
251

What You Will Learn in This Chapter
•	 How	can	SQL	be	used	to	answer	more	complex	questions?
•	 Why	are	some	business	questions	more	difficult	than	others?
•	 What	common	uses	for	subqueries?
•	 How	do	you	find	something	that	did	not	happen?
•	 How	do	you	include	rows	from	tables	in	a	join	even	if	the	rows	do	not	match?
•	 What	are	correlated	subqueries?
•	 What	tricky	problems	arise	and	how	do	you	handle	them	in	SQL?
•	 What	are	the	SQL	data	definition	commands?
•	 What	SQL	commands	alter	the	data	stored	in	tables?
•	 How	do	you	know	if	your	query	is	correct?

Chapter Outline

Advanced Queries and
Subqueries

5Chapter

Introduction,	252
Two-Minute	Chapter,	253
Sally’s	Pet	Store,	254
Outer	Joins	(LEFT	JOIN),	255
Subqueries:	IN	and	NOT	IN,	258
Subqueries,	261

Calculations or Simple Lookup, 262
Calculations for Percentages, 262
Subqueries and Sets of Data , 264
Subquery with ANY, ALL, and EXISTS,
266

Correlated	Subqueries,	268
More	Features	and	Tricks	with	SQL	
SELECT,	270

UNION, INTERSECT, EXCEPT, 270
Multiple JOIN Columns, 272
Reflexive Join, 273
CASE Function, 275
Inequality Joins, 276
Exists and Crosstabs, 277
SQL SELECT Summary, 280

SQL	Data	Definition	Commands,	280
SQL	Data	Manipulation	Commands,	283

INSERT and DELETE, 283

UPDATE, 284
Quality:	Testing	Queries,	285
Summary,	287
Key	Terms,	288
Review	Questions,	289
Exercises,	290
Web	Site	References,	295
Additional	Reading,	295
Appendix:	Programming,	296
Variable	Scope,	297
Computations,	298
Standard	Internal	Functions,	300
Input	and	Output,	300
Conditions,	301
Loops,	303
Subroutines,	304
Summary,	305

252Chapter 5: Advanced Queries and Subqueries

A Developer’s View

 Ariel: Hi Miranda. You look happy.

 Miranda: I am. This query system is
great. I can see how it will help
the managers. Once I get the
application done, they can get
answers to any questions they
have. They won’t have to call me
for answers every day. Plus, I can
really see how the query system
relates to data normalization. With
normalization I split the tables
so the database could store them
properly. Now the query system
helps me rejoin them to answer my
questions.

 Ariel:	Does	that	mean	you’re	finally	ready	
to create the application?

 Miranda: Close, but I’m not quite ready.
Yesterday my uncle asked me a
question that I don’t know how to

answer.

 Ariel: Really, I thought you could do
anything with SQL. What was the
question?

 Miranda: Something about customers who
did not order anything last month. I
tried several times to get it to work,
but the answers I get just aren’t
right.

 Ariel: It doesn’t sound like a hard
question.

 Miranda: I know. I can get a list of customers
and orders that were placed any
time except last month. But every
time I join the Customer table to
the Order table, all I get are the
customers who did place orders. I
don’t	know	how	to	find	something	
that’s not there.

Introduction
How can SQL be used to answer more complex questions? Now that you un-
derstand the basics of the SQL SELECT statement as described in Chapter 4, it
is time to study more complex questions. The basic SELECT statement you have
learned	is	useful	for	returning	filtered	rows	and	columns	of	data	and	for	comput-
ing subtotals.However, some business questions are more complex than those ex-
amples.	For	instance,	how	would	you	find	items	that	were	not	sold?	The	database	
only stores things that did happen and note that when tables are joined, only the
rows with matching data are returned. How can you get to the data that is not
matched—that is, data in one table (Merchandise) but not in the other (SaleItem)?
Also, what if you need to combine data from multiple queries? A classic example
is	percentages.	To	compute	percentages	within	a	group,	you	must	first	compute	
the group totals and then divide by the overall total. One of the most powerful
features of the SQL SELECT command is known as a subquery or nested query.

Getting Started
SQL has several powerful capabilities, including subqueries (the abil-
ity to nest a query inside another one), and outer joins (returning all
rows from one table in a join instead of ignoring unmatched data). You
need to think of data and questions in terms of sets. To answer complex
questions, break it into pieces and create a query to return the data set
for each piece. Then combine the pieces using joins, subqueries, or set
operations.

253Chapter 5: Advanced Queries and Subqueries

This feature enables you to ask complex questions that entail retrieving different
types of data or data from different sources.

SQL is also more than a query language. The language can be used to create
tables, as well as insert, delete, and update data. It can be used to create the entire
database	(data	definition	language).	SQL	has	powerful	commands	to	alter	the	data	
(data manipulation language). SQL also has a couple of commands to set security
conditions (data control language).

Two key points will help you learn how to use subqueries: (1) SQL was de-
signed to work with sets of data—avoid thinking in terms of individual rows, and
(2) you can split nested queries into their separate parts and deal with the parts
individually. Sometimes it is helpful to write a query to answer part of a question
and save it. This saved query or view can then be used in part of a second query.

The features of SQL covered in Chapter 4 are already quite powerful. Why do
you need more features? Consider this common business question for Sally’s Pet
Store: Which merchandise items have not been sold? Think about how you might
answer that question using the SQL you know to this point.
The	first	step	might	be	to	choose	the	tables:	Merchandise	and	SaleItem	appear	

to be likely choices. Second, select the columns as output: ItemID and Descrip-
tion. Third, specify a condition. Fourth, join the tables. These last two steps cause
the most problems in this example. How do you specify that an item has not been
sold? The big catch is that you have to be careful when examining data in the
SaleItem table. Because the item has not been sold, the SaleItem table will not
contain any entries for it. The SaleItem table records things that have happened.
You are looking for something that has not happened.

Actually, the fourth step (joining the tables) causes even more problems. Say
you wrote a query like this: SELECT ItemID, Name FROM Merchandise IN-
NER JOIN SaleItem ON (Merchandise.ItemID = SaleItem.ItemID). As soon as
you write that JOIN condition, you eliminate all the items you want to see. The
JOIN clause restricts the output—just like a WHERE clause would. In this ex-
ample, you told the DBMS to return only those items that are listed in both the
Merchandise and SaleItem tables. But only items that have been sold are listed in
the SaleItem table, so this query can never tell you anything about items that have
not been sold. The following sections describe two solutions to this problem: ei-
ther	fix	the	JOIN	statement	so	that	it	is	not	as	restrictive	or	use	a	subquery.

Two-Minute Chapter
Some	business	questions	are	harder	 to	answer	 than	 they	first	 appear.	Chapter	4	
showed how to create basic SQL queries—selecting columns and rows, making
basic calculations, and computing aggregations such as averages and sums. Com-
puting subtotals using the GROUP BY statement is an important part of many
queries. This foundation is used again in this chapter, but with a few twists. From
a SQL perspective, four primary elements are added in this chapter: (1) subque-
ries, where you can embed a second SELECT statement into another one to look
up different data, (2) LEFT JOINs, which keep rows of data from a table even if
no values are matched on the other side of the join, (3) inequality JOINs where
values can be compared using conditions beyond a simple equals sign, and (4)
data manipulation language commands that enable you to INSERT, UPDATE, and
DELETE data, not just retrieve it.

Just looking at the SQL capabilities, it is not always clear why these new fea-
tures	 are	 needed.	But	 some	business	 questions	 can	be	 tricky.	How	do	you	find	

254Chapter 5: Advanced Queries and Subqueries

something that did not happen? A database table only stores things that did hap-
pen,	so	you	need	a	way	to	find	items	in	one	list	that	are	not	in	a	second	list.	For	in-
stance,	find	Employees	who	did	not	make	a	Sale	in	a	specific	month.	This	question	
can be answered with a NOT IN subquery, or using a LEFT JOIN to connect the
tables. Some business questions require separate sets of data—such as listing cus-
tomers	who	bought	items	in	March	and	June.	Those	lists	have	to	be	defined	with	
separate queries and then combined—either through subqueries or as two saved
views. Similarly, subqueries are useful when you need to compute percentage val-
ues—such as the percentage of total monthly sales attributed to each employee. At
almost any point in SQL where you need a new value (divide by total), you can
add parentheses and write a new SELECT statement to retrieve that value.

SQL contains a full set of commands to CREATE and DROP tables, indexes,
and other items. It also has commands to UPDATE, INSERT, or DELETE rows
of data. When working with these commands it is best to think in terms of sets of
data. Using the power of the WHERE command (including subqueries) you can
modify	specific	collections	of	data	with	one	command.

When working with complex SQL commands, it is critical to build queries in
pieces and test each piece along the way. The scariest part of SQL is that in most
cases, a SELECT statement will return values—but you need to be sure that the
query was interpreted the way you intended and the values accurately answer the
business question.

Sally’s Pet Store
Why are some business questions more difficult than others? Figure 5.1 shows
some more business questions that Sally needs to answer to manage her business.
Again, think about how you might answer these questions using the basic SQL of

•	 Which	items	have	not	been	sold?
•	 Which	items	were	not	sold	in	July	2013?
•	 Which	cat	merchandise	sold	for	more	than	the	average	sale	price	of	cat	

merchandise?
•	 Compute	the	merchandise	sales	by	category	in	terms	of	percentage	of	total	sales.
•	 List	all	of	the	customers	who	bought	something	in	March	and	who	bought	

something	in	May.	(Two	tests	on	the	same	data!)
•	 List	dog	merchandise	with	a	list	price	greater	than	the	sale	price	of	the	cheapest	cat	

product.
•	 Has	one	salesperson	made	all	of	the	sales	on	a	particular	day?
•	 Use	Not	Exists	to	list	customers	who	have	not	bought	anything.
•	 Which	merchandise	has	a	list	price	greater	than	the	average	sale	price	of	

merchandise	within	that	category?
•	 List	all	the	managers	and	their	direct	reports.
•	 Convert	age	ranges	into	categories.
•	 Classify	payments	by	number	of	days	late.
•	 Which	employees	sold	merchandise	from	every	category?
•	 List	customers	who	adopted	dogs	and	also	bought	cat	products.

Figure 5.1
Harder	questions.	Even	though	there	are	few	constraints	on	the	problems,	these	
questions	are	more	complex.	To	answer	many	of	them,	we	need	to	use	subqueries	or	
outer	joins.

255Chapter 5: Advanced Queries and Subqueries

Chapter	4.	At	first	glance	they	do	not	seem	too	difficult.	However,	even	the	easi-
est question—to identify cats that sold for more than the average price—is harder
than	it	first	appears.	

The common feature of these questions is that they need to be answered in mul-
tiple steps. All of these questions require an additional tool: the subquery. Actual-
ly,	you	can	also	answer	multi-step	questions	by	writing	and	saving	the	first	part	as	
a view and then using the view in another query. However, you should generally
try to use subqueries so the DBMS query optimizer can use the complete query to
find	the	most	efficient	solution.	

Outer Joins (LEFT JOIN)
How do you find something that did not happen? One question that commonly
arises in business settings is illustrated in Figure 5.2 with the question: Which
merchandise	has	not	been	sold?	This	question	is	deceptive.	At	first	glance	it	looks	
like you could just join the Merchandise table to the SaleItem table. But then
what? The standard INNER JOIN statement will display only that merchandise
that appears in both the Merchandise and SaleItem tables. As soon as you enter
the JOIN statement, you automatically restrict your list to only that merchandise
that has been sold.

Figure 5.2
INNER	JOIN	is	a	filter.	Rows	that	are	not	in	both	tables	are	ignored.	Because	
SaleItem includes only merchandise that has been sold, INNER JOIN discards the
very data that you want to see.

Which	items	have	not	been	sold?
Try:
SELECT	*
FROM	Merchandise
INNER	JOIN	SaleItem
			ON	Merchandise.ItemID	=	SaleItem.ItemID

But	INNER	JOIN	is	a	filter	that	returns	only	rows	that	exist	in	both	tables.

ItemID Description
1 Dog	Kennel-Small
2 Dog	Kennel-Medium
3 Dog	Kennel-Large
4 Dog	Kennel-Extra	Large
5 Cat	Bed-Small
6 Cat	Bed-Medium
7 Dog	Toy
8 Cat	Toy
9 Dog	Food-Dry-10	pound
10 Dog	Food-Dry-25	pound
11 Dog	Food-Dry-50	pound
12 Cat	Food-Dry-5	pound
13 Cat	Food-Dry-10	pound
14 Cat	Food-Dry-25	pound
15 Dog	Food-Can-Regular

SaleID ItemID
4 1
4 36
6 20
6 21
7 5
7 19
7 40
8 11
8 16
8 36
10 23
10 25
10 26
10 27

SaleItem Merchandise

256Chapter 5: Advanced Queries and Subqueries

One way to solve this problem is to change the behavior of the JOIN command.
SQL provides the OUTER JOIN	specifically	to	include	the	data	that	would	other-
wise be ignored with the INNER JOIN. In particular, the OUTER JOIN describes
what should happen when values in one table do not exist in the second table.

In joining two tables, you have to consider two basic situations: (1) A value
might exist in the left table with no matching value in the right table, or (2) a value
might exist in the right table with no matching value in the left table. Of course, it
really does not matter which table is on the left or right. However, you have to be
careful about not mixing them up after you list the tables.

The query in Figure 5.3 illustrates a typical LEFT JOIN. With a LEFT JOIN,
all rows in the table on the left will be displayed in the results, regardless of what
rows exist in the other table. If there is no matching value from the table on the

M.ItemID Description SA.ItemID SaleID
1
2
3
4
5
6
7
8
9
10
11
12
13

Dog	Kennel-Small
Dog	Kennel-Medium
Dog	Kennel-Large
Dog	Kennel-Extra	Large
Cat	Bed-Small
Cat	Bed-Medium
Dog	Toy
Cat	Toy
Dog	Food-Dry-10	pound
Dog	Feed-Dry-25	pound
Dog	Food-Dry-50	pound
Cat	Food-Dry-5	pound
Cat	Food-Dry-10	pound

1
2
3
4
5
6
7
8
9
10
11

4
54
17
18
7
46
64
13
48
60
8

Figure 5.4
Partial results from the left outer join. Note the missing (Null) values for items that
have not been sold. To list just a single SaleID, use GROUP BY and use the FIRST
option to pick a single SaleID.

Which	merchandise	has	not	been	sold?
SELECT	Merchandise.ItemID,	Merchandise.Description,	SaleItem.
SaleID
FROM	Merchandise
LEFT	JOIN	SaleItem	ON	Merchandise.ItemID	=	SaleItem.ItemID
WHERE	SaleItem.SaleID	Is	Null;

ItemID
12
13

Description
Cat	Food-Dry-5	pound
Cat	Food-Dry-10	pound

SaleID

Figure 5.3
LEFT JOIN. The left outer join includes all rows from the Merchandise (left) table
and any matching rows from the SaleItem table. If an item has not been sold, there
will be no entry in the SaleItem table, so the corresponding entries will be NULL.

257Chapter 5: Advanced Queries and Subqueries

right, NULL values will be inserted into the output. Note how the LEFT JOIN re-
solves the problem of identifying items that have not been sold. Because the query
will now list all Merchandise items, the rows where the SaleID is Null represent
items that are not in the SaleItem table and have not been sold.

Figure 5.4 shows the sample data without the “Is Null” condition. The data has
also been reduced using a GROUP BY and First statement to focus on the indi-
vidual Merchandise items. Notice the two values with the missing or null values.

The RIGHT JOIN behaves similarly to the LEFT JOIN. The only difference
is the order of the tables. If you want to use all the rows from the table on the
right side, use a RIGHT JOIN. Why not just have a LEFT JOIN and simply rear-
range the tables? Most of the time, that is exactly what you will do. However, if
you have a query that joins several tables, it is sometimes easier to use a RIGHT
JOIN instead of trying to rearrange the tables. And with visual tools such as the
Microsoft Access query editor, the position of the displayed table does not have
to match the SQL statement. In every case, the Left/Right applies to the way the
SQL statement is written.

