
353

What You Will Learn in This Chapter
•	 Why would you need to use procedural code when SQL is so powerful?
•	 How are SQL commands integrated into more traditional programming structures?
•	 What capabilities exist in procedural code?
•	 How are business rules added to the database?
•	 How does a DBMS handle multiple transaction events?
•	 How do you prevent problems arising when two processes change the same data?
•	 What are the primary rules to ensure integrity of transactions?
•	 How are key values generated?
•	 How can procedural code track row-by-row through a query?
•	 What issues arise when maintaining totals in the database?

Chapter Outline

Database Integrity and 
Transactions

7Chapter

Introduction, 354
Two-Minute Chapter, 355
Procedural Languages, 355

Where Should Code Be Located?, 356
User-Defined Functions, 357
Looking Up Data, 358

Programming Tools, 359
Data Triggers, 360

Statement versus Row Triggers, 361
Canceling Data Changes in Triggers, 
362
Cascading Triggers, 363
INSTEAD OF Triggers, 364
Trigger Summary, 365

Transactions, 366
A Transaction Example, 366
Starting and Ending Transactions, 367
SAVEPOINT, 368

Multiple Users and Concurrent Access, 369
Optimistic Locks, 370
Pessimistic Locks: Serialization, 373
Multiuser Databases: Concurrent 
Access and Deadlock, 373

ACID Transactions, 375
Key Generation, 377

Database Cursors, 378
Cursor Basics, 379
Scrollable Cursors, 380
Changing or Deleting Data with Cursors, 
381
Cursors with Parameters, 383

Merchandise Inventory at Sally’s Pet Store, 
384
Summary, 388
Key Terms, 389
Review Questions, 389
Exercises, 390
Web Site References, 394
Additional Reading, 394



354Chapter  7: Database Integrity and Transactions

A Developer’s View
	 Ariel:	Well, is the application finished?

	Miranda:	No. The basic forms and reports 
are done. But I’m still running into 
some problems.

	 Ariel:	I guess there is always more to do. 
What kinds of problems? 

	Miranda:	Well, the numbers are sometimes 
wrong. It seems to happen when 
several people are working on the 
same data at the same time. And 
the application seems a little slow 
sometimes. And…

	 Ariel:	Whoa. I get the picture. But these 
seem like common problems. Does 
the database system have any tools 
to help?

	Miranda:	I think so. I’m going to start by 
looking at some programming 
topics and data triggers. Then, I 
think indexes will help me with 
performance. 

Introduction
Why would you need to use procedural code when SQL is so powerful? Busi-
ness applications often exhibit several common problems. For example, multiple 
users might try to change the same data at the same time, or multiple changes need 
to be made together, or you need to generate new ID numbers for a table. These 
situations must be handled correctly to ensure the integrity of the data. SQL com-
mands are powerful tools, but in many of these situations, you need the ability to 
execute multiple statements or to choose which command should be run.  Data-
base systems have evolved procedural languages to handle these situations.

Although there are diverse methods to implement procedural languages, it is 
helpful when the language is embedded into the query system. With this approach, 
all of the code and conditions remain within the database definition and constraints 
are enforced automatically for all applications. These conditions are often written 
as data triggers—code that is executed when some data element is modified.

The issues of transactions, concurrent access, and key generation appear in al-
most every business application. This chapter explains the issues involved and 
provides the common solutions. Performance is a tricky issue as databases ex-
pand into huge datasets. Complex queries across many large tables could take a 
long time to run. But, transaction-based applications need to process data quickly. 
Vendors have invested considerable money and time into improving performance. 

Getting Started
Procedural code (programming) is used to handle transactions and other 
operations that must be performed in a specific order. Currently, every 
DBMS has its own proprietary programming language. Although the 
features are similar, the syntax varies. So you need to learn how to write 
some fundamental programs in the DBMS you want to use. Procedur-
al code is needed for tasks such as custom functions, transactions that 
require multiple changes, handling concurrency issues, and generating 
key values.



355Chapter  7: Database Integrity and Transactions

One common solution is to create indexes on the tables. You need to understand 
the basic index technologies to make informed choices to improve your applica-
tion’s performance.

Two-Minute Chapter
SQL is powerful but sometimes it is necessary to use traditional procedural pro-
gramming languages to accomplish tasks. Procedural code executes one operation 
at a time and includes loops and conditional statements. It is often used to exam-
ine one row of data at a time. The large DBMSs integrate procedural statements 
with SQL commands. Many also support writing code in external languages (such 
as C and Java) that can submit SQL statements to store and retrieve data.

Writing procedural code requires several steps. (1) Learning the overall func-
tions and syntax of the commands. (2) Understanding where to place the code 
so that it is executed at the proper time. (3) Testing and debugging. (4) Learning 
when to use procedural code.
The challenge with Step 1 is that the SQL standard has begun defining proce-

dural elements but most systems still rely on their proprietary commands. The 
overall structures are similar but the details are different, which are explained in 
the workbooks. Primary structures include the ability to define Functions, Condi-
tions, and Loops. SQL commands are integrated with programming code by defin-
ing parameters (or variables) within the SQL command that hold values assigned 
from the code.

Step 2 is critical because most systems today are event-driven and code is ex-
ecuted in response to some defined event. Within a database, you typically attach 
code to common data triggers including data UPDATE, INSERT, and DELETE 
events. For example, when a row of data in a table is changed, the DBMS can ex-
ecute your custom code to check various conditions. So you have to first think in 
terms of when your code should be executed.

Step 3 is important with any development method. DBMSs rarely provide ad-
ditional support for testing, so it is critical for programmers to break things into 
small pieces and thoroughly test all of the pieces during development.

In terms of Step 4, several common business situations require the support of 
procedural code. Support for transactions is the most important: Several opera-
tions that must be performed (or failed) together. The classic example is transfer-
ring money from one bank account to another. Handling errors, including issues 
with concurrent access, is another common situation. Some systems (particularly 
Oracle) also require support for generating key values. Other situations arise when 
dealing with creating forms and making them more usable. 

Procedural Languages
How are SQL commands integrated into more traditional programming 
structures? A procedural language is a traditional programming language such 
as C or Java, where you specify the sequence of a set of commands. Common 
SQL commands are not procedural because you tell the DBMS only what you 
want done, not how to do it. Although SQL commands are powerful, sometimes 
you need the more precise control of a procedural language. For example, you 
might want to specify that a group of commands must be executed in a particular 
order and all must be completed for the transaction to succeed. Or, you might 
want to execute some commands only if certain external conditions are true. In 



356Chapter  7: Database Integrity and Transactions

more complex cases, you might need to step through each row in a table to per-
form some difficult computation.

Many varieties of procedural languages exist, but they have elements in com-
mon. All of them have variables, conditional statements (if), loops, and subrou-
tines. Each language has its own syntax, which includes details such as command 
and function names, statement terminators, assignment operators, and whether 
you use parentheses or square brackets for arrays. The syntax is important when 
you write code, but integrated editors help by prompting for various items and 
compilers will pinpoint most syntax errors.

This chapter focuses on the logic needed to handle common database opera-
tions. The main text is generally language neutral, so you can see how the ideas 
apply to any database situation. The workbooks provide specific examples using 
the syntax and structure of individual database systems.

Where Should Code Be Located?
One of the first major questions you face is where the code should be written, 
stored, and executed. Figure 7.1 shows that procedural code can be placed in three 
locations: (1) within the DBMS engine as queries or database triggers, (2) within 
forms and reports, or (3) in external programs. Large, commercial systems, such 
as Oracle, SQL Server, and DB2 have a procedural language embedded in the 
DBMS itself. You write code just as you would write any other query and can mix 
procedural commands with SQL statements. The SQL standard has slowly been 
adding procedural capabilities. But each vendor supports the concepts using a dif-
ferent syntax.

In general, code that relates directly to the data should be created as a database 
trigger inside the DBMS. Placing the code inside the DBMS means it is written 
only once and can be called automatically, regardless of how the data is accessed. 

DBMSTables

Forms	&
Reports

Queries	&	
Triggers

If	(Click)	Then
SELECT	.	.	.

End	If

If	(	.	.	)	Then	
SELECT	.	.	.

Else	.	.	.
UPDATE	.	.	.

End	If

C++
if	(.	.	.)			{
//	embed	SQL
SELECT	…

}

External
Program

(2)

(1)

(3)

Figure 7.1
Location of procedural code. Code can usually be written in the query system, within 
a database form, or in an external program. When possible, code should be placed 
within the query system so that it cannot be by passed.



357Chapter  7: Database Integrity and Transactions

The DBMS will ensure that the code is always executed and not bypassed. Think 
about a security situation where you want to write a note to a log table every time 
someone changes an employee salary. If you rely on programmers to implement 
this code in their forms, they might forget to do it or even do it incorrectly. Ad-
ditionally, someone could create an entirely new form or use a query to change the 
data directly, without executing the security code. Placing the code within the da-
tabase provides a mechanism to ensure that it is run anytime the data is changed, 
regardless of how the modification is generated. In the SQL standard, procedural 
code stored within the database is called a persistent stored module (PSM), and 
related procedures and functions can be stored in developer-defined modules. 
With the release of Office 2010, Microsoft added some rudimentary data macros 
that can be assigned to tables to handle these types of tasks.

Code within forms should concentrate on handling events or custom problems 
within the specific form. On the other hand, placing the code into a separate ex-
ternal file is a technique often used in n-tier client/server systems described in 
Chapter 11. It has the advantage of consolidating the business logic into one loca-
tion. Separating the business logic from the DBMS makes it easier to replace the 
DBMS if desired. Database code in external software also arises on Web sites and 
other situations where data is exchanged with external devices, such as bar code 
scanners or other sensors.

User-Defined Functions
User-defined functions are a good illustration of procedural code. Occasionally 
you need a calculation that will be used by several different queries, reports or 
forms. Even if the computation is relatively simple, placing the code in one loca-
tion makes it substantially easier to find and change later. You can define your own 
function name and perform almost any computation you need using procedural 
code. Figure 7.2 provides an example of a simple function to estimate item costs. 
In practice, this function would be more complex and include tables and queries, 
but keeping it simple focuses on the basic elements of a user-defined function. 
A function is just a set of code designed to perform a defined task. Typically 

this function and task need to be called from multiple locations. Functions are 
passed values and perform computations on these parameters. A value is returned 
to the calling routine. You can also create procedures, which are different from 

Figure 7.2
User-defined function. Placing the business logic in a central location makes it easy 
to modify later. The function can be used in code segments or SELECT statements.

CREATE FUNCTION EstimateCosts 
	 (ListPrice Currency, ItemCategory VarChar) 
RETURNS Currency
BEGIN
	 IF (ItemCategory = ‘Clothing’) THEN
	 	 RETURN ListPrice * 0.5
	 ELSE
	 	 RETURN ListPrice * 0.75
	 END IF
END



358Chapter  7: Database Integrity and Transactions

functions in that they do not return a value. However, in almost all cases, you will 
want to use functions—if only to return error codes. A key feature is that you can 
include procedural statements such as “if” conditions to handle complex logic.

Figure 7.3 shows a function that uses input parameters to update the database. 
Almost all functions and procedures use parameters to pass in values to be used in 
calculations. You can also create local variables to modify the parameters and then 
use them in the SQL statement. Functions can be as complex as you need. The 
procedural language system contains the standard elements of any programming 
language: variables, conditions, loops, and subroutines.
The specific syntax of the module language and parameters depends on the 

DBMS. The versions shown here reflect the most recent SQL standard, which 
is only partially supported by DBMS vendors. Although Microsoft Access does 
not support the CREATE FUNCTION statement, you can build functions in VBA 
code modules.

Looking Up Data
Procedures and functions often need to be able to use data from tables or que-
ries. Obtaining data from a single row is straightforward with the SELECT INTO 
statement. It behaves the same as a standard SELECT statement, but instead of 
displaying the values, it places them into local variables. However, you have to 
be careful to ensure that the SELECT statement returns only a single row of data. 
If you make a mistake in the WHERE condition and return multiple rows, it will 
generate an error.

