

270Chapter 5: Advanced Queries and Subqueries

Today, you probably do not have to worry too much about the performance of
correlated subquries. The high-end DBMSs have good query optimizers that can
recognize the problem and automatically find the solution to compute the values
quickly and store them in a cache. However, some queries still require hand tun-
ing. Also, you need to remember to look for different ways to approach queries.
The solution in Figure 5.23 is much easier to read and verify that the answer is
correct.

More Features and Tricks with SQL SELECT
What tricky problems arise and how do you handle them in SQL? As you
may have noticed, the SQL SELECT command is powerful and has plenty of op-
tions. There are even more features and tricks that you should know about. Busi-
ness questions can be difficult to answer. It helps to study different examples to
gain a wider perspective on the problems and solutions you will encounter. One
of the first big questions you will face is the need to combine rows from different
tables. You also need to know how to handle several other complications, such as
joining tables with multiple columns or inequality joins.

UNION, INTERSECT, EXCEPT
Codd originally conceived of tables as sets of data. The basic filtering aspects of
the SELECT command perform some operations on these sets, but it is some-
times nice to be able to use more traditional set operators. Up to this point, the
tables you have encountered have contained unique columns of data. The JOIN
command links tables together so that a query can display and compare different
columns of data from tables. Occasionally you will encounter a different type of
problem where you need to combine rows of data from similar tables. The set
operations, such as the UNION operator are designed to accomplish these tasks.
As an example, assume you work for a company that has offices in Los Angeles

and New York. Each office maintains its own database. Each office has an Em-
ployee file that contains standard data about its employees. The offices are linked
by a network, so you have access to both tables (call them EmployeeEast and
EmployeeWest). But the corporate managers often want to search the entire Em-

Figure 5.23
More efficient solution. Create and save a query to compute the averages using
GROUP BY Category. Then join the query to the Merchandise table to do the
comparison.

Bird $37.60
Cat $8.99
Dog $23.32
Fish $38.18
Mammal $9.00

Category AvgOfSalePrice
Saved Query

JOIN

Merchandise.Category =
Query05_Fig23a.Category

1 Dog $45.00
2 Dog $65.00
3 Dog $85.00
4 Dog $110.00
5 Cat $25.00
6 Cat $35.00
7 Dog $4.00
8 Cat $3.00
9 Dog $7.50

Merchandise
MerchID Category ListPrice

271Chapter 5: Advanced Queries and Subqueries

ployee file—for example, to determine total employee salaries of the marketing
department. One solution might be to run their basic query twice (once on each
table) and then combine the results by hand.

As shown in Figure 5.24, the easier solution is to use the UNION operator to
create a new query that combines the data from the two tables. All searches and
operations performed on this new query will treat the two tables as one large table.
By combining the tables with a view, each office can make changes to the original
data on its system. Whenever managers need to search across the entire company,

T1 T2

A B C

T1 UNION T2 A + B + C

T1 INTERSECT T2 B

T1 EXCEPT T2 A

Figure 5.25
Operators for combining rows from two tables. UNION selects all of the rows.
INTERSECT retrieves only the rows that are in both tables. EXCEPT retrieves rows
that exist in only one table.

SELECT EID, Name, Phone, Salary, ‘East’ As Office
FROM EmployeeEast
UNION
SELECT EID, Name, Phone, Salary, ‘West’ As Office
FROM EmployeeWest;

EID Name Phone Salary Office
352
876
372

890
631

Jones
Inez
Stoiko

Smythe
Kim

3352
8736
7632

9803
7736

45,000
47,000
38,000

62,000
73,000

East
East
East

West
West

Figure 5.24
The UNION operator combines rows of data from two SELECT statements. The
columns in both SELECT lines must match. The query is usually saved and used
when managers need to search across both tables. Note the use of a new, constant
column (Office) to track the source of the data.

272Chapter 5: Advanced Queries and Subqueries

they use the saved query, which automatically examines the data from current ver-
sions of both tables.

The most important concept to remember when creating a UNION is that the
data from both tables must match (e.g., EID to EID, Name to Name). Another
useful trick is to insert a constant value in the SELECT statement. In this example
the constant keeps track of which table held the original data. This value can also
be used to balance out a SELECT statement if one of the queries will produce a
column that is not available in the other query. To make sure both queries return
the same number of columns, just insert a constant value in the query that does not
contain the desired column. Make sure that it contains the same type of data that is
stored in the other query (domains must match).

The UNION command combines matching rows of data from two tables. The
basic version of the command automatically eliminates duplicate rows of data. If
you want to keep all the rows—even the duplications, use the command UNION
ALL. Two other options for combining rows are EXCEPT and INTERSECT.
Figure 5.25 shows the difference between the three commands. They all apply to
sets of rows and the Venn diagram shows that the tables might have some data in
common (area B). The UNION operator returns all the rows that appear in either
one of the tables, but rows appearing in both tables are only listed once. The IN-
TERSECT operator returns the rows that appear in both tables (area B). The EX-
CEPT operator returns only rows that appear in the first table (area A). Notice that
the result of the EXCEPT operator depends on which table is listed first. Micro-
soft Access supports only the UNION command. SQL Server (and other DBMSs)
support all three. These set operators are another way to handle complex business
questions, similar to the NOT IN problem of finding things in one set that are not
in the second set. Just remember that there are often many ways to create a query.

Multiple JOIN Columns
Sometimes you will need to join tables based on data in more than one column.
In the Pet Store example, each animal belongs to some category (Cat, Dog, Fish,

AnimalID
Name
Category
Breed
DateBorn
Gender
. . .

Category
Breed

Breed

Animal

SELECT *
FROM Breed INNER JOIN Animal
ON Breed.Category = Animal.Category
AND Breed.Breed = Animal.Breed

Figure 5.26
Multiple JOIN columns. The values in the tables are connected only when both the
category and the breed match.

273Chapter 5: Advanced Queries and Subqueries

etc.). Each category of animal has different breeds. For example, a Cat might be
a Manx, Maine Coon, or Persian; a Dog might be a Retriever, Labrador, or St.
Bernard. A portion of the class diagram is reproduced in Figure 5.26. Notice the
two lines connecting the Breed and Animal tables. This relationship ensures that
only breeds listed in the Breed table can be entered for each type of Animal. A real
store might want to include additional features in the Breed table (such as regis-
tration organization, breed description, or breed characteristics). The key point is
that the tables must be connected by both the Category and the Breed.

In Microsoft Access QBE, the JOIN can be created by marking both columns
and simultaneously dragging the two columns to the Animal table, but it is often
easier to edit in SQL. The syntax for the SQL JOIN command is given in Figure
5.26. Simply expand the ON statement by listing both column connections. In
this case, you want both sets of columns to be equal at the same time, so the state-
ments are connected with an AND.

Reflexive Join
A reflexive join or self-join means simply that a table is joined to itself. One
column in the table is used to match values in a second column in the same ta-
ble. A common business example arises with an Employee table as illustrated in
Figure 5.27. Employees typically have one manager. Hence the manager’s ID
can be stored in the row corresponding to each employee. The table would be
Employee(EID, Name, Phone, . . ., Manager). The interesting feature is that a
manager is also an employee, so the Manager column actually contains a value
for EID. To get the corresponding name of the manager, you need to join the Em-
ployee table to itself.

SELECT Employee.EmployeeID, Employee.LastName, Employee.
ManagerID, E2.LastName
FROM Employee INNER JOIN Employee AS E2
ON Employee.ManagerID = E2.EmployeeID

EID Name Manager Name
1
2
3

Reeves
Gibson
Reasoner

11
1
1

Smith
Reeves
Reeves

EID Name . . . Manager
1 Reeves 11
2 Gibson 1
3 Reasoner 1
4 Hopkins 3

Employee

Figure 5.27
Reflexive JOIN to connect Employee table with itself. A manager is also an
employee. Use a second copy of the Employee table (renamed to E2) to get the
manager’s name.

274Chapter 5: Advanced Queries and Subqueries

The only trick with this operation is that you have to be careful with the ON
condition. For instance, the following condition does not make sense: ON Em-
ployee.Manager = Employee.EID. The query would try to return employees who
were their own managers, which is not likely to be what you wanted. Instead, you
must use two instances of the Employee table and use an alias (say, E2) to rename
the second copy. Then the correct ON condition becomes ON Employee.Manager
= E2.EID. The key to self-joins is to make sure that the columns contain the same
type of data and to create an alias for the second copy of the table.
SQL 1999 provides an even more powerful feature related to reflexive joins.

Consider the employee example where you want to list all of the people who work
for someone—not just the direct reports, but also the people who work for them,
and the people who work for that group, and so on down the employee hierarchy
tree. The standard provides the WITH RECURSIVE command that has several

Figure 5.28
Recursive query. The employee-manager relationship is a classic recursive example.
The recursive query requires three steps: (1) Define the root level, (2) Define the
recursion member that links to the higher level, and (3) Run the SELECT statement
to execute the expression and sort the results.