Another join is the full OUTER JOIN (FULL JOIN) that combines every row
from the left table and every row from the right table. Where the rows do not
match (from the ON condition), the join inserts NULL values into the appropriate
columns. Many systems do not support the FULL or OUTER JOIN on both tables
at the same time. If you encounter a question that requires both a left and right
join, you can use a LEFT JOIN and a RIGHT JOIN against a full list of the ID
values--which can be obtained using a saved UNION query.

Warning: Be careful with OUTER JOINs—particularly full joins. With two
large tables that do not have much data in common, you end up with a very large
result that is not very useful. Also be careful when using outer joins on more than
two tables in one query. You get different results depending on the order in which
you	join	the	tables.	Many	times	you	will	find	it	necessary	to	create	a	view	with	
only two tables to create an outer join. You can then use that view in other queries
to add more tables.

Finally, note that these examples rely on the SQL 92 syntax, which is fairly
easy to read and understand. Unfortunately, you will most likely encounter some
queries that use older, proprietary syntax for outer joins. Figure 5.5 shows the
query using the syntax for SQL Server and Oracle. SQL Server uses *= to indi-

SELECT	*	 	 (SQL	Server)
FROM	Merchandise,	SaleItem
WHERE	Merchandise.ItemID	*=	SaleItemID.ItemID
And	SaleItem.SaleID	Is	Null

SELECT	*	 	 (Oracle)
FROM	Merchandise,	SaleItem
WHERE	Merchandise.ItemID	=	SaleItemID.ItemID	(+)
And	SaleItem.SaleID	Is	Null

Figure 5.5
Older syntax for LEFT JOIN. Note the asterisk in SQL Server to indicate the LEFT
side table. Note the plus-sign in Oracle and note that it is on opposite side from what
you would expect.

258Chapter 5: Advanced Queries and Subqueries

cate a left join, where the asterisk can be interpreted as the “all rows” side of the
join. Oracle uses a plus sign, and it confusingly puts it on the opposite side of the
equals sign. Be careful when reading older queries to look for the asterisk or plus
sign. The query results are quite different if you ignore these left join indicators.
Fortunately, all of the major systems now accept the newer syntax, so you should
convert older queries to the new syntax to improve readability.

Subqueries: IN and NOT IN
How is a subquery used for IN and NOT IN conditions? There is another way
to answer the question of which items have not been sold. This new approach has
considerable power and can be used for many types of questions. The main tool
is	the	subquery,	but	for	the	problem	of	finding	things	that	did	not	happen	it	is	tied	
to a special WHERE condition known as the IN statement. So this section begins
with	 a	brief	 explanation	of	 the	 IN	 function.function.	The	 IN	 function	defines	 a	
set of values. You can think of it as a shortcut way of combining several entries
with an “Or” condition. For example, say you want to search for a Customer but
you	are	not	certain	about	his	first	name.	You	think	it	might	be	“Tim”	or	“David”	
or “Dale.” As shown in Figure 5.6, you could build a query using “Or” condi-
tions: WHERE FirstName=”Tim” or FirstName=”David” or FirstName=”Dale”.
However,	 the	 figure	 also	 shows	 an	 easier	way	 to	write	 the	 query	 using	 the	 IN	
function. Simply list all possible values separated by commas and enclose them in
parentheses.	The	IN	function	essentially	defines	a	set	of	possible	matches.	It	can	

List	Merchandise	based	on	ItemID	that	has	been	sold.
SELECT	*	FROM	Merchandise	
WHERE	ItemID	IN	(1,2,3,4,5,6,7,8,9,10,11,14,15);
SELECT	*
FROM	Merchandise
WHERE	ItemID	IN
		(SELECT	ItemID	FROM	SaleItem);	

Figure 5.6
IN function. The IN function compares a column to a set of values. The WHERE
condition is true if the column/row matches any one of the entries.

Figure 5.7
Subquery	to	find	data	for	an	IN	set	of	values.	This	subquery	essentially	functions	as	
a JOIN condition. Matching ItemID in the Merchandise table to the ItemID in the
SaleItem table.

Find	a	Customer	with	first	name	of	Tim,	David,	or	Dale
SELECT	*
FROM	Customer
WHERE	FirstName=N'Tim'	Or	FirstName=N'David'	Or	FirstName=N'Dale'
SELECT	*
FROM	Customer
WHRE	FirstName	IN	(N'Tim',	N'David',	N'Dale')

259Chapter 5: Advanced Queries and Subqueries

be used in many situations, just be sure to match the data types with the search
column. In this case, the set contains possible FirstName values.

Now consider a more relevant set of data shown in Figure 5.7, using a different
question: List Merchandise where ItemID is one of 1,2,3,4,5,6,7,8,9,10,11,14,15.
The list of items is a bit long, but the process is identical to that used for the
names: SELECT * FROM Merchandise WHERE ItemID IN (1,2,3,4,5,6,7,8,9,10,1
1,14,15). Using the raw numbers, this list is not particularly interesting. However,
rewrite	the	query	as	shown	in	the	second	half	of	the	figure.	Instead	of	a	fixed	list	
of numbers, use a new query (SELECT ItemID FROM SaleItem) to retrieve a list
of ItemID values. This subquery is embedded directly into the main query; how-
ever, note that it is surrounded by parentheses. Also, the subquery text is indented
to make it easier to read. The parentheses are required, the indentation is not. This
subquery performs the same role as an INNER JOIN statement. Rows from the
Merchandise table will be returned only if the ItemID exists in the SaleItem table.
Notice that with this formulation, only data from the top-most query (Merchan-
dise)	can	be	displayed.	The	subquery	acts	as	a	filter,	but	data	from	the	subquery	
table cannot be displayed in the results.

Finally, as shown in Figure 5.8, it is possible to answer the original question:
List the merchandise that has not been sold. Note that the previous version list-
ed merchandise that was sold. That is, list the Merchandise items that are in the

List	Merchandise	that	has	not	been	sold.
SELECT	*
FROM	Merchandise
WHERE	ItemID	NOT	IN
		(SELECT	ItemID	FROM	SaleItem);	

ItemID Description
1 Dog	Kennel-Small
2 Dog	Kennel-Medium
3 Dog	Kennel-Large
4 Dog	Kennel-Extra	Large
5 Cat	Bed-Small
6 Cat	Bed-Medium
7 Dog	Toy
8 Cat	Toy
9 Dog	Food-Dry-10	pound
10 Dog	Food-Dry-25	pound
11 Dog	Food-Dry-50	pound
12 Cat	Food-Dry-5	pound
13 Cat	Food-Dry-10	pound
14 Cat	Food-Dry-25	pound
15 Dog	Food-Can-Regular

Merchandise

Figure 5.8
NOT IN. The top-level query retrieves items from the complete list (Merchandise)
and subtracts items that are in the second list (SaleItem). Leaving the results of items
in	the	first	list	that	are	not	in	the	second	list—or	things	that	did	not	happen.

260Chapter 5: Advanced Queries and Subqueries

SaleItem table. To answer the main question, start with the main list (Merchan-
dise) and subtract the items that were sold (SaleItem). The process is similar to
the way you would answer the question by hand if you had only paper lists. You
would begin with the main Merchandise list, go through the SaleItem list and
cross off all of the entries that you found. The ones that remain are the Merchan-
dise items that never appeared on the SaleItem list so they were not sold.

When would you use the NOT IN subquery versus the LEFT JOIN? Ultimately,
there	 is	 no	fixed	 rule—use	whichever	method	you	 feel	 is	 easiest	 to	 answer	 the	
question correctly. There are often multiple ways to write complex queries. Ini-
tially, the most important aspect is that you build the query correctly to answer the
question. But, is one method faster to process than the other? Possibly, but ulti-
mately	that	answer	is	up	to	the	specific	DBMS	you	are	using.	The	high-end	query	
processors automatically optimize every query, sometimes rewriting it to make
it	more	efficient.	On	 the	other	hand,	 if	you	work	with	a	 lower-end	DBMS,	you	
might have to rewrite some queries yourself to make them faster—particularly if
the query needs to be run multiple times on large datasets.
Consider	one	more	example	to	point	out	some	other	difficulties	in	creating	que-

ries that search for things not in the database. Which merchandise was not sold in
July 2013? The change is to add the date condition. First, look at the subquery ap-

Which	merchandise	was	not	sold	in	July	2013?
SELECT	Merchandise.*
FROM	Sale	
INNER	JOIN	(Merchandise	
			LEFT	JOIN	SaleItem	ON	Merchandise.ItemID	=	SaleItem.ItemID)	
			ON	Sale.SaleID	=	SaleItem.SaleID
WHERE	SaleDate	BETWEEN	’01-JUL-2013’	AND	’31-JUL-2013’;

Figure 5.10
LEFT JOIN. This query might not run, and if it does, it might not return the correct
results.	The	problem	is	that	the	question	requires	filtering	the	data	rows	in	the	
SaleItem	table	first	and	then	performing	the	LEFT	JOIN.

Which	merchandise	was	not	sold	in	July	2013?
SELECT	*
FROM	Merchandise
WHERE	ItemID	NOT	IN
		(SELECT	ItemID	
			FROM	SaleItem	
			INNER	JOIN	Sale	ON	Sale.SaleID=SaleItem.SaleID
			WHERE	SaleDate	BETWEEN	
							’01-JUL-2013’	AND	’31-JUL-2013’
);

Figure 5.9
Subquery with a Date condition. Subqueries can be relatively complex. They can
even be nested several levels deep. Often, subqueries can be used to write a single
complex query that would need to be broken into pieces if handled differently.

261Chapter 5: Advanced Queries and Subqueries

proach. Figure 5.9 shows how to answer the question with a subquery. Essentially,
the approach is the same as before—with a more complex subquery. Simply add
the Sale table to the subquery and add the date condition. The overall structure is
the same. Running the query results in 27 rows or items that were not sold in July.

 Now consider writing the same query using the LEFT JOIN approach. As
shown in Figure 5.10, try building the query directly. Note that it requires three
tables: Merchandise, Sale, and SaleItem. Sale and SaleItem are connected with an
INNER JOIN and Merchandise with a LEFT JOIN. Because of these links, it is
likely that this query will not run. Even if it does return results, they might not be
the correct results. The problem is that the question requires that the data be ex-
tracted	in	a	specific	order—and	SQL	does	not	guarantee	that	processing	is	handled	
in	a	specific	sequence.	To	work	correctly,	the	query	must	first	filter	the	rows	in	the	
Sale+SaleItem tables to just sales that took place in July. This result must then use
an outer join with the Merchandise table.

If you want (or need) to use LEFT JOIN to answer the question, you should
build the query in two steps. As shown in Figure 5.11, in step 1, create and save a
view that retrieves the ItemID for merchandise sold in July. In step 2, LEFT JOIN
the Merchandise table to the new view. The result should be the same 27 items
found using the subquery. The key to this query is that the view is created to en-
sure	that	the	rows	for	sales	in	July	are	extracted	first	and	then	the	LEFT	JOIN	is	
applied to the Merchandise table.

Subqueries
What are the common uses for subqueries?	The	most	difficult	step	in	creating	
a query is determining the overall structure. Chapter 4 shows you how to use the
four big questions to determine the structure of simple queries. But you need to
recognize when subqueries are needed. If you fail to use a subquery, you are likely
to end up with bad results, and waste considerable time in the process. This sec-
tion presents the most common situations that require the use of subqueries. The
main situations are: (1) Calculations or lookup comparisons, (2) matching sets of
data,	(3)	existence	checks,	and	(4)	finding	items	that	are	not	in	a	list.	The	last	ex-
ample was covered in the previous section.

Which	merchandise	was	not	sold	in	July	2013?
CREATE	VIEW	JulyItems	AS
SELECT	Sale.SaleID,	ItemID
FROM	Sale
INNER	JOIN	SaleItem	ON	Sale.SaleID=SaleItem.SaleID
WHERE	SaleDate	BETWEEN	’01-JUL-2013’	AND	’31-JUL-2013’;
SELECT	Merchandise.*
FROM	Merchandise
LEFT	JOIN	JulyItems	ON	Merchandise.ItemID=JulyItems.ItemID
WHERE	JulyItems.Sale	Is	Null;

Figure 5.11
Saved	View.	To	ensure	the	proper	sequencing,	save	the	view	that	filters	the	list	of	sale	
items to July.

262Chapter 5: Advanced Queries and Subqueries

Calculations or Simple Lookup
Perhaps the easiest way to see the value of a subquery is to consider the relatively
simple question: Which cat merchandise sold for more than the average price of
cat merchandise? If you already know the average sale price of cat merchandise
(say, $9), the query is easy, as shown in the top half of Figure 5.12.

Chapter 4 showed that it is also straightforward to write a query to compute the
average price of cat merchandise. If you do not know anything about subqueries,
you could write the average value on a piece of paper and then enter it into the
main query in place of the 9. However, with a subquery, you can go one step fur-
ther: The result (average) from the query can be transferred directly to the original
query. Simply replace the value ($9) with the complete SELECT AVG query as
shown in the lower half of Figure 5.12. In fact, anytime you want to insert a value
or comparison, you can use a subquery instead. You can even go to several lev-
els, so a subquery can contain another subquery and so on. The DBMS generally
evaluates	the	innermost	query	first	and	passes	the	results	back	to	the	higher	level.

Calculations for Percentages
Typically, subqueries for calculations arise in WHERE clauses similar to the prior
example when you need to make a comparison. You can also add subqueries to the
SELECT statement to retrieve a value for a calculation. For instance, you might
issue a subquery to retrieve a tax rate that is multiplied times a total.

Another interesting business problem is the need to compute percentages. Fig-
ure 5.13 shows a typical question to compute the percentage of merchandise sales
by	category.	The	first	step	is	to	compute	the	total	sales	by	category—which	is	a	
straightforward question from Chapter 4. That query contains the subtotal calcula-

Which cat merchandise sold for more than the average sale price of cat
merchandise?
SELECT	Merchandise.ItemID,	Merchandise.Description,	Merchandise.
Category,	SaleItem.SalePrice
FROM	Merchandise	
INNER	JOIN	SaleItem	ON	Merchandise.ItemID	=	SaleItem.ItemID
WHERE	Merchandise.Category=N’Cat’	AND	SaleItem.SalePrice	>	9;
SELECT	Merchandise.ItemID,	Merchandise.Description,	Merchandise.
Category,	SaleItem.SalePrice
FROM	Merchandise	
INNER	JOIN	SaleItem	ON	Merchandise.ItemID	=	SaleItem.ItemID
WHERE	Merchandise.Category=N’Cat’	AND	SaleItem.SalePrice	>		
			(SELECT	Avg(SaleItem.SalePrice)	AS	AvgOfSalePrice
			FROM	Merchandise	
			INNER	JOIN	SaleItem	ON	Merchandise.ItemID	=	SaleItem.ItemID
			WHERE	Merchandise.Category=N’Cat’)

Figure 5.12
Subqueries for calculation. If you know the average price is 9, the query is
straightforward. If you do not know the average price, you can use a subquery to
compute it. The subquery is always written inside a separate set of parentheses. The
subquery in parentheses replaces the 9 in the original query).

263Chapter 5: Advanced Queries and Subqueries

tion: Sum([Quantity]*[SalePrice]). To compute the percentages, add a new column
that uses the same subtotal and divides by the overall total. The trick is that the
overall total is computed using a subquery: SELECT Sum([Quantity]*[SalePrice])
FROM SaleItem. So the entire calculation becomes:
SELECT ... Sum([Quantity]*[SalePrice]) /
 (SELECT Sum([Quantity]*[SalePrice] FROM SaleItem)
GROUP BY Category...

Of course, most problems are even more complex and trying to jam everything
into	one	query	 can	 lead	 to	mistakes.	So	you	might	want	 to	first	 create	 a	 saved	
query that computes totals by category and use a second query to compute per-
centages, which makes it easier to check the results. Once the subtotals have been
computed and saved, the small addition to compute percentages is almost always
the same.