Figure 7.4 shows how the SELECT INTO statement is used to retrieve a single 
value. The statement can be used to retrieve data from multiple columns. Just add 
another COLUMN INTO VARIABLE on the SELECT line and separate it with 
a comma from the existing line. Notice the difference between the overall ob-
jectives in Figures 7.3 and 7.4: The first hard-codes a maximum value (50000), 
whereas the new approach looks up the maximum raise in a table. This approach 
is better than using a fixed value because you can create a form that enables an 
administrator to change this value quickly. If you leave fixed numbers in your pro-
gram code, a programmer would have to wade through all of the modules to find 
the magic number. In addition, anytime someone has to change program code, 

CREATE FUNCTION IncreaseSalary
	 (EmpID INTEGER, Amt CURRENCY)
RETURNS CURRENCY
BEGIN
	 IF (Amt > 50000) THEN
	 	 RETURN -1	 	 -- error flag
	 END
	 UPDATE Employee SET Salary = Salary + Amt
	 WHERE EmployeeID = EmpID;
	 RETURN Amt;
END

Figure 7.3
Function to update the database. The input parameters are used to specify values in 
the SQL statement. Additional computations can be performed and the parameters 
modified if needed.



359Chapter  7: Database Integrity and Transactions

there is a large risk that additional errors will be introduced. Whenever possible, 
you should place important values into a table and use the lookup process to get 
the current value when it is needed.

Programming Tools
What capabilities exist in procedural code? Ideally, you already know how to 
write program code in a separate language such as Basic, C#, Java, or C++. In 
most situations, you can use these tools to write any level of code you need and 
then embed database calls within that program. Typically, the database calls con-
sist of SQL statements to insert or retrieve data. However, sometimes you will 
have to use the database language built into the DBMS. For instance, when you 
need to examine large amounts of data, it is usually faster to handle the data sole-
ly within the DBMS and return simpler results to other programs. Transferring 
data—even within the same computer—takes time and processing resources. The 
DBMS is already optimized for handling data internally.

The main concepts you need to know with any procedural language are: (1) 
Sequence, (2) Variables, (3) Conditions, (4) Loops, (5) Input and Output, and (6) 
Procedures and functions (subroutines). These are the building blocks or tools that 
are available to build programs.

One. The primary difference between SQL queries and programming languag-
es is the concept of sequence. A procedural language executes one command line 
at a time and then moves to the next one. This process controls the order in which 
commands or steps are executed. In contrast, note that the SQL SELECT com-
mand provides minimal control over sequence. Rows are operated on in any order 
determined by the query optimizer. You can specify the sorting of the final result, 
but not the order in which rows are operated on. Hence, it is relatively easy to see 
situations where a procedural language is necessary, such as when two or more 

CREATE FUNCTION IncreaseSalary
	 (EmpID INTEGER, Amt CURRENCY)
RETURNS CURRENCY
DECLARE
	 CURRENCY MaxAmount;
BEGIN
	 SELECT MaxRaise INTO MaxAmount
	 FROM CompanyLimits
	 WHERE LimitName = ‘Raise’;

	 IF (Amt > MaxAmount) THEN
	 	 RETURN -1	 	 -- error flag
	 END
	 UPDATE Employee SET Salary = Salary + Amt
	 WHERE EmployeeID = EmpID;
	 RETURN Amt;
END

Figure 7.4
Looking up single data elements. The SELECT INTO statement can be used to return 
data from exactly one row in a table or query. The result is stored in a local variable 
(MaxAmount) that you can use in subsequent code or SQL statements.



360Chapter  7: Database Integrity and Transactions

commands need to be executed in a specific sequence. A simple program might 
consist of two INSERT commands—where data is added to one table and then 
referenced by the second INSERT command.

Two. Variables are temporary locations in memory to hold data. They usually 
have a defined data type. Within a DBMS procedural language, the data types 
available match those used within tables, such as integer, float, and date. When 
code is written in more traditional languages such as Basic, C#, and Java, the da-
tabase connector needs to transfer DBMS data types into local variable data types. 
This process is complicated when the database can hold Null values. External pro-
gram code often needs special functions to translate data—watching for problems 
with Null values. One key to understanding variables is to recognize their scope. 
Scope refers to the context or location where a variable is defined. For instance, 
variables declared within a function only exist within that function. The values are 
hidden from code written in other functions.

Three. Conditions. The most common form is IF (condition) THEN … ELSE 
… END IF. Sometimes a CASE or ELSE IF block is available to test multiple val-
ues in one setting. The purpose is to define multiple code sections so that only one 
is executed depending on the value of the condition being tested. The action state-
ments within the conditional element are indented to make them easier to read by 
separating them from the conditional logic.

Four. Loops. Loops define a block of code that is to be executed multiple 
times. The number of times can be fixed; determined by the amount of data such 
as the number of rows in a table; or determined dynamically within the loop. In 
a database environment, the most common use of loops is to define a SELECT 
query on a table to retrieve a set of rows—then execute the code for each row of 
data. This approach is used only when SQL cannot handle the problem. SQL is 
almost always faster at working with sets of rows, but sometimes, procedural code 
is needed when computations must be performed in a specific order.

Five. Input and Output. Code within the database typically needs to retrieve or 
store data in tables. SQL statements are used to handle these operations (SELECT, 
INSERT, UPDATE, and DELETE). The commands can be modified by adding 
parameters created from variables defined in the code. Code that is written on 
forms (or reports) can also access data entered onto the form by users.

Six. Procedures and Functions. These subroutines are used to split the code into 
manageable pieces that are easier to read and to debug. Procedures and functions 
contain code that can be called from multiple locations—so any code that needs to 
be used in more than one location should always be written as a function or proce-
dure. But, even if the code is called only one time, it can be useful to write it as a 
separate function. Smaller functions are easier to debug and they reduce the com-
plexity of the overall program. For example, perhaps you need to write a proce-
dure that performs five different steps. Each step takes 10 lines of code to create. 
Instead of writing one procedure consisting of 50 lines of code, it is better to write 
a main procedure that calls five other procedures—each with the 10 lines of code.

Data Triggers
How are business rules added to the database? Data triggers are procedures 
that are executed when some event arises within the database. The code is written 
in the query system and is saved as a procedure or function within the database. 
By binding the code to the database tables, the DBMS ensures the code is always 
executed when changes are made to the data. The common events that can host 



361Chapter  7: Database Integrity and Transactions

triggers are Update, Insert, and Delete, but some systems enable you to attach 
code to events related to users or the database instance. To understand the role of 
triggers, consider a procedure that is run whenever someone changes the Salary 
column in the Employee table. When the data is changed, your trigger procedure 
is fired to record the person who made the change. With the log, auditors can go 
back and see who made changes to this critical data. The salary example is a com-
mon use of data triggers, which is to add specific security or auditing features to 
the database. They can also be used to handle business events, such as monitoring 
when quantity on hand drops below some level and generating an e-mail message 
or an EDI order to a supplier.
Figure 7.5 lists the basic SQL commands that support triggers. The main data 

triggers on the rows and columns each have two attributes: BEFORE and AFTER. 
For example, you can specify a procedure for BEFORE UPDATE and a different 
procedure for AFTER UPDATE. The BEFORE UPDATE event is triggered when 
a user attempts to change data, but before the data is actually written to the data-
base. The AFTER UPDATE trigger is fired once the data has been written. You 
choose the event based on what you want to do with your application. If you need 
to check data before it is written to the database, you need to use a BEFORE trig-
ger. For instance, you might want to perform a complicated validation test before 
saving data. On the other hand, if you want to record when data was changed or 
need to alter a second piece of data, you can use an AFTER trigger.

Statement versus Row Triggers
The SQL standard defines two levels of triggers: (1) triggers may be assigned to 
the overall table or (2) they may be assigned to fire for each row of data being 
modified. Figure 7.6 shows the timing of the various triggers for an UPDATE 
command. Triggers created to the overall table are fired first (BEFORE UPDATE) 
or at the very end (AFTER UPDATE). Then individual row triggers are fired be-
fore or after each row being examined. For row-level triggers, you can also add 
conditions that examine the row data to decide if the trigger should be fired or ig-
nored. For instance, you might add a row trigger in the Salary case that fires only 
for employees in a certain division. Note that this condition is completely separate 
from the original UPDATE WHERE statement. The trigger condition is used only 
to decide whether or not to fire the trigger.
Figure 7.7 shows a sample trigger that fires whenever a row is changed in the 

Employee table. Notice that it is a row-level trigger because of the FOR EACH 
ROW statement. The example also illustrates that triggers can examine and use 
the data stored in the target table before it is changed (OLD ROW) and after it has 
been changed (NEW ROW). In this situation, the original salary and new salary 
are both recorded to the log table. With this information, security managers and 
auditors can quickly query the log table to identify major changes to salary and 

	 INSERT
BEFORE	 DELETE	 AFTER
	 UPDATE

Figure 7.5
Data triggers. You can set procedures to execute whenever one of these actions 
occurs. Row events can be triggered before or after the specified event occurs.



362Chapter  7: Database Integrity and Transactions

then investigate further to ensure the changes were legitimate. You do have to be 
careful with the OLD and NEW data. For example, the NEW data has not yet been 
created in a BEFORE UPDATE trigger, so it cannot be accessed. Also, you cannot 
alter the OLD data within your trigger code.

Canceling Data Changes in Triggers
One of the uses of triggers is to examine changes in detail before they are writ-
ten to the database. The BEFORE UPDATE and BEFORE INSERT triggers are 
often used to validate complex conditions. You also might want to provide more 
cautious checks before deleting data. In these cases, the structure of the trigger is 
straightforward. The key element is that you need a way to stop the original SQL 
statement from executing. The WHEN condition is used to examine the row that 
is scheduled to be deleted. As shown in Figure 7.8, the SIGNAL statement raises 

UPDATE	Employee
SET	Salary	=	Salary +	10000
WHERE	EmployeeID=442	
OR	EmployeeID=558

time

Before	Update
On	table

After	Update
On	table

Before	Update
Row	442

After	Update
Row	442

Update
Row	442

… other	rows

Triggers for overall table

Triggers for each row

Figure 7.6
Update triggers can be assigned to the overall table and fire once for the entire 
command, or they can be assigned to fire for each row being updated.

CREATE TRIGGER LogSalaryChanges
AFTER UPDATE OF Salary ON Employee
REFERENCING	 OLD ROW as oldrow
	 NEW ROW AS newrow
FOR EACH ROW
	 INSERT INTO SalaryChanges 
	 (EmpID, ChangeDate, User, OldValue, NewValue)
	 VALUES 
	 (newrow.EmployeeID, CURRENT_TIMESTAMP,
	 CURRENT_USER, oldrow.Salary, newrow.Salary);

Figure 7.7
Trigger to log the users who change an employee salary. The trigger fires any time 
the salary is updated, regardless of the method used to alter the data. It is a useful 
security tracing technique for sensitive data because it cannot be circumvented, 
except by the owner of the trigger. 



363Chapter  7: Database Integrity and Transactions

an error condition that prevents the row from actually being deleted. The actual 
signal condition (CANNOT_DELETE_PRESIDENT) can be almost anything, 
but it must be defined as a constant in the overall module. Note that most database 
system vendors have not yet adopted the SIGNAL keyword, so the actual syntax 
you need will depend on the system (and version) that you are using. The work-
books give the actual cancel method and syntax needed for each specific DBMS. 
For instance, Oracle uses the function: Raise_Application_Error, whereas Micro-
soft SQL Server uses Raiserror.

In general, you should try to avoid using triggers for simple check conditions. 
Instead, use the standard SQL conditions (e.g., PRIMARY KEY, FOREIGN KEY, 
and CHECK) because they are more efficient and are less likely to cause addi-
tional problems. But sometimes you need to create complex conditions that are 
difficult to handle with simple conditions.

Cascading Triggers
A serious complication with triggers is that a database can have many triggers 
on each table. Cascading triggers arise when a change that fires a trigger on one 
table causes a change in a second table, that triggers a change in a third table, and 
so on. Figure 7.9 shows a common inventory situation. When an item is sold, a 
new row is added to the SaleItem table that contains the quantity sold. Because 
the item has been sold, the quantity on hand is updated in the Inventory table. A 
trigger on the Inventory table then checks to see if the QOH is below the reorder 
point. If it is, a new order is generated and sent electronically to a supplier, result-
ing in inserts on the Order and OrderItem tables. 