List all the managers and their direct reports.
WITH DirectReports(EmployeeID, LastName, ManagerID, Title, Level)
AS
(
	 --Root/anchor member (find employee with no manager)
	 SELECT EmployeeID, LastName, ManagerID, Title, 0 As Level
	 FROM Employee WHERE ManagerID=0 	 -- starting level
	 UNION ALL
	 -- Recursive members
	 SELECT Employee.EmployeeID, Employee.LastName,
	 	 Employee.ManagerID, Employee.Title, Level +1
	 FROM Employee INNER JOIN DirectReports
	 ON Employee.ManagerID = DirectReports.EmployeeID
)
-- Now exectue the common table expression
SELECT ManagerID, EmployeeID, LastName, Title, Level
FROM DirectReports
ORDER BY Level, ManagerID, LastName

ManagerID EmployeeID LastName Title Level
0
11
1
1
2
2
2
2
2
3
3

11
1
2
3
6
7
5
9
10
8
4

Smith
Reeves
Gibson
Reasoner
Eaton
Farris
James
O'Connor
Shields
Carpenter
Hopkins

Owner
Manager
Manager
Manager
Animal Friend
Animal Friend
Animal Friend
Animal Friend
Animal Friend
Worker
Worker

0
1
2
2
3
3
3
3
3
3
3

275Chapter 5: Advanced Queries and Subqueries

options to search a data tree. Consider the pet store case with the partial Employee
table: Employee(EmployeeID, LastName, Title, ManagerID). You want to start at
the top with the CEO/owner and list all of the employees who report directly to
a manager. For example, EmployeeID 1 (Reeves) is the only person who reports
directly to Sally (EmployeeID=11), but two people (EmployeeID 2 and 3) report
directly to Reeves. The actual syntax can be slightly different across systems. See
the Workbooks for examples. Figure 5.28 shows the syntax used by SQL Server.
The main difference with the standard is that the standard uses WITH RECUR-
SIVE instead of just the WITH keyword. The main step is to define the common
table expression to handle the recursion. You give a unique name (e.g., DirectRe-
ports) to the new expression and specify the columns that will be retrieved. The
three main steps are: (1) Define the root starting point for the tree with a SELECT
statement, (2) Define the recursive members with a second SELECT statement
that links to the level above, and (3) Write the final SELECT statement to execute
the recursive table and sort or group the results. In the example, root level is de-
fined by choosing the owner who does not report to anyone (ManagerID=0). You
might need to examine the data to know how to define the root level—it might
be set by title, or by a Null value in some column. The second step is the one that
does most of the work. You retrieve data from the Employee table, but the JOIN
statement is the key. Notice that you join the Employee.ManagerID column to
the higher-level DirectReports.EmployeeID table. The DirectReports table repre-
sents the parent level entry, and this SELECT statement will always have a similar
JOIN condition. The third step is the easiest, because now you can treat the Di-
rectReports entity as just another table. Open the pet store’s Employee table and
work through the results given here to see how the organization structure chart is
created.
The Level column is also a useful trick. You define it with the root-level SE-

LECT statement, and increment it with the recursive SELECT. It provides an easy
way to specify the distance from the root. Picture the organizational chart with
Smith at the top, followed by Reeves at Level 1, and Gibson and Reasoner at
Level 2 because both report to Reeves. The recursive query is a powerful state-
ment. Without it, you need to write substantial code to accomplish the same task.

Note that many lower-end systems (such as Microsoft Access) do not support
recursive joins. In these cases, you will have to write programming code to iterate
through each employee to build the tree. Also be cautious when building recursive
queries—it is possibly to accidentally create an infinite loop. You might want to
set time limits on queries when testing recursive designs.

CASE Function
SQL 92 added the CASE function to simplify certain types of queries. However,
many database systems have not yet implemented all the features of SQL 92. The
CASE function evaluates a set of conditions and returns a single value. Similar to
the Oracle decode function, the conditions can be simple (R=1) or complex.

Perhaps the managers want to classify the animals in Sally’s Pet Store based on
their age. Figure 5.29 shows the SQL statement that would create four categories
based on different ages. Note the use of date arithmetic using today’s date—Date(
)—and DateBorn. Whenever this query is executed, it will use the current day to
assign each animal to the appropriate category. Of course, the next logical step is
to run a GROUP BY query against this view to count the number of animals fall-
ing within each age category.

276Chapter 5: Advanced Queries and Subqueries

Inequality Joins
A JOIN statement is actually just a condition. Most problems are straightforward
and use a simple equality condition or equi-join. For example, the following
statement joins the Customer and Order tables: FROM Customer INNER JOIN
Order ON (Customer.CustomerID = Order.CustomerID).

SQL supports complex conditions including inequality joins, where the com-
parison is made with inequality operators (less than, greater than) instead of an
equals sign. The generic name for any inequality or equality join is a theta join.

This type of join can be useful in some tricky situations. For example, con-
sider a common business problem. You have a table for AccountsReceivable(
TransactionID, CustomerID, Amount, DateDue). Managers would like to catego-
rize the customer accounts and determine how many transactions are past due by
30, 90, and 120 or more days. This query can be built in a couple of ways. For
instance, you could write three separate queries, or you could build a complex

Classify payments by number of days late.
AR(TransactionID, CustomerID, Amount, DateDue)
LateCategory(Category, MinDays, MaxDays, Charge, …)
Month 30 90 3%
Quarter 90 120 5%
Overdue 120 9999 10%

SELECT *
FROM AR INNER JOIN LateCategory
ON ((Date() – AR.DateDue) >= LateCategory.MinDays)
AND ((Date() – AR.DateDue) < LateCategory.MaxDays)

Figure 5.30
Inequality join. Managers want to classify the AccountsReceivable (AR) data into
three categories of overdue payments. First, store the business rules/categories in a
new table. Then join the table to the AR data through inequality joins.

Figure 5.29
CASE function to convert DateBorn into age categories. Note the use of date
arithmetic to generate descriptions that are always current.

Convert age ranges into categories.
Select AnimalID,
	 CASE
	 	 WHEN Date()-DateBorn < 90 Then ‘Baby’
	 	 WHEN Date()-DateBorn >= 90
	 	 AND Date()-DateBorn < 270 Then ‘Young’
	 	 WHEN Date()-DateBorn >= 270
	 	 AND Date()-DateBorn < 365 Then ‘Grown’
	 	 ELSE ‘Experienced’
	 END
FROM Animal;

277Chapter 5: Advanced Queries and Subqueries

CASE statement. However, what happens if managers decide to change the busi-
ness rules or add a new category? Then someone has to find your three queries
and modify them. A more useful trick is to create a new table to hold the busi-
ness rules or categories. In the example shown in Figure 5.30, create the table
LateCategory(Category, MinDays, MaxDays, Charge). This table defines the late
categories based on the number of days past due. Now use inequality conditions to
join the two tables. First, compute the number of days late using the current date
(Date() – AR.DateDue). Finally, compare the number of days late to minimum
and maximum values specified in the LateCategory table.

The ultimate value of this approach is that the business rules are now stored in
a simple table (LateCategory). If managers want to change the conditions or add
new criteria, they simply alter the data in the table. You can even build a form that
makes it easy for managers to see the rules and quickly make the needed changes.
With any other approach, a programmer needs to rewrite the code for the queries.

Exists and Crosstabs
Some queries need the EXISTS condition. Consider the business question: Which
employees have sold merchandise in every category? The word every is the key
here. Think about how you would answer that question if you did not have a com-
puter. For each employee you would make a list of merchandise categories (Bird,
Cat, Dog, etc.). Then you would go through the list of ItemSales and cross off
each merchandise category sold by the employee. When finished, you would look
at the employee list to see which people have every category crossed off (or an
empty list). You will do the same thing using queries.

Remember, if this query returns any rows at all, then the selected employee has
not sold every one of the categories. What you really want then is a list of employ-
ees for whom this query returns no rows of data. In other words, the rows from
this query should NOT EXIST.

The next step is to examine the entire list of employees and see which ones
do not retrieve any rows from the query in Figure 5.31. The final query is shown
in Figure 5.32. Note that the specific EmployeeID 5 has been replaced with the
EmployeeID matching the value in the outer loop, which creates a correlated sub-
query. Unfortunately, you cannot avoid the correlated subquery in this type of

List the Animal categories where merchandise has not been sold by an
employee (#5).
SELECT Category
FROM Category
 WHERE (Category <> N'Other') And Category NOT IN
 (SELECT Merchandise.Category
 FROM Merchandise INNER JOIN (Sale INNER JOIN SaleItem
 ON Sale.SaleID = SaleItem.SaleID)
 ON Merchandise.ItemID = SaleItem.ItemID
 WHERE Sale.EmployeeID = 5)

Figure 5.31
List the animal categories that have not been sold by EmployeeID 5. Use a basic
NOT IN query.

278Chapter 5: Advanced Queries and Subqueries

problem. This query returns four employees who have sold every type of animal
merchandise. Observe that categories for Other, Reptile, and Spider have been re-
moved from the list because the shortened product list does not contain any items
for these categories. Another way to handle this problem would be to select the
Distinct Category from the Merchandise table instead of the Category table.