You should realize by now that there are other ways to answer the original
question.	For	example,	keep	the	first	view	that	computes	the	subtotals.	Create	a	
second view to compute the overall total. This second view will contain only one
row as a result. Now build a third query that joins these two results. Simply do not
enter a JOIN condition—let the DBMS build a cross-join so that the overall total
is	matched	to	every	row	of	the	first	query.	Figure	5.14	shows	the	new	view	and	
the query that performs the cross join and division. The results should match those
with the subquery method.

Two useful practices you should follow when building subqueries are to indent
the subquery to make it stand out so humans can read it and to test the subquery
before inserting it into the main query. Fortunately, most modern database systems
make it easy to create a subquery and then cut and paste the SQL into the main

Compute	the	merchandise	sales	by	category	in	terms	of	percentage	of	total	
sales.
CREATE	VIEW	CategorySubtotals	AS
SELECT	Merchandise.Category,	Sum([Quantity]*[SalePrice])	AS	[Value]
FROM	Merchandise	
INNER	JOIN	SaleItem	ON	Merchandise.ItemID	=	SaleItem.ItemID
GROUP	BY	Merchandise.Category;
SELECT	CategorySubtotals.Category,	CategorySubtotals.Value,	
[Value]	/	
		(SELECT	Sum(Value)	FROM	CategorySubtotals)	AS	Percentage
FROM	CategorySubtotals;

Category
Bird
Cat
Dog
Fish
Mammal

Value
$631.50
$1,293.30
$4,863.49
$1,597.50
$90.00

Percentage
7.45063292035315E-02
0.152587546411603
0.573809638983505
0.188478006179955
1.06184792214059E-02

Figure 5.13
To	obtain	percentages,	first	compute	the	group	subtotals	and	save	the	view.	Select	the	
values from the saved view and use a subquery in the SELECT clause to divide by
the total. Ultimately, format the new percentage column to make it readable.

264Chapter 5: Advanced Queries and Subqueries

query. Similarly, if you have problems getting a complex query to work, cut out
the inner subqueries and test them separately. And always remember to enclose
the subquery in parentheses.
The	main	drawback	to	subqueries	is	that	they	are	difficult	to	read	and	under-

stand.	It	is	easy	to	make	mistakes	and	it	is	difficult	to	read	complex	queries	cre-
ated by other developers. You should always document your work when creating
complex queries. Whenever possible, use the SQL comment characters (--) to add
notes to the query to explain its purpose and how it is supposed to work. Some-
times,	 it	 is	better	 to	store	complex	subqueries	as	views	and	use	a	final	query	to	
retrieve data from the carefully-named views.

The other trick you will quickly learn is that QBE grids are not very useful
when designing subqueries. You almost always need to work with plain SQL
statements. If you want to save some typing, you can use QBE to write the join
statements, but eventually, you need to copy and paste the SQL text.

Subqueries and Sets of Data
A key to understanding SQL is to focus on sets of data. Complex queries generally
can be broken down into multiple pieces, where each piece of the question refers
to	a	set	of	data.	Then	you	have	to	figure	out	how	to	combine	those	sets	to	answer	
the business question. So far you have seen two ways to combine sets of data: (1)
By saving each piece and using a JOIN statement, or (2) Using a subquery, typi-
cally with an IN function. In effect, these two methods work the same way. Which
one you choose depends on which is easiest or fastest to use. Keep in mind that
subqueries enable you to put the entire SQL into a single query, which reduces the
risk of someone accidentally deleting a supporting saved view—because no one
knew what it was for.

To understand the issue of sets of data, think about an apparently simple ques-
tion: List all of the customers who bought something in March and in May. As
shown in Figure 5.15, a beginner might try to answer the question by creating a
simple query with the WHERE clause: SaleDate Between 01-Mar And 31-Mar
AND SaleDate Between 01-May and 31-May. What is wrong with this approach?
Try it. The query will run, but you will not get any matches. Why not? Because
the clause is asking the DBMS to return rows where the SaleDate is in March and
in May, at the same time! It is not possible for a date to be in two months at the
same time.

Compute	the	merchandise	sales	by	category	in	terms	of	percentage	of	
total	sales.
CREATE	VIEW	TotalItemSales	AS
SELECT	Sum(Value)	AS	MainTotal
FROM	CategorySubtotals;
SELECT	Category,	Value,	Value/MainTotal	AS	Percentage
FROM	CategorySubtotals,	TotalItemSales;

Figure 5.14
Percentages using a cross join. Create a view to compute the total. A third query uses
a cross join to connect this single value to every row in the subtotal query and then
divide to get the percentage.

265Chapter 5: Advanced Queries and Subqueries

The answer to the question lies in realizing that you need to get two separate
lists of people: those who bought something in March and those who bought
something in May. Then you combine the lists to identify the people in both sets.
You can answer this question with a subquery, or you can create two separate
views and join them. The subquery illustrates the set operations.

Figure 5.16 shows the subquery approach. The outermost (top) query retrieves
customers who bought something in March, and the subquery retrieves ID num-
bers for customers who bought something in May. Either month could be tested
first,	but	it	is	critical	to	recognize	that	you	need	two	separate	queries	to	create	the	
two separate WHERE clauses. The IN operator performs the matching so that the
final	query	displays	only	those	customers	who	fall	in	both	sets	of	data.

Figure 5.17 shows how to answer the same query with a JOIN statement on
saved views. The views are used to retrieve the desired sets, and they highlight
that	the	sets	are	separate.	The	final	query	uses	the	JOIN	command	to	retrieve	only	
the values that exist in both of the saved views (March and May).

Both approaches (subquery and saved views) provide the same answer and you
generally get to choose which approach you want to use. The drawback to saving
views is that you end up with a huge collection of views, and no one remembers

List	all	of	the	customers	who	bought	something	in	March	and	who	
bought	something	in	May.
SELECT	Customer.LastName,	Customer.FirstName
FROM	Customer	INNER	JOIN	Sale	ON	Customer.CustomerID	=	
Sale.CustomerID
WHERE	(SaleDate	Between	’01-MAR-2013’	And	‘31-MAR-2013’)
AND	Customer.CustomerID	IN
			(SELECT	CustomerID
				FROM	Sale
				WHERE	(SaleDate	Between	‘01-MAY-2013’	And	’31-MAY-2013’));

Figure 5.16
Combining two separate lists. The question requires you to create two separate lists
and	then	compare	the	matching	values.	This	query	uses	the	IN	statement	to	find	the	
customers that appear in both lists.

Figure 5.15
The wrong approach. Why does this query always return no rows? Because it is
checking the date on each row to see if it falls in March AND May. No date can be in
two months at the same time.

List	all	of	the	customers	who	bought	something	in	March	and	who	
bought	something	in	May.
SELECT	Customer.CustomerID,	Customer.Phone,	Customer.
LastName,	Sale.SaleDate
FROM	Customer	
INNER	JOIN	Sale	ON	Customer.CustomerID	=	Sale.CustomerID
WHERE	Sale.SaleDate	Between	’01-MAR-2013’	And	’31-MAR-2013’
			AND	Sale.SaleDate	Between	’01-MAY-2013’	And	’31-MAY-2013’;

266Chapter 5: Advanced Queries and Subqueries

which views depend on other views. Some administrator could accidentally delete
a view that is required by another query. On the other hand, the views could be re-
used in multiple queries, which might save a developer time on a different project.
The bottom line is that you need to know how to write the queries both ways, and
choose the method that is best in each situation.

Subquery with ANY, ALL, and EXISTS
The ANY and ALL operators combine comparison of numbers with subsets. In
the previous sections, the IN operator compared a value to a list of items in a
set: however, the comparison was based on equality. The test item had to exactly
match an entry in the list. The ANY and ALL operators work with a less than (<)
or greater than (>) operator and compare the test value to a list of values.
Figure	5.18	illustrates	the	use	of	the	ANY	query.	It	is	hard	to	find	a	solid	busi-

ness example that needs the ANY operator. In the example, it would be just as
easy	 to	use	 the	 subquery	 to	find	 the	minimum	value	 (MIN	 function)	 in	 the	 list	
and then do the comparison. However, sometimes it is clearer to use the ANY
operator.

The ALL operator behaves similarly, but the test value must be greater than
all of the values in the list. In other words, the test value must exceed the largest
value in the list. Hence, the ALL operator is much more restrictive.

The ALL operator can be a powerful tool—particularly when used with an
equals (=) comparison. For instance, you might want to test whether one salesper-
son made all of the sales on a particular day. Figure 5.19 shows that the WHERE
clause contains the statement: EmployeeID = ALL (SELECT EmployeeID FROM
Sale WHERE SaleDate = ‘28-MAR’). The subquery returns a list of IDs for all
employees who sold something on that date. The “= ALL” clause checks to see if
all of the values are the same and match a single employee. This query is some-

Figure 5.17
Combining two separate lists with JOIN. You can save separate lists as views and use
the JOIN command to retrieve only the values that match.

List	all	of	the	customers	who	bought	something	in	March	and	who	
bought	something	in	May.	(Saved	views.)
CREATE	VIEW	MarchCustomers	AS
SELECT	CustomerID
FROM	Sale
WHERE	(SaleDate	Between	’01-MAR-2013’	And	’31-MAR-2013’);

CREATE	VIEW	MayCustomers	AS
SELECT	CustomerID
FROM	Sale
WHERE	(SaleDate	Between	’01-MAY-2013’	And	’31-MAY-2013’);

SELECT	Customer.LastName,	Customer.FirstName
FROM	Customer	
INNER	JOIN	MarchCustomers	ON	Customer.
CustomerID=MarchCustomers.CustomerID
INNER	JOIN	MayCustomers	ON	MarchCustomers.
CustomerID=MayCustomers.CustomerID;

267Chapter 5: Advanced Queries and Subqueries

what	contrived,	but	it	can	be	useful	when	you	need	to	find	a	specific	answer.	The	
alternative in this situation is to count the number of sales by each employee on
the	specified	date	and	visually	check	to	see	if	there	is	more	than	one	value.	But,	
sometime	you	might	want	to	find	the	exact	answer	using	the	ANY	query.
Sometimes	 it	 is	difficult	 to	control	 the	details	 returned	from	a	subquery.	Per-

haps the data exists in a table created by someone else, such as a system table. In
these cases, only the WHERE clause matters. Does the query return any rows that
match the conditions? The EXISTS key word handles these situations. It is true if
the	subquery	returns	any	rows	of	data—otherwise	it	is	false.	The	specific	columns	
returned are irrelevant. Figure 5.20 shows a simple example. In actual practice,
the example would be better written with a JOIN statement, but it does illustrate
how the EXISTS term works. The EXISTS term is useful when you need to see if
rows are retrieved in a subquery but you do not want to match the actual values.

Figure 5.18
Subquery	with	ANY	and	ALL.	The	example	identifies	any	animal	that	sold	for	more	
than any of the prices of cats. Effectively, it returns values greater than the smallest
entry in the subquery list.

List	dog	merchandise	with	a	list	price	greater	than	the	sale	price	of	the	
cheapest	cat	product.
SELECT	Merchandise.ItemID,	Merchandise.Description,	
Merchandise.Category,	Merchandise.ListPrice
FROM	Merchandise
WHERE	Category=N'Dog'
AND	ListPrice	>	ANY
		(SELECT	SalePrice
			FROM	Merchandise
			INNER	JOIN	SaleItem	ON	Merchandise.ItemID=SaleItem.ItemID
			WHERE	Merchandise.Category=N'Cat')
;

Has	one	salesperson	made	all	of	the	sales	on	a	particular	day	(Mar	28)?
SELECT	Employee.EmployeeID,	Employee.LastName
FROM	Employee
WHERE	EmployeeID	=	ALL
			(SELECT	EmployeeID
				FROM	Sale
				WHERE	SaleDate	=	'28-MAR-2013')
;

Figure 5.19
Subquery with All and equality test. The subquery returns a list of EmployeeID
values	who	made	sales	on	the	specified	date.	The	“=	ALL”	test	checks	to	see	if	they	
are all the same value and returns the matching employee.

268Chapter 5: Advanced Queries and Subqueries

Correlated Subqueries
What are correlated subqueries? Recall the example in Figure 5.12 that asked:
Which cat merchandise sold for more than the average sale price of cat merchan-
dise?	This	example	used	a	subquery	to	first	find	the	average	sale	price	of	cat	mer-
chandise and then examined all sales of cat merchandises to display the ones that
had higher prices. It is a reasonable business question to extend this idea to other
categories of animals. Managers would like to identify all merchandise that was
sold for a price greater than the average price of other merchandise within their
respective	categories	(dog	merchandise	compared	to	other	dog	merchandise,	fish	
compared	to	fish,	and	so	on).

As shown in Figure 5.21, building this query is tricky. The merchandise cat-
egory in the subquery has to match that in the outer query. This task is accom-
plished by setting the categories equal to each other. But, the Merchandise table is
used in both queries, so the condition can only be written by assigning aliases to
the Merchandise table in both queries. Here, it is renamed as Merchandise1 and

Which	merchandise	has	a	list	price	greater	than	the	average	sale	price	of	
merchandise	within	that	category?
SELECT	Merchandise1.ItemID,	Merchandise1.Description,	
Merchandise1.Category,	Merchandise1.ListPrice
FROM	Merchandise	AS	Merchandise1	
WHERE	Merchandise1.ListPrice>
(
SELECT	Avg(SaleItem.SalePrice)	AS	AvgOfSalePrice
FROM	Merchandise	As	Merchandise2	INNER	JOIN	SaleItem	ON	
Merchandise2.ItemID	=	SaleItem.ItemID
WHERE	Merchandise2.Category=Merchandise1.Category
);

Figure 5.21
Correlated subquery. The condition in the subquery depends on values in the
outermost query. In some query systems, this query could run slowly if large tables
are involved.

Use	Not	Exists	to	list	customers	who	have	not	bought	anything.
SELECT	Customer.CustomerID,	Customer.Phone,	Customer.
LastName
FROM	Customer
WHERE	NOT	EXISTS
		(SELECT	SaleID,	SaleDate	
			FROM	Sale	WHERE	Sale.CustomerID=Customer.CustomerID);

Figure 5.20
Subquery with Exists. If the only thing that matters is the WHERE clause, you can
use the EXISTS phrase to test if rows are returned or not. It is also useful when the
details	of	the	subquery	are	difficult	to	change.

269Chapter 5: Advanced Queries and Subqueries

Merchandise2, but any distinct names would work. This type of query is called a
correlated subquery, because the subquery refers to data rows in the main query.
The	 query	 in	 Figure	 5.21	will	 run.	However,	 it	might	 be	 inefficient.	 Perfor-

mance depends on the query optimizer, but systems might have problems comput-
ing this query for large sets of data. Even on a fast computer, queries of this type
have	 been	known	 to	 run	 for	 several	 days	without	finishing.	 If	 the	 query	 is	 run	
as written, the calculation in the subquery must be recomputed for each entry in
the	main	table.	The	problem	is	illustrated	in	Figure	5.22.	Consider	an	inefficient	
DBMS that starts at the top row of the Merchandise table. When it sees the cat-
egory is Dog, it computes the average sale price of dog merchandise ($23.32).
Then it moves to the next row and computes the average sale price for dogs again.
In the worst case, the DBMS recomputes the average for every single row in the
Merchandise table. Recomputing the average sale price for every single row in
the main query is time-consuming. To compute an average, the DBMS must go
through every row in the SaleItem table that has the same category of animal.
Consider	a	relatively	small	query	of	100,000	rows	and	five	categories	of	animals.	
On average, there are 20,000 rows per category. To recompute the average each
time, the DBMS will have to retrieve 100,000 * 20,000 or 2,000,000,000 rows!