There is nothing inherently wrong with cascading triggers. However, long 
chains of updates can slow down the system. They also make it difficult to debug 
the system and find problems. In the example, you might be looking at a problem 
in the OrderItem table, but it could have been caused by an error in the trigger 
code for the SaleItem table. The longer the chain, the more challenging it is to 
identify the source of problems.
A more difficult problem can potentially arise with cascading triggers. What 

happens when the chain loops on itself? Figure 7.10 shows an example of the 
problem. A company has embedded several rules about the methods of paying 
employees. When the salary reaches a certain level, the employee is eligible for 
bonuses. When the employee has already received substantial bonuses, the bonus 
amount is limited and the employee is granted additional stock options. If the lev-

CREATE TRIGGER TestDeletePresident
BEFORE DELETE ON Employee
REFERENCING OLD ROW AS oldrow
FOR EACH ROW
	 WHEN (oldrow.Title = ‘President’)
	 	 SIGNAL CANNOT_DELETE_PRESIDENT;

Figure 7.8
Canceling the underlying SQL command. This trigger examines the data for the 
employee row being deleted. The company always wants to keep data on any 
employee with the president title. The WHEN condition evaluates each row. The 
SIGNAL statement raises an error to prevent the underlying delete from executing. 



364Chapter  7: Database Integrity and Transactions

el of stock options is substantial, the original salary is reduced. But that takes the 
system back to the beginning, and the salary change could trigger another round 
of updates. Depending on the computations, this loop could diverge so that the 
numbers get larger and larger (or increasingly negative), and the computations 
never end. For this reason, the SQL standard is defined to forbid trigger loops. 
Systems that follow the standard are supposed to monitor the entire chain of up-
dates, and if it encounters a loop, it should cancel changes and issue a warning. 
Even if the system is supposed to identify these loops, you should always check 
the system yourself to make sure that these problems will not arise. Obviously, the 
system is easier to check if there are only a limited number of triggers. If you can 
list the triggers in the order shown here, it is fairly easy to see the loop. However, 
systems rarely provide this option. Instead, you have to look through all of the 
database triggers and draw your own charts.

INSTEAD OF Triggers
Some database systems support the INSTEAD OF option as an even stronger type 
of trigger. A standard trigger runs your code in addition to performing the underly-
ing function (DELETE, INSERT, or UPDATE). The INSTEAD OF option com-
pletely replaces the underlying command with your code. So, even if the change 
should be written to the database, you will have to write the additional SQL state-
ments to take the appropriate action. Although this process seems more complicat-
ed, it is a useful trick for making queries updateable. Recall that a query that joins 
multiple tables generally is not updateable; data cannot be added to the query be-
cause the system does not always know which table gets the new row. To solve the 
problem, you can add an INSTEAD OF trigger to the query. Then, changes that 
are needed can be written to the individual tables with separate SQL statements

Tables Triggers and Timing
Sale(SaleID, SaleDate, …)
SaleItems(SaleID, ItemID, Quantity, …)

AFTER INSERT ON SaleItems
	 UPDATE Inventory
	 SET QOH = QOH – newrow.Quantity

Inventory(ItemID, QOH, …)
AFTER UPDATE ON Inventory
	 WHEN newrow.QOH < newrow.Reorder
	 	 INSERT {new Order}
	 	 INSERT {new OrderItem}

Order(OrderID, OrderDate, …)
OrderItem(OrderID, ItemID, Quantity, …)

Figure 7.9
Cascading triggers. With triggers defined on multiple tables, a change in one table 
(SaleItem) can cascade into changes in other tables. Here, when an item is sold, 
quantity on hand is updated. If QOH is below the reorder point, a new order is 
generated and sent. 



365Chapter  7: Database Integrity and Transactions

Trigger Summary
Your first look at database triggers might seem overwhelming. Any table can 
contain trigger code before and after three different events. You can even write 
multiple triggers for each event. Do you really need to write database triggers? 
How do you determine which event to use? The first answer is that you should be 
conservative in using triggers. Use them to establish critical business rules and 
monitoring that need to be centralized. Database triggers are convenient and pow-
erful, making it easy to ensure that relatively complex tasks are handled correctly. 
However, they are difficult to debug and explain to other developers.
The answer to the second question is trickier. You first need to understand the 

detailed nature of the business rule. Choose the database trigger that provides 
the most direct application of the rule. For example, if you need a rule related to 
changing inventory levels, add the trigger to the Items table; not the SaleItems 
table. When in doubt, write the rule in several locations and test each version. One 
of the main indicators of success is when your rule fires exactly one time. If the 
rule does not fire during a test run, it is probably too far away from the desired 
table. If it fires repeatedly for one business operation, the rule is at too detailed of 
a level (such as on the SaleItems table instead of the Sale table).

Tables Triggers and Timing
1 Employee(EID, Salary)

AFTER UPDATE
	 IF newrow.Salary > 100000 THEN
	 	 Add BonusPaid
	 END

2 BonusPaid(EID, BonusDate, Amount)
AFTER UPDATE or INSERT
	 IF newrow.Bonus > 50000 THEN
	 	 Reduce Bonus
	 	 Add StockOptions
	 END

3 StockOptions(EID, OptionDate, Amount, SalaryAdj)
AFTER UPDATE Or INSERT
	 IF newrow.Amount > 100000 THEN
	 	 Reduce Employee Salary
	 END

4 Return to Step 1

Figure 7.10
Trigger loop. Consider what happens when cascading triggers create a loop, where 
one trigger returns to alter a table that generated the original change. This loop would 
set up iterations that might converge or diverge. Even if the loop converges, it will 
eat up considerable resources. 



366Chapter  7: Database Integrity and Transactions

Transactions
How does a DBMS handle multiple transaction events? When building appli-
cations, it is tempting to believe that components will always work and that prob-
lems will never occur. Tempting, but wrong. Even if your code is correct, prob-
lems can develop. You might face a power failure, a hardware crash, or perhaps 
someone accidentally unplugs a cable. You can minimize some of these problems 
by implementing backup and recovery procedures, storing duplicate data to differ-
ent drives, and installing an uninterruptible power supply (UPS). Nevertheless, no 
matter how hard you try, failures happen.

A Transaction Example
An error that occurs at the wrong time can have serious consequences. In particu-
lar, many business operations require multiple changes to the database. A trans-
action is defined as a set of changes that must all be made together. Consider the 
example in Figure 7.11. You are working on a system for a bank. A customer goes 
to an online banking application and instructs it to transfer $1,000 from savings to 
a checking account. This simple transaction requires two steps: (1) subtracting the 
money from the savings account balance and (2) adding the money to the check-
ing account balance. The code to create this transaction will require two updates 
to the database. For example, there will be two SQL statements: one UPDATE 
command to decrease the balance in savings and a second UPDATE command to 
increase the balance in the checking account.

You have to consider what would happen if a machine crashed in between these 
two operations. The money has already been subtracted from the savings account, 
but it will not be added to the checking account. It is lost. You might consider 
performing the addition to checking first, but then the customer ends up with extra 
money, and the bank loses. The point is that both changes must be made success-
fully. The other option is that both operations can fail—leaving the customer and 
the bank at the starting point. If you have a choice, you want all operations to suc-
ceed, but keep in mind that total failure is better than partial success in these cases.

Steps Savings Balance Checking Balance
0. Start 5,340.92 1,424.27
1. Subtract 1,000 4,340.92 1,424.27
2. Add 1,000 4,340.92 2,424.27

Problem arises if transaction is not completed
1. Subtract 1,000 4,340.92 1,424.27
2. Machine crashes 1,000 is gone

Figure 7.11
Transactions involve multiple changes to the database. To transfer money from a 
savings account to a checking account, the system must subtract money from savings 
and add it to the checking balance. If the machine crashes after subtracting the money 
but before adding it to checking, the money will be lost.



367Chapter  7: Database Integrity and Transactions

Starting and Ending Transactions
How do you know that both operations are part of the same transaction? It is a 
business rule—or the definition of a transfer of funds. The real problem is: How 
does the computer know that both operations must be completed together? As the 
application developer, you must tell the computer system which operations be-
long to a transaction. To do that you need to create procedural code and mark the 
start and the end of all transactions inside your code. When the computer sees 
the starting mark, it starts writing all the changes to a log file. When it reaches 
the end mark, it makes the actual changes to the data tables. If something goes 
wrong before the changes are complete, when the DBMS restarts, it examines the 
log file and completes any transactions that were incomplete. From a developer’s 
perspective, the nice part is that the DBMS handles the problem automatically. All 
you have to do is mark the start and the end of the transaction.

Transactions illustrate the need for procedural languages. As shown in Figure 
7.12, the multiple UPDATE statements need to be stored in a module function 
or procedure. In this example, the two UPDATE statements must be completed 
together or fail together. The START TRANSACTION statement is optional (in 
the SQL standard) but highlights the beginning of the transaction. If both updates 
complete successfully, the COMMIT statement executes, which tells the DBMS 

CREATE FUNCTION TransferMoney(Amount Currency, 
	 	 AccountFrom Number,AccountTo Number) 
	 RETURNS NUMBER
curBalance Currency;
BEGIN
	 DECLARE HANDLER FOR SQLEXCEPTION
	 BEGIN
	 	 ROLLBACK;
	 	 Return -2;	 	 -- flag for completion error
	 END;
	 START TRANSACTION;	 -- optional
	 SELECT CurrentBalance INTO curBalance 
	 FROM Accounts WHERE (AccountID = AccountFrom);
	 IF (curBalance < Amount) THEN
	 	 RETURN -1;	 -- flag for insufficient funds
	 END IF
	 UPDATE Accounts 
	 SET CurrentBalance = CurrentBalance – Amount
	 WHERE AccountID = AccountFrom;
	 UPDATE Accounts
	 SET CurrentBalance = CurrentBalance + Amount
	 WHERE AccountID = AccountTo;
	 COMMIT;
	 RETURN 0;	 	 	 -- flag for success
END;

Figure 7.12
Transaction to transfer money. If the system crashes before the end of the transactions 
(Commit), none of the changes are written to the database. On restart, the changes 
may all be rolled back, or the transaction restarted. 



368Chapter  7: Database Integrity and Transactions

to save all of the changes. If an unexpected error arises, the ROLLBACK state-
ment executes so none of the changes are saved. Most systems handle the transac-
tion requirement by writing all changes to an intermediate log file. If something 
goes wrong with the transaction, the system can recover the log file and rollback 
or complete the transaction.

Notice that the START TRANSACTION line comes before the initial SELECT 
statement. This might seem unnecessary, since it appears that only the UPDATE 
commands need to be within the transaction. There is a syntax reason for placing 
this statement first: Any SELECT statement automatically initiates a new transac-
tion. However, as will be explained in the section on concurrency, there is a good 
reason for starting the transaction before this SELECT statement. Think about 
things that can go wrong if another process tries to modify the data retrieved by 
the SELECT statement, before this transaction is finished.

SAVEPOINT
Sometimes, you need intermediate points in a transaction. Some steps are more 
critical than others. You might have some optional changes that would be useful 
to save, but if they fail, you still need to ensure that the critical updates are com-
mitted. The SAVEPOINT technique divides transaction procedures into multiple 
pieces. You can roll back a transaction to the beginning, or to a specific SAVE-
POINT. Figure 7.13 illustrates the process and shows the syntax to set a SAVE-
POINT and rollback to it. As indicated, it can be used to mark a set of risky steps 
that you would like to include in the update but are not required to use. Conse-
quently, if the updates fail for the risky section, you can discard those changes and 
still keep the required elements that were defined at the beginning of the transac-
tion. Generally, you could accomplish the same thing by using multiple COMMIT 
statements, but sometimes the optional code might include a calculation that you 
want to include in the final result. Without the SAVEPOINT option, you might 
have to write the final value more than once.