The type of query in Figure 5.32 is commonly used to answer questions that
include some reference to “every” item. In some cases, a simpler solution is to

Which employees have sold merchandise from every category?
SELECT Employee.EmployeeID,Employee.LastName,
	 Count(CASE Category WHEN 'Bird' THEN 1 END) As Bird,
	 Count(CASE Category WHEN 'Cat' THEN 1 END) As Cat,
	 Count(CASE Category WHEN 'Dog' THEN 1 END) As Dog,
	 Count(CASE Category WHEN 'Fish' THEN 1 END) As Fish,
	 Count(CASE Category WHEN 'Mammal' THEN 1 END) As Mammal,
	 Count(CASE Category WHEN 'Reptile' THEN 1 END) As Reptile,
	 Count(CASE Category WHEN 'Spider' THEN 1 END) As Spider
FROM Employee
INNER JOIN Sale ON Sale.EmployeeID=Employee.EmployeeID
INNER JOIN SaleAnimal ON Sale.SaleID=SaleAnimal.SaleID
INNER JOIN Animal ON Animal.AnimalID=SaleAnimal.AnimalID
GROUP BY Employee.EmployeeID, Employee.LastName
ORDER BY Employee.LastName;

Figure 5.33
Using CASE to count items. The hard way to count items in each category. It works,
but needs to be edited if categories are added.

Which employees have sold merchandise from every category?
SELECT Employee.EmployeeID, Employee.LastName
FROM Employee
WHERE Not Exists
 (SELECT Category
 FROM Category
 WHERE (Category NOT IN (N'Other', N’Reptile’, N’Spider’)
	 And Category NOT IN
 (SELECT Merchandise.Category
 FROM Merchandise INNER JOIN (Sale INNER JOIN SaleItem
 ON Sale.SaleID = SaleItem.SaleID)
 ON Merchandise.ItemID = SaleItem.ItemID
 WHERE Sale.EmployeeID = Employee.EmployeeID)
);

Figure 5.32
Example of NOT EXISTS clause. List the employees who have sold merchandise
from every category (except “Other”).

279Chapter 5: Advanced Queries and Subqueries

just count the number of categories for each employee. One catch to this approach
is that the DBMS must support the Count(DISTINCT) format. In general, these
complex questions are probably better answered with multiple queries, or with
tools provided by a data warehouse approach.

The query in Figure 5.32 is an interesting application of the EXISTS clause.
However, there is an easier way to answer the question. You should build a cross-
tab or pivot query that counts the number of items sold by each employee and by
each category. Notice that this question contains two “by each” statements. You
could write a simple query that contains both of those variables (Employee and
Category) in the GROUP BY section. However, most people find it easier to read
the results if they are presented in a table, with one Group By variable (Employee)
as the rows and the other (Category) as the columns. Then each cell can contain
the count of the number of items sold for a specific employee in a given category.

Figure 5.33 shows the basic query. Microsoft Access has a simpler crosstab
query, but with traditional SQL, you need to compute each column separately.
Hence, you have to use the CASE function to select each category of animal—
which means you have to know the categories ahead of time. Essentially, you
compute each column separately by using a CASE statement to select only rows
that match the group condition you want for the column.

Figure 5.34 shows the result of the crosstab query. It is relatively easy to see the
types of animals sold by each employee. To answer the overall question of who
sold items from each category, you simply look for a row with no zeros. With this
sample data, four employees have sold at least one item from each category. Tech-
nically, this query contains more information that required to answer the question.
However, additional data is often useful. If you write the EXISTS query to return
exactly the information requested, it will return no names. Oftentimes, it is pref-
erable to see that several other employees come close to meeting the conditions,
instead of simply saying that no one meets them exactly.

Figure 5.34
Crosstab query. The columns are built using the CASE statement to select each
specific category. The rows are formed by the GROUP BY clause. Note that Oracle
uses the DECODE function instead of the CASE statement.

EID LastName Bird Cat Dog Fish Mammal
1 Reeves 4 15 6
2 Gibson 1 25 24 9 2
3 Reasoner 2 9 26 5 2
4 Hopkins 3 21 33
5 James 3 7 8 11 2
6 Eaton 1 2 8 1
7 Farris 1 4 24 1 1
8 Carpenter 3 1 11 5
9 O'Connor 5 10 3 1
10 Shields 1 5
11 Smith 1

280Chapter 5: Advanced Queries and Subqueries

SQL SELECT Summary
The SQL SELECT command is powerful and has many options. To help you re-
member the various options, they are presented in Figure 5.35. Each DBMS has
a similar listing for the SELECT command, and you should consult the relevant
Help system for details to see if there are implementation differences. Remember
that the WHERE clause can have subqueries. Also remember that you can use the
SELECT line to perform computations, both in-line and aggregations across the
rows.

Most database systems are picky about the sequence of the various components
of the SELECT statement. For example, the WHERE statement should come be-
fore the GROUP BY statement. Sometimes these errors can be hard to spot, so if
you receive an enigmatic error message, verify that the segments are in the proper
order. Figure 5.36 presents a mnemonic that may help you remember the proper
sequence. Also, you should always build a query in pieces, so you can test each
piece. For example, if you use a GROUP BY statement, first check the results
without it to be sure that the proper rows are being selected.

SQL Data Definition Commands
What are the SQL data definition commands? Everything to this point has
focused on only one aspect of a database: retrieving data. Clearly, you need to
perform many more operations with a database. SQL was designed to handle all
common operations. One set of commands is described in this section: data defini-
tion commands to create and modify the database and its tables. Note that the SQL
commands can be cumbersome for these tasks. Hence, most modern database sys-

Someone	 SELECT
From	 FROM
Ireland	 INNER JOIN
Will	 WHERE
Grow	 GROUP BY
Horseradish and	 HAVING
Onions	 ORDER BY

Figure 5.36
Mnemonic to help remember the proper sequence of the SELECT operators.

SELECT DISTINCT Table.Column {AS Alias}, …
FROM Table/Query
INNER JOIN Table/Query ON T1.ColA = T2.ColB
WHERE (Condition)
GROUP BY Column
HAVING (Group Condition)
ORDER BY Table.Column
{UNION Second Select }

Figure 5.35
SQL SELECT options. Remember that WHERE statements can have subqueries.

281Chapter 5: Advanced Queries and Subqueries

tems provide a visual or menu-driven system to assist with these tasks. The SQL
commands are generally used when you need to automate some of these tasks and
set up or make changes to a database from within a separate program.
The five most common data definition commands are listed in Figure 5.37. In

building a new database, the first step is to CREATE a SCHEMA. A schema is
a collection of tables. In some systems, the command is equivalent to creating a
new database. In other systems, it simply defines a logical area where each user
can store tables, which might or might not be in one physical database. The Au-
thorization component describes the user and sets a password for security. Most
DBMSs also have visually-oriented tools to perform these basic tasks. However,
the SQL commands can be scripted and stored in a file that can be run whenever
you need to recreate the database.

CREATE TABLE is one of the main SQL data definition commands. It is used
to define a completely new table. The basic command lists the name of the table
along with the names and data types for all of the columns. Figure 5.38 shows the
format for the data definition commands. Additional options include the ability to
assign default values with the DEFAULT command.

SQL 92 provides several standard data types, but system vendors do not yet
implement all of them. SQL 92 also enables you to create your own data types
with the CREATE DOMAIN command. For example, to ensure consistency you

CREATE TABLE Customer
(CustomerID	 INTEGER NOT NULL,
	 LastName	 NVARCHAR(10),
	 …
);

ALTER TABLE Customer
	 DROP COLUMN ZIPCode;

ALTER TABLE Customer
	 ADD COLUMN CellPhone NVARCHAR(15);

Figure 5.37
Primary SQL data definition commands. In most cases you will avoid these
commands and use a visual or menu-driven system to define and modify tables.

CREATE SCHEMA AUTHORIZATION DBName Password
CREATE TABLE TableName (Column Type, …)
ALTER TABLE Table {Add, Column, Constraint, Drop}
DROP {Table TableName | Index IndexName ON TableName}
CREATE INDEX IndexName ON TableName (Column ASC/DESC)

Figure 5.38
The CREATE TABLE command defines a new table and all of the columns that
it will contain. The NOT NULL command typically is used to identify the key
column(s) for the table. The ALTER TABLE command enables you to add and delete
entire columns from an existing table.

282Chapter 5: Advanced Queries and Subqueries

could create a domain called DomAddress that consists of CHAR (35). Then any
table that used an address column would refer to the DomAddress.

With SQL 92, you identify the primary key and foreign key relationships with
constraints. SQL constraints are rules that are enforced by the database system.
Figure 5.39 illustrates the syntax for defining both a primary key and a foreign
key for an Order table. First, notice that each constraint is given a name (e.g.,
pkOrder). You can choose any name, but you should pick one that you will recog-
nize later if problems arise. The primary key constraint simply lists the column or
columns that make up the primary key. Note that each column in the primary key
should also be marked as NOT NULL.

The foreign key constraint is easier to understand if you examine the relevant
class diagram. Here you want to place orders only to customers who have data
in the Customer table. That is, the CustomerID in the Order table must already
exist in the Customer table. Hence, the constraint lists the column in the origi-
nal Order table and then specifies a REFERENCE to the Customer table and the
CustomerID.

The ALTER TABLE and DROP TABLE commands enable you to modify
the structure of an existing table. Be careful with the DROP command, as it will
remove the entire table from the database, including its data and structural defini-
tion. The ALTER TABLE command is less drastic. It can be used to ADD or DE-
LETE columns from a table. Obviously, when you drop an entire column, all the
data stored in that column will be deleted. Similarly, when you add a new column,
it will contain NULL values for any existing rows.