Unfortunately, you cannot just tell the manager that it is impossible to answer
this	important	business	question.	Is	there	an	efficient	way	to	answer	this	question?	
Some query processors can automatically cache the averages. In other cases, you
will have to do it yourself. The answer illustrates the power of SQL and highlights
the importance of thinking about the problem before you try to write a query. The
problem with the correlated subquery lies in the fact that it has to continually
recompute the average for each category. Think about how you might solve this
problem	by	hand.	You	would	first	make	a	 table	 that	 listed	 the	average	 for	each	
category and then simply look up the appropriate value when you needed it. As
shown in Figure 5.23, the same approach can be used with SQL. Just create the
query for the averages using GROUP BY and save it. Then join it to the Merchan-
dise table to do the comparison.

1 Dog $45.00
2 Dog $65.00
3 Dog $85.00
4 Dog $110.00
5 Cat $25.00
6 Cat $35.00
7 Dog $4.00
8 Cat $3.00
9 Dog $7.50

Compute	Avg:	$23.32
Compute	Avg:	$23.32
Compute	Avg:	$23.32
Compute	Avg:	$23.32
Compute	Avg:	$8.99
Recompute average	
for	every	row	in	the	
main	query!

MerchID Category ListPrice

Figure 5.22
Potential problem with correlated subquery. The average is recomputed for every row
in the main query. Every time the DBMS sees a dog product, it computes the average
to	be	$23.32.	It	is	inefficient	and	slow	to	force	the	machine	to	recalculate	the	average	
each time.

270Chapter 5: Advanced Queries and Subqueries

Today, you probably do not have to worry too much about the performance of
correlated subquries. The high-end DBMSs have good query optimizers that can
recognize	the	problem	and	automatically	find	the	solution	to	compute	the	values	
quickly and store them in a cache. However, some queries still require hand tun-
ing. Also, you need to remember to look for different ways to approach queries.
The solution in Figure 5.23 is much easier to read and verify that the answer is
correct.

More Features and Tricks with SQL SELECT
What tricky problems arise and how do you handle them in SQL? As you
may have noticed, the SQL SELECT command is powerful and has plenty of op-
tions. There are even more features and tricks that you should know about. Busi-
ness	questions	can	be	difficult	to	answer.	It	helps	to	study	different	examples	to	
gain a wider perspective on the problems and solutions you will encounter. One
of	the	first	big	questions	you	will	face	is	the	need	to	combine	rows	from	different	
tables. You also need to know how to handle several other complications, such as
joining tables with multiple columns or inequality joins.

UNION, INTERSECT, EXCEPT
Codd	originally	conceived	of	tables	as	sets	of	data.	The	basic	filtering	aspects	of	
the SELECT command perform some operations on these sets, but it is some-
times nice to be able to use more traditional set operators. Up to this point, the
tables you have encountered have contained unique columns of data. The JOIN
command links tables together so that a query can display and compare different
columns of data from tables. Occasionally you will encounter a different type of
problem where you need to combine rows of data from similar tables. The set
operations, such as the UNION operator are designed to accomplish these tasks.
As	an	example,	assume	you	work	for	a	company	that	has	offices	in	Los	Angeles	

and	New	York.	Each	office	maintains	its	own	database.	Each	office	has	an	Em-
ployee	file	that	contains	standard	data	about	its	employees.	The	offices	are	linked	
by a network, so you have access to both tables (call them EmployeeEast and
EmployeeWest). But the corporate managers often want to search the entire Em-

Figure 5.23
More	efficient	solution.	Create	and	save	a	query	to	compute	the	averages	using	
GROUP BY Category. Then join the query to the Merchandise table to do the
comparison.

Bird $37.60
Cat $8.99
Dog $23.32
Fish $38.18
Mammal $9.00

Category AvgOfSalePrice
Saved	Query

JOIN

Merchandise.Category =	
Query05_Fig23a.Category

1 Dog $45.00
2 Dog $65.00
3 Dog $85.00
4 Dog $110.00
5 Cat $25.00
6 Cat $35.00
7 Dog $4.00
8 Cat $3.00
9 Dog $7.50

Merchandise
MerchID Category ListPrice

271Chapter 5: Advanced Queries and Subqueries

ployee	file—for	example,	 to	determine	total	employee	salaries	of	 the	marketing	
department. One solution might be to run their basic query twice (once on each
table) and then combine the results by hand.

As shown in Figure 5.24, the easier solution is to use the UNION operator to
create a new query that combines the data from the two tables. All searches and
operations performed on this new query will treat the two tables as one large table.
By	combining	the	tables	with	a	view,	each	office	can	make	changes	to	the	original	
data on its system. Whenever managers need to search across the entire company,

T1 T2

A B C

T1 UNION T2 A + B + C

T1 INTERSECT T2 B

T1 EXCEPT T2 A

Figure 5.25
Operators for combining rows from two tables. UNION selects all of the rows.
INTERSECT retrieves only the rows that are in both tables. EXCEPT retrieves rows
that exist in only one table.

SELECT	EID,	Name,	Phone,	Salary,	‘East’	As	Office
FROM	EmployeeEast
UNION
SELECT	EID,	Name,	Phone,	Salary,	‘West’	As	Office
FROM	EmployeeWest;

EID Name Phone Salary Office
352
876
372

890
631

Jones
Inez
Stoiko

Smythe
Kim

3352
8736
7632

9803
7736

45,000
47,000
38,000

62,000
73,000

East
East
East

West
West

Figure 5.24
The UNION operator combines rows of data from two SELECT statements. The
columns in both SELECT lines must match. The query is usually saved and used
when managers need to search across both tables. Note the use of a new, constant
column	(Office)	to	track	the	source	of	the	data.

272Chapter 5: Advanced Queries and Subqueries

they use the saved query, which automatically examines the data from current ver-
sions of both tables.

The most important concept to remember when creating a UNION is that the
data from both tables must match (e.g., EID to EID, Name to Name). Another
useful trick is to insert a constant value in the SELECT statement. In this example
the constant keeps track of which table held the original data. This value can also
be used to balance out a SELECT statement if one of the queries will produce a
column that is not available in the other query. To make sure both queries return
the same number of columns, just insert a constant value in the query that does not
contain the desired column. Make sure that it contains the same type of data that is
stored in the other query (domains must match).

The UNION command combines matching rows of data from two tables. The
basic version of the command automatically eliminates duplicate rows of data. If
you want to keep all the rows—even the duplications, use the command UNION
ALL. Two other options for combining rows are EXCEPT and INTERSECT.
Figure 5.25 shows the difference between the three commands. They all apply to
sets of rows and the Venn diagram shows that the tables might have some data in
common (area B). The UNION operator returns all the rows that appear in either
one of the tables, but rows appearing in both tables are only listed once. The IN-
TERSECT operator returns the rows that appear in both tables (area B). The EX-
CEPT	operator	returns	only	rows	that	appear	in	the	first	table	(area	A).	Notice	that	
the	result	of	the	EXCEPT	operator	depends	on	which	table	is	listed	first.	Micro-
soft Access supports only the UNION command. SQL Server (and other DBMSs)
support all three. These set operators are another way to handle complex business
questions,	similar	to	the	NOT	IN	problem	of	finding	things	in	one	set	that	are	not	
in the second set. Just remember that there are often many ways to create a query.

Multiple JOIN Columns
Sometimes you will need to join tables based on data in more than one column.
In the Pet Store example, each animal belongs to some category (Cat, Dog, Fish,

AnimalID
Name
Category
Breed
DateBorn
Gender
.	.	.

Category
Breed

Breed

Animal

SELECT	*
FROM	Breed	INNER	JOIN	Animal
ON	Breed.Category	=	Animal.Category
AND	Breed.Breed	=	Animal.Breed

Figure 5.26
Multiple JOIN columns. The values in the tables are connected only when both the
category and the breed match.

273Chapter 5: Advanced Queries and Subqueries

etc.). Each category of animal has different breeds. For example, a Cat might be
a Manx, Maine Coon, or Persian; a Dog might be a Retriever, Labrador, or St.
Bernard. A portion of the class diagram is reproduced in Figure 5.26. Notice the
two lines connecting the Breed and Animal tables. This relationship ensures that
only breeds listed in the Breed table can be entered for each type of Animal. A real
store might want to include additional features in the Breed table (such as regis-
tration organization, breed description, or breed characteristics). The key point is
that the tables must be connected by both the Category and the Breed.

In Microsoft Access QBE, the JOIN can be created by marking both columns
and simultaneously dragging the two columns to the Animal table, but it is often
easier to edit in SQL. The syntax for the SQL JOIN command is given in Figure
5.26. Simply expand the ON statement by listing both column connections. In
this case, you want both sets of columns to be equal at the same time, so the state-
ments are connected with an AND.

Reflexive	Join
A reflexive join or self-join means simply that a table is joined to itself. One
column in the table is used to match values in a second column in the same ta-
ble. A common business example arises with an Employee table as illustrated in
Figure 5.27. Employees typically have one manager. Hence the manager’s ID
can be stored in the row corresponding to each employee. The table would be
Employee(EID, Name, Phone, . . ., Manager). The interesting feature is that a
manager is also an employee, so the Manager column actually contains a value
for EID. To get the corresponding name of the manager, you need to join the Em-
ployee table to itself.

SELECT	Employee.EmployeeID,	Employee.LastName,	Employee.
ManagerID,	E2.LastName
FROM	Employee	INNER	JOIN	Employee	AS	E2
ON	Employee.ManagerID	=	E2.EmployeeID

EID Name Manager Name
1
2
3

Reeves
Gibson
Reasoner

11
1
1

Smith
Reeves
Reeves

EID Name . . . Manager
1 Reeves 11
2 Gibson 1
3 Reasoner 1
4 Hopkins 3

Employee

Figure 5.27
Reflexive	JOIN	to	connect	Employee	table	with	itself.	A	manager	is	also	an	
employee. Use a second copy of the Employee table (renamed to E2) to get the
manager’s name.

274Chapter 5: Advanced Queries and Subqueries

The only trick with this operation is that you have to be careful with the ON
condition. For instance, the following condition does not make sense: ON Em-
ployee.Manager = Employee.EID. The query would try to return employees who
were their own managers, which is not likely to be what you wanted. Instead, you
must use two instances of the Employee table and use an alias (say, E2) to rename
the second copy. Then the correct ON condition becomes ON Employee.Manager
= E2.EID. The key to self-joins is to make sure that the columns contain the same
type of data and to create an alias for the second copy of the table.
SQL	1999	provides	an	even	more	powerful	 feature	 related	 to	 reflexive	 joins.	

Consider the employee example where you want to list all of the people who work
for someone—not just the direct reports, but also the people who work for them,
and the people who work for that group, and so on down the employee hierarchy
tree. The standard provides the WITH RECURSIVE command that has several

Figure 5.28
Recursive query. The employee-manager relationship is a classic recursive example.
The	recursive	query	requires	three	steps:	(1)	Define	the	root	level,	(2)	Define	the	
recursion member that links to the higher level, and (3) Run the SELECT statement
to execute the expression and sort the results.

List	all	the	managers	and	their	direct	reports.
WITH	DirectReports(EmployeeID,	LastName,	ManagerID,	Title,	Level)	
AS
(
	 --Root/anchor	member	(find	employee	with	no	manager)
	 SELECT	EmployeeID,	LastName,	ManagerID,	Title,	0	As	Level
	 FROM	Employee	WHERE	ManagerID=0		 --	starting	level
	 UNION	ALL
	 --	Recursive	members
	 SELECT	Employee.EmployeeID,	Employee.LastName,	
	 	 Employee.ManagerID,	Employee.Title,	Level	+1
	 FROM	Employee	INNER	JOIN	DirectReports
	 ON	Employee.ManagerID	=	DirectReports.EmployeeID	
)
--	Now	exectue	the	common	table	expression
SELECT	ManagerID,	EmployeeID,	LastName,	Title,	Level
FROM	DirectReports
ORDER	BY	Level,	ManagerID,	LastName

ManagerID EmployeeID LastName Title Level
0
11
1
1
2
2
2
2
2
3
3

11
1
2
3
6
7
5
9
10
8
4

Smith
Reeves
Gibson
Reasoner
Eaton
Farris
James
O'Connor
Shields
Carpenter
Hopkins

Owner
Manager
Manager
Manager
Animal	Friend
Animal	Friend
Animal	Friend
Animal	Friend
Animal	Friend
Worker
Worker

0
1
2
2
3
3
3
3
3
3
3

275Chapter 5: Advanced Queries and Subqueries

options to search a data tree. Consider the pet store case with the partial Employee
table: Employee(EmployeeID, LastName, Title, ManagerID). You want to start at
the top with the CEO/owner and list all of the employees who report directly to
a manager. For example, EmployeeID 1 (Reeves) is the only person who reports
directly to Sally (EmployeeID=11), but two people (EmployeeID 2 and 3) report
directly to Reeves. The actual syntax can be slightly different across systems. See
the Workbooks for examples. Figure 5.28 shows the syntax used by SQL Server.
The main difference with the standard is that the standard uses WITH RECUR-
SIVE	instead	of	just	the	WITH	keyword.	The	main	step	is	to	define	the	common	
table expression to handle the recursion. You give a unique name (e.g., DirectRe-
ports) to the new expression and specify the columns that will be retrieved. The
three	main	steps	are:	(1)	Define	the	root	starting	point	for	the	tree	with	a	SELECT	
statement,	 (2)	Define	 the	 recursive	members	with	 a	 second	SELECT	 statement	
that	links	to	the	level	above,	and	(3)	Write	the	final	SELECT	statement	to	execute	
the recursive table and sort or group the results. In the example, root level is de-
fined	by	choosing	the	owner	who	does	not	report	to	anyone	(ManagerID=0).	You	
might	need	 to	examine	 the	data	 to	know	how	to	define	 the	root	 level—it	might	
be set by title, or by a Null value in some column. The second step is the one that
does most of the work. You retrieve data from the Employee table, but the JOIN
statement is the key. Notice that you join the Employee.ManagerID column to
the higher-level DirectReports.EmployeeID table. The DirectReports table repre-
sents the parent level entry, and this SELECT statement will always have a similar
JOIN condition. The third step is the easiest, because now you can treat the Di-
rectReports entity as just another table. Open the pet store’s Employee table and
work through the results given here to see how the organization structure chart is
created.
The	Level	column	is	also	a	useful	trick.	You	define	it	with	the	root-level	SE-

LECT statement, and increment it with the recursive SELECT. It provides an easy
way to specify the distance from the root. Picture the organizational chart with
Smith at the top, followed by Reeves at Level 1, and Gibson and Reasoner at
Level 2 because both report to Reeves. The recursive query is a powerful state-
ment. Without it, you need to write substantial code to accomplish the same task.

Note that many lower-end systems (such as Microsoft Access) do not support
recursive joins. In these cases, you will have to write programming code to iterate
through each employee to build the tree. Also be cautious when building recursive
queries—it	is	possibly	to	accidentally	create	an	infinite	loop.	You	might	want	to	
set time limits on queries when testing recursive designs.

CASE Function
SQL 92 added the CASE function to simplify certain types of queries. However,
many database systems have not yet implemented all the features of SQL 92. The
CASE function evaluates a set of conditions and returns a single value. Similar to
the Oracle decode function, the conditions can be simple (R=1) or complex.

Perhaps the managers want to classify the animals in Sally’s Pet Store based on
their age. Figure 5.29 shows the SQL statement that would create four categories
based on different ages. Note the use of date arithmetic using today’s date—Date(
)—and DateBorn. Whenever this query is executed, it will use the current day to
assign each animal to the appropriate category. Of course, the next logical step is
to run a GROUP BY query against this view to count the number of animals fall-
ing within each age category.

276Chapter 5: Advanced Queries and Subqueries

Inequality Joins
A JOIN statement is actually just a condition. Most problems are straightforward
and use a simple equality condition or equi-join. For example, the following
statement joins the Customer and Order tables: FROM Customer INNER JOIN
Order ON (Customer.CustomerID = Order.CustomerID).