START	TRANSACTION;
SELECT	…
UPDATE	…
SAVEPOINT	StartOptional;
UPDATE	…
UPDATE	…
If	error	THEN

ROLLBACK	TO	SAVEPOINT	StartOptional;
END	IF
COMMIT;

time

start
Required	elements

SAVEPOINT
StartOptional

Risky	steps
commit

Partial	
rollback

Figure 7.13
SAVEPOINT. A SAVEPOINT enables you to rollback to an intermediate point in the 
procedure. You can set multiple SAVEPOINTS and choose how far back you want to 
rollback the changes.



369Chapter  7: Database Integrity and Transactions

Multiple Users and Concurrent Access
How do you prevent problems arising when two processes change the same 
data? One of the most important features of a database is the ability to share 
data with many users or different processes. This concept is crucial in any modern 
business application: Many people need to use the application at the same time. 
However, it does create a potential problem with database integrity: What happens 
when two people try to change the same data at the same time? This situation is 
known as concurrent access.  Consider the example of an Internet order sys-
tem shown in Figure 7.14. The company records basic customer data and tracks 
charges and receipts from customers. Customers can have an outstanding balance, 
which is money they currently owe. In the example, Jones owes the company 
$800. When Jones makes a payment, a clerk receives the payment and checks for 
the current balance ($800). The clerk enters the amount paid ($200), and the com-
puter subtracts to find the new balance due ($600). This new value is written to 
the customer table, replacing the old value. So far, no problem. A similar process 
occurs if Jones makes a new purchase. As long as these two events take place at 
different times, there is no problem.
However, what happens if the two transactions do occur together? Consider 

the following intermingling: (1) The payments clerk receives the payment, and 
the computer retrieves the current amount owed by Jones ($800).  (2) The clerk 
enters the $200 payment. Before the transaction can be completed, Jones places a 
new order on the Internet for $150 of new merchandise. (3) The Web server also 
reads the current balance owed ($800) and adds the new purchases. Now, before 
this transaction can be completed, the first one finishes. (4) The payments clerk’s 
computer determines that Jones now owes $600 and saves the balance due. (5) 
Finally, the Web server adds the new purchases to the balance due. (6) The order 
computer saves the new amount due ($950). Customer Jones is going to be justifi-
ably upset when the next bill is sent. What happened to the $200 payment? The 
answer is that it was overwritten (and lost) when the new order change was mixed 
in with the receipt of the payment.

Receive Payment Balance Place New Order
1. Read balance	 800 800
2. Subtract Pmt.	 -200

3. Read balance	 800
4. Save balance	 600 600

5. Add order	 150
950 6. Write balance	 950

Figure 7.14
Concurrent access.  If two processes try to change the same data at the same time, the 
result will be wrong. In this example the changes made when the payment is received 
are overwritten when a new order is placed at the same time. 



370Chapter  7: Database Integrity and Transactions

Optimistic Locks
Two common methods exist to solve the problem of concurrent changes (opti-
mistic and pessimistic). Today, with fast computer speeds the DBMS can process 
transactions quickly so there is a lower probability of concurrency problems. An 
optimistic lock begins with the assumption that collisions are rare and unlikely 
to arise. If they do arise, it is easier to handle the situation at that time. Han-
dling problems is straightforward and takes less DBMS overhead. Particularly in 
distributed database environments, it is often easier and faster to use optimistic 
locking. 

The key to understanding optimistic locks is to realize that they are not really 
locks; the DBMS lets your program read any piece of data needed. When your 
program attempts to change the data, the DBMS rereads the database and com-
pares the currently stored value to the one it gave you earlier. If there is a differ-
ence between the two values, it signifies a concurrency problem because someone 
else changed the data before you were able to finish your task. The DBMS then 
raises an error and expects your program to deal with it. In summary, optimistic 
locking can improve performance, but it requires you to deal with potential colli-
sions. Figure 7.15 outlines the basic process. The key to the process lies in modi-
fying the UPDATE command by adding a WHERE clause similar to: WHERE 
Amount = oldAmount. The “oldAmount” value is the original value stored in a 
variable when the transaction begins.

The preferred solution to collisions using optimistic locks is to rollback any 
changes you have already made, and restart your code to read the current value 
from the database, re-compute your changes, and write the new value to the data-
base. Consider the example of the orders in Figure 7.16. The function first reads 
the current value of the balance into memory. After completing some other tasks 
(slow code), it attempts the UPDATE command, with one twist. It specifies that 
the UPDATE command only applies to the row with the given Account Num-
ber and with the original Amount value. If the value was changed by a second 
transaction, this UPDATE command will not alter any rows. The error test fol-
lowing the UPDATE command will recognize if the changes were successful or 
not. If successful, the routine is done and it exits. If the changes failed, you have 

Receive Payment Balance Place New Order
1. Read balance	 800 800
2. Subtract Pmt.	 -200

3. Read balance	 800
4. Save balance	 600 600 Error: Blocked

3. Read balance	 600
4. Add order	 150

950 5. Write balance	 750

Figure 7.15
Serialization. The first process locks the data so that the second process cannot even 
read it. Concurrent changes are prevented by forcing each process to wait for the 
earlier ones to be completed.



371Chapter  7: Database Integrity and Transactions

complete control over what to do. In this case, it makes sense to go back and pick 
up the newly revised Amount and try again. To be safe, you should add a counter 
to the number of retries. If the count reaches too large of a number, this routine 
should simply give up and produce an error code indicating that it is not possible 
to update the data at this time. 

One catch with the UPDATE command is that you have to be careful with Null 
values. Recall from queries that a condition of the form Amount = Null will not 
work correctly. Instead, you have to write Amount Is Null. Consequently, if the 
original value might be missing, the comparison test is more complicated:

((Amount = oldAmount) OR (Amount IS Null AND oldAmount IS Null))

One of the strengths of the optimistic approach is that it works with any DBMS, 
even if multiple distributed databases are involved in the transactions. However, it 
does require that programmers write and validate the proper code for every single 
update. Consequently, it makes sense to create a code library that contains a gener-
ic version of the UPDATE command that can be called for almost any transaction.

The other powerful feature of this approach is that the program code can con-
tain relatively sophisticated analysis to automatically handle common update 
problems. The other optiona of a pessimistic lock usually just blocks or delays a 
transaction which forces users to slow down or solve problems themselves. On the 
other hand, the optimistic lock realized that it simply had to get the new balance 
and use it to compute the final amount. No intervention and almost no delay were 
involved.

Today it is possible to reduce the collisions and concurrent access issues. Focus 
on using the DBMS to handle all updates. Avoid computing values in code or on 
forms. Consider Web-based forms which are notoriously slow. The form shows 
customer account data to a clerk. The clerk enters a value for a payment receipt. 
If this value is added to the current balance on the form or on the Web server, it 
runs the risk of a collision when the total is written back to the DBMS. This col-

CREATE FUNCTION ReceivePayment (
	 AccountID NUMBER, Amount Currency) RETURNS NUMBER
BEGIN
	 DECLARE HANDLER FOR SQLEXCEPTION
	 BEGIN
	 	 ROLLBACK;
	 	 RETURN -2;
	 END
	 SET TRANSACTION SERIALIZABLE, READ WRITE;
	 UPDATE Accounts
	 SET AccountBalance = AccountBalance - Amount
	 WHERE AccountNumber = AccountID;
	 COMMIT;
	 RETURN 0;
END

Figure 7.16
Transaction to transfer money. If the system crashes before the end of the transactions 
(Commit), none of the changes are written to the database. On restart, the changes 
may all be rolled back, or the transaction restarted. 



372Chapter  7: Database Integrity and Transactions

lision can be avoided by computing the total within the DBMS using the update 
statement:
UPDATE Customer
SET Balance = Balance + NewValue
WHERE CustomerID=@CustomerID;

 The DBMS simply adds the new value to whatever total currently exists in the 
table. Your code does not need to test for concurrency issues. Of course, a DBMS 
running parallel processors (and multithreading) would have to internally monitor 
concurrency issues when running multiple update commands at the same time. 
But that work is handled by the DBMS vendor.

The other way to minimize concurrency issues is to avoid storing any totals. 
Transaction changes are simply written to a table along with time stamps. Totals 
are computed from this log table whenever they are needed. However, in some 

Process 1 Data A Data B Process 2
1. Lock Data A

Locked By 1 2. Lock Data B
3. Wait for Data B Locked By 2

4. Wait for Data A

Figure 7.17
Deadlock. Process 1 has locked Data A and is waiting for Data B. Process 2 has 
locked Data B and is waiting for Data A. To solve the problem, one of the processes 
has to back down and release its lock.

WaitWaitProcess	7

LockWaitProcess	6

WaitProcess	5

WaitLockProcess	4

LockProcess	3

LockWaitProcess	2

WaitLockProcess	1

Resource	EResource	DResource	CResource	BResource	A

WaitWaitProcess	7

LockWaitProcess	6

WaitProcess	5

WaitLockProcess	4

LockProcess	3

LockWaitProcess	2

WaitLockProcess	1

Resource	EResource	DResource	CResource	BResource	A

Figure 7.18
Lock manager. A global lock manager tracks all locked resources and associated 
processes. If it detects a cycle, then a deadlock exists, and the lock manager instructs 
processes to release locks until the problem is solved.



373Chapter  7: Database Integrity and Transactions

situations you still want to monitor concurrency. For instance, you do not want 
two people to buy the last seat on an airplane. 

Pessimistic Locks: Serialization
A second solution to the problem of concurrent access is to prevent collisions by 
forcing transactions to be completely isolated. As shown in Figure 7.17, the se-
rialization process forces transactions to run separately so that a second process 
cannot even read the data being modified by the first process. The first process 
requests a lock on the balance. Any process that attempts to read that data before 
the lock is released will receive an error message. A key feature in this approach is 
the ability of the DBMS to set row-level locks to minimize interference with other 
processes. Some early systems used table-level locks, so no one could read the 
data while one balance was being updated!

The method of invoking this type of lock mechanism depends heavily on the 
DBMS. SQL 99 defined a standard method of specifying the transaction lock, but 
it has not been widely implemented yet. Figure 7.18 shows the basic logic, but 
keep in mind that the syntax will be different for each DBMS. The main step is 
to specify the isolation level to SERIALIZABLE in the SET TRANSACTION 
statement. The DBMS then knows to lock each data element you will be using 
so that other transactions will be prevented from reading the data until the first 
changes have been committed. However, it is important that all of the transaction 
procedures contain error-handling code. Otherwise, when the second transaction 
(RecordPurchase is almost identical to this one) runs, it will crash and display a 
cryptic error message when it tries to update or read the data.

The concept of serialization is logical, and it emphasizes the importance of 
forcing each transaction to complete separately. However, it is based on the tech-
nique of a pessimistic lock—where each transaction assumes that concurrent in-
terference will always occur. Every time the transaction runs, it places locks on 
all of the resources that will be needed. This technique slows down the processing 
and can result in another serious problem described in the following section.

Multiuser Databases: Concurrent Access and Deadlock
Concurrent access is a problem that arises when two processes attempt to alter the 
same data at the same time. When the two processes intermingle, generally one 
of the transactions is lost and the data becomes incorrect. For most database op-
erations the DBMS handles the problem automatically. For example, if two users 
open forms and try to modify the same data, the DBMS will provide appropriate 
warnings and prevent the second user from making changes until the first one is 

1. Read the balance.
2. Add the new order value.
3. Write the new balance.
4. Check for errors.
5. If errors exist, return to step 1.

Figure 7.19
Optimistic locking process. The steps assume that concurrency problems will not 
arise. If another transaction does change the data before this transaction finishes, the 
code receives an error message and must restart.



374Chapter  7: Database Integrity and Transactions

finished. Similarly, two SQL operations (e.g., UPDATE) will not be allowed to 
change the same data at the same time.

Even if you write program code, the DBMS will not allow two processes to 
change the same data at the same time. However, your code has to understand 
that sometimes a change to the data will not be allowed. This condition is often 
handled as an error.