You can use the CREATE INDEX and DROP INDEX commands to improve
the performance of the database. Indexes can improve performance when re-

CREATE TABLE Order
	 (OrderID	 INTEGER NOT NULL,
	 OrderDate 	 DATE,
	 CustomerID 	 INTEGER,

	 CONSTRAINT pkOrder PRIMARY KEY (OrderID),
	 CONSTRAINT fkOrderCustomer FOREIGN KEY (CustomerID)
	 REFERENCES Customer (CustomerID)
);

OrderID
OrderDate
CustomerID

CustomerID
LastName
FirstName
Address
…

Order Customer

*

Figure 5.39
Identifying primary and foreign keys in SQL. Keys are defined as constraints that are
enforced by the DBMS. The primary key constraint lists the columns that make up
the primary key. The foreign key lists the column (CustomerID) in the current table
(Order) that is linked to a column (CustomerID) in a second table (Customer).

283Chapter 5: Advanced Queries and Subqueries

trieving data, but they can cause problems when many transactions take place in
a short period of time. In general, these commands are issued once for a table.
Typically, indexes are built for primary key columns. Most DBMSs automatically
build those indexes.

Finally, as described in Chapter 4, the CREATE VIEW creates and saves a
new query. The basic syntax is straightforward: CREATE VIEW myview AS SE-
LECT…. The command simply gives a name and saves any SELECT statement.
Again, these commands are almost always easier to create and execute from a
menu-driven interface. However, because you may have to create SQL data defi-
nition statements by hand sometime, so it is good to know how to do so.

SQL Data Manipulation Commands
What SQL commands alter the data stored in tables? A third set of SQL com-
mands demonstrates the true power of SQL. The SELECT command retrieves
data, whereas data manipulation commands are used to change the data within the
tables. The basic commands and their syntax are displayed in Figure 5.40. These
commands are used to insert data, delete rows, and update (change) the values of
specific cells. Remember two points when using these commands: (1) They oper-
ate on sets of data at one time—avoid thinking in terms of individual rows, and (2)
they utilize the power of the SELECT and WHERE statements you already know.

INSERT and DELETE
As you can tell from Figure 5.40, the INSERT command has two variations. The
first version (VALUES) is used to insert one row of data at a time. Except for
some programming implementations, it is not very interesting. Most database sys-
tems provide a visual or tabular data entry system that makes it easy to enter or
edit single rows of data. Generally, you will build forms to make it easy for users
to enter and edit single rows of data. These tools automatically build the single-
row INSERT command. On most systems, the data will be inserted directly to the
tables. In a few cases, you might have to write your own INSERT statement.

The second version of the INSERT command is particularly useful at copy-
ing data from one table into a second (target) table. Note that it accepts any SE-

INSERT INTO target (column1, column2, …)
	 VALUES (value1, value2, …)

INSERT INTO target (column1, column2, …)
	 SELECT … FROM …

DELETE FROM table WHERE condition

UPDATE table
	 SET Column1=Value1, Column2=Value2, …
	 WHERE condition

Figure 5.40
Common SQL commands to add, delete, and change data within existing tables. The
commands operate on entire sets of data, and they utilize the power of the SELECT
and WHERE statements, including subqueries.

284Chapter 5: Advanced Queries and Subqueries

LECT statement, including one with subqueries, making it far more powerful than
it looks. For example, in the Pet Store database, you might decide to move older
Customer data to a different computer. To move records for customers who have
not purchased anything since the start of July, you would issue the INSERT com-
mand displayed in Figure 5.41. Notice that the subquery selects the customers
based on the date they placed their latest sale. The INSERT command then copies
the associated rows in the Customer table into an existing OldCustomers table.
The query in Figure 5.41 just copies the specified rows to a new table. The next

step is to delete them from the main Customer table to save space and improve
performance. The DELETE command performs this function easily. As Figure
5.42 illustrates, you simply replace the first two rows of the query (INSERT and
SELECT) with DELETE. Be careful not to alter the subquery. You can use the
cut-and-paste feature to delete only rows that have already been copied to the
backup table. Be sure you recognize the difference between the DROP and DE-
LETE commands. The DROP command removes an entire table. The DELETE
command deletes rows within a table.

UPDATE
The syntax of the UPDATE command is similar to the INSERT and DELETE
commands. It, too, makes full use of the WHERE clause, including subqueries.
The key to the UPDATE command is to remember that it acts on an entire collec-

INSERT INTO OldCustomers
SELECT *
FROM Customer
WHERE CustomerID IN
(SELECT Sale.CustomerID
	 FROM Customerr INNER JOIN Sale
	 ON Customer.CustomerID=Sale.CustomerID
	 GROUP BY Sale.CustomerID
	 HAVING Max(Sale.SaleDate) < '01-Jul-2013'));

Figure 5.41
INSERT command to copy older data rows. Note the use of the subquery to identify
the rows to be copied.

DELETE
FROM Customer
WHERE CustomerID IN
	 (SELECT FROM Customerr INNER JOIN Sale
	 ON Customer.CustomerID=Sale.CustomerID
	 GROUP BY Sale.CustomerID
	 HAVING (Max(Sale.SaleDate) < '01-Jul-2013'));

Figure 5.42
DELETE command to remove the older data. Use cut and paste to make sure the
subquery is exactly the same as the previous query.

285Chapter 5: Advanced Queries and Subqueries

tion of rows at one time. You use the WHERE clause to specify which set of rows
need to be changed.

In the example in Figure 5.43, managers wish to increase the ListPrice of the
merchandise for cats and dogs. The price for cat merchandise should increase by
10 percent and the price for dog merchandise by 20 percent. Because these are
two different categories, you will often use two separate UPDATE statements.
However, this operation provides a good use for the CASE function. You can re-
duce the operation to one UPDATE statement by replacing the 1.10 and 1.20 val-
ues with a CASE statement that selects 1.10 for Cats and 1.20 for Dogs.

The UPDATE statement has some additional features. For example, you can
change several columns at the same time. Just separate the calculations with a
comma. You can also build calculations from any row within the table or query.
For example, merchandise list price could take into consideration the quantity on
hand with the command SET ListPrice = ListPrice*(1 - 0.001*QuantityOnHand).
This command takes 1/10 of 1 percent off the price for extra items in inventory.

Notice the use of the internal Date() function to provide today’s date in the
last example. Most database systems provide several internal functions that can
be used within any calculation. These functions are not standardized, but you can
generally get a list (and the syntax chart) from the system’s Help commands. The
Date, String, and Format functions are particularly useful.

When using the UPDATE command, remember that all the data in the calcula-
tion must exist on one row within the query. There is no way to refer to a previous
or next row within the table. If you need data from other rows or tables, you can
build a query to join tables. However, you can update data in only a single table
at a time.

Quality: Testing Queries
How do you know if your query is correct? The greatest challenge with com-
plex queries is that even if you make a mistake, you usually get results. The prob-
lem is that the results are not the answer to the question you wanted to ask. The
only way to ensure the results are correct is to thoroughly understand SQL, to
build your queries carefully, and to test your queries.
Figure 5.44 outlines the basic steps for dealing with complex queries. The first

step is to break complex queries into smaller pieces, particularly when the query
involves subqueries. You need to examine and test each subquery separately. You
can do the same thing with complex Boolean conditions. Start with a simple con-
dition, check the results, and then add new conditions. When the subqueries are

Figure 5.43
Sample UPDATE command. If the CASE function is not available, use two separate
statements to increase the list price by 10 percent for cats and 20 percent for dogs.

UPDATE Merchandise
SET ListPrice = ListPrice * 1.10
WHERE Category = ‘Cat’;
UPDATE Merchandise
SET ListPrice = ListPrice * 1.20
WHERE Category = ‘Dog’;

286Chapter 5: Advanced Queries and Subqueries

correct, use cut-and-paste techniques to combine them into one main query. If
necessary, save the initial queries as views, and use a completely new query to
combine the results from the views. The third step is to create sample data to test
the queries. Find or create data that represents the different possible cases. Opti-
mize queries that will become part of an application and run multiple times. Most
DBMSs have an optimizer that will suggest performance improvements. You
should also look for alternate ways to write the query to find a faster approach.

SELECT DISTINCT Animal.Category, Sale.CustomerID
FROM Sale INNER JOIN Animal
 ON Animal.SaleID = Sale.SaleID
WHERE (Animal.Category=N'Dog')

	 AND Sale.CustomerID IN (

	 SELECT DISTINCT Sale.CustomerID
	 FROM Sale INNER JOIN (Merchandise INNER JOIN
SaleItem
	 ON Merchandise.ItemID = SaleItem.ItemID)
	 ON Sale.SaleID = SaleItem.SaleID
	 WHERE (Merchandise.Category=N'Cat')
);

Figure 5.45
Sample query: Which customers who adopted dogs also bought cat products (at any
time)? Build each query separately. Then paste them together in SQL and add the
connecting link. Use sample data to test the results.

Break questions into smaller pieces.
Test each query.
	 Check the SQL.
	 Look at the data.
	 Check computations.
Combine into subqueries.
	 Use the cut-and-paste features to reduce errors.
	 Check for correlated subqueries.
Test sample data.
	 Identify different cases.
	 Check final query and subqueries.
	 Verify calculations.
Test SELECT queries before executing UPDATE queries.
Optimize queries that run multiple times.
	 Run a query optimizer.
	 Think about new ways to structure the query.