SQL supports complex conditions including inequality joins, where the com-
parison is made with inequality operators (less than, greater than) instead of an
equals sign. The generic name for any inequality or equality join is a theta join.

This type of join can be useful in some tricky situations. For example, con-
sider a common business problem. You have a table for AccountsReceivable(
TransactionID, CustomerID, Amount, DateDue). Managers would like to catego-
rize the customer accounts and determine how many transactions are past due by
30, 90, and 120 or more days. This query can be built in a couple of ways. For
instance, you could write three separate queries, or you could build a complex

Classify	payments	by	number	of	days	late.
AR(TransactionID,	CustomerID,	Amount,	DateDue)
LateCategory(Category,	MinDays,	MaxDays,	Charge,	…)
Month 30 90 3%
Quarter 90 120 5%
Overdue 120 9999 10%

SELECT	*
FROM	AR	INNER	JOIN	LateCategory
ON	((Date()	–	AR.DateDue)	>=	LateCategory.MinDays)
AND	((Date()	–	AR.DateDue)	<	LateCategory.MaxDays)

Figure 5.30
Inequality join. Managers want to classify the AccountsReceivable (AR) data into
three categories of overdue payments. First, store the business rules/categories in a
new table. Then join the table to the AR data through inequality joins.

Figure 5.29
CASE function to convert DateBorn into age categories. Note the use of date
arithmetic to generate descriptions that are always current.

Convert	age	ranges	into	categories.
Select	AnimalID,
	 CASE
	 	 WHEN	Date()-DateBorn	<	90	Then	‘Baby’
	 	 WHEN	Date()-DateBorn	>=	90
	 	 			AND	Date()-DateBorn	<	270	Then	‘Young’
	 	 WHEN	Date()-DateBorn	>=	270
	 	 			AND	Date()-DateBorn	<	365	Then	‘Grown’
	 	 ELSE	‘Experienced’
	 END
FROM	Animal;

277Chapter 5: Advanced Queries and Subqueries

CASE statement. However, what happens if managers decide to change the busi-
ness	rules	or	add	a	new	category?	Then	someone	has	 to	find	your	 three	queries	
and modify them. A more useful trick is to create a new table to hold the busi-
ness rules or categories. In the example shown in Figure 5.30, create the table
LateCategory(Category,	MinDays,	MaxDays,	Charge).	This	table	defines	the	late	
categories based on the number of days past due. Now use inequality conditions to
join the two tables. First, compute the number of days late using the current date
(Date() – AR.DateDue). Finally, compare the number of days late to minimum
and	maximum	values	specified	in	the	LateCategory	table.

The ultimate value of this approach is that the business rules are now stored in
a simple table (LateCategory). If managers want to change the conditions or add
new criteria, they simply alter the data in the table. You can even build a form that
makes it easy for managers to see the rules and quickly make the needed changes.
With any other approach, a programmer needs to rewrite the code for the queries.

Exists and Crosstabs
Some queries need the EXISTS condition. Consider the business question: Which
employees have sold merchandise in every category? The word every is the key
here. Think about how you would answer that question if you did not have a com-
puter. For each employee you would make a list of merchandise categories (Bird,
Cat, Dog, etc.). Then you would go through the list of ItemSales and cross off
each	merchandise	category	sold	by	the	employee.	When	finished,	you	would	look	
at the employee list to see which people have every category crossed off (or an
empty list). You will do the same thing using queries.

Remember, if this query returns any rows at all, then the selected employee has
not sold every one of the categories. What you really want then is a list of employ-
ees for whom this query returns no rows of data. In other words, the rows from
this query should NOT EXIST.

The next step is to examine the entire list of employees and see which ones
do	not	retrieve	any	rows	from	the	query	in	Figure	5.31.	The	final	query	is	shown	
in	Figure	5.32.	Note	that	 the	specific	EmployeeID	5	has	been	replaced	with	the	
EmployeeID matching the value in the outer loop, which creates a correlated sub-
query. Unfortunately, you cannot avoid the correlated subquery in this type of

List	the	Animal	categories	where	merchandise	has	not	been	sold	by	an	
employee	(#5).
SELECT	Category
FROM	Category
				WHERE	(Category	<>	N'Other')	And	Category	NOT	IN
							(SELECT	Merchandise.Category
								FROM	Merchandise	INNER	JOIN	(Sale	INNER	JOIN	SaleItem	
													ON	Sale.SaleID	=	SaleItem.SaleID)	
													ON	Merchandise.ItemID	=	SaleItem.ItemID
								WHERE	Sale.EmployeeID	=	5)

Figure 5.31
List the animal categories that have not been sold by EmployeeID 5. Use a basic
NOT IN query.

278Chapter 5: Advanced Queries and Subqueries

problem. This query returns four employees who have sold every type of animal
merchandise. Observe that categories for Other, Reptile, and Spider have been re-
moved from the list because the shortened product list does not contain any items
for these categories. Another way to handle this problem would be to select the
Distinct Category from the Merchandise table instead of the Category table.

The type of query in Figure 5.32 is commonly used to answer questions that
include some reference to “every” item. In some cases, a simpler solution is to

Which	employees	have	sold	merchandise	from	every	category?
SELECT	Employee.EmployeeID,Employee.LastName,
	 Count(CASE	Category	WHEN	'Bird'	THEN	1	END)	As	Bird,
	 Count(CASE	Category	WHEN	'Cat'	THEN	1	END)	As	Cat,
	 Count(CASE	Category	WHEN	'Dog'	THEN	1	END)	As	Dog,
	 Count(CASE	Category	WHEN	'Fish'	THEN	1	END)	As	Fish,
	 Count(CASE	Category	WHEN	'Mammal'	THEN	1	END)	As	Mammal,
	 Count(CASE	Category	WHEN	'Reptile'	THEN	1	END)	As	Reptile,
	 Count(CASE	Category	WHEN	'Spider'	THEN	1	END)	As	Spider
FROM	Employee	
INNER	JOIN	Sale	ON	Sale.EmployeeID=Employee.EmployeeID
INNER	JOIN	SaleAnimal	ON	Sale.SaleID=SaleAnimal.SaleID
INNER	JOIN	Animal	ON	Animal.AnimalID=SaleAnimal.AnimalID
GROUP	BY	Employee.EmployeeID,	Employee.LastName
ORDER	BY	Employee.LastName;

Figure 5.33
Using CASE to count items. The hard way to count items in each category. It works,
but needs to be edited if categories are added.

Which	employees	have	sold	merchandise	from	every	category?
SELECT	Employee.EmployeeID,	Employee.LastName
FROM	Employee
WHERE	Not	Exists
	(SELECT	Category
				FROM	Category
				WHERE	(Category	NOT	IN	(N'Other',	N’Reptile’,	N’Spider’)	
	 And	Category	NOT	IN
							(SELECT	Merchandise.Category
								FROM	Merchandise	INNER	JOIN	(Sale	INNER	JOIN	SaleItem	
													ON	Sale.SaleID	=	SaleItem.SaleID)	
													ON	Merchandise.ItemID	=	SaleItem.ItemID
								WHERE	Sale.EmployeeID	=	Employee.EmployeeID)		
);

Figure 5.32
Example of NOT EXISTS clause. List the employees who have sold merchandise
from every category (except “Other”).

279Chapter 5: Advanced Queries and Subqueries

just count the number of categories for each employee. One catch to this approach
is that the DBMS must support the Count(DISTINCT) format. In general, these
complex questions are probably better answered with multiple queries, or with
tools provided by a data warehouse approach.

The query in Figure 5.32 is an interesting application of the EXISTS clause.
However, there is an easier way to answer the question. You should build a cross-
tab or pivot query that counts the number of items sold by each employee and by
each category. Notice that this question contains two “by each” statements. You
could write a simple query that contains both of those variables (Employee and
Category)	in	the	GROUP	BY	section.	However,	most	people	find	it	easier	to	read	
the results if they are presented in a table, with one Group By variable (Employee)
as the rows and the other (Category) as the columns. Then each cell can contain
the	count	of	the	number	of	items	sold	for	a	specific	employee	in	a	given	category.

Figure 5.33 shows the basic query. Microsoft Access has a simpler crosstab
query, but with traditional SQL, you need to compute each column separately.
Hence, you have to use the CASE function to select each category of animal—
which means you have to know the categories ahead of time. Essentially, you
compute each column separately by using a CASE statement to select only rows
that match the group condition you want for the column.

Figure 5.34 shows the result of the crosstab query. It is relatively easy to see the
types of animals sold by each employee. To answer the overall question of who
sold items from each category, you simply look for a row with no zeros. With this
sample data, four employees have sold at least one item from each category. Tech-
nically, this query contains more information that required to answer the question.
However, additional data is often useful. If you write the EXISTS query to return
exactly the information requested, it will return no names. Oftentimes, it is pref-
erable to see that several other employees come close to meeting the conditions,
instead of simply saying that no one meets them exactly.

Figure 5.34
Crosstab query. The columns are built using the CASE statement to select each
specific	category.	The	rows	are	formed	by	the	GROUP	BY	clause.	Note	that	Oracle	
uses the DECODE function instead of the CASE statement.

EID LastName Bird Cat Dog Fish Mammal
1 Reeves 4 15 6
2 Gibson 1 25 24 9 2
3 Reasoner 2 9 26 5 2
4 Hopkins 3 21 33
5 James 3 7 8 11 2
6 Eaton 1 2 8 1
7 Farris 1 4 24 1 1
8 Carpenter 3 1 11 5
9 O'Connor 5 10 3 1
10 Shields 1 5
11 Smith 1

280Chapter 5: Advanced Queries and Subqueries

SQL SELECT Summary
The SQL SELECT command is powerful and has many options. To help you re-
member the various options, they are presented in Figure 5.35. Each DBMS has
a similar listing for the SELECT command, and you should consult the relevant
Help system for details to see if there are implementation differences. Remember
that the WHERE clause can have subqueries. Also remember that you can use the
SELECT line to perform computations, both in-line and aggregations across the
rows.

Most database systems are picky about the sequence of the various components
of the SELECT statement. For example, the WHERE statement should come be-
fore the GROUP BY statement. Sometimes these errors can be hard to spot, so if
you receive an enigmatic error message, verify that the segments are in the proper
order. Figure 5.36 presents a mnemonic that may help you remember the proper
sequence. Also, you should always build a query in pieces, so you can test each
piece.	 For	 example,	 if	 you	 use	 a	GROUP	BY	 statement,	 first	 check	 the	 results	
without it to be sure that the proper rows are being selected.

SQL Data Definition Commands
What are the SQL data definition commands? Everything to this point has
focused on only one aspect of a database: retrieving data. Clearly, you need to
perform many more operations with a database. SQL was designed to handle all
common	operations.	One	set	of	commands	is	described	in	this	section:	data	defini-
tion commands to create and modify the database and its tables. Note that the SQL
commands can be cumbersome for these tasks. Hence, most modern database sys-

Someone	 SELECT
From	 FROM
Ireland	 INNER	JOIN
Will	 WHERE
Grow	 GROUP	BY
Horseradish	and	 HAVING
Onions	 ORDER	BY

Figure 5.36
Mnemonic to help remember the proper sequence of the SELECT operators.

SELECT	DISTINCT	Table.Column	{AS	Alias},	…
FROM	Table/Query
INNER	JOIN	Table/Query	ON	T1.ColA	=	T2.ColB
WHERE	(Condition)
GROUP	BY	Column
HAVING	(Group	Condition)
ORDER	BY	Table.Column
{UNION		Second	Select	}

Figure 5.35
SQL SELECT options. Remember that WHERE statements can have subqueries.

281Chapter 5: Advanced Queries and Subqueries

tems provide a visual or menu-driven system to assist with these tasks. The SQL
commands are generally used when you need to automate some of these tasks and
set up or make changes to a database from within a separate program.
The	five	most	common	data	definition	commands	are	listed	in	Figure	5.37.	In	

building	a	new	database,	the	first	step	is	to	CREATE a SCHEMA. A schema is
a collection of tables. In some systems, the command is equivalent to creating a
new	database.	In	other	systems,	it	simply	defines	a	logical	area	where	each	user	
can store tables, which might or might not be in one physical database. The Au-
thorization component describes the user and sets a password for security. Most
DBMSs also have visually-oriented tools to perform these basic tasks. However,
the	SQL	commands	can	be	scripted	and	stored	in	a	file	that	can	be	run	whenever	
you need to recreate the database.

CREATE TABLE	is	one	of	the	main	SQL	data	definition	commands.	It	is	used	
to	define	a	completely	new	table.	The	basic	command	lists	the	name	of	the	table	
along with the names and data types for all of the columns. Figure 5.38 shows the
format	for	the	data	definition	commands.	Additional	options	include	the	ability	to	
assign default values with the DEFAULT command.

SQL 92 provides several standard data types, but system vendors do not yet
implement all of them. SQL 92 also enables you to create your own data types
with the CREATE DOMAIN command. For example, to ensure consistency you

CREATE	TABLE	Customer
(CustomerID	 INTEGER	NOT	NULL,
	 LastName	 NVARCHAR(10),
	 …
);

ALTER	TABLE	Customer
	 DROP	COLUMN	ZIPCode;

ALTER	TABLE	Customer
	 ADD	COLUMN	CellPhone	NVARCHAR(15);

Figure 5.37
Primary	SQL	data	definition	commands.	In	most	cases	you	will	avoid	these	
commands	and	use	a	visual	or	menu-driven	system	to	define	and	modify	tables.

CREATE	SCHEMA	AUTHORIZATION	DBName	Password
CREATE	TABLE	TableName	(Column	Type,	…)
ALTER	TABLE	Table	{Add,	Column,	Constraint,	Drop}
DROP	{Table	TableName	|	Index	IndexName	ON	TableName}
CREATE	INDEX	IndexName	ON	TableName	(Column	ASC/DESC)

Figure 5.38
The	CREATE	TABLE	command	defines	a	new	table	and	all	of	the	columns	that	
it will contain. The NOT NULL command typically is used to identify the key
column(s) for the table. The ALTER TABLE command enables you to add and delete
entire columns from an existing table.

282Chapter 5: Advanced Queries and Subqueries

could create a domain called DomAddress that consists of CHAR (35). Then any
table that used an address column would refer to the DomAddress.

With SQL 92, you identify the primary key and foreign key relationships with
constraints. SQL constraints are rules that are enforced by the database system.
Figure	5.39	 illustrates	 the	syntax	 for	defining	both	a	primary	key	and	a	 foreign	
key for an Order table. First, notice that each constraint is given a name (e.g.,
pkOrder). You can choose any name, but you should pick one that you will recog-
nize later if problems arise. The primary key constraint simply lists the column or
columns that make up the primary key. Note that each column in the primary key
should also be marked as NOT NULL.

The foreign key constraint is easier to understand if you examine the relevant
class diagram. Here you want to place orders only to customers who have data
in the Customer table. That is, the CustomerID in the Order table must already
exist in the Customer table. Hence, the constraint lists the column in the origi-
nal	Order	table	and	then	specifies	a	REFERENCE	to	the	Customer	table	and	the	
CustomerID.

The ALTER TABLE and DROP TABLE commands enable you to modify
the structure of an existing table. Be careful with the DROP command, as it will
remove	the	entire	table	from	the	database,	including	its	data	and	structural	defini-
tion. The ALTER TABLE command is less drastic. It can be used to ADD or DE-
LETE columns from a table. Obviously, when you drop an entire column, all the
data stored in that column will be deleted. Similarly, when you add a new column,
it will contain NULL values for any existing rows.