The solution to the concurrency problem is to force changes to each piece of 
data to occur one at a time. If two processes attempt to make a change, the second 
one is stopped and must wait until the first process finishes. The catch is that this 
forced delay can cause a second problem: deadlock. Deadlock arises when two 
(or more) processes have placed locks on data and are waiting for the other’s data. 
An example is presented in Figure 7.19. Process 1 has locked data item A. Process 
2 has locked item B. Unfortunately, Process 1 is waiting for B to become free, and 
Process 2 is waiting for A to be released. Unless something changes, it could be a 
long wait.

Two common solutions exist for the deadlock problem. First, when a process 
receives a message that it must wait for a resource, the process should wait for 
a random length of time, try again, release all existing locks, and start over if it 
still cannot obtain the resource. This method works because of the random wait. 
Of the two deadlocked processes, one of them will try first, give up, and release 
all locks with a ROLLBACK statement. The release clears the way for the other 
process to complete its tasks. This solution is popular because it is relatively easy 
to program. However, it has the drawback of causing the computer to spend a lot 

CREATE FUNCTION ReceivePayment (
	 AccountID NUMBER, Amount Currency) RETURNS NUMBER
oldAmount Currency;
testEnd Boolean = FALSE;
BEGIN
	 DO UNTIL testEnd = TRUE
	 BEGIN
	 	 SELECT Amount INTO oldAmount
	 	 WHERE AccountNumber = AccountID;
	 	 …
	 	 UPDATE Accounts
	 	 SET AccountBalance = AccountBalance - Amount
	 	 WHERE AccountNumber = AccountID
	 	 AND Amount = oldAmount;
	 	 COMMIT;
	 	 IF SQLCODE = 0  And nrows > 0 THEN
	 	 	 testEnd = TRUE;
	 	 	 RETURN 0;
	 	 END IF
	 	 -- keep a counter to avoid infinite loops
	 END
END

Figure 7.20
Optimistic concurrency with SQL. Keep the starting value within memory and then 
only do the update if that value is unchanged. If another transaction changed the data 
before this one completes, go back and get the new value and start over.



375Chapter  7: Database Integrity and Transactions

of time waiting—particularly when there are many active processes, leading to 
many collisions.

A better solution is for the DBMS to establish a global lock manager as shown 
in Figure 7.20. A lock manager monitors every lock and request for a lock (wait). 
If the lock manager detects a potential deadlock, it will tell some of the processes 
to release their locks, allow the other processes to proceed, and then restart the 
other processes. It is a more efficient solution, because processes do not spend 
any time waiting. On the other hand, this solution can be implemented only within 
the DBMS itself. The lock manager must be able to monitor every process and its 
locks.

For typical database operations with forms and queries, the DBMS handles 
concurrent access and deadlock resolution automatically. When you write code 
to change data, the DBMS still tries to 
handle the situation automatically. How-
ever, the DBMS may rely on you to back 
out your transaction. Some systems may 
simply generate an error when the second 
process attempts to access the data, and 
it is your responsibility to catch the error 
and handle the problem.

ACID Transactions
What are the primary rules to ensure integrity of transactions? The concept 
of integrity is fundamental to databases. One of the strengths of the database ap-
proach is that the DBMS has tools to handle the common problems. In terms of 
transactions, many of these concepts can be summarized in the acronym ACID. 
Figure 7.21 shows the meaning of the term. Atomicity represents the central issue 
that all parts of a transaction must succeed or fail together. Consistency means 
that all data in the database ultimately must be consistent. Even though there 
might be temporary inconsistencies while a transaction is being processed, in the 
end, the database must be returned to a consistent state. This status should be able 
to be tested with application-defined code. For example, referential integrity must 
be maintained after a transaction is completed. Isolation means that concurrent 
access problems are prevented. Changes by one transaction do not result in er-
rors in other transactions. Note that transactions are rarely completely isolated: 

This section focuses on terms used 
in computer science and the SQL 
standards. They are not critical for 
beginning students.

•	 Atomicity: All changes succeed or fail together.

•	 Consistency: All data remain internally consistent (when committed) 
and can be validated by application checks.

•	 Isolation: The system gives each transaction the perception that it is 
running in isolation. There are no concurrent access issues.

•	 Durability: When a transaction is committed, all changes are 
permanently saved even if there is a hardware or system failure.

Figure 7.21
ACID transactions. The acronym highlights four of the main integrity features 
required of transactions.



376Chapter  7: Database Integrity and Transactions

they might encounter pessimistic or optimistic locking messages that need to be 
handled. Durability indicates that committed transactions are lasting. Once the 
transaction commits a change, it stays changed. This concept is critical in the face 
of hardware and software failures and is more difficult to maintain in a distributed 
database environment. Most systems ensure durability by writing changes to a 
log file. Then, even if a hardware failure interrupts an update, the changes will be 
finished when the system is restarted. Importantly, once the COMMIT statement 
is accepted, the DBMS cannot rollback the changes.

With SQL 99, the START TRANSACTION and SET TRANSACTION com-
mands can be used to set the isolation level. In increasing isolation order, the four 
choices are READ UNCOMMITTED, READ COMMITTED, REPEATABLE 
READ, and SERIALIZABLE. These levels are supposed to be used to prevent 
different types of concurrency problems, but rarely is there a need for the interme-
diate levels, so many systems provide only the first and last. 

The READ UNCOMMITTED level provides almost no isolation. It enables 
your routine to read data that another transaction has altered but not yet commit-
ted. This problem is sometimes called dirty read because the value you receive 
might be rolled back and the value ultimately may be inaccurate. If you select this 
level, SQL will not allow your transaction to update any data, because it might 
spread a false number throughout the database. The READ COMMITTED level 
is similar to optimistic concurrency. It will prevent your transaction from reading 
uncommitted data, but the data might still be changed or deleted by another trans-
action before the first transaction completes.
The REPEATABLE READ level prevents specific data you are using from be-

ing changed or deleted, but does not resolve the problem of phantom data. As 
shown in Figure 7.22, consider a transaction that computes the sum of quantity on 
hand if the price of an item falls within a specified range. Now, a second transac-
tion is started before the first one completes. This command inserts rows of data 

ItemID QOH Price
→ 111 5 15

113 6 7
117 12 30

→ 118 4 12
119 7 22

→ 120 8 17
→ 121 7 16
→ 122 3 14

SELECT SUM(QOH)
FROM Inventory
WHERE Price Between 10 And 20

Result: 5 + 4 + 8 = 17
INSERT INTO Inventory
VALUES (121, 7, 16)
INSERT INTO Inventory
VALUES (122, 3, 14)
SELECT SUM(QOH)
FROM Inventory
WHERE Price Between 10 And 20

Result: 5 + 4 + 8 + 7 + 3 = 27

Figure 7.22
Phantom rows. The first SELECT statement will select only three rows of data. When 
the second transaction runs, additional rows will match the criteria, so that the second 
time the query runs, it will return a different result, because it includes the phantom 
rows.



377Chapter  7: Database Integrity and Transactions

(or alters the prices). These new rows are phantom rows that are not included in 
the first query because they did not exist when the query began. After the first two 
queries have finished, if you repeat the first query, the phantom rows will be com-
mitted and you will see new results. 
Are phantom rows bad? In many ways, no; they simply arise because a data-

base has constantly changing data. You (and managers) must always remember 
that the results of a query are accurate only at a specific point in time. On the 
other hand, if you are writing procedural code, you might be surprised by the 
results when your queries do not finish in the order you expected—particularly if 
the DBMS is running on a multiprocessor system. In these situations, you might 
have to add semaphores or repeat queries to ensue your code follows a specific 
sequence. Alternatively, you can specify a higher level of isolation.

The SERIALIZABLE isolation level prevents the phantom row problem by en-
suring that all transactions behave as if they were run in sequence. However, keep 
in mind that this result is usually accomplished through the use of locks, so it re-
quires database resources, and it does not guarantee that your transaction will be 
able to finish on the first try. You still need error handling to catch and resolve the 
problem when your transaction is blocked by another one.

Key Generation
How are key values generated? As you know by now, the relational database re-
lies heavily on primary keys, which must be unique. It can be difficult in business 
to guarantee that these keys are always created correctly. Hence, most relational 
databases have a mechanism to generate numeric keys that are unique. Although 
these methods work reasonably well for simple projects, you will eventually learn 
that generated key values present some challenges that must be handled with pro-
gramming. Also, bear in mind that each DBMS uses a different mechanism to 
generate keys.

The main problem you encounter with generated keys is when you want to add 
a row to one table and then insert the matching key value into a second table. For 
example, when you add a new Customer, the system generates a CustomerID, 
which you need to insert into the Order table. Figure 7.23 shows the basic prob-
lem: the CustomerID key generated to create the new customer must be kept by 
the transaction procedure so that the key can be inserted into the Order table. The 
diverse ways of handling the number creation make the problem more difficult.

Logically, generated keys could be created through two primary methods: (1) 
by an automatic method when a new row is added to a table, and (2) by a separate 

1. Generate key for CustomerID.
2. INSERT row into Customer.

Customer Table
CustomerID, Name, …

3. Generate key for OrderID.
4. INSERT row into Order, using new 

OrderID and CustomerID.

Order Table
OrderID, CustomerID, …

Figure 7.23
Generated keys. Creating an order for a new customer requires generating a 
CustomerID key that is used in the Customer table and must be stored so it can be 
used in the Order table.



378Chapter  7: Database Integrity and Transactions

key generation routine. The advantage of the first method is that the process of 
adding a row to the initial (Customer) table is relatively simple. The drawback is 
that it is tricky to make sure you get the correct generated key to use in a second 
table. The second method solves the second problem, but makes it more difficult 
to create keys and requires programmers to ensure that the process is followed for 
every table and insertion operation.

As shown in Figure 7.24, if the DBMS automatically generates key values for 
each table, the code seems relatively simple. Microsoft Access and SQL Server 
use this approach. The complication is that problems arise when two transactions 
generate new key values on the same table at almost the same time. Or, when one 
transaction triggers inserts into multiple tables. You need to be careful that your 
code retrieves the correct key value. With some systems, it is difficult to verify the 
value is correct. You might have to use a SELECT INTO statement to retrieve the 
customer data and double-check the name and phone number.
Because of the difficulties in obtaining an auto-generated key value, the second 

approach of calling a key generation routine has some benefits. This approach 
is primarily used by Oracle. Figure 7.25 shows the basic steps needed to create 
an order for a new customer. Notice that there is no uncertainty about the key 
value generated. The generation routine ensures that values are unique—even if 
two transactions request values at the same time. The drawback to this approach 
is that it is not automatic. However, it is straightforward to write trigger code for 
the main table (Customer) to generate a new ID for use whenever an INSERT is 
performed on the table.

Database Cursors
How can procedural code track row-by-row through a query? To this point, 
all of the procedures and functions have dealt with either DML statements or 
single-row SELECT statements. These statements either do not return values or 
they return only one row of data. This restriction simplifies the program logic and 

1.	 Generate a key for CustomerID
2.	 INSERT row into Customer
3.	 Generate a key for OrderID
4.	 INSERT row into Order

Figure 7.24
Auto-generated keys. The process seems relatively easy when the DBMS 
automatically generates keys. However, what happens at step 2 if two transactions 
generate a new key value on the same table at almost the same time?

1.	 INSERT row into Customer.
2.	 Get the key value that was generated.
3.	 Verify the key value is correct.
4.	 INSERT row into Order.

Figure 7.25
Key-generation routine. The steps are not difficult, but programmers must add them 
for every table and every routine that inserts data.



379Chapter  7: Database Integrity and Transactions

makes it easier to learn the foundations of SQL procedures. However, some ap-
plications will require more sophisticated queries: SELECT statements that return 
multiple rows of data.

Remember that SQL commands operate on sets of data—multiple rows at one 
time. What if you want more precise control? Perhaps you need to examine one 
row at a time to perform a complex calculation, compare some data from an ex-
ternal device, or display the row to the user and get a response. Or perhaps you 
need to compare one row of data to a second row. For example, you might want 
to subtract values across two rows. It is difficult to accomplish these tasks with 
standard SQL commands. As noted in Chapter 9, newer versions of SQL are add-
ing features to perform even these tasks with straight SQL commands. However, 
you will still find times where you want to track through query results one row at 
a time.