Figure 5.44
Steps to building quality queries. Be sure there are recent backups of the database
before you execute UPDATE or DELETE queries.

287Chapter 5: Advanced Queries and Subqueries

In terms of quality issues, consider the example in Figure 5.45: List custom-
ers who adopted dogs and also bought cat products. The query consists of four
situations:

1.	 Customers adopted dogs and cat products on the same sale.
2.	 Customers adopted dogs and then cat products at a different time.
3.	 Customers adopted dogs and never bought cat products.
4.	 Customers never adopted dogs but did buy cat products.
Because there are only four cases, you should create data and test each one. If

there were thousands of possible cases, you might have to limit your testing to the
major possibilities.
The final step in building queries involves data manipulation queries (such as

UPDATE). You should first create a SELECT query that retrieves the rows you
plan to change. Examine and test the rows to make sure they are the ones you
want to alter. When you are satisfied that the query is correct, make sure you have
a recent backup of the database—or at least a recent copy of the tables you want
to change. Now you can convert the SELECT query to an UPDATE or DELETE
statement and execute it.

Summary
Always remember that SQL operates on sets of data. The SELECT command re-
turns a set of data that matches some criteria. The UPDATE command changes
values of data, and the DELETE command deletes rows of data that are in a speci-
fied set. Sets can be defined in terms of a simple WHERE clause. The key to un-
derstanding SQL is to think of the WHERE clause as defining a set of data.

To create queries to answer complex business questions, break the question
into pieces and build simple queries to retrieve data for each piece. Then combine
the sets of data using inner joins, outer joins, subqueries, or set operators. Subque-
ries are powerful, but be careful to ensure that the query accurately represents the
business questions. You must test subqueries in pieces and make sure you under-
stand exactly what each piece is returning.

In everyday situations, data can exist in one table but not another. For example,
you might need a list of customers who have not placed orders recently. The prob-
lem can also arise if the DBMS does not maintain referential integrity—and you
need to find which orders have customers with no matching data in the customer
table. Outer joins (or the NOT IN subquery) are useful in these situations.

The most important thing to remember when building queries is that if you
make a mistake, most likely the query will still execute. Unfortunately, it will not
give you the results you wanted. That means you have to build your queries care-
fully and always check your work. Begin with a smaller query and then add ele-
ments until you get the query you want. To build an UPDATE or DELETE query,
always start with a SELECT statement and check the results. Then change it to
UPDATE or DELETE.

288Chapter 5: Advanced Queries and Subqueries

Key Terms

ALL
ALTER TABLE
ANY
CASE
constraint
correlated subquery
CREATE DOMAIN
CREATE SCHEMA
CREATE TABLE
CREATE VIEW
DELETE
DROP TABLE
equi-join
EXCEPT
EXISTS

FULL JOIN
IN
inequality join
INSERT
INTERSECT
LEFT JOIN
nested query
outer join
reflexive join
RIGHT JOIN
schema
self join
subquery
UNION
UPDATE

A Developer’s View
Miranda saw that some business questions are more complex than others. SQL
subqueries and outer joins are often used to answer these questions. Practice the
SQL subqueries until you thoroughly understand them. They will save you hun-
dreds of hours of work. Think about how long it would take to write code to
answer some of the questions in this chapter! For your class project, you should
create several queries to test your skills, including subqueries and outer joins.
You should build and test some SQL UPDATE queries to change sets of data. You
should be able to use SQL to create and modify tables.

289Chapter 5: Advanced Queries and Subqueries

Review Questions
1.	 What is a subquery and in what situations is it useful?
2.	 What is a correlated subquery and why does it present problems?
3.	 How do you find items that are not in a list, such as customers who have not

placed orders recently?
4.	 How do you join tables when the JOIN column for one table contains data

that is not in the related column of the second table?
5.	 How do you join a column in one table to a related column in the same table?
6.	 What are inequality joins and when are they useful?
7.	 What is the SQL UNION command and when is it useful?
8.	 What is the purpose of the SQL CASE function?
9.	 What are the basic SQL data definition commands?
10.	 What are the basic SQL data manipulation commands?
11.	 How are UPDATE and DELETE commands similar to the SELECT

statement?

290Chapter 5: Advanced Queries and Subqueries

Exercises

Sally’s Pet Store
Write the SQL statements that will answer questions 1 through 16 based on the
tables in the Pet Store database. Test your queries in the database. Hint: Many are
easier if you split the question into multiple queries.

1.	 Which suppliers did not deliver any items in September?
2.	 Which employees did not sell any items in June?
3.	 Which categories of merchandise were not sold during May?
4.	 Which breed of Cat has never been adopted through the store?
5.	 What was the percentage of sales value by merchandise category in March?
6.	 Which category of animal was most likely (percent) to be adopted in the first

three months?
7.	 Which employee had the highest percent of the number of sales (not value) in

January?
8.	 Which supplier has the highest average percentage of shipping cost to total

order value?
9.	 List the total adoptions and percentage by adoption group in April.

SupplierID
Name
ContactName
Phone
Address
ZIPCode
CityID

Supplier

AnimalID
Name
Category
Breed
DateBorn
Gender
Registered
Color
Photo
ImageFile
Imageheight
ImageWidth
AdoptionID
SaleID
Donation

Animal

PONumber
OrderDate
ReceiveDate
SupplierID
EmployeeID
ShippingCost

MerchandiseOrder

AdoptionID
AdoptionSource
ContactName
ContactPhone

AdoptionGroup

CityID
ZIPCode
City
State
AreaCode
Population1990
Population1980
Country
Latitude
Longitude

City

PONumber
ItemID
Quantity
Cost

OrderItem

ItemID
Description
QuantityOnHand
ListPrice
Category

Merchandise

EmployeeID
LastName
FirstName
Phone
Address
ZIPCode
CityID
TaxPayerID
DateHired
DateReleased
ManagerID
EmployeeLevel
Title

Employee

SaleID
SaleDate
EmployeeID
CustomerID
SalesTax

Sale

SaleID
ItemID
Quantity
SalePrice

SaleItem

CustomerID
Phone
FirstName
LastName
Address
ZIPCode
CityID

Customer

Category
Registration

Category

Category
Breed

Breed

291Chapter 5: Advanced Queries and Subqueries

10.	 Which employee has been the top monthly seller the most number of times?
11.	 What is the amount of money customers spent on cat products after they

adopted a cat?
12.	 List customers who purchased Cat merchandise in January and March?
13.	 List employees who ordered items from the same supplier in March and April

(could be different products).

Make a backup copy before attempting the remaining Pet Store queries.
14.	 Write the SQL CREATE TABLE command to create a new Employee table

with no data.
15.	 Write the SQL command to copy the data to the new Employee table for

employees who did not sell anything in December.
16.	 Write the SQL command to delete the employees from the original Employee

table who did not sell anything in December—except for Ms. Smith, the
owner.

17.	 Write a query to increase the list price of Dog merchandise by 5 percent.

292Chapter 5: Advanced Queries and Subqueries

Rolling Thunder Bicycles
Write the SQL statements that will answer questions 17 through 32 based on the
tables in the Rolling Thunder database. Build your queries in Access.

18.	 Which employee has been #1 in monthly sales value for the most number of
months in 2010-2011?

19.	 Which paint colors were not used in 2012?
20.	 What percent of race bikes sold in 2012 used Shimano, Campy, and SRAM

cranks? (Give the percent of the total for each manufacturer.)
21.	 List customers who bought a full suspension mountain bike after they had

purchased a regular mountain bike.
22.	 List all of the people who are managed by Roland Venetiaan.
23.	 In 2012, which employees who took an order for a bicycle also shipped that

same bicycle? Hint: Connect the Employee table to ShipEmployee.
24.	 Compute the percentage of value of sales by model type for each year 2010 –

2013.
25.	 Using a UNION query, list the employees who painted bicycles on March

15, 2012 or framed them on that date (StartDate) (or both). Hint: Join the
Employee table to Painter and then to FrameAssembler.