You can use the CREATE INDEX and DROP INDEX commands to improve
the performance of the database. Indexes can improve performance when re-

CREATE	TABLE	Order
	 (OrderID	 	INTEGER	NOT	NULL,
	 	OrderDate		 DATE,
	 	CustomerID		 INTEGER,

	 CONSTRAINT	pkOrder	PRIMARY	KEY	(OrderID),
	 CONSTRAINT	fkOrderCustomer	FOREIGN	KEY	(CustomerID)
	 			REFERENCES	Customer	(CustomerID)
);

OrderID
OrderDate
CustomerID

CustomerID
LastName
FirstName
Address
…

Order Customer

*

Figure 5.39
Identifying	primary	and	foreign	keys	in	SQL.	Keys	are	defined	as	constraints	that	are	
enforced by the DBMS. The primary key constraint lists the columns that make up
the primary key. The foreign key lists the column (CustomerID) in the current table
(Order) that is linked to a column (CustomerID) in a second table (Customer).

283Chapter 5: Advanced Queries and Subqueries

trieving data, but they can cause problems when many transactions take place in
a short period of time. In general, these commands are issued once for a table.
Typically, indexes are built for primary key columns. Most DBMSs automatically
build those indexes.

Finally, as described in Chapter 4, the CREATE VIEW creates and saves a
new query. The basic syntax is straightforward: CREATE VIEW myview AS SE-
LECT…. The command simply gives a name and saves any SELECT statement.
Again, these commands are almost always easier to create and execute from a
menu-driven	interface.	However,	because	you	may	have	to	create	SQL	data	defi-
nition statements by hand sometime, so it is good to know how to do so.

SQL Data Manipulation Commands
What SQL commands alter the data stored in tables? A third set of SQL com-
mands demonstrates the true power of SQL. The SELECT command retrieves
data, whereas data manipulation commands are used to change the data within the
tables. The basic commands and their syntax are displayed in Figure 5.40. These
commands are used to insert data, delete rows, and update (change) the values of
specific	cells.	Remember	two	points	when	using	these	commands:	(1)	They	oper-
ate on sets of data at one time—avoid thinking in terms of individual rows, and (2)
they utilize the power of the SELECT and WHERE statements you already know.

INSERT and DELETE
As you can tell from Figure 5.40, the INSERT command has two variations. The
first	 version	 (VALUES)	 is	 used	 to	 insert	 one	 row	of	 data	 at	 a	 time.	Except	 for	
some programming implementations, it is not very interesting. Most database sys-
tems provide a visual or tabular data entry system that makes it easy to enter or
edit single rows of data. Generally, you will build forms to make it easy for users
to enter and edit single rows of data. These tools automatically build the single-
row INSERT command. On most systems, the data will be inserted directly to the
tables. In a few cases, you might have to write your own INSERT statement.

The second version of the INSERT command is particularly useful at copy-
ing data from one table into a second (target) table. Note that it accepts any SE-

INSERT	INTO	target	(column1,	column2,	…)
	 VALUES	(value1,	value2,	…)

INSERT	INTO	target	(column1,	column2,	…)
	 SELECT	…	FROM	…

DELETE	FROM	table	WHERE	condition

UPDATE	table
	 SET	Column1=Value1,	Column2=Value2,	…
	 WHERE	condition	

Figure 5.40
Common SQL commands to add, delete, and change data within existing tables. The
commands operate on entire sets of data, and they utilize the power of the SELECT
and WHERE statements, including subqueries.

284Chapter 5: Advanced Queries and Subqueries

LECT statement, including one with subqueries, making it far more powerful than
it looks. For example, in the Pet Store database, you might decide to move older
Customer data to a different computer. To move records for customers who have
not purchased anything since the start of July, you would issue the INSERT com-
mand displayed in Figure 5.41. Notice that the subquery selects the customers
based on the date they placed their latest sale. The INSERT command then copies
the associated rows in the Customer table into an existing OldCustomers table.
The	query	in	Figure	5.41	just	copies	the	specified	rows	to	a	new	table.	The	next	

step is to delete them from the main Customer table to save space and improve
performance. The DELETE command performs this function easily. As Figure
5.42	illustrates,	you	simply	replace	the	first	two	rows	of	the	query	(INSERT	and	
SELECT) with DELETE. Be careful not to alter the subquery. You can use the
cut-and-paste feature to delete only rows that have already been copied to the
backup table. Be sure you recognize the difference between the DROP and DE-
LETE commands. The DROP command removes an entire table. The DELETE
command deletes rows within a table.

UPDATE
The syntax of the UPDATE command is similar to the INSERT and DELETE
commands. It, too, makes full use of the WHERE clause, including subqueries.
The key to the UPDATE command is to remember that it acts on an entire collec-

INSERT	INTO	OldCustomers
SELECT	*
FROM	Customer
WHERE	CustomerID	IN
(SELECT	Sale.CustomerID
	 FROM	Customerr	INNER	JOIN	Sale
	 ON	Customer.CustomerID=Sale.CustomerID
	 GROUP	BY	Sale.CustomerID
	 HAVING	Max(Sale.SaleDate)	<	'01-Jul-2013'));

Figure 5.41
INSERT command to copy older data rows. Note the use of the subquery to identify
the rows to be copied.

DELETE
FROM	Customer
WHERE	CustomerID	IN
	 (SELECT	FROM	Customerr	INNER	JOIN	Sale
	 ON	Customer.CustomerID=Sale.CustomerID
	 GROUP	BY	Sale.CustomerID
	 HAVING	(Max(Sale.SaleDate)	<	'01-Jul-2013'));

Figure 5.42
DELETE command to remove the older data. Use cut and paste to make sure the
subquery is exactly the same as the previous query.

285Chapter 5: Advanced Queries and Subqueries

tion of rows at one time. You use the WHERE clause to specify which set of rows
need to be changed.

In the example in Figure 5.43, managers wish to increase the ListPrice of the
merchandise for cats and dogs. The price for cat merchandise should increase by
10 percent and the price for dog merchandise by 20 percent. Because these are
two different categories, you will often use two separate UPDATE statements.
However, this operation provides a good use for the CASE function. You can re-
duce the operation to one UPDATE statement by replacing the 1.10 and 1.20 val-
ues with a CASE statement that selects 1.10 for Cats and 1.20 for Dogs.

The UPDATE statement has some additional features. For example, you can
change several columns at the same time. Just separate the calculations with a
comma. You can also build calculations from any row within the table or query.
For example, merchandise list price could take into consideration the quantity on
hand with the command SET ListPrice = ListPrice*(1 - 0.001*QuantityOnHand).
This command takes 1/10 of 1 percent off the price for extra items in inventory.

Notice the use of the internal Date() function to provide today’s date in the
last example. Most database systems provide several internal functions that can
be used within any calculation. These functions are not standardized, but you can
generally get a list (and the syntax chart) from the system’s Help commands. The
Date, String, and Format functions are particularly useful.

When using the UPDATE command, remember that all the data in the calcula-
tion must exist on one row within the query. There is no way to refer to a previous
or next row within the table. If you need data from other rows or tables, you can
build a query to join tables. However, you can update data in only a single table
at a time.

Quality: Testing Queries
How do you know if your query is correct? The greatest challenge with com-
plex queries is that even if you make a mistake, you usually get results. The prob-
lem is that the results are not the answer to the question you wanted to ask. The
only way to ensure the results are correct is to thoroughly understand SQL, to
build your queries carefully, and to test your queries.
Figure	5.44	outlines	the	basic	steps	for	dealing	with	complex	queries.	The	first	

step is to break complex queries into smaller pieces, particularly when the query
involves subqueries. You need to examine and test each subquery separately. You
can do the same thing with complex Boolean conditions. Start with a simple con-
dition, check the results, and then add new conditions. When the subqueries are

Figure 5.43
Sample UPDATE command. If the CASE function is not available, use two separate
statements to increase the list price by 10 percent for cats and 20 percent for dogs.

UPDATE	Merchandise
SET	ListPrice	=	ListPrice	*	1.10
WHERE	Category	=	‘Cat’;
UPDATE	Merchandise
SET	ListPrice	=	ListPrice	*	1.20
WHERE	Category	=	‘Dog’;

286Chapter 5: Advanced Queries and Subqueries

correct, use cut-and-paste techniques to combine them into one main query. If
necessary, save the initial queries as views, and use a completely new query to
combine the results from the views. The third step is to create sample data to test
the queries. Find or create data that represents the different possible cases. Opti-
mize queries that will become part of an application and run multiple times. Most
DBMSs have an optimizer that will suggest performance improvements. You
should	also	look	for	alternate	ways	to	write	the	query	to	find	a	faster	approach.

SELECT		DISTINCT	Animal.Category,	Sale.CustomerID
FROM	Sale	INNER	JOIN	Animal	
	ON	Animal.SaleID	=	Sale.SaleID
WHERE	(Animal.Category=N'Dog')

	 AND	Sale.CustomerID	IN	(

	 SELECT	DISTINCT	Sale.CustomerID
	 FROM	Sale	INNER	JOIN	(Merchandise	INNER	JOIN	
SaleItem
	 	ON	Merchandise.ItemID	=	SaleItem.ItemID)
	 	ON	Sale.SaleID	=	SaleItem.SaleID
	 WHERE	(Merchandise.Category=N'Cat')
);

Figure 5.45
Sample query: Which customers who adopted dogs also bought cat products (at any
time)? Build each query separately. Then paste them together in SQL and add the
connecting link. Use sample data to test the results.

Break	questions	into	smaller	pieces.
Test	each	query.
	 Check	the	SQL.
	 Look	at	the	data.
	 Check	computations.
Combine	into	subqueries.
	 Use	the	cut-and-paste	features	to	reduce	errors.
	 Check	for	correlated	subqueries.
Test	sample	data.
	 Identify	different	cases.
	 Check	final	query	and	subqueries.
	 Verify	calculations.
Test	SELECT	queries	before	executing	UPDATE	queries.
Optimize	queries	that	run	multiple	times.
	 Run	a	query	optimizer.
	 Think	about	new	ways	to	structure	the	query.

Figure 5.44
Steps to building quality queries. Be sure there are recent backups of the database
before you execute UPDATE or DELETE queries.

287Chapter 5: Advanced Queries and Subqueries

In terms of quality issues, consider the example in Figure 5.45: List custom-
ers who adopted dogs and also bought cat products. The query consists of four
situations:

1. Customers adopted dogs and cat products on the same sale.
2. Customers adopted dogs and then cat products at a different time.
3. Customers adopted dogs and never bought cat products.
4. Customers never adopted dogs but did buy cat products.
Because there are only four cases, you should create data and test each one. If

there were thousands of possible cases, you might have to limit your testing to the
major possibilities.
The	final	step	in	building	queries	involves	data	manipulation	queries	(such	as	

UPDATE).	You	should	first	create	a	SELECT	query	 that	retrieves	 the	rows	you	
plan to change. Examine and test the rows to make sure they are the ones you
want	to	alter.	When	you	are	satisfied	that	the	query	is	correct,	make	sure	you	have	
a recent backup of the database—or at least a recent copy of the tables you want
to change. Now you can convert the SELECT query to an UPDATE or DELETE
statement and execute it.

Summary
Always remember that SQL operates on sets of data. The SELECT command re-
turns a set of data that matches some criteria. The UPDATE command changes
values of data, and the DELETE command deletes rows of data that are in a speci-
fied	set.	Sets	can	be	defined	in	terms	of	a	simple	WHERE	clause.	The	key	to	un-
derstanding	SQL	is	to	think	of	the	WHERE	clause	as	defining	a	set	of	data.

To create queries to answer complex business questions, break the question
into pieces and build simple queries to retrieve data for each piece. Then combine
the sets of data using inner joins, outer joins, subqueries, or set operators. Subque-
ries are powerful, but be careful to ensure that the query accurately represents the
business questions. You must test subqueries in pieces and make sure you under-
stand exactly what each piece is returning.

In everyday situations, data can exist in one table but not another. For example,
you might need a list of customers who have not placed orders recently. The prob-
lem can also arise if the DBMS does not maintain referential integrity—and you
need	to	find	which	orders	have	customers	with	no	matching	data	in	the	customer	
table. Outer joins (or the NOT IN subquery) are useful in these situations.

The most important thing to remember when building queries is that if you
make a mistake, most likely the query will still execute. Unfortunately, it will not
give you the results you wanted. That means you have to build your queries care-
fully and always check your work. Begin with a smaller query and then add ele-
ments until you get the query you want. To build an UPDATE or DELETE query,
always start with a SELECT statement and check the results. Then change it to
UPDATE or DELETE.

288Chapter 5: Advanced Queries and Subqueries

Key Terms

ALL
ALTER TABLE
ANY
CASE
constraint
correlated subquery
CREATE DOMAIN
CREATE SCHEMA
CREATE TABLE
CREATE VIEW
DELETE
DROP TABLE
equi-join
EXCEPT
EXISTS

FULL JOIN
IN
inequality join
INSERT
INTERSECT
LEFT JOIN
nested query
outer join
reflexive	join
RIGHT JOIN
schema
self join
subquery
UNION
UPDATE

A Developer’s View
Miranda saw that some business questions are more complex than others. SQL
subqueries and outer joins are often used to answer these questions. Practice the
SQL subqueries until you thoroughly understand them. They will save you hun-
dreds of hours of work. Think about how long it would take to write code to
answer some of the questions in this chapter! For your class project, you should
create several queries to test your skills, including subqueries and outer joins.
You should build and test some SQL UPDATE queries to change sets of data. You
should be able to use SQL to create and modify tables.

289Chapter 5: Advanced Queries and Subqueries

Review Questions
1. What is a subquery and in what situations is it useful?
2. What is a correlated subquery and why does it present problems?
3.	 How	do	you	find	items	that	are	not	in	a	list,	such	as	customers	who	have	not	

placed orders recently?
4. How do you join tables when the JOIN column for one table contains data

that is not in the related column of the second table?
5. How do you join a column in one table to a related column in the same table?
6. What are inequality joins and when are they useful?
7. What is the SQL UNION command and when is it useful?
8. What is the purpose of the SQL CASE function?
9.	 What	are	the	basic	SQL	data	definition	commands?
10. What are the basic SQL data manipulation commands?
11. How are UPDATE and DELETE commands similar to the SELECT

statement?

290Chapter 5: Advanced Queries and Subqueries

Exercises

Sally’s Pet Store
Write the SQL statements that will answer questions 1 through 16 based on the
tables in the Pet Store database. Test your queries in the database. Hint: Many are
easier if you split the question into multiple queries.

1. Which suppliers did not deliver any items in September?
2. Which employees did not sell any items in June?
3. Which categories of merchandise were not sold during May?
4. Which breed of Cat has never been adopted through the store?
5. What was the percentage of sales value by merchandise category in March?
6.	 Which	category	of	animal	was	most	likely	(percent)	to	be	adopted	in	the	first	

three months?
7. Which employee had the highest percent of the number of sales (not value) in

January?
8. Which supplier has the highest average percentage of shipping cost to total

order value?
9. List the total adoptions and percentage by adoption group in April.

SupplierID
Name
ContactName
Phone
Address
ZIPCode
CityID

Supplier

AnimalID
Name
Category
Breed
DateBorn
Gender
Registered
Color
Photo
ImageFile
Imageheight
ImageWidth
AdoptionID
SaleID
Donation

Animal

PONumber
OrderDate
ReceiveDate
SupplierID
EmployeeID
ShippingCost

MerchandiseOrder

AdoptionID
AdoptionSource
ContactName
ContactPhone

AdoptionGroup

CityID
ZIPCode
City
State
AreaCode
Population1990
Population1980
Country
Latitude
Longitude

City

PONumber
ItemID
Quantity
Cost

OrderItem

ItemID
Description
QuantityOnHand
ListPrice
Category

Merchandise

EmployeeID
LastName
FirstName
Phone
Address
ZIPCode
CityID
TaxPayerID
DateHired
DateReleased
ManagerID
EmployeeLevel
Title

Employee

SaleID
SaleDate
EmployeeID
CustomerID
SalesTax

Sale

SaleID
ItemID
Quantity
SalePrice

SaleItem

CustomerID
Phone
FirstName
LastName
Address
ZIPCode
CityID

Customer

Category
Registration

Category

Category
Breed

Breed

291Chapter 5: Advanced Queries and Subqueries

10. Which employee has been the top monthly seller the most number of times?
11. What is the amount of money customers spent on cat products after they

adopted a cat?
12. List customers who purchased Cat merchandise in January and March?
13. List employees who ordered items from the same supplier in March and April

(could be different products).

Make a backup copy before attempting the remaining Pet Store queries.
14. Write the SQL CREATE TABLE command to create a new Employee table

with no data.
15. Write the SQL command to copy the data to the new Employee table for

employees who did not sell anything in December.
16. Write the SQL command to delete the employees from the original Employee

table who did not sell anything in December—except for Ms. Smith, the
owner.

17. Write a query to increase the list price of Dog merchandise by 5 percent.

292Chapter 5: Advanced Queries and Subqueries

Rolling Thunder Bicycles
Write the SQL statements that will answer questions 17 through 32 based on the
tables in the Rolling Thunder database. Build your queries in Access.

18. Which employee has been #1 in monthly sales value for the most number of
months in 2010-2011?

19. Which paint colors were not used in 2012?
20. What percent of race bikes sold in 2012 used Shimano, Campy, and SRAM

cranks? (Give the percent of the total for each manufacturer.)
21. List customers who bought a full suspension mountain bike after they had

purchased a regular mountain bike.
22. List all of the people who are managed by Roland Venetiaan.
23. In 2012, which employees who took an order for a bicycle also shipped that

same bicycle? Hint: Connect the Employee table to ShipEmployee.
24. Compute the percentage of value of sales by model type for each year 2010 –

2013.
25. Using a UNION query, list the employees who painted bicycles on March

15, 2012 or framed them on that date (StartDate) (or both). Hint: Join the
Employee table to Painter and then to FrameAssembler.

CustomerID
Phone
FirstName
LastName
Gender
Address
ZIPCode
CityID
BalanceDue

Customer

SerialNumber
CustomerID
ModelType
PaintID
FrameSize
OrderDate
StartDate
ShipDate
ShipEmployee
FrameAssembler
Painter
Construction
WaterBottleBrazeOn
CustomerName
LetterStyleID
StoreID
EmployeeID
TopTube
ChainStay
HeadTubeAngle
SeatTubeAngle
ListPrice
SalePrice
SalesTax
SaleState
ShipPrice
FramePrice
ComponentList

Bicycle

CustomerID
TransactionDate
EmployeeID
Amount
Description
Reference

CustomerTrans

StoreID
StoreName
Phone
ContactFirstName
ContactLastName
Address
ZIPCode
CityID

RetailStore

State
TaxRate

StateTaxRate

ModelType
Description
ComponentID

ModelType

PaintID
ColorName
ColorStyle
ColorList
DateIntroduced
DateDiscontinued

Paint

EmployeeID
TaxpayerID
LastName
FirstName
HomePhone
Address
ZIPCode
CityID
DateHired
DateReleased
CurrentManager
SalaryGrade
Salary
Title
WorkArea

Employee

WorkArea
Description

WorkArea

CityID
ZIPCode
City
State
AreaCode
Population2000
Population1990
Population1980
Country
Latitude
Longitude
SelectionCDF
FIPS
Income2004
Division
StateCode
MSACMSA
MASC
CMSA
<more>

City

SerialNumber
TubeID
Quantity

BicycleTubeUsae

ModelType
Msize
TopTube
ChainStay
TotalLength
GroundClearance
HeadTubeAngle
SeatTubeAngle

ModelType

LetterStyleID
Description

LetterStyle

PurchaseID
EmployeeID
ManufacturerID
TotalList
ShippingCost
Discount
OrderDate
ReceiveDate
AmountDue

PurchaseOrder

ManufacturerID
ManufacturerName
ContactName
Phone
Address
ZIPCode
CityID
BalanceDue

Manufacturer

ManufacturerID
TransactionDate
EmployeeID
Amount
Description
Reference

ManufacturerTrans

PurchaseID
ComponentID
PricePaid
Quantity
QuantityReceived

PurchaseItem

SerialNumber
ComponentID
SubstituteID
Location
Quantity
DateInstalled
EmployeeID

BikeParts

SerialNumber
TubeName
TubeID
Length

BikeTubes

ComponentGroupID
GroupName
BikeType
Year
EndYear
Weight

Groupo

ComponentID
ManufacturerID
ProductNumber
Road
Category
Length
Height
Width
Weight
Year
EndYear
Description
ListPrice
EstimatedCost
QuantityOnHand

Component

TubeID
Material
Description
Diameter
Thickness
Roundness
Weight
Stiffness
ListPrice
Construction
IsActive

TubeMaterial

GroupID
ComponentID

GroupComponent

ComponentName
AssemblyOrder
Description

ComponentName

293Chapter 5: Advanced Queries and Subqueries

26. In 2012, what percent of bicycle sales (by count) were made without the help
of a retail store (StoreID=1 or 2).

27. Which manufacturers did not sell any items to Rolling Thunder Bicycles in
2012?

28. For Road component groups in 2012 (Component.Year), what is the average
percent of the total group weight contributed by the crank?

29. How has the percent share of sales value for Race bikes (to total) changed
over time (by year)?

30. Use SQL to create a new SalesRanking table as shown.

Category SalesLow SalesHigh
Top 0.10 1.0
Acceptable 0.05 0.10
Weak 0.0 0.05

31. Write the query to insert the rows of data row into the table shown in the
previous exercise.

32. Create a query to compute sales by employee by month and the employee’s
percent of total monthly sales. Combine the table data from the table in the
previous exercise to assign the appropriate category to each employee for
each month.

33. Write a query to delete the last row (Weak) in the new SalesRanking table.
34. Write a query to delete the entire SalesRanking table.

294Chapter 5: Advanced Queries and Subqueries

Corner Med
35. List the physicians and the percentage of patients/visits seen by each one for

the month of May. Do not include non-physicians in the computations.
36. For the year, list the top 10 diagnoses and the percentage of times each was

applied.
37. For the month of March, list the percentage of visits covered by each type of

insurance company.
38. For each month, compute the percentage of the number of visits by patient

gender.
39. List the patients who returned for at least one visit after being diagnosed with

J069 (respiratory infection).
40. Which two-letter procedures have not been performed?
41. What is the average number of medications prescribed per visit for each

physician?
42. Which patients who have been diagnosed with ICD10 code E784 have also

been diagnosed (at any time) with code E039?
43. Which patients have been seen by all three physicians (at any time)?
44. Create a summarization of patients that show the percentage by gender and

tobacco use.
45. Use SQL to create a table (VisitCategory) that can be used to categorize

patients by the number of visits in a year:
Category MinVisits MaxVisits
Many 2 20
Seldom 1 2
Rare 0 1

PatientID
LastName
FirstName
DateOfBirth
Gender
Telephone
Address
City
State
ZIPCode
Race
TobaccoUse

Patient

SeqNo
LabelCode
ProdCode
Strength
Units
Rx_OTC
TradeName

DrugListings

VisitID
PatientID
VisitDate
InsuranceCompany
InsuranceGroupCode
InsuranceMemberCode
PatientAmountPaid
DateBillsubmitted
DateInsurancePaid
AmountInsurancePaid
Diastolic
Systolic

Visit VisitID
ICD10CM
ICD9Diagnosis
Comments

VisitDiagnoses

VisitProcedureID
VisitID
ICD10PCS
Comment
EmployeeID
AmountCharged
ICD9Procedure

VisitProcedures

VisitID
DrugSeqNo
DrugCode
Comments

VisitMedications

ICD10CM
Description

ICD10DiagnosisCodes

ICD10PCS
Description
BaseCost
PhysicianRole
TechnicianRole
PhysicianAssistant

ICD10ProcedureCodes

EmployeeID
LastName
FirstName
EmployeeCategory
DateHired
DateLeft
EmergencyPhone

Employee EmployeeID
VacationStart
VacationEnd

EmployeeVacation

EmployeeCategory

EmployeeCategory

1
*

1

*

*

*

1

1

1

1

*

*

*

*

*

1

*

1

Corner
Med

Corner
Med

295Chapter 5: Advanced Queries and Subqueries

46. Write the INSERT commands to add the rows in the table for the previous
exercise.

47. Write a query using the table in the previous query to categorize the patients
by number of visits for one year.

48. Write the SQL command to change the MaxVisits value in the “Many” row
to 30.

49. Write the SQL command to remove the table.
50. The GEMICD9xICD10_CM crosswalk table matches the older ICD9

diagnostic codes to the newer ICD10 codes. Create a query that ignores the
NoDx	entries.	Create	a	second	query	to	find	the	older	ICD9	codes	in	the	
VisitDiagnoses	table	that	do	not	have	an	official	match	in	the	new	ICD10	
code. (Ignore the ICD10 values in the VisitDiagnoses table—which were
created	using	this	process.)	Bonus:	How	would	you	find	codes	for	the	ICD9	
entries that are missing cross matches?

51. The GEMICD9xICD10_PCS crosswalk table matches procedure codes
between	the	older	ICD9	and	newer	ICD10	classifications.	Assume	that	
the VisitProcedures table has only the older ICD9 procedure code and
blank values for the ICD10 codes. Write the query to use the crosswalk
table to match the values and transfer the correct ICD10 entry into the
VisitProcedures table. Note: If you run the query, make a backup copy of the
table and database.

52. The GEMICD9xICD10_PCS crosswalk table maps older ICD9 procedure
codes to the newer ICD10 codes. Are any of the ICD9 codes mapped to more
than one ICD10 code? If so, in the process used in the previous exercise,
what will happen? Which codes will be transferred?

Web Site References

http://www.sigmod.org/ Association	for	Computing	Machinery—
Special	Interest	Group:	Management	of	Data.

http://www.acm.org/dl ACM	digital	library	containing	thousands	of	
searchable	full-text	articles.	Check	library.

http://www.oracle.com/technetwork/indexes/
documentation/index.html

Oracle	online	documentation	library,	including	
SQL	Reference.	(Version	db102	will	change.)

http://msdn.microsoft.com/en-us/library/
ms130214.aspx	

Microsoft	SQL	Server	Books	Online	
reference.

http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/
index.jsp	

IBM	DB2	reference.

http://dev.mysql.com/doc/	 MySQL	Reference.

Additional Reading
Celko, J., Joe Celko’s SQL Puzzles and Answers, 2e, San Mateo: Morgan

Kaufmann, 2006. [Challenging SQL problems with solutions.]
Faroult, Stephane, The Art of SQL, O’Reilly, 2006. [Strategy and performance in

building queries.]

http://www.acm.org/dl

296Chapter 5: Advanced Queries and Subqueries

Appendix: Introduction to Programming
Many books will help you learn to write computer programs. The purpose of this
appendix is to review the highlights of programming and to point out some of the
features that are important to programming within a DBMS. If you are new to pro-
gramming, you should consider reading several other books to explain the details
and logic behind programming.

Variables and Data
One of the most important consequences of programming in a database environ-
ment is that there can be three categories of data: (1) data stored in a table, (2)
data held in a control on a form or report, and (3) traditional data variables that are
used to hold temporary results. Chapter 3 focuses on storing data within tables.
Chapter 6 describes how to create forms and the role of data controls. Chapter 8
provides more details of how the three types of variables interact when building
applications. For now, you must learn details about basic programming variables.

Any procedure can create variables to hold data. A program variable is like a
small box: it can hold values that will be used or transferred later. Variables have
unique names. More importantly, variables can hold a certain data type. Common
types	of	variables	are	displayed	in	Figure	5.1A.	They	can	generally	be	classified	
into three categories: integers (1, 2, -10, …); reals (1.55, 3.14, …); and strings
("123 Main Street", "Jose Rojas", …).
Each	type	of	variable	takes	up	a	defined	amount	of	storage	space.	This	space	af-

fects the size of the data that the variable can hold. The exact size depends on the
particular DBMS and the operating system. For example, a short integer typically
takes 2 bytes of storage, which is 16 bits. Hence it can hold 216 values or numbers
between –32,768 and 32,767. Real numbers can have fractional values. There are
usually two sizes: single and double precision. If you do not need many variables,
it is often wise to choose the larger variables (integers and double-precision re-
als). Although double-precision variables require more space and take longer to
process, they provide room for expansion. If you choose too small of a variable, a
user might crash your application or get invalid results. For example, it would be
a	mistake	to	use	a	2-byte	integer	to	count	the	number	of	customers—since	a	firm	
could generally anticipate having more than 65,000 customers. Along the same

Type Bytes Range
Short
Integer
Long

Float
Double
Decimal

String

2
4
8

4
8
16

any

-32,768	to	32,767
+/-	2,147,483,647
+/-	9,223,372,036,854,775,807

+/-	1.5	10e45	(7	digits)
+/-	5.0	10e324	(15	digits)
+/-	1.0	10e28	(28	digits)

any

Figure 5.1A
Program variable types. Ranges are approximate but supported by most vendors.
Note that decimal variables help prevent round-off errors

297Chapter 5: Advanced Queries and Subqueries

lines, you should use the Currency data type for monetary values. In addition to
handling	 large	numbers,	 it	avoids	 round-off	errors	 that	are	common	to	floating-
point numbers.

Variable Scope
The scope and lifetime of a variable are crucial elements of programming, particu-
larly in an event-driven environment. Variable scope refers to where the variable
is accessible, that is, which procedures or code can access the data in that variable.
The lifetime	identifies	when	the	variable	is	created	and	when	it	is	destroyed.	The	
two properties are related and are generally automatic. However, you can override
the standard procedures by changing the way you declare the variable. In most
systems, the scope and lifetime are based on where the variable is declared.
All	data	variables	should	be	explicitly	declared:	they	should	be	identified	be-

fore they are used. The Basic language uses a Dim statement to declare variables.
Many	other	 languages	 declare	 variables	 by	 specifying	 the	 data	 type	first.	Most	
commonly, the variable is created within the event procedure and is a local vari-
able. When the procedure starts, the local variable is created. Any code within that
procedure can use the variable. Code in other procedures cannot see the variable.
When the procedure ends, the local variable and its data are destroyed.

Figure 5.2A shows two buttons on a form. Each button responds to a Click
event,	so	two	procedures	are	defined.	Each	procedure	can	have	a	variable	called	
i1, but these two variables are completely separate. In fact, the variables are not
created until the button is clicked. Think of the procedures as two different rooms.
When you are in one room, you can see the data for that room only. When you
leave the room, the data is destroyed.

However, what if you do not want the data to be destroyed when the code ends,
or you want to access the variable from other procedures? You have two choices:
(1) Change the lifetime of the variable by declaring it static, or (2) Change the
scope of the variable by declaring it in a different location. You should avoid de-
claring a static variable unless it is absolutely necessary (which is rare). If the vari-
able is static, it keeps its value from the previous time the procedure was called. In
the example, each time the button is clicked, the value for i3 will remain from the
prior click. You might use this trick if you need to count the number of times the
button is clicked.

Module	Code

Sub	Button1_Click()
Dim	i1	As	Integer
i1	=	3

End	Sub

Sub	Button2_Click()
Dim	i1	As	Integer
i1	=	7

End	Sub

Figure 5.2A
Variable scope and lifetime. Each event has its own procedure with independent
variables that are created and destroyed each time a routine is executed.

298Chapter 5: Advanced Queries and Subqueries

A	more	useful	technique	is	to	change	where	the	variable	is	defined.	Figure	5.3A	
shows	that	event	procedures	are	defined	within	a	form	or	a	module, which is a
collection of related procedures. The variable i2	is	defined	for	the	entire	form	or	
module. The lifetime of the variable is established by the form, that is, the variable
is created and destroyed as the form is opened and closed. The scope of the vari-
able is that all procedures in the form can see and change the value. On the other
hand, procedures in other forms or modules do not know that this variable exists.
Procedures	or	functions	also	have	a	scope.	Any	procedure	that	you	define	on	a	

form can be used by other procedures on that form. If you need to access a vari-
able	or	a	procedure	from	many	different	forms	or	reports,	you	should	define	it	on	
a separate module and then declare it as global (or public).

Be careful with global or public variables. A programmer who tries to revise
your code might not know that the variable is used in other procedures and might
accidentally destroy an important value. On forms the main purpose of a global
variable is to transfer a value from one event to another one. For example, you
might need to keep the original value of a text control—before it is changed by a
user—and compare it to the new value. You need a global variable because two
separate	events	examine	the	text	control:	(1)	The	user	first	enters	the	control,	and	
(2)	The	user	changes	the	data.	It	is	sometimes	difficult	to	create	global	or	shared	
variables in certain systems. In these cases, you might need to store the global
variables within a special database table.

Computations
One of the main purposes of variables is to perform calculations. Keep in mind
that these computations apply to individual variables—one piece of data at a time.
If you need to manipulate data in an entire table, it is usually best to use the SQL
commands described in Chapter 5. Nonetheless, there are times when you need
more complex calculations.

Form--Module	Code

Sub	Button2_Click()
i2	=	i2	+	7
End	Sub

Form
Button1
Button2

Dim	i2	As	Integer

Sub	Button1_Click()
i2	=	20
End	Sub

Figure 5.3A
Global	variables.	Variables	that	are	defined	in	the	form’s	General	section	are	
accessible by any function on that form (or module).

299Chapter 5: Advanced Queries and Subqueries

Standard arithmetic operations (add, subtract, multiply, and divide) are shown
in Figure 5.4A. These operators are common to most programming languages.
Some nonstandard, but useful operators include exponentiation (raise to a power,
e.g., 2^3 = 2*2*2 = 8), and integer divide (e.g., 9 \ 2 = 4), which always returns
an integer value. The mod function returns the modulus or remainder of an integer
division (e.g., 15 mod 4 = 3, since 15 - 12 = 3). These last two functions are use-
ful	when	you	need	to	know	how	many	of	some	objects	will	fit	into	a	fixed	space.	
For example, if there are 50 possible lines on a page and you need to print a re-
port with 185 lines, then 185 \ 50 = 3 pages, and 185 Mod 50 leaves 35 lines on a
fourth page.

Most languages support string variables, which are used to hold basic text data,
such as names, addresses, or short messages. A string is a collection (or array)
of characters. Sometimes you will need to perform computations on string vari-
ables. How can you perform computations on text data? The most common tech-
nique is to concatenate (or add) two strings together. For example, if FirstName
is “George” and LastName is “Jones”, then FirstName & LastName is “George-
Jones”. Notice that if you want a space to appear between the names, you have to
add one: FirstName & " " & LastName.

Figure 5.5A lists some of the common string functions. You can learn more
about the functions and their syntax from the Help system. Commonly used func-
tions include the Left, Right, and Mid, which examine portions of the string. For

Concatenation	(&	or	+)
Left,	Right,	Mid,	or	SubStr
Trim,	LTrim,	RTrim
LCase,	UCase
InStr	or	IndexOf
“Frank”	+	“Rose”	→	“Frank	Rose”
Left(“Jackson”,	5)	→		“Jacks”
Trim(“			Maria		“)	→		“Maria”
Len(“Ramanujan”)	→		9
“8764	Main”.IndexOf(“	“)	→		5

Figure 5.5A
Common string functions to add strings, extract portions, examine characters, convert
case, compare two strings, and format numerical data into a string variable.

Operation Common Syntax
Arithmetic
Exponentiation
Integer	Divide
Modulus

+	-	*	/
^	or	Power
\
mod

Figure 5.4A
Common arithmetic operators. Add (+), subtract (-), multiply (*), and divide (/).
Exponentiation and integer arithmetic are often used for special tasks. For example,
integer arithmetic is useful for dividing objects into groups.

300Chapter 5: Advanced Queries and Subqueries

example,	you	might	want	to	see	only	the	first	five	characters	on	the	left	side	of	a	
string.

Standard Internal Functions
As you may recall from courses in mathematics, several common functions are
used in a variety of situations. As shown in Figure 5.6A, these functions include
the standard trigonometric and logarithmic functions, which can be useful in map-
ping and procedures involving measurements. You also will need a function to
compute the square root and absolute value of numbers. The Int (integer) function
is useful for dropping the fractional portion of a number. Most languages also pro-
vide a random number generator, which will randomly create numbers between 0
and 1. If you need another range of numbers, you can get them with a simple con-
version. For example, to generate numbers between 40 and 90, use the following
function: y = 40 + (90 - 40)*Rnd.

In a database environment, you will often need to evaluate and modify dates.
It is also useful to have functions that provide the current date (Date) and time
(Now). Two functions that are useful in business are the DateAdd and DateDiff
functions. As illustrated in Figure 5.7A, the DateAdd function adds days to a giv-
en	date	to	find	some	date	in	the	future.	The	DateDiff	function	computes	the	dif-
ference between two dates. Usually, you will want to compute the number of days
between various dates. However, the functions can often compute the number of
months, weeks, years and so on.

Input and Output
Handling input and output were crucial topics in traditional programming. These
topics are still important, but the DBMS now performs most data-handling rou-

Date,	Now,	Time
DateAdd,	DateDiff

Current	date	and	time
Date	arithmetic:	
DateDue	=	DateAdd(“d”,	30,	Date())

Figure 5.7A
Date and time functions. Business problems often require computing the number of
days between two dates or adding days to a date to determine when payments are
due.

Exp,	Log
Atn,	Cos,	Sin,	Tan
Sqr	or	Sqrt
Abs
Sgn
Int
Rnd

x	=	loge(ex)
Trigonometric	functions
Square	root
Absolute	value:	Abs(-35)	→	35
Signum:	Sgn(-35)	→	-1
Integer:	Int(2.718)	→	2
Random	number

Figure 5.6A
Standard mathematical functions. Even in business applications, you often need basic
mathematical functions.

301Chapter 5: Advanced Queries and Subqueries

tines and the operating system or Web browser handles most of the user interface.
Common forms and reports (Chapters 6 and 7) are used for most input and output
tasks.

Remember that an important feature of a Windows interface is that users con-
trol	the	flow	of	data	entry;	that	is,	the	designer	provides	a	form,	and	users	work	
at their own pace without interruption. Occasionally, you might choose to inter-
rupt	the	user—either	to	provide	information	or	to	get	a	specific	piece	of	data.	One	
common reason is to display error messages. Two basic functions serve this pur-
pose: MsgBox and InputBox. As shown in Figure 5.8A, a message box can con-
tain buttons. The buttons are often used to indicate how the user wants to respond
to some problem or error.

An InputBox is a special form that can be used to enter very small amounts of
text or a single number. Neither the user nor the developer has much control over
the form. In most cases you would be better off creating your own blank form.
Then you can have more than one text box, and you can specify and control the
buttons. The InputBox is usually for temporary use when development time is
extremely limited.

Conditions
The ability to test and respond to conditions is one of the most common reasons
for writing your own procedures. The basic conditional statement (if …then …
else) is relatively easy to understand. The structure is shown in Figure 5.9A. A

If	(Condition1)	Then
			Statements	for	true
Else
			Statements	for	false
			If	(Condition2)	Then
						Statements	for	true
			End	If
End	If

Figure 5.9A
Conditions. Basic conditions are straightforward. Indenting conditions highlights the
relationships.

Figure 5.8A
Sample message box. The message box interrupts the user and displays a few limited
choices. It often handles errors or problems.

302Chapter 5: Advanced Queries and Subqueries

condition is evaluated to be true or false. If it is true, then one set of statements is
executed; otherwise, the second set is performed.

Conditions can be complex, particularly when the condition contains several
AND, and OR connectors. Some developers use a NOT statement to reverse the
value of a condition. Be careful when writing conditions. Your goals are to make
sure that the condition evaluates to the correct value and to make sure that other
developers can understand the code.

You should always include parentheses to specify the order of evaluation and,
for complex conditions, create sample data and test the conditions. Also, indent
your code. Indenting is particularly important for nested conditions, in which the
statements for one condition contain another conditional statement.

The Select Case statement is a special type of conditional statement. Many pro-
cedures will need to evaluate a set of related conditions. As a simple example,
consider what happens if you use a message box with three buttons (Yes, No,
and Cancel). You will have to test the user’s choice for each option. Figure 5.10A
shows how the code might look when you use nested conditions.

Response = 1, 2, 3, 4, 5
Select Case response
 Case 1
 ‘ Statements for 1
 Case 2
 ‘ Statements for 2
 Case 3
 ‘ More Case statements
 Default
End Case

Figure 5.11A
The Select statement. The select statement tests the response variable against several
conditions. If the response matches a case in the list, the corresponding code is
executed.

response = 1, 2, 3, 4, 5
If (response = 1) Then
 ‘ Statements for 1
Else
 If (response = 2) Then
 ‘ Statements for 2
 Else
 If (response = 3) Then
 ‘ More If statements
 End If
 End If
End If

Figure 5.10A
Nested conditions to test for a user response. The code becomes harder to read as
more conditions are added.

303Chapter 5: Advanced Queries and Subqueries

Figure 5.11A shows the same problem written with the Select Case statement.
Note that this code is much easier to read. Now think about what will happen if
you have 10 choices. The If-Then code gets much worse, but the Select Case code
just adds new lines to the bottom of the list.

Loops
Iteration or loops are another common feature in procedures. Although you
should use SQL statements (UPDATE, INSERT, etc.) as much as possible,
sometimes you will need to loop through a table or query to examine each row
individually.

 Some of the basic loop formats are illustrated in Figure 5.12A. The For/Next
loop	is	generally	used	only	if	you	need	a	fixed	number	of	iterations.	The	Do	loop	
is more common. An important feature of loops is the ability to test the condition
at the top or the bottom of the loop. Consider the example in which the condition
says to execute the statements if (x <= 10). What happens when the starting value
of x is 15? If you test the condition at the top of the loop, then the statements in
the loop will never be executed. On the other hand, if you test the condition at the
bottom, then the statements in the loop will be executed exactly one time—before
the condition is tested.

Just as with conditions, it is good programming practice to indent the state-
ments of the loop. Indents help others to read your code and to understand the
logic.	If	there	are	no	problems	within	a	loop,	your	eye	can	easily	find	the	end	of	
the loop.

Be careful with loops: if you make a mistake, the computer may execute the
statements of your loop forever. (On most personal computers, Ctrl+Break will
usually stop a runaway loop.) A common mistake occurs when you forget to
change the conditional variable (x in the examples). In tracking through a data
query, you might forget to get the next row of data, in which case your code will
perform the same operations forever on one row of data. A good programming
practice is to always write loops in four steps: (1) Write the initial condition, (2)
Write the ending statement, (3) Write a statement to update the conditional vari-
able,	and	(4)	Write	the	interior	code.	The	first	three	statements	give	you	the	struc-
ture.	By	writing	and	testing	them	first,	you	know	that	you	will	be	using	the	correct	
data.

Do	Until	(x	>	10)
			‘	Statements
			x	=	x	+	1
Loop

Do	While	(x	<=	10)
			‘	Statements
			x	=	x	+	1
Loop

Do
			‘	Statements
			x	=	x	+	1
Loop	Until	(x	>	10)

For	x	=	1	to	10
			‘	Statements
Next	x

Figure 5.12A
Iteration. All versions of loops follow a common format: initialize a counter value,
perform statements, increment the counter, and test the exit condition. You can test
the condition at the start or end of the loop.

304Chapter 5: Advanced Queries and Subqueries

Subroutines
An important concept in programming is the ability to break the program into
smaller pieces as subroutines or functions. A subroutine is a portion of code that
can	 be	 called	 from	 other	 routines.	When	 the	 subroutine	 is	 finished,	 control	 re-
turns to the program code that called it. The goal of using subroutines is to break
the program into smaller pieces that are relatively easy to understand, test, and
modify.

A subroutine is essentially a self-contained program that can be used by many
other parts of the program. For example, you might create a subroutine that dis-
plays a status message on the screen. As illustrated in Figure 5.13A, you would
write the basic routine once. Then anytime you need to display a status message,
your program calls this routine. By passing the message to the subroutine, the ac-
tual message can change each time. The advantage of using the subroutine is that
you have to write it only once. In addition, your status messages can be standard-
ized	because	the	subroutine	specifies	the	location,	style,	and	color.	To	change	the	
format, you simply modify the few lines of code in the one subroutine. Without
the	subroutine,	you	would	have	to	find	and	modify	code	in	every	location	that	dis-
played a status message.

A data variable that is passed to a function or a subroutine is known as a pa-
rameter. There are two basic ways to pass a parameter: by reference and by
value. The default method used by Microsoft Access is pass-by-reference. In this
case the variable in the subroutine is essentially the same variable as in the origi-
nal program. Any changes made to the data in the subroutine will automatically be
returned to the calling program. For example, consider the two examples in Figure
5.14A. Changes to the variable j2 in the subroutine will automatically be passed
back to the calling program. However, when only the value is passed, a copy is
made in the subroutine. Changes made to the data in the subroutine will not be
returned to the calling program. Unless you are absolutely certain that you want to
alter the original value in the calling program, you should always pass variables
by	value.	Subroutines	that	use	pass-by-reference	can	cause	errors	that	are	difficult	
to	find	in	programs.	Some	other	programmer	might	not	realize	that	your	subrou-
tine changed the value of a parameter.

Main	program
…
StatusMessage “Trying	to	connect.”
…
StatusMessage “Verifying	access.”
…
End	main	program

Sub	StatusMessage (Msg As	String)
‘ Display	Msg,	location,	color

End	Sub

Figure 5.13A
Subroutine. The StatusMessge subroutine can be called from any location. When the
subroutine	is	finished,	it	returns	to	the	calling	program.

305Chapter 5: Advanced Queries and Subqueries

Most languages also enable you to create new functions. There is a slight tech-
nical difference between functions and subroutines. Although subroutines and
functions can receive or return data through pass-by-reference parameters, a func-
tion can return a result or a single value directly to the calling program. For in-
stance, your main program might have a statement such as v1 = Min(x, y). The
function would choose the smaller of the two values and return it to the main
program, where it is assigned to the variable v1.

Summary
The only way to learn how to program is to write your own programs. Reading
books, syntax documentation, and studying code written by others will help, but
the only way to become a programmer is through experience.

As you write programs, remember that you (or someone else) might have to
modify your code later. Choose descriptive variable names. Document your state-
ments with comments that explain tricky sections and outline the purpose of each
section of code. Write in small sections and subroutines. Test each section, and
keep the test data and results in the documentation. Keep revision notes so that
you know when each section was changed and why you changed it.

Main:
j	=	3
DoSum(j)
			‘	j	is	now	equal	to	8
…

Sub	DoSum(By	Ref	j2	As	
Integer)
			j2	=	8
End	Sub

By	Reference
Changes	to	data	in	the	
subroutine	are	passed	back	to	
the	calling	program.

Main:
j	=	3
DoSum(j)
			‘j	is	still	equal	to	3
…

Sub	DoSum(By	Val	j2	As	
Integer)
			J2	=	8
End	Sub

By	Value
Creates	a	copy	of	the	variable,	
so	changes	are	not	returned.

Figure 5.14A
Two methods to pass data to a subroutine. Pass parameters by value as much as
possible to avoid unwanted changes to data.

	Chapter 5: Advanced Queries and Subqueries
	Introduction
	Two-Minute Chapter
	Sally’s Pet Store
	Outer Joins (LEFT JOIN)
	Subqueries: IN and NOT IN
	Subqueries
	Calculations or Simple Lookup
	Calculations for Percentages
	Subqueries and Sets of Data
	Subquery with ANY, ALL, and EXISTS

	Correlated Subqueries
	More Features and Tricks with SQL SELECT
	UNION, INTERSECT, EXCEPT
	Multiple JOIN Columns
	Reflexive Join
	CASE Function
	Inequality Joins
	Exists and Crosstabs
	SQL SELECT Summary

	SQL Data Definition Commands
	SQL Data Manipulation Commands
	INSERT and DELETE
	UPDATE

	Quality: Testing Queries
	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading
	Appendix: Introduction to Programming