Cursor Basics
SQL has a process that enables you to track through a set of data one row at a 
time. You create a database cursor that defines a SELECT statement and then 
points to one row at a time. A loop statement enables you to move the cursor to 
the next row and repeat your code to examine each row returned by the query. You 
can also move the cursor back to previous rows, but this process requires more 
overhead and is rarely needed.

Figure 7.26 shows the basic structure of a procedure to create a cursor and 
loop through the Customer table to calculate the total amount of money owed. Of 
course, this particular calculation can be done easier and faster with a simple SE-
LECT statement. The goal here is to show the main structure of the code needed 
to implement a database cursor. The DECLARE CURSOR statement defines the 
SELECT statement that retrieves the rows to be examined. Although the example 

DECLARE cursor1 CURSOR FOR
	 SELECT AccountBalance
	 FROM Customer;
sumAccount, balance Currency;
SQLSTATE Char(5);
BEGIN
	 sumAccount = 0;
	 OPEN cursor1;
	 WHILE (SQLSTATE = ‘00000’)
	 BEGIN
	 	 FETCH cursor1 INTO balance;
	 	 IF (SQLSTATE = ‘00000’) THEN
	 	 	 sumAccount = sumAccount + balance;
	 	 END IF
	 END
	 CLOSE cursor1;
	 -- display the sumAccount or do a calculation
END

Figure 7.26
SQL cursor structure. DECLARE, OPEN, FETCH, and CLOSE are the main 
statements in the SQL standard.



380Chapter  7: Database Integrity and Transactions

uses only one column, you can use any common SELECT statement including 
multiple columns, WHERE conditions, and ORDER BY lines. You must OPEN 
the cursor to use it, and eventually should CLOSE the cursor to free up database 
resources. When a cursor is first opened, it points to a location immediately before 
the first row of data. The FETCH statement retrieves one row of data and places 
the columns of data for that row into program variables. A loop is necessary to 
track through each row that matches the selection conditions.

Scrollable Cursors
By default, the FETCH command picks up the next row. If the FETCH command 
pushes the cursor past the end of the dataset, an error condition is created. You can 
use the WHENEVER statement to catch the specific error, or you can examine the 
SQLSTATE variable to see if an error was generated with the last SQL statement. 
A string value of five zeros indicates that the last command was successful.

Several options are available for the FETCH command to move the cursor to a 
different row. The common options are NEXT, PRIOR, FIRST, and LAST. These 
retrieve the indicated row. Figure 7.27 outlines the cursor procedure that begins at 
the last row and moves up to the first row. Note that you must declare the cursor 
as scrollable with the SCROLL keyword. Of course, it would be more efficient to 
simply sort the data in reverse order and then move forward; but the objective is 

Original Data Cursor Modified Data Insert
Name	 Sales
Alice	 444,321
Carl	 254,998
Donna	 652,004
Ed	 411,736

1. Read Alice
2. Read Carl

4. Move Prior 
but get Bob 
instead of Alice

Name	 Sales
Alice	 444,321
Bob	 333,229
Carl	 254,998
Donna	 652,004
Ed	 411,736

3. Bob inserted by 
second process

Figure 7.28
Transaction concurrency in cursor code. Your cursor code has tracked down through 
the data to Carl. It then tries to go back to the prior row with FETCH PRIOR. But, 
if another transaction has inserted a new row (Bob) in the meantime, your code will 
pick up that one instead of the original (Alice).

DECLARE cursor2 SCROLL CURSOR FOR
SELECT …
OPEN cursor2;
FETCH LAST FROM cursor2 INTO …
Loop…
	 FETCH PRIOR FROM cursor2 INTO …
End loop
CLOSE cursor2;

Figure 7.27
FETCH options. A scrollable cursor can move in either direction. This code moves 
to the last row and then moves backward through the table. Other FETCH options 
include FIRST, ABSOLUTE, and RELATIVE. 



381Chapter  7: Database Integrity and Transactions

to show that you can move in either direction. Additional FETCH scroll options 
include the ability to move to the first row (FETCH FIRST) and to jump to a spe-
cific row in the dataset. For example, FETCH ABSOLUTE 5 will retrieve the fifth 
row in the dataset. Since you rarely know the exact row number to retrieve, the 
relative scroll option is more useful. For instance, FETCH RELATIVE -3 skips 
back three rows from the current position.

The ability to move backward in the list of rows highlights another transaction 
concurrency issue. What happens if you work your way down a set of rows and 
issue the FETCH PRIOR command? Most of the time, you would simply retrieve 
the row before the current one. But what happens if another transaction inserts a 
new row immediately before the FETCH PRIOR command is executed? Figure 
7.28 shows the problem. Your code has tracked down to Carl, but a second process 
has inserted Bob into your list. The FETCH PRIOR command will return data for 
Bob instead of the data for Alice that you expected to see. The SQL standard solu-
tion to this problem is to make the dataset insensitive to other changes. You sim-
ply add a keyword to the cursor declaration (DECLARE cursor3 INSENSITIVE 
CURSOR FOR …). Effectively, the DBMS copies the results of the query into a 
temporary table that is not affected by other commands. Although this approach 
will work, it can be an expensive use of database resources. Instead, be sure to ask 
yourself why you need to move backward. In most cases, you will find that it is 
unnecessary. For example, if you want to calculate differences by subtracting the 
value on the current row from the value on the prior row, simply store the “prior” 
value in memory, then fetch the next row and perform the subtraction. There is no 
need to move backwards and risk getting the wrong value.
You might notice that there is no procedure to find a row within the retrieved 

dataset and move the cursor to that row (such as a SEEK command). Although 
some systems provide this feature, it is rarely needed. Instead, you should create 
the WHERE condition to only retrieve exactly the rows you want.

Changing or Deleting Data with Cursors
A common situation that a cursor-based application encounters is the need to 
change or delete the data at the current row. For example, Figure 7.29 shows a 
table created to hold sales data for analysis. A standard SELECT command with a 
GROUP BY clause can compute the sales totals by year. You need to write a cur-
sor-based procedure to compute the increase (or decrease) in sales for each year. 

Year Sales Gain
2000 151,039
2001 179,332
2002 195,453
2003 221,883
2004 223,748

Figure 7.29
Sales analysis table. A standard SELECT query can compute and save the sales total 
by year. You now need to write a cursor-based procedure to compute the sales gain 
from the prior year.



382Chapter  7: Database Integrity and Transactions

DECLARE cursor1 CURSOR FOR
SELECT Year, Sales, Gain
FROM SalesTotal
ORDER BY Year
FOR UPDATE OF Gain;
priorSales, curYear, curSales, curGain
BEGIN
	 priorSales = 0;
	 OPEN cursor1;
	 Loop:
	 	 FETCH cursor1 INTO curYear, curSales, curGain
	 	 UPDATE SalesTotal
	 	 SET Gain = Sales – priorSales
	 	 WHERE CURRENT OF cursor1;
	 	 priorSales = curSales;
	 Until end of rows	 	
	 CLOSE cursor1;
	 COMMIT;
END

Figure 7.30
Cursor code for update. The FOR UPDATE option in the declaration enables the 
Gain column to be changed. The WHERE CURRENT OF statement specifies the row 
pointed to by the cursor. 

DECLARE cursor2 CURSOR FOR
SELECT ItemID, Description, Price
FROM Inventory
WHERE Price < :maxPrice;
maxPrice Currency;
BEGIN
	 maxPrice = …	 -- from user or other query
	 OPEN cursor2;	 -- runs query with current value
	 Loop:
	 	 -- Do something with the rows retrieved
	 Until end of rows
	 CLOSE cursor2;
END

Figure 7.31
Parameterized cursor query. Your code sets the value of maxPrice through user input 
or calculation or another query. When this cursor is opened, the value is applied to 
the SELECT statement and only the matching rows are returned.



383Chapter  7: Database Integrity and Transactions

The catch is that you need to store this computed value back into the table. To do 
that, you need to specify that the cursor is updateable, and then write an UPDATE 
statement that stores the calculation in the row currently pointed to by the cursor. 
Figure 7.30 shows the main code needed to perform the calculations.

Notice that the cursor declaration states that only the Gain column is update-
able. This option protects the database slightly. If you make a mistake or someone 
else modifies your code later, the DBMS will allow only the Gain column to be 
changed. An attempt to change the Year or Sales column will generate an error. 
The other important element is the WHERE CURRENT OF cursor1 statement. 
This condition states that the row currently fetched, or pointed to by the cursor, 
is the one to be changed. The UPDATE statement will apply only to this row. An 
almost identical statement can be used to delete the current row (DELETE FROM 
SalesTable WHERE CURRENT OF cursor1).

Cursors with Parameters
Occasionally, you need a more dynamic query, where you want to pick the spe-
cific rows based on some variable within your procedure. For example, a user 
might enter a price, or your program compute a price based on some other query. 
Then, you want to retrieve only the rows that are less than the specified price and 
perform some computation on those rows. You can enter local variables as param-
eters in the cursor query. Figure 7.31 shows the basic elements of the parameter-
ized cursor. You enter the name of a variable within the cursor’s SELECT state-
ment. Within the procedure, you assign a value to this variable. The value might 
be computed from other variables, input by the user, or even retrieved from a dif-
ferent cursor or query. When the parameterized cursor is opened, the current value 
is substituted into the query, so that it returns only the rows that match the request. 
Parameterized queries in the cursor provide powerful tools to dynamically evalu-
ate data automatically in response to other changes.

Be aware that each DBMS uses a different notation to indicate parameters. The 
standard uses a colon in front of the variable name (:MyVar). SQL Server uses an 
“at” sign (@MyVar). Oracle does not use any characters in front of the parameter 
variable, but requires a colon in assignment statements (MyVar := 100). Microsoft 
Access does not require any special notation. The benefit to marking parameters is 
that it makes them easier to spot when reading code written by others. When you 
work in systems without the notation, you might want to adopt a policy of naming 
parameters and variables to make them easier to recognize (such as v_MyVar).

SaleItem Table Event Code Merchandise
SaleID
ItemID
Quantity
SalePrice

1.	 Item is sold by adding 
row to SaleItem.

2.	 Quantity is subtracted 
from QuantityOnHand.

ItemID
Description
QuantityOnHand
ListPrice
Category

Figure 7.32
Processing inventory changes. When an item is sold, the quantity sold is entered into 
the SaleItem table. This value has to be subtracted from the QuantityOnHand in the 
Merchandise table.



384Chapter  7: Database Integrity and Transactions

Merchandise Inventory at Sally’s Pet Store
What issues arise when maintaining totals in the database? ? To understand 
the value of procedural code, it helps to look at an example. Handling inventory 
updates is often a tricky procedure in business database applications. In many sit-
uations, employees need to know the quantity on hand for a particular item. An 
employee may be looking at items to reorder, or a manager might want to know 
which items are overstocked and have not been selling fast enough. Two basic 
methods exist to determine the quantity on hand in a database system. First, you 
could write a procedure that computes the current total on hand whenever it is 
needed. The routine would add every purchase and subtract every sale of the item 
to reach the current inventory level. In a large application, this process might be 
slow. The second approach is to keep a running total of the quantity on hand in the 
inventory table. This value must then be updated whenever an item is purchased 
or sold. This second process provides the total very quickly, but faces the draw-
back of some slightly complicated programming. Keep in mind that both methods 
also need an adjustment mechanism for “inventory shrink,” to use the accoun-
tant’s euphemistic term for inventory items that have disappeared.

Looking at the Merchandise table from Sally’s Pet Store, shown in Figure 7.32, 
you will notice that it contains a column for QuantityOnHand, so the plan is to 
use the second inventory approach and keep an updated total for each item. Ulti-
mately, you will need three sets of procedures: One to handle item purchases, one 
for item sales, and one to adjust for inventory shrinkage identified from physically 
counting the stock. The adjustment procedure is straightforward, but you have to 
work on the user interface to make it easy to use. The purchase and sale processes 
are similar to each other, so the discussion here will examine only the sale of an 
item.