CustomerID
Phone
FirstName
LastName
Gender
Address
ZIPCode
CityID
BalanceDue

Customer

SerialNumber
CustomerID
ModelType
PaintID
FrameSize
OrderDate
StartDate
ShipDate
ShipEmployee
FrameAssembler
Painter
Construction
WaterBottleBrazeOn
CustomerName
LetterStyleID
StoreID
EmployeeID
TopTube
ChainStay
HeadTubeAngle
SeatTubeAngle
ListPrice
SalePrice
SalesTax
SaleState
ShipPrice
FramePrice
ComponentList

Bicycle

CustomerID
TransactionDate
EmployeeID
Amount
Description
Reference

CustomerTrans

StoreID
StoreName
Phone
ContactFirstName
ContactLastName
Address
ZIPCode
CityID

RetailStore

State
TaxRate

StateTaxRate

ModelType
Description
ComponentID

ModelType

PaintID
ColorName
ColorStyle
ColorList
DateIntroduced
DateDiscontinued

Paint

EmployeeID
TaxpayerID
LastName
FirstName
HomePhone
Address
ZIPCode
CityID
DateHired
DateReleased
CurrentManager
SalaryGrade
Salary
Title
WorkArea

Employee

WorkArea
Description

WorkArea

CityID
ZIPCode
City
State
AreaCode
Population2000
Population1990
Population1980
Country
Latitude
Longitude
SelectionCDF
FIPS
Income2004
Division
StateCode
MSACMSA
MASC
CMSA
<more>

City

SerialNumber
TubeID
Quantity

BicycleTubeUsae

ModelType
Msize
TopTube
ChainStay
TotalLength
GroundClearance
HeadTubeAngle
SeatTubeAngle

ModelType

LetterStyleID
Description

LetterStyle

PurchaseID
EmployeeID
ManufacturerID
TotalList
ShippingCost
Discount
OrderDate
ReceiveDate
AmountDue

PurchaseOrder

ManufacturerID
ManufacturerName
ContactName
Phone
Address
ZIPCode
CityID
BalanceDue

Manufacturer

ManufacturerID
TransactionDate
EmployeeID
Amount
Description
Reference

ManufacturerTrans

PurchaseID
ComponentID
PricePaid
Quantity
QuantityReceived

PurchaseItem

SerialNumber
ComponentID
SubstituteID
Location
Quantity
DateInstalled
EmployeeID

BikeParts

SerialNumber
TubeName
TubeID
Length

BikeTubes

ComponentGroupID
GroupName
BikeType
Year
EndYear
Weight

Groupo

ComponentID
ManufacturerID
ProductNumber
Road
Category
Length
Height
Width
Weight
Year
EndYear
Description
ListPrice
EstimatedCost
QuantityOnHand

Component

TubeID
Material
Description
Diameter
Thickness
Roundness
Weight
Stiffness
ListPrice
Construction
IsActive

TubeMaterial

GroupID
ComponentID

GroupComponent

ComponentName
AssemblyOrder
Description

ComponentName

293Chapter 5: Advanced Queries and Subqueries

26.	 In 2012, what percent of bicycle sales (by count) were made without the help
of a retail store (StoreID=1 or 2).

27.	 Which manufacturers did not sell any items to Rolling Thunder Bicycles in
2012?

28.	 For Road component groups in 2012 (Component.Year), what is the average
percent of the total group weight contributed by the crank?

29.	 How has the percent share of sales value for Race bikes (to total) changed
over time (by year)?

30.	 Use SQL to create a new SalesRanking table as shown.

Category SalesLow SalesHigh
Top 0.10 1.0
Acceptable 0.05 0.10
Weak 0.0 0.05

31.	 Write the query to insert the rows of data row into the table shown in the
previous exercise.

32.	 Create a query to compute sales by employee by month and the employee’s
percent of total monthly sales. Combine the table data from the table in the
previous exercise to assign the appropriate category to each employee for
each month.

33.	 Write a query to delete the last row (Weak) in the new SalesRanking table.
34.	 Write a query to delete the entire SalesRanking table.

294Chapter 5: Advanced Queries and Subqueries

Corner Med
35.	 List the physicians and the percentage of patients/visits seen by each one for

the month of May. Do not include non-physicians in the computations.
36.	 For the year, list the top 10 diagnoses and the percentage of times each was

applied.
37.	 For the month of March, list the percentage of visits covered by each type of

insurance company.
38.	 For each month, compute the percentage of the number of visits by patient

gender.
39.	 List the patients who returned for at least one visit after being diagnosed with

J069 (respiratory infection).
40.	 Which two-letter procedures have not been performed?
41.	 What is the average number of medications prescribed per visit for each

physician?
42.	 Which patients who have been diagnosed with ICD10 code E784 have also

been diagnosed (at any time) with code E039?
43.	 Which patients have been seen by all three physicians (at any time)?
44.	 Create a summarization of patients that show the percentage by gender and

tobacco use.
45.	 Use SQL to create a table (VisitCategory) that can be used to categorize

patients by the number of visits in a year:
Category MinVisits MaxVisits
Many 2 20
Seldom 1 2
Rare 0 1

PatientID
LastName
FirstName
DateOfBirth
Gender
Telephone
Address
City
State
ZIPCode
Race
TobaccoUse

Patient

SeqNo
LabelCode
ProdCode
Strength
Units
Rx_OTC
TradeName

DrugListings

VisitID
PatientID
VisitDate
InsuranceCompany
InsuranceGroupCode
InsuranceMemberCode
PatientAmountPaid
DateBillsubmitted
DateInsurancePaid
AmountInsurancePaid
Diastolic
Systolic

Visit VisitID
ICD10CM
ICD9Diagnosis
Comments

VisitDiagnoses

VisitProcedureID
VisitID
ICD10PCS
Comment
EmployeeID
AmountCharged
ICD9Procedure

VisitProcedures

VisitID
DrugSeqNo
DrugCode
Comments

VisitMedications

ICD10CM
Description

ICD10DiagnosisCodes

ICD10PCS
Description
BaseCost
PhysicianRole
TechnicianRole
PhysicianAssistant

ICD10ProcedureCodes

EmployeeID
LastName
FirstName
EmployeeCategory
DateHired
DateLeft
EmergencyPhone

Employee EmployeeID
VacationStart
VacationEnd

EmployeeVacation

EmployeeCategory

EmployeeCategory

1
*

1

*

*

*

1

1

1

1

*

*

*

*

*

1

*

1

Corner
Med

Corner
Med

295Chapter 5: Advanced Queries and Subqueries

46.	 Write the INSERT commands to add the rows in the table for the previous
exercise.

47.	 Write a query using the table in the previous query to categorize the patients
by number of visits for one year.

48.	 Write the SQL command to change the MaxVisits value in the “Many” row
to 30.

49.	 Write the SQL command to remove the table.
50.	 The GEMICD9xICD10_CM crosswalk table matches the older ICD9

diagnostic codes to the newer ICD10 codes. Create a query that ignores the
NoDx entries. Create a second query to find the older ICD9 codes in the
VisitDiagnoses table that do not have an official match in the new ICD10
code. (Ignore the ICD10 values in the VisitDiagnoses table—which were
created using this process.) Bonus: How would you find codes for the ICD9
entries that are missing cross matches?

51.	 The GEMICD9xICD10_PCS crosswalk table matches procedure codes
between the older ICD9 and newer ICD10 classifications. Assume that
the VisitProcedures table has only the older ICD9 procedure code and
blank values for the ICD10 codes. Write the query to use the crosswalk
table to match the values and transfer the correct ICD10 entry into the
VisitProcedures table. Note: If you run the query, make a backup copy of the
table and database.

52.	 The GEMICD9xICD10_PCS crosswalk table maps older ICD9 procedure
codes to the newer ICD10 codes. Are any of the ICD9 codes mapped to more
than one ICD10 code? If so, in the process used in the previous exercise,
what will happen? Which codes will be transferred?

Web Site References

http://www.sigmod.org/ Association for Computing Machinery—
Special Interest Group: Management of Data.

http://www.acm.org/dl ACM digital library containing thousands of
searchable full-text articles. Check library.

http://www.oracle.com/technetwork/indexes/
documentation/index.html

Oracle online documentation library, including
SQL Reference. (Version db102 will change.)

http://msdn.microsoft.com/en-us/library/
ms130214.aspx

Microsoft SQL Server Books Online
reference.

http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/
index.jsp

IBM DB2 reference.

http://dev.mysql.com/doc/ MySQL Reference.

Additional Reading
Celko, J., Joe Celko’s SQL Puzzles and Answers, 2e, San Mateo: Morgan

Kaufmann, 2006. [Challenging SQL problems with solutions.]
Faroult, Stephane, The Art of SQL, O’Reilly, 2006. [Strategy and performance in

building queries.]

http://www.acm.org/dl

296Chapter 5: Advanced Queries and Subqueries

Appendix: Introduction to Programming
Many books will help you learn to write computer programs. The purpose of this
appendix is to review the highlights of programming and to point out some of the
features that are important to programming within a DBMS. If you are new to pro-
gramming, you should consider reading several other books to explain the details
and logic behind programming.

Variables and Data
One of the most important consequences of programming in a database environ-
ment is that there can be three categories of data: (1) data stored in a table, (2)
data held in a control on a form or report, and (3) traditional data variables that are
used to hold temporary results. Chapter 3 focuses on storing data within tables.
Chapter 6 describes how to create forms and the role of data controls. Chapter 8
provides more details of how the three types of variables interact when building
applications. For now, you must learn details about basic programming variables.

Any procedure can create variables to hold data. A program variable is like a
small box: it can hold values that will be used or transferred later. Variables have
unique names. More importantly, variables can hold a certain data type. Common
types of variables are displayed in Figure 5.1A. They can generally be classified
into three categories: integers (1, 2, -10, …); reals (1.55, 3.14, …); and strings
("123 Main Street", "Jose Rojas", …).
Each type of variable takes up a defined amount of storage space. This space af-

fects the size of the data that the variable can hold. The exact size depends on the
particular DBMS and the operating system. For example, a short integer typically
takes 2 bytes of storage, which is 16 bits. Hence it can hold 216 values or numbers
between –32,768 and 32,767. Real numbers can have fractional values. There are
usually two sizes: single and double precision. If you do not need many variables,
it is often wise to choose the larger variables (integers and double-precision re-
als). Although double-precision variables require more space and take longer to
process, they provide room for expansion. If you choose too small of a variable, a
user might crash your application or get invalid results. For example, it would be
a mistake to use a 2-byte integer to count the number of customers—since a firm
could generally anticipate having more than 65,000 customers. Along the same

Type Bytes Range
Short
Integer
Long

Float
Double
Decimal

String

2
4
8

4
8
16

any

-32,768 to 32,767
+/- 2,147,483,647
+/- 9,223,372,036,854,775,807

+/- 1.5 10e45 (7 digits)
+/- 5.0 10e324 (15 digits)
+/- 1.0 10e28 (28 digits)

any

Figure 5.1A
Program variable types. Ranges are approximate but supported by most vendors.
Note that decimal variables help prevent round-off errors

297Chapter 5: Advanced Queries and Subqueries

lines, you should use the Currency data type for monetary values. In addition to
handling large numbers, it avoids round-off errors that are common to floating-
point numbers.

Variable Scope
The scope and lifetime of a variable are crucial elements of programming, particu-
larly in an event-driven environment. Variable scope refers to where the variable
is accessible, that is, which procedures or code can access the data in that variable.
The lifetime identifies when the variable is created and when it is destroyed. The
two properties are related and are generally automatic. However, you can override
the standard procedures by changing the way you declare the variable. In most
systems, the scope and lifetime are based on where the variable is declared.
All data variables should be explicitly declared: they should be identified be-

fore they are used. The Basic language uses a Dim statement to declare variables.
Many other languages declare variables by specifying the data type first. Most
commonly, the variable is created within the event procedure and is a local vari-
able. When the procedure starts, the local variable is created. Any code within that
procedure can use the variable. Code in other procedures cannot see the variable.
When the procedure ends, the local variable and its data are destroyed.

Figure 5.2A shows two buttons on a form. Each button responds to a Click
event, so two procedures are defined. Each procedure can have a variable called
i1, but these two variables are completely separate. In fact, the variables are not
created until the button is clicked. Think of the procedures as two different rooms.
When you are in one room, you can see the data for that room only. When you
leave the room, the data is destroyed.

However, what if you do not want the data to be destroyed when the code ends,
or you want to access the variable from other procedures? You have two choices:
(1) Change the lifetime of the variable by declaring it static, or (2) Change the
scope of the variable by declaring it in a different location. You should avoid de-
claring a static variable unless it is absolutely necessary (which is rare). If the vari-
able is static, it keeps its value from the previous time the procedure was called. In
the example, each time the button is clicked, the value for i3 will remain from the
prior click. You might use this trick if you need to count the number of times the
button is clicked.

Module	Code

Sub	Button1_Click()
Dim	i1	As	Integer
i1	=	3

End	Sub

Sub	Button2_Click()
Dim	i1	As	Integer
i1	=	7

End	Sub

Figure 5.2A
Variable scope and lifetime. Each event has its own procedure with independent
variables that are created and destroyed each time a routine is executed.

298Chapter 5: Advanced Queries and Subqueries

A more useful technique is to change where the variable is defined. Figure 5.3A
shows that event procedures are defined within a form or a module, which is a
collection of related procedures. The variable i2 is defined for the entire form or
module. The lifetime of the variable is established by the form, that is, the variable
is created and destroyed as the form is opened and closed. The scope of the vari-
able is that all procedures in the form can see and change the value. On the other
hand, procedures in other forms or modules do not know that this variable exists.
Procedures or functions also have a scope. Any procedure that you define on a

form can be used by other procedures on that form. If you need to access a vari-
able or a procedure from many different forms or reports, you should define it on
a separate module and then declare it as global (or public).

Be careful with global or public variables. A programmer who tries to revise
your code might not know that the variable is used in other procedures and might
accidentally destroy an important value. On forms the main purpose of a global
variable is to transfer a value from one event to another one. For example, you
might need to keep the original value of a text control—before it is changed by a
user—and compare it to the new value. You need a global variable because two
separate events examine the text control: (1) The user first enters the control, and
(2) The user changes the data. It is sometimes difficult to create global or shared
variables in certain systems. In these cases, you might need to store the global
variables within a special database table.

Computations
One of the main purposes of variables is to perform calculations. Keep in mind
that these computations apply to individual variables—one piece of data at a time.
If you need to manipulate data in an entire table, it is usually best to use the SQL
commands described in Chapter 5. Nonetheless, there are times when you need
more complex calculations.

Form--Module	Code

Sub	Button2_Click()
i2	=	i2	+	7
End	Sub

Form
Button1
Button2

Dim	i2	As	Integer

Sub	Button1_Click()
i2	=	20
End	Sub

Figure 5.3A
Global variables. Variables that are defined in the form’s General section are
accessible by any function on that form (or module).

299Chapter 5: Advanced Queries and Subqueries

Standard arithmetic operations (add, subtract, multiply, and divide) are shown
in Figure 5.4A. These operators are common to most programming languages.
Some nonstandard, but useful operators include exponentiation (raise to a power,
e.g., 2^3 = 2*2*2 = 8), and integer divide (e.g., 9 \ 2 = 4), which always returns
an integer value. The mod function returns the modulus or remainder of an integer
division (e.g., 15 mod 4 = 3, since 15 - 12 = 3). These last two functions are use-
ful when you need to know how many of some objects will fit into a fixed space.
For example, if there are 50 possible lines on a page and you need to print a re-
port with 185 lines, then 185 \ 50 = 3 pages, and 185 Mod 50 leaves 35 lines on a
fourth page.

Most languages support string variables, which are used to hold basic text data,
such as names, addresses, or short messages. A string is a collection (or array)
of characters. Sometimes you will need to perform computations on string vari-
ables. How can you perform computations on text data? The most common tech-
nique is to concatenate (or add) two strings together. For example, if FirstName
is “George” and LastName is “Jones”, then FirstName & LastName is “George-
Jones”. Notice that if you want a space to appear between the names, you have to
add one: FirstName & " " & LastName.

Figure 5.5A lists some of the common string functions. You can learn more
about the functions and their syntax from the Help system. Commonly used func-
tions include the Left, Right, and Mid, which examine portions of the string. For

Concatenation (& or +)
Left, Right, Mid, or SubStr
Trim, LTrim, RTrim
LCase, UCase
InStr or IndexOf
“Frank” + “Rose” → “Frank Rose”
Left(“Jackson”, 5) → “Jacks”
Trim(“ Maria “) → “Maria”
Len(“Ramanujan”) → 9
“8764 Main”.IndexOf(“ “) → 5

Figure 5.5A
Common string functions to add strings, extract portions, examine characters, convert
case, compare two strings, and format numerical data into a string variable.

Operation Common Syntax
Arithmetic
Exponentiation
Integer Divide
Modulus

+ - * /
^ or Power
\
mod

Figure 5.4A
Common arithmetic operators. Add (+), subtract (-), multiply (*), and divide (/).
Exponentiation and integer arithmetic are often used for special tasks. For example,
integer arithmetic is useful for dividing objects into groups.

300Chapter 5: Advanced Queries and Subqueries

example, you might want to see only the first five characters on the left side of a
string.

Standard Internal Functions
As you may recall from courses in mathematics, several common functions are
used in a variety of situations. As shown in Figure 5.6A, these functions include
the standard trigonometric and logarithmic functions, which can be useful in map-
ping and procedures involving measurements. You also will need a function to
compute the square root and absolute value of numbers. The Int (integer) function
is useful for dropping the fractional portion of a number. Most languages also pro-
vide a random number generator, which will randomly create numbers between 0
and 1. If you need another range of numbers, you can get them with a simple con-
version. For example, to generate numbers between 40 and 90, use the following
function: y = 40 + (90 - 40)*Rnd.

In a database environment, you will often need to evaluate and modify dates.
It is also useful to have functions that provide the current date (Date) and time
(Now). Two functions that are useful in business are the DateAdd and DateDiff
functions. As illustrated in Figure 5.7A, the DateAdd function adds days to a giv-
en date to find some date in the future. The DateDiff function computes the dif-
ference between two dates. Usually, you will want to compute the number of days
between various dates. However, the functions can often compute the number of
months, weeks, years and so on.

Input and Output
Handling input and output were crucial topics in traditional programming. These
topics are still important, but the DBMS now performs most data-handling rou-

Date, Now, Time
DateAdd, DateDiff

Current date and time
Date arithmetic:
DateDue = DateAdd(“d”, 30, Date())

Figure 5.7A
Date and time functions. Business problems often require computing the number of
days between two dates or adding days to a date to determine when payments are
due.

Exp, Log
Atn, Cos, Sin, Tan
Sqr or Sqrt
Abs
Sgn
Int
Rnd

x = loge(ex)
Trigonometric functions
Square root
Absolute value: Abs(-35) → 35
Signum: Sgn(-35) → -1
Integer: Int(2.718) → 2
Random number

Figure 5.6A
Standard mathematical functions. Even in business applications, you often need basic
mathematical functions.

301Chapter 5: Advanced Queries and Subqueries

tines and the operating system or Web browser handles most of the user interface.
Common forms and reports (Chapters 6 and 7) are used for most input and output
tasks.

Remember that an important feature of a Windows interface is that users con-
trol the flow of data entry; that is, the designer provides a form, and users work
at their own pace without interruption. Occasionally, you might choose to inter-
rupt the user—either to provide information or to get a specific piece of data. One
common reason is to display error messages. Two basic functions serve this pur-
pose: MsgBox and InputBox. As shown in Figure 5.8A, a message box can con-
tain buttons. The buttons are often used to indicate how the user wants to respond
to some problem or error.