Whenever something changes in the SaleItem table, the total in the Merchan-
dise table has to be adjusted. Figure 7.33 shows the four basic changes that can 
arise in the SaleItem table. For instance, when an item is sold, a new row is added 
to the SaleItem table keyed by the SaleID and ItemID. The row includes the quan-
tity of the item being purchased, such as 10 cans of dog food. This quantity is 
used to adjust the QuantityOnHand in the Merchandise table. These events might 

SaleItem
SaleID
ItemID
Quantity
SalePrice

1.	 Add a row.
2.	 Delete a row.
3.	 Update Quantity.
4.	 Update ItemID.

Figure 7.33
SaleItem events. Driven by business operations, four major events can arise in the 
SaleItem table. The QuantityOnHand must be altered in the Merchandise table for 
each of these events.



385Chapter  7: Database Integrity and Transactions

not be immediately obvious, so consider the following business actions that drive 
them.

1.	A new sale results in adding a row to the SaleItem table, so 
QuantityOnHand must be decreased by the quantity sold. 

2.	A clerical error or a customer changing his or her mind could result 
in the cancellation of a sale or of an item, so a row is removed from 
the SaleItem table. Any quantity that was already subtracted from the 
QuantityOnHand must be restored to the total. 

3.	An item could be returned, or the clerk might change the Quantity 
because of an error. The quantity adjustment must be applied to the 
QuantityOnHand total. 

4.	An item might have been entered incorrectly, so the clerk changes the 
ItemID. The QuantityOnHand for the original ItemID has to be restored, 
and the QuantityOnHand for the new ItemID has to be reduced. 

You can use database triggers to make the process easier by writing code for 
each specific event. If you are working with a DBMS without database triggers, 
the corresponding code has to be written into the forms; this process is similar, but 
you need to validate each form to make sure it has the necessary code.
The first situation of adding a new row is straightforward. Figure 7.34 shows 

the logic needed for the database trigger. Only one UPDATE statement is needed: 
subtract the newly entered Quantity from the QuantityOnHand in the Merchan-
dise table. If you are responsible for reviewing or fixing code in an existing appli-
cation, you should find that this event is usually handled correctly. The problem is 
that many developers forget about the other events.

CREATE TRIGGER DeleteSaleItem
AFTER DELETE ON SaleItem
REFERENCING OLD ROW AS oldrow
FOR EACH ROW
	 UPDATE Merchandise
	 SET QuantityOnHand = QuantityOnHand + oldrow.Quantity
	 WHERE ItemID = oldrow.ItemID;

Figure 7.35
Delete Row trigger. This trigger reverses the original subtraction by adding the 
Quantity back in.

CREATE TRIGGER NewSaleItem
AFTER INSERT ON SaleItem
REFERENCING NEW ROW AS newrow
FOR EACH ROW
	 UPDATE Merchandise
	 SET QuantityOnHand = QuantityOnHand – newrow.Quantity
	 WHERE ItemID = newrow.ItemID;

Figure 7.34
New Sale trigger. Inserting a new row triggers the event to subtract the newly entered 
quantity sold from the quantity on hand.



386Chapter  7: Database Integrity and Transactions

The second event of handling deleted rows is no more difficult than the code 
for inserting a row. Figure 7.35 shows the new trigger that is needed. Deleting 
a row from SaleItem indicates that the item was not really sold. Consequent-
ly, the trigger reverses the effect of the sale by adding the Quantity back to the 
QuantityOnHand.

As shown in Figure 7.36, the situation for changing data is more complex. You 
need to think about what it means when the Quantity value is changed. Say that 
the QuantityOnHand for the specified item begins at 50 units. Then, a SaleItem 
row was inserted with a Quantity of 10. The insert trigger fired and subtracted 
those 10 units, leaving the QuantityOnHand at 40 units. The clerk now changes 
the Quantity from 10 to 8. Since 2 fewer units were sold, the QuantityOnHand 
needs to be adjusted. 

CREATE TRIGGER UpdateSaleItem
AFTER UPDATE ON SaleItem
REFERENCING	 OLD ROW AS oldrow
	 NEW ROW AS newrow
FOR EACH ROW
	 UPDATE Merchandise
	 SET QuantityOnHand = QuantityOnHand 
	 	 + oldrow.Quantity – newrow.Quantity
	 WHERE ItemID = oldrow.ItemID;

Figure 7.37
Update Quantity trigger. If Quantity is changed, you must add back the old value and 
then subtract the new value.

Figure 7.36
Errors arise if you do not handle changes in quantity. If Quantity is changed, you 
must add back the old value and then subtract the new value. The top steps show the 
error in QOH if you do not handle changes.

SaleItem Clerk Event Code Merchandise
SaleID	 101
ItemID	 15
Quantity	 10

Quantity	 8

1. Enter new sale item, 
enter Quantity of 10.

3. Change Quantity to 8.

2. Subtract Quantity 10 
from QOH.

4. Subtract Quantity 8 from 
QOH.

ItemID	 15
QOH	 50

QOH	 40

QOH	 32

Solution that Corrects for Change
SaleID	 101
ItemID	 15
Quantity	 10

Quantity	 8

1. Enter new sale item, 
enter Quantity of 10.

3. Change Quantity to 8.

2. Subtract Quantity 10 
from QOH.

4. Add original Quantity 
10 back and subtract 
Quantity 8 from QOH.

ItemID	 15
QOH	 50

QOH	 40

QOH	 42



387Chapter  7: Database Integrity and Transactions

As shown in Figure 7.37, the easiest way to understand the adjustment code 
is to think of it as adding the original 10 units back and then subtracting the new 
Quantity of 8 units. The net result will leave QuantityOnHand at 42 units. Notice 
that you need access to the old row value (10). All trigger-based systems have a 
way to obtain this value. If you have to build the inventory code on a form, it is 
slightly more complicated to obtain this value; but it can be done.
The fourth change to the code is more difficult to portray. What happens if a 

clerk changes the ItemID value? Ultimately, you have to restore the QuantityOn-
Hand for the original ItemID, then subtract it for the new ItemID. The first com-
plication is that database triggers might not have separate events for each column 
being changed. So you have to integrate the changes due to the ItemID into the 
previous code written to handle Quantity changes. Again, you need to think about 
the individual steps. Start with a QuantityOnHand of 50 for ItemID 1, then enter 
a sale of 10 items. The Insert trigger reduces QuantityOnHand to 40 units. Now 
the clerk changes the ItemID from 1 to 11. That means that no units of ItemID 1 
were actually sold, so the 10 units have to be added back to its QuantityOnHand. 
Additionally, the 10 units have to be subtracted from the QuantityOnHand for 
ItemID 11. As shown in Figure 7.38, this trigger requires two separate UPDATE 
statements. Notice that the WHERE clause in the first statement uses the oldrow.
ItemID and the second one uses the newrow.ItemID. Also, look more closely at 
the two SET statements. The first one adds the oldRow.Quantity, the second one 
subtracts the newRow.Quantity. Why is this difference important? First, it is pos-
sible that the clerk changed the Quantity along with the ItemID, and you need to 
make sure the old Quantity is used for the old ItemID. Second, and more impor-
tantly, this trigger also handles the simple change in Quantity, even if the ItemID 
is not changed. Assume the ItemID is set at 1 and is not changed. Start with a 
QuantityOnHand of 50 units, and an initial Quantity sold of 10, leaving a current 
QuantityOnHand of 40 units. Read through the code to see how it works if only 

CREATE TRIGGER UpdateSaleItem
AFTER UPDATE ON SaleItem
REFERENCING	 OLD ROW AS oldrow
	 	 NEW ROW AS newrow
FOR EACH ROW
BEGIN
	 UPDATE Merchandise
	 SET QuantityOnHand = QuantityOnHand + oldRow.Quantity
	 WHERE ItemID = oldrow.ItemID;

	 UPDATE Merchandise
	 SET QuantityOnHand = QuantityOnHand – newRow.Quantity
	 WHERE ItemID = newrow.ItemID;
	 COMMIT;
END

Figure 7.38
Final update trigger. If the ItemID is changed, you must restore the total for the 
original item and subtract the new quantity from the new ItemID.



388Chapter  7: Database Integrity and Transactions

the Quantity is changed from 10 to 8 units. First, the old Quantity (10) is added 
back to the QuantityOnHand. Second, the new Quantity (8) is subtracted, leaving 
42 units on hand. This process is the same as that shown in Figure 7.37, but it is 
accomplished in two steps instead of one.

The same code must be written for the purchase table (OrderItem) with the 
same logic. However, for business reasons, you might want to wait to update the 
QuantityOnHand until the items actually arrive. If you do decide to wait, your 
primary initial trigger is not on the OrderItem INSERT event, but on the UPDATE 
event on the MerchandiseOrder table. Have the trigger look for an entry in the 
ReceiveDate column, and then do the QuantityOnHand updates.

Summary
Although SQL commands are powerful, you sometimes need a procedural lan-
guage to gain detailed control over updates or to connect to other devices or ap-
plications. Depending on the DBMS, procedural code can exist within modules, 
within forms, or in external applications. Database triggers are an important appli-
cation of procedural code. These procedures are triggered or exectued in response 
to some database event, such as inserting, updating, or deleting data. Triggers can 
be used to enforce complex conditions or to execute business rules. For instance, 
a trigger might be attached to QuantityOnHand within an Inventory table to auto-
matically notify a supplier when the value falls below a certain level. Cascading 
triggers arise when a change in one table fires a trigger that causes changes in ad-
ditional tables, that might trigger even more events. Long cascades can be difficult 
to debug and use substantial server resources.

Transactions are critical applications in most business operations. They repre-
sent a collection of changes that must succeed or fail together. Setting start and 
ending points for transactions is an important step in application development to 
protect the integrity of the data. Concurrent access where multiple users attempt 
to modify the same data at the same time is another substantial threat to database 
integrity. Pessimistic locks have often been used to protect data through serializa-
tion so that only one transaction can see data at a time. However, multiple locks 
eat up resources and can lead to deadlock issues. Optimistic locks assume that 
collisions are unlikely, but code must be added to handle the situations when they 
do arise. The ACID acronym (atomicity, consistency, isolation, and durability) is a 
useful way to remember the main features desired of a DBMS to protect transac-
tion integrity. 

Generating keys is an important step in many relational databases, since it is 
difficult to trust humans to create unique identifiers. Two common methods are 
used to generate keys: (1) automatically create them when a row is added to a 
table, or (2) provide a separate function that generates keys on demand. Both 
methods create complications. The automatically generated keys are difficult to 
obtain and use in secondary tables. The generation functions require programmers 
to write code for every table and every insertion procedure. 

Database cursors provide a method for procedural code to retrieve multiple 
rows of data from a query to step through the rows one at a time. The cursor points 
to one current row that can be examined, modified, or deleted by your code. Scrol-
lable cursors move forward or backward through the rows, but whenever possible, 
you should try to move only in one direction. With updateable cursors, code can 
change or delete the data in the current row. With a parameterized query, code can 
dynamically choose the rows to be retrieved in response to other conditions.



389Chapter  7: Database Integrity and Transactions

Key Terms

Review Questions
1.	 Why would you need a procedural language when SQL is available?
2.	 What is the purpose of data triggers?
3.	 What is the purpose of form events?
4.	 What is a transaction and why do they have to be defined by developers?
5.	 How do you start and finish a transaction?
6.	 How is pessimistic locking different from optimistic locks?
7.	 What code do you need to add to handle conflicts with optimistic locks?
8.	 What is an ACID transaction?
9.	 What are the most common methods used to generate keys?
10.	How do you obtain the most recently generated key in the DBMS you are 

using?
11.	What is a database cursor and why is it important?
12.	What is the program logic to using a database cursor to alter data?

atomicity
cascading triggers
concurrent access
consistency
database cursor
deadlock
durability
isolation 
isolation level 

optimistic lock
persistent stored module (PSM)
pessimistic lock
procedural language
scope
serialization
syntax
transaction
trigger

A Developer’s View
Miranda learned that even a good DBMS often requires programming to handle 
some complex issues. In developing your application, you should examine all of 
the business processes and identify transaction elements. Also, be sure that your 
UPDATE and DELETE procedures can handle concurrency issues. Remember 
that a professional application anticipates and handles errors gracefully. Write 
data triggers or module code to automate basic processes and perform all needed 
calculations. Write additional cursor-based code if needed to perform advanced 
calculations.