An InputBox is a special form that can be used to enter very small amounts of
text or a single number. Neither the user nor the developer has much control over
the form. In most cases you would be better off creating your own blank form.
Then you can have more than one text box, and you can specify and control the
buttons. The InputBox is usually for temporary use when development time is
extremely limited.

Conditions
The ability to test and respond to conditions is one of the most common reasons
for writing your own procedures. The basic conditional statement (if …then …
else) is relatively easy to understand. The structure is shown in Figure 5.9A. A

If (Condition1) Then
 Statements for true
Else
 Statements for false
 If (Condition2) Then
 Statements for true
 End If
End If

Figure 5.9A
Conditions. Basic conditions are straightforward. Indenting conditions highlights the
relationships.

Figure 5.8A
Sample message box. The message box interrupts the user and displays a few limited
choices. It often handles errors or problems.

302Chapter 5: Advanced Queries and Subqueries

condition is evaluated to be true or false. If it is true, then one set of statements is
executed; otherwise, the second set is performed.

Conditions can be complex, particularly when the condition contains several
AND, and OR connectors. Some developers use a NOT statement to reverse the
value of a condition. Be careful when writing conditions. Your goals are to make
sure that the condition evaluates to the correct value and to make sure that other
developers can understand the code.

You should always include parentheses to specify the order of evaluation and,
for complex conditions, create sample data and test the conditions. Also, indent
your code. Indenting is particularly important for nested conditions, in which the
statements for one condition contain another conditional statement.

The Select Case statement is a special type of conditional statement. Many pro-
cedures will need to evaluate a set of related conditions. As a simple example,
consider what happens if you use a message box with three buttons (Yes, No,
and Cancel). You will have to test the user’s choice for each option. Figure 5.10A
shows how the code might look when you use nested conditions.

Response = 1, 2, 3, 4, 5
Select Case response
 Case 1
 ‘ Statements for 1
 Case 2
 ‘ Statements for 2
 Case 3
 ‘ More Case statements
 Default
End Case

Figure 5.11A
The Select statement. The select statement tests the response variable against several
conditions. If the response matches a case in the list, the corresponding code is
executed.

response = 1, 2, 3, 4, 5
If (response = 1) Then
 ‘ Statements for 1
Else
 If (response = 2) Then
 ‘ Statements for 2
 Else
 If (response = 3) Then
 ‘ More If statements
 End If
 End If
End If

Figure 5.10A
Nested conditions to test for a user response. The code becomes harder to read as
more conditions are added.

303Chapter 5: Advanced Queries and Subqueries

Figure 5.11A shows the same problem written with the Select Case statement.
Note that this code is much easier to read. Now think about what will happen if
you have 10 choices. The If-Then code gets much worse, but the Select Case code
just adds new lines to the bottom of the list.

Loops
Iteration or loops are another common feature in procedures. Although you
should use SQL statements (UPDATE, INSERT, etc.) as much as possible,
sometimes you will need to loop through a table or query to examine each row
individually.

 Some of the basic loop formats are illustrated in Figure 5.12A. The For/Next
loop is generally used only if you need a fixed number of iterations. The Do loop
is more common. An important feature of loops is the ability to test the condition
at the top or the bottom of the loop. Consider the example in which the condition
says to execute the statements if (x <= 10). What happens when the starting value
of x is 15? If you test the condition at the top of the loop, then the statements in
the loop will never be executed. On the other hand, if you test the condition at the
bottom, then the statements in the loop will be executed exactly one time—before
the condition is tested.

Just as with conditions, it is good programming practice to indent the state-
ments of the loop. Indents help others to read your code and to understand the
logic. If there are no problems within a loop, your eye can easily find the end of
the loop.

Be careful with loops: if you make a mistake, the computer may execute the
statements of your loop forever. (On most personal computers, Ctrl+Break will
usually stop a runaway loop.) A common mistake occurs when you forget to
change the conditional variable (x in the examples). In tracking through a data
query, you might forget to get the next row of data, in which case your code will
perform the same operations forever on one row of data. A good programming
practice is to always write loops in four steps: (1) Write the initial condition, (2)
Write the ending statement, (3) Write a statement to update the conditional vari-
able, and (4) Write the interior code. The first three statements give you the struc-
ture. By writing and testing them first, you know that you will be using the correct
data.

Do Until (x > 10)
 ‘ Statements
 x = x + 1
Loop

Do While (x <= 10)
 ‘ Statements
 x = x + 1
Loop

Do
 ‘ Statements
 x = x + 1
Loop Until (x > 10)

For x = 1 to 10
 ‘ Statements
Next x

Figure 5.12A
Iteration. All versions of loops follow a common format: initialize a counter value,
perform statements, increment the counter, and test the exit condition. You can test
the condition at the start or end of the loop.

304Chapter 5: Advanced Queries and Subqueries

Subroutines
An important concept in programming is the ability to break the program into
smaller pieces as subroutines or functions. A subroutine is a portion of code that
can be called from other routines. When the subroutine is finished, control re-
turns to the program code that called it. The goal of using subroutines is to break
the program into smaller pieces that are relatively easy to understand, test, and
modify.

A subroutine is essentially a self-contained program that can be used by many
other parts of the program. For example, you might create a subroutine that dis-
plays a status message on the screen. As illustrated in Figure 5.13A, you would
write the basic routine once. Then anytime you need to display a status message,
your program calls this routine. By passing the message to the subroutine, the ac-
tual message can change each time. The advantage of using the subroutine is that
you have to write it only once. In addition, your status messages can be standard-
ized because the subroutine specifies the location, style, and color. To change the
format, you simply modify the few lines of code in the one subroutine. Without
the subroutine, you would have to find and modify code in every location that dis-
played a status message.

A data variable that is passed to a function or a subroutine is known as a pa-
rameter. There are two basic ways to pass a parameter: by reference and by
value. The default method used by Microsoft Access is pass-by-reference. In this
case the variable in the subroutine is essentially the same variable as in the origi-
nal program. Any changes made to the data in the subroutine will automatically be
returned to the calling program. For example, consider the two examples in Figure
5.14A. Changes to the variable j2 in the subroutine will automatically be passed
back to the calling program. However, when only the value is passed, a copy is
made in the subroutine. Changes made to the data in the subroutine will not be
returned to the calling program. Unless you are absolutely certain that you want to
alter the original value in the calling program, you should always pass variables
by value. Subroutines that use pass-by-reference can cause errors that are difficult
to find in programs. Some other programmer might not realize that your subrou-
tine changed the value of a parameter.

Main	program
…
StatusMessage “Trying	to	connect.”
…
StatusMessage “Verifying	access.”
…
End	main	program

Sub	StatusMessage (Msg As	String)
‘ Display	Msg,	location,	color

End	Sub

Figure 5.13A
Subroutine. The StatusMessge subroutine can be called from any location. When the
subroutine is finished, it returns to the calling program.

305Chapter 5: Advanced Queries and Subqueries

Most languages also enable you to create new functions. There is a slight tech-
nical difference between functions and subroutines. Although subroutines and
functions can receive or return data through pass-by-reference parameters, a func-
tion can return a result or a single value directly to the calling program. For in-
stance, your main program might have a statement such as v1 = Min(x, y). The
function would choose the smaller of the two values and return it to the main
program, where it is assigned to the variable v1.

Summary
The only way to learn how to program is to write your own programs. Reading
books, syntax documentation, and studying code written by others will help, but
the only way to become a programmer is through experience.

As you write programs, remember that you (or someone else) might have to
modify your code later. Choose descriptive variable names. Document your state-
ments with comments that explain tricky sections and outline the purpose of each
section of code. Write in small sections and subroutines. Test each section, and
keep the test data and results in the documentation. Keep revision notes so that
you know when each section was changed and why you changed it.

Main:
j = 3
DoSum(j)
 ‘ j is now equal to 8
…

Sub DoSum(By Ref j2 As
Integer)
 j2 = 8
End Sub

By Reference
Changes to data in the
subroutine are passed back to
the calling program.

Main:
j = 3
DoSum(j)
 ‘j is still equal to 3
…

Sub DoSum(By Val j2 As
Integer)
 J2 = 8
End Sub

By Value
Creates a copy of the variable,
so changes are not returned.

Figure 5.14A
Two methods to pass data to a subroutine. Pass parameters by value as much as
possible to avoid unwanted changes to data.

	Chapter 5: Advanced Queries and Subqueries
	Introduction
	Two-Minute Chapter
	Sally’s Pet Store
	Outer Joins (LEFT JOIN)
	Subqueries: IN and NOT IN
	Subqueries
	Calculations or Simple Lookup
	Calculations for Percentages
	Subqueries and Sets of Data
	Subquery with ANY, ALL, and EXISTS

	Correlated Subqueries
	More Features and Tricks with SQL SELECT
	UNION, INTERSECT, EXCEPT
	Multiple JOIN Columns
	Reflexive Join
	CASE Function
	Inequality Joins
	Exists and Crosstabs
	SQL SELECT Summary

	SQL Data Definition Commands
	SQL Data Manipulation Commands
	INSERT and DELETE
	UPDATE

	Quality: Testing Queries
	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading
	Appendix: Introduction to Programming