390Chapter  7: Database Integrity and Transactions

Exercises
1.	 Create a small database with tables for Customers and Employees. In 

addition to name and phone number, each table should hold a date column 
for when the person first started (as either a customer or hire date). Write 
a function that returns a percentage discount that uses a phone number to 
decide if the buyer is a customer or employee. Customers for less than one 
year get no discount, 1-3 years (2%), 4-7 years (4%), 8 or more years (5%). 
Employees for less than one year get no discount, 1-2 years (5%), 3-5 years 
(7%), 6 or more years (10%). 

2.	 Create a database table of Employees that includes the maximum number of 
vacation days and number of sick days allowed each year. 
Employees(EmployeeID, LastName, FirstName, Phone, 
VacationDays, SickDays, DateHired, Dateborn)

Create a second table with keys for EmployeeID and Year that has values for 
number of vacation days and sick days taken that year. 
	 EmployeeDays(EmployeeID, EYear, NVacation, NSick)

	 Write a function that has input parameters for Year, EmployeeID, number 
of days off, and whether they should be recorded as sick or vacation days. 
If the employee exceeds the number of allotted sick days, assign the days as 
vacation time instead. Excess vacation days do not get counted as sick days. 

3.	 Using the same two tables as the prior exercise (Employees and 
EmployeeDays), write a database trigger that prevents anyone from entering 
a value for vacation days taken that exceeds the maximum allowed.

4.	 Create a table that lists item category and the level of tax on that category. 
For example, food (0 percent), clothing (3 percent), entertainment (10 
percent). Write a function with category and price as parameters. Compute 
and return the appropriate tax. Normally, you would use an SQL statement 
for this computation, but if the tax table is provided on a separate system, you 
might need to write code. 

5.	 Create a data trigger that writes a row in a new table whenever employee 
salary is changed. Store the date changed, the employee, the old salary and 
the new value.

6.	 Create a data trigger that will prevent anyone from increasing an employee 
salary by more than 75 percent.

7.	 Create a data trigger (or form code if triggers are not available) that adjusts 
inventory quantity on hand whenever an item is sold. You need a SaleItem 
and Item table. 

8.	 A Web site sells custom components for cell phones. The site often offers 
daily deals which consist of “packages” of related items for a specific phone. 
Table: PackageItems(PackageID, ItemID, SalePrice) For example, one deal 
might contain a case, screen protector, and color-matched earphones. Each 
item is listed separately in the Items table of the database which includes 



391Chapter  7: Database Integrity and Transactions

the Quantity On Hand value. Table: Items(ItemID, Category, Description, 
ListPrice, QOH) Write a transaction function to safely handle the sale of one 
package that updates all of the QOH values as part of a transaction. 

9.	 Using the basic Items table that contains a QOH column, create a form that 
lets users edit the data directly. (Normally, you would use a Sale form but 
keep it simple for now.) Using default settings, determine what happens if 
two people change the same data at the same time. Adjust the settings to 
check for optimistic and pessimistic locking if they are available. Hint: You 
might want to create two separate forms connected to the same table for 
testing purposes.

10.	Assume you are building a database for a Web-based form where a manager 
loads and displays all of the employee data for editing. At the end of the 
session, the changes made to the data are sent back to the database. Write 
the SQL command to safely update the table using optimistic concurrency. 
Assume you have an array that holds (a) the original values read from the 
database and (b) the new/changed values.

11.	 Create a table for LoanPayments(LoanID, PaymentNo, DateDue, Amount).  
Write a function that is called whenever a new loan is created, to load the 
payments table with the scheduled payments and amount due.

12.	 Given the following table, write a cursor-based procedure to loop through 
the table and compute the percent change from the prior month and store that 
value in the current row.

SalesMonth Sales PercentChange
01 25,123
02 24,331
03 32,992
04 37,102
05 42,474
06 46,551

13.	 Using the table in the previous exercise, write a cursor-based procedure to 
compute the average monthly sales (without using the SQL AVG statement).

Sally’s Pet Store
14.	 Where would you put the code (which Event) in each of the following 

situations? Note if you are using Access or SQL. You do not have to create 
the code for this exercise.
A.	 Notify a purchasing manager whenever inventory drops below a 

specified amount.
B.	 Compute the Sales Tax owed on a Sale.
C.	 Notify a supplier when an order is received.
D.	 Notify adoption groups of the total amount of donations they received for 

the day.
E.	 Validate a new employee’s Taxpayer ID with an online company.



392Chapter  7: Database Integrity and Transactions

15.	Write a function to compute the average purchase cost of an item over the 
prior year and provide a warning if the ListPrice of the merchandise is lower 
than that value.

16.	 Write a function to insert a new Customer and return the generated key value. 
Inputs to the function include the LastName, FirstName, and Phone number.

17.	 Create a table to hold totals of merchandise sales by month and a percentage 
increase in sales from the prior month. Write a (SQL) function to compute 
the monthly totals and transfer them into the table. Add code to compute the 
percentage changes. 

18.	 Write the code to increase quantity on hand when an item is purchased—
specifically when the receive date is set. Be sure to handle it as a transaction, 
since quantity on hand can also be affected by sales.

19.	 The Pet Store is thinking about purchasing scanners to use at checkout. These 
scanners will pick up the ItemID of each merchandise item scanned. Assume 
that this data will trigger an event when an item is scanned. Write a function 
that can be called by this event. This function should create a new sale, and 
store the data for the items sold. You can emulate the scanner trigger by 
creating a form with a control to select an ItemID and a button to fire the 
trigger.

Rolling Thunder Bicycles
20.	Create a function to compute the great circle route (shortest) distance 

between two geographic locations. 
21.	 Where would you put the code (which Event) in each of the following 

situations? Specify if you are using Access or SQL. You do not have to create 
the code for this exercise.
A.	 Send an e-mail message to a customer when a bicycle is shipped.
B.	 Send an e-mail message to a supplier to order more components when 

quantity on hand drops below a preset level.
C.	 Notify a manager when an employee is involved with purchases of more 

than $50,000 in a month.
D.	 Notify (e-mail) a manager if the daily sales value of bicycles exceeds a 

preset level (both high and low) in terms of percentage change from the 
prior year. 

E.	 Notify a purchasing manager of all items that were ordered within the 
last month but not yet received.

22.	 Create a table to log changes to Employee salaries (SalaryChange(ChangeID, 
ChangeDate, EmployeeID, OldSalary, NewSalary, User). Write trigger code 
on the Employee table to record any changes to the salary into the log table.

23.	 Create a function that estimates the time to build a new bicycle. It should use 
the average number of days for the same model type but adjust the days by 
the number of orders of all bikes made in the past 14 days.



393Chapter  7: Database Integrity and Transactions

24.	Create a form or a function that lets the finance manager safely record 
payments to manufacturers. 

25.	Write a function to update the BalanceDue column in the Customer table 
while avoiding concurrency issues. The function needs input parameters for 
CustomerID and ChangeAmount which can be positive or negative. 

26.	 Create a query to compute sales by month for each model type. Create a 
temporary table to hold that data and to hold the percentage change. Write a 
program that executes the query, placing the data into the table. Then cursor-
based code computes the percentage change in sales. The function should 
return the new balance value.

27.	 Write a procedure to add an interest charge to customer accounts with a 
balance due. Make sure to handle concurrency/locking problems.

28.	 Write a program to automatically generate a new purchase order when 
quantity on hand falls below a specified level. Add the ReorderPoint column 
to the Component table and enter sample data.

Corner Med 
29.	 Where would you put the code (which Event) in each of the following 

situations? Specify if you are using Access or SQL. You do not have to create 
the code for this exercise.
A.	 Two physicians sign up for vacation on the same days.
B.	 E-mail notices sent to the director physician whenever a patient is 

diagnosed with a set list of codes/diseases (particularly some contagious 
diseases).

C.	 A warning message sent to the physician and business manager whenever 
the AmountCharged for a Visit Procedure is below 50 percent of the base 
cost.

D.	 An e-mail sent to the business manager whenever the amount paid by the 
insurance company plus the amount paid by the patient differs from the 
total amount charged for a visit.

E.	 A warning notice sent to the physician when the Systolic pressure for 
a visit is greater than 140 and the patient is prescribed a drug from a 
certain list. 

30.	Write a function that reduces the amount charged for a procedure for a 
specific patient (VisitProcedureID) and reduces the patient amount owed/
paid.

31.	 Create a table to hold revenue earned per week, using a date format of 
yyyy-ww. Include a column to hold percentage change from the prior week. 
Write a query to compute the totals and a routine to compute and store the 
percentage change.

32.	 To facilitate loading data from the company’s older system, write a function 
that creates a new patient record given LastName, FirstName, Gender, 
DateOfBirth as input parameters, and creates a new visit record for that 
patient for a VisitDate parameter. The function should return the newly 
generated VisitID.

Corner
Med

Corner
Med



394Chapter  7: Database Integrity and Transactions

33.	 Write a database trigger to record the date, user, and patient name any time a 
patient row is deleted.

34.	 Change the tables so that patients can make multiple payments. Include 
the date, amount of payment, and visit. Write a function to return the total 
amount paid by a patient for a given VisitID. Briefly explain why this method 
is better than the current tables.

Web Site References

http://www.sigplan.org/ Association for Computing Machinery—
Special Interest Group on Programming 
Languages (advanced).

http://support.microsoft.com/kb/115986 
http://speckyboy.com/2012/05/13/six-common-web-
programming-mistakes-and-how-to-avoid-them/

Avoiding common database programming 
mistakes.

Additional Reading
Baralis, E. and J.Widom, An Algebraic Approach to Static Analysis of Active 

Database Rules, ACM Transactions on Database Systems (TODS), 25(3) 
September 2000, 269-332. [Issues in database triggers and sequencing, but 
plenty of algebra.]

Ben-Gan, I., L. Kollar, and D. Sarka, Inside Microsoft SQL Server 2005: T-SQL 
Querying, Microsoft Press: 2006. [Discussion and examples of advanced 
topics for SQL Server.]

Gray, Jim and Andreas Reuter, Transaction Processing: Concepts and 
Techniques, San Francisco: Morgan Kaufmann Publishers, 1993. [A classic 
reference on all aspects of transaction processing.]

ISO/IEC 14834:1996, Information Technology—Distributed Transaction 
Processing—The XA Specification, 1996. [A discussion of the common 
method of handling transactions across multiple systems.]

Sanders, R. and J. Perna, DB2 Universal Database SQL Developer’s Guide, Burr 
Ridge, IL: McGraw-Hill, 1999. [Using embedded SQL with IBM’s DB2 
database.]

Urman, S., R. Hardman, and M. McLaughlin, Oracle Database 10g PL/SQL 
Programming, Oracle Press: 2005. [One of many references providing an 
introduction to SQL Server programming.]

Vossen, G., G. Weikum and  J. Gray, Fundamentals of Transactional Information 
Systems : Theory, Algorithms, and Practice of Concurrency Control 
and Recovery, San Mateo, CA: Morgan Kaufmann, 2001. [Detailed 
programmer’s perspective of transaction details.] 


	Chapter 7: Database Integrity and Transactions
	Introduction
	Two-Minute Chapter
	Procedural Languages
	Where Should Code Be Located?
	User-Defined Functions
	Looking Up Data

	Programming Tools
	Data Triggers
	Statement versus Row Triggers
	Canceling Data Changes in Triggers
	Cascading Triggers
	INSTEAD OF Triggers
	Trigger Summary

	Transactions
	A Transaction Example
	Starting and Ending Transactions
	SAVEPOINT

	Multiple Users and Concurrent Access
	Optimistic Locks
	Pessimistic Locks: Serialization
	Multiuser Databases: Concurrent Access and Deadlock

	ACID Transactions
	Key Generation
	Database Cursors
	Cursor Basics
	Scrollable Cursors
	Changing or Deleting Data with Cursors
	Cursors with Parameters

	Merchandise Inventory at Sally’s Pet Store
	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading




