
353

What You Will Learn in This Chapter
•	 Why	would	you	need	to	use	procedural	code	when	SQL	is	so	powerful?
•	 How	are	SQL	commands	integrated	into	more	traditional	programming	structures?
•	 What	capabilities	exist	in	procedural	code?
•	 How	are	business	rules	added	to	the	database?
•	 How	does	a	DBMS	handle	multiple	transaction	events?
•	 How	do	you	prevent	problems	arising	when	two	processes	change	the	same	data?
•	 What	are	the	primary	rules	to	ensure	integrity	of	transactions?
•	 How	are	key	values	generated?
•	 How	can	procedural	code	track	row-by-row	through	a	query?
•	 What	issues	arise	when	maintaining	totals	in	the	database?

Chapter Outline

Database Integrity and
Transactions

7Chapter

Introduction,	354
Two-Minute	Chapter,	355
Procedural	Languages,	355

Where Should Code Be Located?, 356
User-Defined Functions, 357
Looking Up Data, 358

Programming	Tools,	359
Data	Triggers,	360

Statement versus Row Triggers, 361
Canceling Data Changes in Triggers,
362
Cascading Triggers, 363
INSTEAD OF Triggers, 364
Trigger Summary, 365

Transactions,	366
A Transaction Example, 366
Starting and Ending Transactions, 367
SAVEPOINT, 368

Multiple	Users	and	Concurrent	Access,	369
Optimistic Locks, 370
Pessimistic Locks: Serialization, 373
Multiuser Databases: Concurrent
Access and Deadlock, 373

ACID	Transactions,	375
Key	Generation,	377

Database	Cursors,	378
Cursor Basics, 379
Scrollable Cursors, 380
Changing or Deleting Data with Cursors,
381
Cursors with Parameters, 383

Merchandise	Inventory	at	Sally’s	Pet	Store,	
384
Summary,	388
Key	Terms,	389
Review	Questions,	389
Exercises,	390
Web	Site	References,	394
Additional	Reading,	394

354Chapter 7: Database Integrity and Transactions

A Developer’s View
 Ariel:	Well,	is	the	application	finished?

 Miranda: No. The basic forms and reports
are done. But I’m still running into
some problems.

 Ariel: I guess there is always more to do.
What	kinds	of	problems?	

 Miranda: Well, the numbers are sometimes
wrong. It seems to happen when
several people are working on the
same data at the same time. And
the application seems a little slow
sometimes. And…

 Ariel: Whoa. I get the picture. But these
seem like common problems. Does
the database system have any tools
to	help?

 Miranda: I think so. I’m going to start by
looking at some programming
topics and data triggers. Then, I
think indexes will help me with
performance.

Introduction
Why would you need to use procedural code when SQL is so powerful? Busi-
ness applications often exhibit several common problems. For example, multiple
users might try to change the same data at the same time, or multiple changes need
to be made together, or you need to generate new ID numbers for a table. These
situations must be handled correctly to ensure the integrity of the data. SQL com-
mands are powerful tools, but in many of these situations, you need the ability to
execute multiple statements or to choose which command should be run. Data-
base systems have evolved procedural languages to handle these situations.

Although there are diverse methods to implement procedural languages, it is
helpful when the language is embedded into the query system. With this approach,
all	of	the	code	and	conditions	remain	within	the	database	definition	and	constraints	
are enforced automatically for all applications. These conditions are often written
as	data	triggers—code	that	is	executed	when	some	data	element	is	modified.

The issues of transactions, concurrent access, and key generation appear in al-
most every business application. This chapter explains the issues involved and
provides the common solutions. Performance is a tricky issue as databases ex-
pand into huge datasets. Complex queries across many large tables could take a
long time to run. But, transaction-based applications need to process data quickly.
Vendors have invested considerable money and time into improving performance.

Getting Started
Procedural code (programming) is used to handle transactions and other
operations	that	must	be	performed	in	a	specific	order.	Currently,	every	
DBMS has its own proprietary programming language. Although the
features are similar, the syntax varies. So you need to learn how to write
some fundamental programs in the DBMS you want to use. Procedur-
al code is needed for tasks such as custom functions, transactions that
require multiple changes, handling concurrency issues, and generating
key values.

355Chapter 7: Database Integrity and Transactions

One common solution is to create indexes on the tables. You need to understand
the basic index technologies to make informed choices to improve your applica-
tion’s performance.

Two-Minute Chapter
SQL is powerful but sometimes it is necessary to use traditional procedural pro-
gramming languages to accomplish tasks. Procedural code executes one operation
at a time and includes loops and conditional statements. It is often used to exam-
ine one row of data at a time. The large DBMSs integrate procedural statements
with SQL commands. Many also support writing code in external languages (such
as C and Java) that can submit SQL statements to store and retrieve data.

Writing procedural code requires several steps. (1) Learning the overall func-
tions and syntax of the commands. (2) Understanding where to place the code
so that it is executed at the proper time. (3) Testing and debugging. (4) Learning
when to use procedural code.
The	challenge	with	Step	1	is	that	the	SQL	standard	has	begun	defining	proce-

dural elements but most systems still rely on their proprietary commands. The
overall structures are similar but the details are different, which are explained in
the	workbooks.	Primary	structures	include	the	ability	to	define	Functions,	Condi-
tions,	and	Loops.	SQL	commands	are	integrated	with	programming	code	by	defin-
ing parameters (or variables) within the SQL command that hold values assigned
from the code.

Step 2 is critical because most systems today are event-driven and code is ex-
ecuted	in	response	to	some	defined	event.	Within	a	database,	you	typically	attach	
code to common data triggers including data UPDATE, INSERT, and DELETE
events. For example, when a row of data in a table is changed, the DBMS can ex-
ecute	your	custom	code	to	check	various	conditions.	So	you	have	to	first	think	in	
terms of when your code should be executed.

Step 3 is important with any development method. DBMSs rarely provide ad-
ditional support for testing, so it is critical for programmers to break things into
small pieces and thoroughly test all of the pieces during development.

In terms of Step 4, several common business situations require the support of
procedural code. Support for transactions is the most important: Several opera-
tions that must be performed (or failed) together. The classic example is transfer-
ring money from one bank account to another. Handling errors, including issues
with concurrent access, is another common situation. Some systems (particularly
Oracle) also require support for generating key values. Other situations arise when
dealing with creating forms and making them more usable.

Procedural Languages
How are SQL commands integrated into more traditional programming
structures? A procedural language is a traditional programming language such
as C or Java, where you specify the sequence of a set of commands. Common
SQL commands are not procedural because you tell the DBMS only what you
want done, not how to do it. Although SQL commands are powerful, sometimes
you need the more precise control of a procedural language. For example, you
might want to specify that a group of commands must be executed in a particular
order and all must be completed for the transaction to succeed. Or, you might
want to execute some commands only if certain external conditions are true. In

356Chapter 7: Database Integrity and Transactions

more complex cases, you might need to step through each row in a table to per-
form	some	difficult	computation.

Many varieties of procedural languages exist, but they have elements in com-
mon. All of them have variables, conditional statements (if), loops, and subrou-
tines. Each language has its own syntax, which includes details such as command
and function names, statement terminators, assignment operators, and whether
you use parentheses or square brackets for arrays. The syntax is important when
you write code, but integrated editors help by prompting for various items and
compilers will pinpoint most syntax errors.

This chapter focuses on the logic needed to handle common database opera-
tions. The main text is generally language neutral, so you can see how the ideas
apply	to	any	database	situation.	The	workbooks	provide	specific	examples	using	
the syntax and structure of individual database systems.

Where Should Code Be Located?
One	of	 the	first	major	 questions	 you	 face	 is	where	 the	code should be written,
stored, and executed. Figure 7.1 shows that procedural code can be placed in three
locations: (1) within the DBMS engine as queries or database triggers, (2) within
forms and reports, or (3) in external programs. Large, commercial systems, such
as Oracle, SQL Server, and DB2 have a procedural language embedded in the
DBMS	itself.	You	write	code	just	as	you	would	write	any	other	query	and	can	mix	
procedural commands with SQL statements. The SQL standard has slowly been
adding procedural capabilities. But each vendor supports the concepts using a dif-
ferent syntax.

In general, code that relates directly to the data should be created as a database
trigger inside the DBMS. Placing the code inside the DBMS means it is written
only once and can be called automatically, regardless of how the data is accessed.

DBMSTables

Forms	&
Reports

Queries	&	
Triggers

If	(Click)	Then
SELECT	.	.	.

End	If

If	(.	.)	Then	
SELECT	.	.	.

Else	.	.	.
UPDATE	.	.	.

End	If

C++
if	(.	.	.)			{
//	embed	SQL
SELECT	…

}

External
Program

(2)

(1)

(3)

Figure 7.1
Location of procedural code. Code can usually be written in the query system, within
a database form, or in an external program. When possible, code should be placed
within the query system so that it cannot be by passed.

357Chapter 7: Database Integrity and Transactions

The DBMS will ensure that the code is always executed and not bypassed. Think
about a security situation where you want to write a note to a log table every time
someone changes an employee salary. If you rely on programmers to implement
this code in their forms, they might forget to do it or even do it incorrectly. Ad-
ditionally, someone could create an entirely new form or use a query to change the
data directly, without executing the security code. Placing the code within the da-
tabase provides a mechanism to ensure that it is run anytime the data is changed,
regardless	of	how	the	modification	is	generated.	In	the	SQL	standard,	procedural	
code stored within the database is called a persistent stored module (PSM), and
related	 procedures	 and	 functions	 can	 be	 stored	 in	 developer-defined	 modules.	
With	the	release	of	Office	2010,	Microsoft added some rudimentary data macros
that can be assigned to tables to handle these types of tasks.

Code within forms should concentrate on handling events or custom problems
within	the	specific	form.	On	the	other	hand,	placing	the	code	into	a	separate	ex-
ternal	 file	 is	 a	 technique	 often	 used	 in	 n-tier	 client/server	 systems	 described	 in	
Chapter 11. It has the advantage of consolidating the business logic into one loca-
tion. Separating the business logic from the DBMS makes it easier to replace the
DBMS if desired. Database code in external software also arises on Web sites and
other situations where data is exchanged with external devices, such as bar code
scanners or other sensors.

User-Defined Functions
User-defined	 functions are a good illustration of procedural code. Occasionally
you need a calculation that will be used by several different queries, reports or
forms. Even if the computation is relatively simple, placing the code in one loca-
tion	makes	it	substantially	easier	to	find	and	change	later.	You	can	define	your	own	
function name and perform almost any computation you need using procedural
code. Figure 7.2 provides an example of a simple function to estimate item costs.
In practice, this function would be more complex and include tables and queries,
but	keeping	it	simple	focuses	on	the	basic	elements	of	a	user-defined	function.	
A	function	is	just	a	set	of	code	designed	to	perform	a	defined	task.	Typically	

this function and task need to be called from multiple locations. Functions are
passed values and perform computations on these parameters. A value is returned
to the calling routine. You can also create procedures, which are different from

Figure 7.2
User-defined	function.	Placing	the	business	logic	in	a	central	location	makes	it	easy	
to modify later. The function can be used in code segments or SELECT statements.

CREATE	FUNCTION	EstimateCosts	
	 (ListPrice	Currency,	ItemCategory	VarChar)	
RETURNS	Currency
BEGIN
	 IF	(ItemCategory	=	‘Clothing’)	THEN
	 	 RETURN	ListPrice	*	0.5
	 ELSE
	 	 RETURN	ListPrice	*	0.75
	 END	IF
END

358Chapter 7: Database Integrity and Transactions

functions in that they do not return a value. However, in almost all cases, you will
want to use functions—if only to return error codes. A key feature is that you can
include procedural statements such as “if” conditions to handle complex logic.

Figure 7.3 shows a function that uses input parameters to update the database.
Almost all functions and procedures use parameters to pass in values to be used in
calculations. You can also create local variables to modify the parameters and then
use them in the SQL statement. Functions can be as complex as you need. The
procedural language system contains the standard elements of any programming
language: variables, conditions, loops, and subroutines.
The	 specific	 syntax	 of	 the	module	 language	 and	 parameters	 depends	 on	 the	

DBMS.	The	 versions	 shown	 here	 reflect	 the	most	 recent	 SQL	 standard,	which	
is only partially supported by DBMS vendors. Although Microsoft Access does
not support the CREATE FUNCTION statement, you can build functions in VBA
code modules.

Looking Up Data
Procedures and functions often need to be able to use data from tables or que-
ries. Obtaining data from a single row is straightforward with the SELECT INTO
statement. It behaves the same as a standard SELECT statement, but instead of
displaying the values, it places them into local variables. However, you have to
be careful to ensure that the SELECT statement returns only a single row of data.
If you make a mistake in the WHERE condition and return multiple rows, it will
generate an error.

Figure 7.4 shows how the SELECT INTO statement is used to retrieve a single
value. The statement can be used to retrieve data from multiple columns. Just add
another COLUMN INTO VARIABLE on the SELECT line and separate it with
a comma from the existing line. Notice the difference between the overall ob-
jectives	 in	Figures	7.3	and	7.4:	The	first	hard-codes	a	maximum	value	(50000),	
whereas the new approach looks up the maximum raise in a table. This approach
is	better	than	using	a	fixed	value	because	you	can	create	a	form	that	enables	an	
administrator	to	change	this	value	quickly.	If	you	leave	fixed	numbers	in	your	pro-
gram	code,	a	programmer	would	have	to	wade	through	all	of	the	modules	to	find	
the magic number. In addition, anytime someone has to change program code,

CREATE	FUNCTION	IncreaseSalary
	 (EmpID	INTEGER,	Amt	CURRENCY)
RETURNS	CURRENCY
BEGIN
	 IF	(Amt	>	50000)	THEN
	 	 RETURN	-1	 	 --	error	flag
	 END
	 UPDATE	Employee	SET	Salary	=	Salary	+	Amt
	 WHERE	EmployeeID	=	EmpID;
	 RETURN	Amt;
END

Figure 7.3
Function to update the database. The input parameters are used to specify values in
the SQL statement. Additional computations can be performed and the parameters
modified	if	needed.

359Chapter 7: Database Integrity and Transactions

there is a large risk that additional errors will be introduced. Whenever possible,
you should place important values into a table and use the lookup process to get
the current value when it is needed.

Programming Tools
What capabilities exist in procedural code? Ideally, you already know how to
write program code in a separate language such as Basic, C#, Java, or C++. In
most situations, you can use these tools to write any level of code you need and
then embed database calls within that program. Typically, the database calls con-
sist of SQL statements to insert or retrieve data. However, sometimes you will
have to use the database language built into the DBMS. For instance, when you
need to examine large amounts of data, it is usually faster to handle the data sole-
ly within the DBMS and return simpler results to other programs. Transferring
data—even within the same computer—takes time and processing resources. The
DBMS is already optimized for handling data internally.

The main concepts you need to know with any procedural language are: (1)
Sequence, (2) Variables, (3) Conditions, (4) Loops,	(5)	Input and Output, and (6)
Procedures and functions (subroutines). These are the building blocks or tools that
are available to build programs.

One. The primary difference between SQL queries and programming languag-
es is the concept of sequence. A procedural language executes one command line
at a time and then moves to the next one. This process controls the order in which
commands or steps are executed. In contrast, note that the SQL SELECT com-
mand provides minimal control over sequence. Rows are operated on in any order
determined	by	the	query	optimizer.	You	can	specify	the	sorting	of	the	final	result,	
but not the order in which rows are operated on. Hence, it is relatively easy to see
situations where a procedural language is necessary, such as when two or more

CREATE	FUNCTION	IncreaseSalary
	 (EmpID	INTEGER,	Amt	CURRENCY)
RETURNS	CURRENCY
DECLARE
	 CURRENCY	MaxAmount;
BEGIN
	 SELECT	MaxRaise	INTO	MaxAmount
	 FROM	CompanyLimits
	 WHERE	LimitName	=	‘Raise’;

	 IF	(Amt	>	MaxAmount)	THEN
	 	 RETURN	-1	 	 --	error	flag
	 END
	 UPDATE	Employee	SET	Salary	=	Salary	+	Amt
	 WHERE	EmployeeID	=	EmpID;
	 RETURN	Amt;
END

Figure 7.4
Looking up single data elements. The SELECT INTO statement can be used to return
data from exactly one row in a table or query. The result is stored in a local variable
(MaxAmount) that you can use in subsequent code or SQL statements.

360Chapter 7: Database Integrity and Transactions

commands	need	to	be	executed	in	a	specific	sequence.	A	simple	program	might	
consist of two INSERT commands—where data is added to one table and then
referenced by the second INSERT command.

Two. Variables are temporary locations in memory to hold data. They usually
have	 a	 defined	 data	 type.	Within	 a	DBMS	procedural	 language,	 the	 data	 types	
available	match	 those	used	within	 tables,	such	as	 integer,	float,	and	date.	When	
code is written in more traditional languages such as Basic, C#, and Java, the da-
tabase connector needs to transfer DBMS data types into local variable data types.
This process is complicated when the database can hold Null values. External pro-
gram code often needs special functions to translate data—watching for problems
with Null values. One key to understanding variables is to recognize their scope.
Scope	refers	to	the	context	or	location	where	a	variable	is	defined.	For	instance,	
variables declared within a function only exist within that function. The values are
hidden from code written in other functions.

Three. Conditions. The most common form is IF (condition) THEN … ELSE
… END IF. Sometimes a CASE or ELSE IF block is available to test multiple val-
ues	in	one	setting.	The	purpose	is	to	define	multiple	code	sections	so	that	only	one	
is executed depending on the value of the condition being tested. The action state-
ments within the conditional element are indented to make them easier to read by
separating them from the conditional logic.

Four.	 Loops.	 Loops	 define	 a	 block	 of	 code	 that	 is	 to	 be	 executed	multiple	
times.	The	number	of	times	can	be	fixed;	determined	by	the	amount	of	data	such	
as	the	number	of	rows	in	a	table;	or	determined	dynamically	within	the	loop.	In	
a	database	environment,	 the	most	common	use	of	 loops	 is	 to	define	a	SELECT	
query on a table to retrieve a set of rows—then execute the code for each row of
data. This approach is used only when SQL cannot handle the problem. SQL is
almost always faster at working with sets of rows, but sometimes, procedural code
is	needed	when	computations	must	be	performed	in	a	specific	order.

Five. Input and Output. Code within the database typically needs to retrieve or
store data in tables. SQL statements are used to handle these operations (SELECT,
INSERT,	UPDATE,	 and	DELETE).	The	 commands	 can	be	modified	by	 adding	
parameters	 created	 from	 variables	 defined	 in	 the	 code.	Code	 that	 is	written	 on	
forms (or reports) can also access data entered onto the form by users.

Six. Procedures and Functions. These subroutines are used to split the code into
manageable pieces that are easier to read and to debug. Procedures and functions
contain code that can be called from multiple locations—so any code that needs to
be used in more than one location should always be written as a function or proce-
dure. But, even if the code is called only one time, it can be useful to write it as a
separate function. Smaller functions are easier to debug and they reduce the com-
plexity of the overall program. For example, perhaps you need to write a proce-
dure	that	performs	five	different	steps.	Each	step	takes	10	lines	of	code	to	create.	
Instead	of	writing	one	procedure	consisting	of	50	lines	of	code,	it	is	better	to	write	
a	main	procedure	that	calls	five	other	procedures—each	with	the	10	lines	of	code.

Data Triggers
How are business rules added to the database? Data triggers are procedures
that are executed when some event arises within the database. The code is written
in the query system and is saved as a procedure or function within the database.
By binding the code to the database tables, the DBMS ensures the code is always
executed when changes are made to the data. The common events that can host

361Chapter 7: Database Integrity and Transactions

triggers are Update, Insert, and Delete, but some systems enable you to attach
code to events related to users or the database instance. To understand the role of
triggers, consider a procedure that is run whenever someone changes the Salary
column in the Employee table. When the data is changed, your trigger procedure
is	fired	to	record	the	person	who	made	the	change.	With	the	log,	auditors	can	go	
back and see who made changes to this critical data. The salary example is a com-
mon	use	of	data	triggers,	which	is	to	add	specific	security	or	auditing	features	to	
the database. They can also be used to handle business events, such as monitoring
when quantity on hand drops below some level and generating an e-mail message
or an EDI order to a supplier.
Figure	7.5	lists	the	basic	SQL	commands	that	support	triggers.	The	main	data	

triggers on the rows and columns each have two attributes: BEFORE and AFTER.
For example, you can specify a procedure for BEFORE UPDATE and a different
procedure for AFTER UPDATE. The BEFORE UPDATE event is triggered when
a user attempts to change data, but before the data is actually written to the data-
base.	The	AFTER	UPDATE	trigger	is	fired	once	the	data	has	been	written.	You	
choose the event based on what you want to do with your application. If you need
to check data before it is written to the database, you need to use a BEFORE trig-
ger. For instance, you might want to perform a complicated validation test before
saving data. On the other hand, if you want to record when data was changed or
need to alter a second piece of data, you can use an AFTER trigger.

Statement versus Row Triggers
The	SQL	standard	defines	two	levels	of	triggers:	(1)	triggers	may	be	assigned	to	
the	overall	 table	or	 (2)	 they	may	be	assigned	 to	fire	for	each	row	of	data	being	
modified.	 Figure	 7.6	 shows	 the	 timing	 of	 the	 various	 triggers	 for	 an	UPDATE	
command.	Triggers	created	to	the	overall	table	are	fired	first	(BEFORE	UPDATE)	
or	at	the	very	end	(AFTER	UPDATE).	Then	individual	row	triggers	are	fired	be-
fore or after each row being examined. For row-level triggers, you can also add
conditions	that	examine	the	row	data	to	decide	if	the	trigger	should	be	fired	or	ig-
nored.	For	instance,	you	might	add	a	row	trigger	in	the	Salary	case	that	fires	only	
for employees in a certain division. Note that this condition is completely separate
from the original UPDATE WHERE statement. The trigger condition is used only
to	decide	whether	or	not	to	fire	the	trigger.
Figure	7.7	shows	a	sample	trigger	that	fires	whenever	a	row	is	changed	in	the	

Employee table. Notice that it is a row-level trigger because of the FOR EACH
ROW statement. The example also illustrates that triggers can examine and use
the data stored in the target table before it is changed (OLD ROW) and after it has
been changed (NEW ROW). In this situation, the original salary and new salary
are both recorded to the log table. With this information, security managers and
auditors	can	quickly	query	the	log	table	to	identify	major	changes	to	salary	and	

	 INSERT
BEFORE	 DELETE	 AFTER
	 UPDATE

Figure 7.5
Data triggers. You can set procedures to execute whenever one of these actions
occurs.	Row	events	can	be	triggered	before	or	after	the	specified	event	occurs.

362Chapter 7: Database Integrity and Transactions

then investigate further to ensure the changes were legitimate. You do have to be
careful with the OLD and NEW data. For example, the NEW data has not yet been
created in a BEFORE UPDATE trigger, so it cannot be accessed. Also, you cannot
alter the OLD data within your trigger code.

Canceling Data Changes in Triggers
One of the uses of triggers is to examine changes in detail before they are writ-
ten to the database. The BEFORE UPDATE and BEFORE INSERT triggers are
often used to validate complex conditions. You also might want to provide more
cautious checks before deleting data. In these cases, the structure of the trigger is
straightforward. The key element is that you need a way to stop the original SQL
statement from executing. The WHEN condition is used to examine the row that
is scheduled to be deleted. As shown in Figure 7.8, the SIGNAL statement raises

UPDATE	Employee
SET	Salary	=	Salary +	10000
WHERE	EmployeeID=442	
OR	EmployeeID=558

time

Before	Update
On	table

After	Update
On	table

Before	Update
Row	442

After	Update
Row	442

Update
Row	442

… other	rows

Triggers for overall table

Triggers for each row

Figure 7.6
Update	triggers	can	be	assigned	to	the	overall	table	and	fire	once	for	the	entire	
command,	or	they	can	be	assigned	to	fire	for	each	row	being	updated.

CREATE	TRIGGER	LogSalaryChanges
AFTER	UPDATE	OF	Salary	ON	Employee
REFERENCING	 OLD	ROW	as	oldrow
	 NEW	ROW	AS	newrow
FOR	EACH	ROW
	 INSERT	INTO	SalaryChanges	
	 (EmpID,	ChangeDate,	User,	OldValue,	NewValue)
	 VALUES	
	 (newrow.EmployeeID,	CURRENT_TIMESTAMP,
	 CURRENT_USER,	oldrow.Salary,	newrow.Salary);

Figure 7.7
Trigger	to	log	the	users	who	change	an	employee	salary.	The	trigger	fires	any	time	
the salary is updated, regardless of the method used to alter the data. It is a useful
security tracing technique for sensitive data because it cannot be circumvented,
except by the owner of the trigger.

363Chapter 7: Database Integrity and Transactions

an error condition that prevents the row from actually being deleted. The actual
signal condition (CANNOT_DELETE_PRESIDENT) can be almost anything,
but	it	must	be	defined	as	a	constant	in	the	overall	module.	Note	that	most	database	
system vendors have not yet adopted the SIGNAL keyword, so the actual syntax
you need will depend on the system (and version) that you are using. The work-
books	give	the	actual	cancel	method	and	syntax	needed	for	each	specific	DBMS.	
For instance, Oracle uses the function: Raise_Application_Error, whereas Micro-
soft SQL Server uses Raiserror.

In general, you should try to avoid using triggers for simple check conditions.
Instead, use the standard SQL conditions (e.g., PRIMARY KEY, FOREIGN KEY,
and	CHECK)	because	 they	are	more	efficient	and	are	 less	 likely	 to	cause	addi-
tional problems. But sometimes you need to create complex conditions that are
difficult	to	handle	with	simple	conditions.

Cascading Triggers
A serious complication with triggers is that a database can have many triggers
on each table. Cascading triggers	arise	when	a	change	that	fires	a	trigger	on	one	
table causes a change in a second table, that triggers a change in a third table, and
so on. Figure 7.9 shows a common inventory situation. When an item is sold, a
new row is added to the SaleItem table that contains the quantity sold. Because
the item has been sold, the quantity on hand is updated in the Inventory table. A
trigger on the Inventory table then checks to see if the QOH is below the reorder
point. If it is, a new order is generated and sent electronically to a supplier, result-
ing in inserts on the Order and OrderItem tables.

There is nothing inherently wrong with cascading triggers. However, long
chains	of	updates	can	slow	down	the	system.	They	also	make	it	difficult	to	debug	
the	system	and	find	problems.	In	the	example,	you	might	be	looking	at	a	problem	
in the OrderItem table, but it could have been caused by an error in the trigger
code for the SaleItem table. The longer the chain, the more challenging it is to
identify the source of problems.
A	more	difficult	 problem	can	potentially	 arise	with	 cascading	 triggers.	What	

happens when the chain loops	 on	 itself?	 Figure	 7.10	 shows	 an	 example	 of	 the	
problem. A company has embedded several rules about the methods of paying
employees. When the salary reaches a certain level, the employee is eligible for
bonuses. When the employee has already received substantial bonuses, the bonus
amount is limited and the employee is granted additional stock options. If the lev-

CREATE	TRIGGER	TestDeletePresident
BEFORE	DELETE	ON	Employee
REFERENCING	OLD	ROW	AS	oldrow
FOR	EACH	ROW
	 WHEN	(oldrow.Title	=	‘President’)
	 	 SIGNAL	CANNOT_DELETE_PRESIDENT;

Figure 7.8
Canceling the underlying SQL command. This trigger examines the data for the
employee row being deleted. The company always wants to keep data on any
employee with the president title. The WHEN condition evaluates each row. The
SIGNAL statement raises an error to prevent the underlying delete from executing.

364Chapter 7: Database Integrity and Transactions

el of stock options is substantial, the original salary is reduced. But that takes the
system back to the beginning, and the salary change could trigger another round
of updates. Depending on the computations, this loop could diverge so that the
numbers get larger and larger (or increasingly negative), and the computations
never	end.	For	 this	 reason,	 the	SQL	standard	 is	defined	 to	 forbid	 trigger	 loops.	
Systems that follow the standard are supposed to monitor the entire chain of up-
dates, and if it encounters a loop, it should cancel changes and issue a warning.
Even if the system is supposed to identify these loops, you should always check
the system yourself to make sure that these problems will not arise. Obviously, the
system is easier to check if there are only a limited number of triggers. If you can
list the triggers in the order shown here, it is fairly easy to see the loop. However,
systems rarely provide this option. Instead, you have to look through all of the
database triggers and draw your own charts.

INSTEAD OF Triggers
Some database systems support the INSTEAD OF option as an even stronger type
of trigger. A standard trigger runs your code in addition to performing the underly-
ing function (DELETE, INSERT, or UPDATE). The INSTEAD OF option com-
pletely replaces the underlying command with your code. So, even if the change
should be written to the database, you will have to write the additional SQL state-
ments to take the appropriate action. Although this process seems more complicat-
ed,	it	is	a	useful	trick	for	making	queries	updateable.	Recall	that	a	query	that	joins	
multiple	tables	generally	is	not	updateable;	data	cannot	be	added	to	the	query	be-
cause the system does not always know which table gets the new row. To solve the
problem, you can add an INSTEAD OF trigger to the query. Then, changes that
are needed can be written to the individual tables with separate SQL statements

Tables Triggers and Timing
Sale(SaleID,	SaleDate,	…)
SaleItems(SaleID,	ItemID,	Quantity,	…)

AFTER	INSERT	ON	SaleItems
	 UPDATE	Inventory
	 SET	QOH	=	QOH	–	newrow.Quantity

Inventory(ItemID,	QOH,	…)
AFTER	UPDATE	ON	Inventory
	 WHEN	newrow.QOH	<	newrow.Reorder
	 	 INSERT	{new	Order}
	 	 INSERT	{new	OrderItem}

Order(OrderID,	OrderDate,	…)
OrderItem(OrderID,	ItemID,	Quantity,	…)

Figure 7.9
Cascading	triggers.	With	triggers	defined	on	multiple	tables,	a	change	in	one	table	
(SaleItem) can cascade into changes in other tables. Here, when an item is sold,
quantity on hand is updated. If QOH is below the reorder point, a new order is
generated and sent.

365Chapter 7: Database Integrity and Transactions

Trigger Summary
Your	 first	 look	 at	 database	 triggers	 might	 seem	 overwhelming.	Any	 table	 can	
contain trigger code before and after three different events. You can even write
multiple	 triggers	 for	each	event.	Do	you	 really	need	 to	write	database	 triggers?	
How	do	you	determine	which	event	to	use?	The	first	answer	is	that	you	should	be	
conservative in using triggers. Use them to establish critical business rules and
monitoring that need to be centralized. Database triggers are convenient and pow-
erful, making it easy to ensure that relatively complex tasks are handled correctly.
However,	they	are	difficult	to	debug	and	explain	to	other	developers.
The	answer	to	the	second	question	is	trickier.	You	first	need	to	understand	the	

detailed nature of the business rule. Choose the database trigger that provides
the most direct application of the rule. For example, if you need a rule related to
changing	 inventory	 levels,	 add	 the	 trigger	 to	 the	 Items	 table;	not	 the	SaleItems	
table. When in doubt, write the rule in several locations and test each version. One
of	the	main	indicators	of	success	is	when	your	rule	fires	exactly	one	time.	If	the	
rule	does	not	fire	during	a	test	run,	it	 is	probably	too	far	away	from	the	desired	
table.	If	it	fires	repeatedly	for	one	business	operation,	the	rule	is	at	too	detailed	of	
a level (such as on the SaleItems table instead of the Sale table).

Tables Triggers and Timing
1 Employee(EID,	Salary)

AFTER	UPDATE
	 IF	newrow.Salary	>	100000	THEN
	 	 Add	BonusPaid
	 END

2 BonusPaid(EID,	BonusDate,	Amount)
AFTER	UPDATE	or	INSERT
	 IF	newrow.Bonus	>	50000	THEN
	 	 Reduce	Bonus
	 	 Add	StockOptions
	 END

3 StockOptions(EID,	OptionDate,	Amount,	SalaryAdj)
AFTER	UPDATE	Or	INSERT
	 IF	newrow.Amount	>	100000	THEN
	 	 Reduce	Employee	Salary
	 END

4 Return to Step 1

Figure 7.10
Trigger loop. Consider what happens when cascading triggers create a loop, where
one trigger returns to alter a table that generated the original change. This loop would
set up iterations that might converge or diverge. Even if the loop converges, it will
eat up considerable resources.

366Chapter 7: Database Integrity and Transactions

Transactions
How does a DBMS handle multiple transaction events? When building appli-
cations, it is tempting to believe that components will always work and that prob-
lems will never occur. Tempting, but wrong. Even if your code is correct, prob-
lems can develop. You might face a power failure, a hardware crash, or perhaps
someone accidentally unplugs a cable. You can minimize some of these problems
by implementing backup and recovery procedures, storing duplicate data to differ-
ent drives, and installing an uninterruptible power supply (UPS). Nevertheless, no
matter how hard you try, failures happen.

A Transaction Example
An error that occurs at the wrong time can have serious consequences. In particu-
lar, many business operations require multiple changes to the database. A trans-
action	is	defined	as	a	set	of	changes	that	must	all	be	made	together.	Consider	the	
example in Figure 7.11. You are working on a system for a bank. A customer goes
to	an	online	banking	application	and	instructs	it	to	transfer	$1,000	from	savings	to	
a checking account. This simple transaction requires two steps: (1) subtracting the
money from the savings account balance and (2) adding the money to the check-
ing account balance. The code to create this transaction will require two updates
to the database. For example, there will be two SQL statements: one UPDATE
command to decrease the balance in savings and a second UPDATE command to
increase the balance in the checking account.

You have to consider what would happen if a machine crashed in between these
two operations. The money has already been subtracted from the savings account,
but it will not be added to the checking account. It is lost. You might consider
performing	the	addition	to	checking	first,	but	then	the	customer	ends	up	with	extra	
money, and the bank loses. The point is that both changes must be made success-
fully. The other option is that both operations can fail—leaving the customer and
the bank at the starting point. If you have a choice, you want all operations to suc-
ceed, but keep in mind that total failure is better than partial success in these cases.

Steps Savings Balance Checking Balance
0.	Start 5,340.92 1,424.27
1.	Subtract	1,000 4,340.92 1,424.27
2.	Add	1,000 4,340.92 2,424.27

Problem	arises	if	transaction	is	not	completed
1.	Subtract	1,000 4,340.92 1,424.27
2.	Machine	crashes 1,000	is	gone

Figure 7.11
Transactions involve multiple changes to the database. To transfer money from a
savings account to a checking account, the system must subtract money from savings
and add it to the checking balance. If the machine crashes after subtracting the money
but before adding it to checking, the money will be lost.

367Chapter 7: Database Integrity and Transactions

Starting and Ending Transactions
How	do	you	know	that	both	operations	are	part	of	 the	same	transaction?	It	 is	a	
business	rule—or	the	definition	of	a	transfer	of	funds.	The	real	problem	is:	How	
does	the	computer	know	that	both	operations	must	be	completed	together?	As	the	
application developer, you must tell the computer system which operations be-
long to a transaction. To do that you need to create procedural code and mark the
start and the end of all transactions inside your code. When the computer sees
the starting mark, it starts writing all the changes to a log	file.	When	 it	 reaches	
the end mark, it makes the actual changes to the data tables. If something goes
wrong before the changes are complete, when the DBMS restarts, it examines the
log	file	and	completes	any	transactions	that	were	incomplete.	From	a	developer’s	
perspective, the nice part is that the DBMS handles the problem automatically. All
you have to do is mark the start and the end of the transaction.

Transactions illustrate the need for procedural languages. As shown in Figure
7.12, the multiple UPDATE statements need to be stored in a module function
or procedure. In this example, the two UPDATE statements must be completed
together or fail together. The START TRANSACTION statement is optional (in
the SQL standard) but highlights the beginning of the transaction. If both updates
complete successfully, the COMMIT statement executes, which tells the DBMS

CREATE	FUNCTION	TransferMoney(Amount	Currency,	
	 	 AccountFrom	Number,AccountTo	Number)	
	 RETURNS	NUMBER
curBalance	Currency;
BEGIN
	 DECLARE	HANDLER	FOR	SQLEXCEPTION
	 BEGIN
	 	 ROLLBACK;
	 	 Return	-2;	 	 --	flag	for	completion	error
	 END;
	 START	TRANSACTION;	 --	optional
	 SELECT	CurrentBalance	INTO	curBalance	
	 FROM	Accounts	WHERE	(AccountID	=	AccountFrom);
	 IF	(curBalance	<	Amount)	THEN
	 	 RETURN	-1;	 --	flag	for	insufficient	funds
	 END	IF
	 UPDATE	Accounts	
	 SET	CurrentBalance	=	CurrentBalance	–	Amount
	 WHERE	AccountID	=	AccountFrom;
	 UPDATE	Accounts
	 SET	CurrentBalance	=	CurrentBalance	+	Amount
	 WHERE	AccountID	=	AccountTo;
	 COMMIT;
	 RETURN	0;	 	 	 --	flag	for	success
END;

Figure 7.12
Transaction to transfer money. If the system crashes before the end of the transactions
(Commit), none of the changes are written to the database. On restart, the changes
may all be rolled back, or the transaction restarted.

368Chapter 7: Database Integrity and Transactions

to save all of the changes. If an unexpected error arises, the ROLLBACK state-
ment executes so none of the changes are saved. Most systems handle the transac-
tion	requirement	by	writing	all	changes	to	an	intermediate	log	file.	If	something	
goes	wrong	with	the	transaction,	the	system	can	recover	the	log	file	and	rollback	
or complete the transaction.

Notice that the START TRANSACTION line comes before the initial SELECT
statement. This might seem unnecessary, since it appears that only the UPDATE
commands need to be within the transaction. There is a syntax reason for placing
this	statement	first:	Any	SELECT	statement	automatically	initiates	a	new	transac-
tion. However, as will be explained in the section on concurrency, there is a good
reason for starting the transaction before this SELECT statement. Think about
things that can go wrong if another process tries to modify the data retrieved by
the	SELECT	statement,	before	this	transaction	is	finished.

SAVEPOINT
Sometimes, you need intermediate points in a transaction. Some steps are more
critical than others. You might have some optional changes that would be useful
to save, but if they fail, you still need to ensure that the critical updates are com-
mitted. The SAVEPOINT technique divides transaction procedures into multiple
pieces.	You	can	roll	back	a	transaction	to	the	beginning,	or	to	a	specific	SAVE-
POINT. Figure 7.13 illustrates the process and shows the syntax to set a SAVE-
POINT and rollback to it. As indicated, it can be used to mark a set of risky steps
that you would like to include in the update but are not required to use. Conse-
quently, if the updates fail for the risky section, you can discard those changes and
still	keep	the	required	elements	that	were	defined	at	the	beginning	of	the	transac-
tion. Generally, you could accomplish the same thing by using multiple COMMIT
statements, but sometimes the optional code might include a calculation that you
want	 to	 include	 in	 the	final	 result.	Without	 the	SAVEPOINT	option,	you	might	
have	to	write	the	final	value	more	than	once.

START	TRANSACTION;
SELECT	…
UPDATE	…
SAVEPOINT	StartOptional;
UPDATE	…
UPDATE	…
If	error	THEN

ROLLBACK	TO	SAVEPOINT	StartOptional;
END	IF
COMMIT;

time

start
Required	elements

SAVEPOINT
StartOptional

Risky	steps
commit

Partial	
rollback

Figure 7.13
SAVEPOINT. A SAVEPOINT enables you to rollback to an intermediate point in the
procedure. You can set multiple SAVEPOINTS and choose how far back you want to
rollback the changes.

369Chapter 7: Database Integrity and Transactions

Multiple Users and Concurrent Access
How do you prevent problems arising when two processes change the same
data? One of the most important features of a database is the ability to share
data with many users or different processes. This concept is crucial in any modern
business application: Many people need to use the application at the same time.
However, it does create a potential problem with database integrity: What happens
when	two	people	try	to	change	the	same	data	at	the	same	time?	This	situation	is	
known as concurrent access. Consider the example of an Internet order sys-
tem shown in Figure 7.14. The company records basic customer data and tracks
charges and receipts from customers. Customers can have an outstanding balance,
which is money they currently owe. In the example, Jones owes the company
$800.	When	Jones	makes	a	payment,	a	clerk	receives	the	payment	and	checks	for	
the	current	balance	($800).	The	clerk	enters	the	amount	paid	($200),	and	the	com-
puter	subtracts	to	find	the	new	balance	due	($600).	This	new	value	is	written	to	
the customer table, replacing the old value. So far, no problem. A similar process
occurs if Jones makes a new purchase. As long as these two events take place at
different times, there is no problem.
However,	what	 happens	 if	 the	 two	 transactions	 do	 occur	 together?	Consider	

the following intermingling: (1) The payments clerk receives the payment, and
the	computer	retrieves	the	current	amount	owed	by	Jones	($800).		(2)	The	clerk	
enters	the	$200	payment.	Before	the	transaction	can	be	completed,	Jones	places	a	
new	order	on	the	Internet	for	$150	of	new	merchandise.	(3)	The	Web	server	also	
reads	the	current	balance	owed	($800)	and	adds	the	new	purchases.	Now,	before	
this	transaction	can	be	completed,	the	first	one	finishes.	(4)	The	payments	clerk’s	
computer	determines	 that	 Jones	now	owes	$600	and	saves	 the	balance	due.	 (5)	
Finally, the Web server adds the new purchases to the balance due. (6) The order
computer	saves	the	new	amount	due	($950).	Customer	Jones	is	going	to	be	justifi-
ably	upset	when	the	next	bill	is	sent.	What	happened	to	the	$200	payment?	The	
answer is that it was overwritten (and lost) when the new order change was mixed
in with the receipt of the payment.

Receive Payment Balance Place New Order
1.	Read	balance	 800 800
2.	Subtract	Pmt.	 -200

3.	Read	balance	 800
4.	Save	balance	 600 600

5.	Add	order	 150
950 6.	Write	balance	 950

Figure 7.14
Concurrent access. If two processes try to change the same data at the same time, the
result will be wrong. In this example the changes made when the payment is received
are overwritten when a new order is placed at the same time.

370Chapter 7: Database Integrity and Transactions

Optimistic Locks
Two common methods exist to solve the problem of concurrent changes (opti-
mistic and pessimistic). Today, with fast computer speeds the DBMS can process
transactions quickly so there is a lower probability of concurrency problems. An
optimistic lock begins with the assumption that collisions are rare and unlikely
to arise. If they do arise, it is easier to handle the situation at that time. Han-
dling problems is straightforward and takes less DBMS overhead. Particularly in
distributed database environments, it is often easier and faster to use optimistic
locking.

The key to understanding optimistic locks is to realize that they are not really
locks;	 the	DBMS	lets	your	program	read	any	piece	of	data	needed.	When	your	
program attempts to change the data, the DBMS rereads the database and com-
pares the currently stored value to the one it gave you earlier. If there is a differ-
ence	between	the	two	values,	it	signifies	a	concurrency	problem	because	someone	
else	changed	the	data	before	you	were	able	to	finish	your	task.	The	DBMS	then	
raises an error and expects your program to deal with it. In summary, optimistic
locking can improve performance, but it requires you to deal with potential colli-
sions.	Figure	7.15	outlines	the	basic	process.	The	key	to	the	process	lies	in	modi-
fying the UPDATE command by adding a WHERE clause similar to: WHERE
Amount = oldAmount. The “oldAmount” value is the original value stored in a
variable when the transaction begins.

The preferred solution to collisions using optimistic locks is to rollback any
changes you have already made, and restart your code to read the current value
from the database, re-compute your changes, and write the new value to the data-
base.	Consider	the	example	of	the	orders	in	Figure	7.16.	The	function	first	reads	
the current value of the balance into memory. After completing some other tasks
(slow	code),	it	attempts	the	UPDATE	command,	with	one	twist.	It	specifies	that	
the UPDATE command only applies to the row with the given Account Num-
ber and with the original Amount value. If the value was changed by a second
transaction, this UPDATE command will not alter any rows. The error test fol-
lowing the UPDATE command will recognize if the changes were successful or
not. If successful, the routine is done and it exits. If the changes failed, you have

Receive Payment Balance Place New Order
1.	Read	balance	 800 800
2.	Subtract	Pmt.	 -200

3.	Read	balance	 800
4.	Save	balance	 600 600 Error:	Blocked

3.	Read	balance	 600
4.	Add	order	 150

950 5.	Write	balance	 750

Figure 7.15
Serialization.	The	first	process	locks	the	data	so	that	the	second	process	cannot	even	
read it. Concurrent changes are prevented by forcing each process to wait for the
earlier ones to be completed.

371Chapter 7: Database Integrity and Transactions

complete control over what to do. In this case, it makes sense to go back and pick
up the newly revised Amount and try again. To be safe, you should add a counter
to the number of retries. If the count reaches too large of a number, this routine
should simply give up and produce an error code indicating that it is not possible
to update the data at this time.

One catch with the UPDATE command is that you have to be careful with Null
values. Recall from queries that a condition of the form Amount = Null will not
work correctly. Instead, you have to write Amount Is Null. Consequently, if the
original value might be missing, the comparison test is more complicated:

((Amount = oldAmount) OR (Amount IS Null AND oldAmount IS Null))

One of the strengths of the optimistic approach is that it works with any DBMS,
even if multiple distributed databases are involved in the transactions. However, it
does require that programmers write and validate the proper code for every single
update. Consequently, it makes sense to create a code library that contains a gener-
ic version of the UPDATE command that can be called for almost any transaction.

The other powerful feature of this approach is that the program code can con-
tain relatively sophisticated analysis to automatically handle common update
problems.	The	other	optiona	of	a	pessimistic	lock	usually	just	blocks	or	delays	a	
transaction which forces users to slow down or solve problems themselves. On the
other hand, the optimistic lock realized that it simply had to get the new balance
and	use	it	to	compute	the	final	amount.	No	intervention	and	almost	no	delay	were	
involved.

Today it is possible to reduce the collisions and concurrent access issues. Focus
on using the DBMS to handle all updates. Avoid computing values in code or on
forms. Consider Web-based forms which are notoriously slow. The form shows
customer account data to a clerk. The clerk enters a value for a payment receipt.
If this value is added to the current balance on the form or on the Web server, it
runs the risk of a collision when the total is written back to the DBMS. This col-

CREATE	FUNCTION	ReceivePayment	(
	 AccountID	NUMBER,	Amount	Currency)	RETURNS	NUMBER
BEGIN
	 DECLARE	HANDLER	FOR	SQLEXCEPTION
	 BEGIN
	 	 ROLLBACK;
	 	 RETURN	-2;
	 END
	 SET	TRANSACTION	SERIALIZABLE,	READ	WRITE;
	 UPDATE	Accounts
	 SET	AccountBalance	=	AccountBalance	-	Amount
	 WHERE	AccountNumber	=	AccountID;
	 COMMIT;
	 RETURN	0;
END

Figure 7.16
Transaction to transfer money. If the system crashes before the end of the transactions
(Commit), none of the changes are written to the database. On restart, the changes
may all be rolled back, or the transaction restarted.

372Chapter 7: Database Integrity and Transactions

lision can be avoided by computing the total within the DBMS using the update
statement:
UPDATE Customer
SET Balance = Balance + NewValue
WHERE CustomerID=@CustomerID;

 The DBMS simply adds the new value to whatever total currently exists in the
table. Your code does not need to test for concurrency issues. Of course, a DBMS
running parallel processors (and multithreading) would have to internally monitor
concurrency issues when running multiple update commands at the same time.
But that work is handled by the DBMS vendor.

The other way to minimize concurrency issues is to avoid storing any totals.
Transaction changes are simply written to a table along with time stamps. Totals
are computed from this log table whenever they are needed. However, in some

Process 1 Data A Data B Process 2
1.	Lock	Data	A

Locked	By	1 2.	Lock	Data	B
3.	Wait	for	Data	B Locked	By	2

4.	Wait	for	Data	A

Figure 7.17
Deadlock. Process 1 has locked Data A and is waiting for Data B. Process 2 has
locked Data B and is waiting for Data A. To solve the problem, one of the processes
has to back down and release its lock.

WaitWaitProcess	7

LockWaitProcess	6

WaitProcess	5

WaitLockProcess	4

LockProcess	3

LockWaitProcess	2

WaitLockProcess	1

Resource	EResource	DResource	CResource	BResource	A

WaitWaitProcess	7

LockWaitProcess	6

WaitProcess	5

WaitLockProcess	4

LockProcess	3

LockWaitProcess	2

WaitLockProcess	1

Resource	EResource	DResource	CResource	BResource	A

Figure 7.18
Lock manager. A global lock manager tracks all locked resources and associated
processes. If it detects a cycle, then a deadlock exists, and the lock manager instructs
processes to release locks until the problem is solved.

373Chapter 7: Database Integrity and Transactions

situations you still want to monitor concurrency. For instance, you do not want
two people to buy the last seat on an airplane.

Pessimistic Locks: Serialization
A second solution to the problem of concurrent access is to prevent collisions by
forcing transactions to be completely isolated. As shown in Figure 7.17, the se-
rialization process forces transactions to run separately so that a second process
cannot	even	 read	 the	data	being	modified	by	 the	first	process.	The	first	process	
requests a lock on the balance. Any process that attempts to read that data before
the lock is released will receive an error message. A key feature in this approach is
the ability of the DBMS to set row-level locks to minimize interference with other
processes. Some early systems used table-level locks, so no one could read the
data while one balance was being updated!

The method of invoking this type of lock mechanism depends heavily on the
DBMS.	SQL	99	defined	a	standard	method	of	specifying	the	transaction	lock,	but	
it has not been widely implemented yet. Figure 7.18 shows the basic logic, but
keep in mind that the syntax will be different for each DBMS. The main step is
to specify the isolation level to SERIALIZABLE in the SET TRANSACTION
statement. The DBMS then knows to lock each data element you will be using
so	 that	other	 transactions	will	be	prevented	 from	reading	 the	data	until	 the	first	
changes have been committed. However, it is important that all of the transaction
procedures contain error-handling code. Otherwise, when the second transaction
(RecordPurchase is almost identical to this one) runs, it will crash and display a
cryptic error message when it tries to update or read the data.

The concept of serialization is logical, and it emphasizes the importance of
forcing each transaction to complete separately. However, it is based on the tech-
nique of a pessimistic lock—where each transaction assumes that concurrent in-
terference will always occur. Every time the transaction runs, it places locks on
all of the resources that will be needed. This technique slows down the processing
and can result in another serious problem described in the following section.

Multiuser Databases: Concurrent Access and Deadlock
Concurrent access is a problem that arises when two processes attempt to alter the
same data at the same time. When the two processes intermingle, generally one
of the transactions is lost and the data becomes incorrect. For most database op-
erations the DBMS handles the problem automatically. For example, if two users
open forms and try to modify the same data, the DBMS will provide appropriate
warnings	and	prevent	the	second	user	from	making	changes	until	the	first	one	is	

1.	Read	the	balance.
2.	Add	the	new	order	value.
3.	Write	the	new	balance.
4.	Check	for	errors.
5.	If	errors	exist,	return	to	step	1.

Figure 7.19
Optimistic locking process. The steps assume that concurrency problems will not
arise.	If	another	transaction	does	change	the	data	before	this	transaction	finishes,	the	
code receives an error message and must restart.

374Chapter 7: Database Integrity and Transactions

finished.	Similarly,	 two	SQL	operations	 (e.g.,	UPDATE)	will	not	be	allowed	 to	
change the same data at the same time.

Even if you write program code, the DBMS will not allow two processes to
change the same data at the same time. However, your code has to understand
that sometimes a change to the data will not be allowed. This condition is often
handled as an error.

The solution to the concurrency problem is to force changes to each piece of
data to occur one at a time. If two processes attempt to make a change, the second
one	is	stopped	and	must	wait	until	the	first	process	finishes.	The	catch	is	that	this	
forced delay can cause a second problem: deadlock. Deadlock arises when two
(or more) processes have placed locks on data and are waiting for the other’s data.
An example is presented in Figure 7.19. Process 1 has locked data item A. Process
2 has locked item B. Unfortunately, Process 1 is waiting for B to become free, and
Process 2 is waiting for A to be released. Unless something changes, it could be a
long wait.

Two common solutions exist for the deadlock problem. First, when a process
receives a message that it must wait for a resource, the process should wait for
a random length of time, try again, release all existing locks, and start over if it
still cannot obtain the resource. This method works because of the random wait.
Of	the	two	deadlocked	processes,	one	of	them	will	try	first,	give	up,	and	release	
all locks with a ROLLBACK statement. The release clears the way for the other
process to complete its tasks. This solution is popular because it is relatively easy
to program. However, it has the drawback of causing the computer to spend a lot

CREATE	FUNCTION	ReceivePayment	(
	 AccountID	NUMBER,	Amount	Currency)	RETURNS	NUMBER
oldAmount	Currency;
testEnd	Boolean	=	FALSE;
BEGIN
	 DO	UNTIL	testEnd	=	TRUE
	 BEGIN
	 	 SELECT	Amount	INTO	oldAmount
	 	 WHERE	AccountNumber	=	AccountID;
	 	 …
	 	 UPDATE	Accounts
	 	 SET	AccountBalance	=	AccountBalance	-	Amount
	 	 WHERE	AccountNumber	=	AccountID
	 	 AND	Amount	=	oldAmount;
	 	 COMMIT;
	 	 IF	SQLCODE	=	0		And	nrows	>	0	THEN
	 	 	 testEnd	=	TRUE;
	 	 	 RETURN	0;
	 	 END	IF
	 	 --	keep	a	counter	to	avoid	infinite	loops
	 END
END

Figure 7.20
Optimistic concurrency with SQL. Keep the starting value within memory and then
only do the update if that value is unchanged. If another transaction changed the data
before this one completes, go back and get the new value and start over.

375Chapter 7: Database Integrity and Transactions

of time waiting—particularly when there are many active processes, leading to
many collisions.

A better solution is for the DBMS to establish a global lock manager as shown
in	Figure	7.20.	A	lock	manager	monitors	every	lock	and	request	for	a	lock	(wait).	
If the lock manager detects a potential deadlock, it will tell some of the processes
to release their locks, allow the other processes to proceed, and then restart the
other	processes.	 It	 is	 a	more	 efficient	 solution,	 because	processes	do	not	 spend	
any time waiting. On the other hand, this solution can be implemented only within
the DBMS itself. The lock manager must be able to monitor every process and its
locks.

For typical database operations with forms and queries, the DBMS handles
concurrent access and deadlock resolution automatically. When you write code
to change data, the DBMS still tries to
handle the situation automatically. How-
ever, the DBMS may rely on you to back
out your transaction. Some systems may
simply generate an error when the second
process attempts to access the data, and
it is your responsibility to catch the error
and handle the problem.

ACID Transactions
What are the primary rules to ensure integrity of transactions? The concept
of integrity is fundamental to databases. One of the strengths of the database ap-
proach is that the DBMS has tools to handle the common problems. In terms of
transactions, many of these concepts can be summarized in the acronym ACID.
Figure 7.21 shows the meaning of the term. Atomicity represents the central issue
that all parts of a transaction must succeed or fail together. Consistency means
that all data in the database ultimately must be consistent. Even though there
might be temporary inconsistencies while a transaction is being processed, in the
end, the database must be returned to a consistent state. This status should be able
to	be	tested	with	application-defined	code.	For	example,	referential	integrity	must	
be maintained after a transaction is completed. Isolation means that concurrent
access problems are prevented. Changes by one transaction do not result in er-
rors in other transactions. Note that transactions are rarely completely isolated:

This section focuses on terms used
in computer science and the SQL
standards. They are not critical for
beginning students.

•	 Atomicity:	All	changes	succeed	or	fail	together.

•	 Consistency:	All	data	remain	internally	consistent	(when	committed)	
and	can	be	validated	by	application	checks.

•	 Isolation:	The	system	gives	each	transaction	the	perception	that	it	is	
running	in	isolation.	There	are	no	concurrent	access	issues.

•	 Durability:	When	a	transaction	is	committed,	all	changes	are	
permanently	saved	even	if	there	is	a	hardware	or	system	failure.

Figure 7.21
ACID transactions. The acronym highlights four of the main integrity features
required of transactions.

376Chapter 7: Database Integrity and Transactions

they might encounter pessimistic or optimistic locking messages that need to be
handled. Durability indicates that committed transactions are lasting. Once the
transaction commits a change, it stays changed. This concept is critical in the face
of	hardware	and	software	failures	and	is	more	difficult	to	maintain	in	a	distributed	
database environment. Most systems ensure durability by writing changes to a
log	file.	Then,	even	if	a	hardware	failure	interrupts	an	update,	the	changes	will	be	
finished	when	the	system	is	restarted.	Importantly,	once	the	COMMIT	statement	
is accepted, the DBMS cannot rollback the changes.

With SQL 99, the START TRANSACTION and SET TRANSACTION com-
mands can be used to set the isolation level. In increasing isolation order, the four
choices are READ UNCOMMITTED, READ COMMITTED, REPEATABLE
READ, and SERIALIZABLE. These levels are supposed to be used to prevent
different types of concurrency problems, but rarely is there a need for the interme-
diate	levels,	so	many	systems	provide	only	the	first	and	last.	

The READ UNCOMMITTED level provides almost no isolation. It enables
your routine to read data that another transaction has altered but not yet commit-
ted. This problem is sometimes called dirty read because the value you receive
might be rolled back and the value ultimately may be inaccurate. If you select this
level, SQL will not allow your transaction to update any data, because it might
spread a false number throughout the database. The READ COMMITTED level
is similar to optimistic concurrency. It will prevent your transaction from reading
uncommitted data, but the data might still be changed or deleted by another trans-
action	before	the	first	transaction	completes.
The	REPEATABLE	READ	level	prevents	specific	data	you	are	using	from	be-

ing changed or deleted, but does not resolve the problem of phantom data. As
shown in Figure 7.22, consider a transaction that computes the sum of quantity on
hand	if	the	price	of	an	item	falls	within	a	specified	range.	Now,	a	second	transac-
tion	is	started	before	the	first	one	completes.	This	command	inserts	rows	of	data	

ItemID QOH Price
→ 111 5 15

113 6 7
117 12 30

→ 118 4 12
119 7 22

→ 120 8 17
→ 121 7 16
→ 122 3 14

SELECT	SUM(QOH)
FROM	Inventory
WHERE	Price	Between	10	And	20

Result:	5	+	4	+	8	=	17
INSERT	INTO	Inventory
VALUES	(121,	7,	16)
INSERT	INTO	Inventory
VALUES	(122,	3,	14)
SELECT	SUM(QOH)
FROM	Inventory
WHERE	Price	Between	10	And	20

Result:	5	+	4	+	8	+	7	+	3	=	27

Figure 7.22
Phantom	rows.	The	first	SELECT	statement	will	select	only	three	rows	of	data.	When	
the second transaction runs, additional rows will match the criteria, so that the second
time the query runs, it will return a different result, because it includes the phantom
rows.

377Chapter 7: Database Integrity and Transactions

(or alters the prices). These new rows are phantom rows that are not included in
the	first	query	because	they	did	not	exist	when	the	query	began.	After	the	first	two	
queries	have	finished,	if	you	repeat	the	first	query,	the	phantom	rows	will	be	com-
mitted and you will see new results.
Are	phantom	rows	bad?	In	many	ways,	no;	they	simply	arise	because	a	data-

base has constantly changing data. You (and managers) must always remember
that	 the	 results	 of	 a	 query	 are	 accurate	only	 at	 a	 specific	point	 in	 time.	On	 the	
other hand, if you are writing procedural code, you might be surprised by the
results	when	your	queries	do	not	finish	in	the	order	you	expected—particularly	if	
the DBMS is running on a multiprocessor system. In these situations, you might
have	to	add	semaphores	or	repeat	queries	 to	ensue	your	code	follows	a	specific	
sequence. Alternatively, you can specify a higher level of isolation.

The SERIALIZABLE isolation level prevents the phantom row problem by en-
suring that all transactions behave as if they were run in sequence. However, keep
in mind that this result is usually accomplished through the use of locks, so it re-
quires database resources, and it does not guarantee that your transaction will be
able	to	finish	on	the	first	try.	You	still	need	error	handling	to	catch	and	resolve	the	
problem when your transaction is blocked by another one.

Key Generation
How are key values generated? As you know by now, the relational database re-
lies	heavily	on	primary	keys,	which	must	be	unique.	It	can	be	difficult	in	business	
to guarantee that these keys are always created correctly. Hence, most relational
databases have a mechanism to generate numeric keys that are unique. Although
these	methods	work	reasonably	well	for	simple	projects,	you	will	eventually	learn	
that generated key values present some challenges that must be handled with pro-
gramming. Also, bear in mind that each DBMS uses a different mechanism to
generate keys.

The main problem you encounter with generated keys is when you want to add
a row to one table and then insert the matching key value into a second table. For
example, when you add a new Customer, the system generates a CustomerID,
which you need to insert into the Order table. Figure 7.23 shows the basic prob-
lem: the CustomerID key generated to create the new customer must be kept by
the transaction procedure so that the key can be inserted into the Order table. The
diverse	ways	of	handling	the	number	creation	make	the	problem	more	difficult.

Logically, generated keys could be created through two primary methods: (1)
by an automatic method when a new row is added to a table, and (2) by a separate

1.	Generate	key	for	CustomerID.
2.	INSERT	row	into	Customer.

Customer	Table
CustomerID,	Name,	…

3.	Generate	key	for	OrderID.
4.	INSERT	row	into	Order,	using	new	

OrderID	and	CustomerID.

Order	Table
OrderID,	CustomerID,	…

Figure 7.23
Generated keys. Creating an order for a new customer requires generating a
CustomerID key that is used in the Customer table and must be stored so it can be
used in the Order table.

378Chapter 7: Database Integrity and Transactions

key	generation	routine.	The	advantage	of	 the	first	method	 is	 that	 the	process	of	
adding a row to the initial (Customer) table is relatively simple. The drawback is
that it is tricky to make sure you get the correct generated key to use in a second
table.	The	second	method	solves	the	second	problem,	but	makes	it	more	difficult	
to create keys and requires programmers to ensure that the process is followed for
every table and insertion operation.

As shown in Figure 7.24, if the DBMS automatically generates key values for
each table, the code seems relatively simple. Microsoft Access and SQL Server
use this approach. The complication is that problems arise when two transactions
generate new key values on the same table at almost the same time. Or, when one
transaction triggers inserts into multiple tables. You need to be careful that your
code	retrieves	the	correct	key	value.	With	some	systems,	it	is	difficult	to	verify	the	
value is correct. You might have to use a SELECT INTO statement to retrieve the
customer data and double-check the name and phone number.
Because	of	the	difficulties	in	obtaining	an	auto-generated	key	value,	the	second	

approach	 of	 calling	 a	 key	 generation	 routine	 has	 some	 benefits.	This	 approach	
is	primarily	used	by	Oracle.	Figure	7.25	shows	the	basic	steps	needed	to	create	
an order for a new customer. Notice that there is no uncertainty about the key
value generated. The generation routine ensures that values are unique—even if
two transactions request values at the same time. The drawback to this approach
is that it is not automatic. However, it is straightforward to write trigger code for
the main table (Customer) to generate a new ID for use whenever an INSERT is
performed on the table.

Database Cursors
How can procedural code track row-by-row through a query? To this point,
all of the procedures and functions have dealt with either DML statements or
single-row SELECT statements. These statements either do not return values or
they	return	only	one	row	of	data.	This	restriction	simplifies	the	program	logic	and	

1.	 Generate	a	key	for	CustomerID
2.	 INSERT	row	into	Customer
3.	 Generate	a	key	for	OrderID
4.	 INSERT	row	into	Order

Figure 7.24
Auto-generated keys. The process seems relatively easy when the DBMS
automatically generates keys. However, what happens at step 2 if two transactions
generate	a	new	key	value	on	the	same	table	at	almost	the	same	time?

1.	 INSERT	row	into	Customer.
2.	 Get	the	key	value	that	was	generated.
3.	 Verify	the	key	value	is	correct.
4.	 INSERT	row	into	Order.

Figure 7.25
Key-generation	routine.	The	steps	are	not	difficult,	but	programmers	must	add	them	
for every table and every routine that inserts data.

379Chapter 7: Database Integrity and Transactions

makes it easier to learn the foundations of SQL procedures. However, some ap-
plications will require more sophisticated queries: SELECT statements that return
multiple rows of data.

Remember that SQL commands operate on sets of data—multiple rows at one
time.	What	if	you	want	more	precise	control?	Perhaps	you	need	to	examine	one	
row at a time to perform a complex calculation, compare some data from an ex-
ternal device, or display the row to the user and get a response. Or perhaps you
need to compare one row of data to a second row. For example, you might want
to	subtract	values	across	 two	rows.	It	 is	difficult	 to	accomplish	these	tasks	with	
standard SQL commands. As noted in Chapter 9, newer versions of SQL are add-
ing features to perform even these tasks with straight SQL commands. However,
you	will	still	find	times	where	you	want	to	track	through	query	results	one	row	at	
a time.

Cursor Basics
SQL has a process that enables you to track through a set of data one row at a
time. You create a database cursor	 that	defines	a	SELECT	statement	and	 then	
points to one row at a time. A loop statement enables you to move the cursor to
the next row and repeat your code to examine each row returned by the query. You
can also move the cursor back to previous rows, but this process requires more
overhead and is rarely needed.

Figure 7.26 shows the basic structure of a procedure to create a cursor and
loop through the Customer table to calculate the total amount of money owed. Of
course, this particular calculation can be done easier and faster with a simple SE-
LECT statement. The goal here is to show the main structure of the code needed
to implement a database cursor. The DECLARE	CURSOR	statement	defines	the	
SELECT statement that retrieves the rows to be examined. Although the example

DECLARE	cursor1	CURSOR	FOR
	 SELECT	AccountBalance
	 FROM	Customer;
sumAccount,	balance	Currency;
SQLSTATE	Char(5);
BEGIN
	 sumAccount	=	0;
	 OPEN	cursor1;
	 WHILE	(SQLSTATE	=	‘00000’)
	 BEGIN
	 	 FETCH	cursor1	INTO	balance;
	 	 IF	(SQLSTATE	=	‘00000’)	THEN
	 	 	 sumAccount	=	sumAccount	+	balance;
	 	 END	IF
	 END
	 CLOSE	cursor1;
	 --	display	the	sumAccount	or	do	a	calculation
END

Figure 7.26
SQL cursor structure. DECLARE, OPEN, FETCH, and CLOSE are the main
statements in the SQL standard.

380Chapter 7: Database Integrity and Transactions

uses only one column, you can use any common SELECT statement including
multiple columns, WHERE conditions, and ORDER BY lines. You must OPEN
the cursor to use it, and eventually should CLOSE the cursor to free up database
resources.	When	a	cursor	is	first	opened,	it	points	to	a	location	immediately	before	
the	first	row	of	data.	The	FETCH statement retrieves one row of data and places
the columns of data for that row into program variables. A loop is necessary to
track through each row that matches the selection conditions.

Scrollable Cursors
By default, the FETCH command picks up the next row. If the FETCH command
pushes the cursor past the end of the dataset, an error condition is created. You can
use	the	WHENEVER	statement	to	catch	the	specific	error,	or	you	can	examine	the	
SQLSTATE variable to see if an error was generated with the last SQL statement.
A	string	value	of	five	zeros	indicates	that	the	last	command	was	successful.

Several options are available for the FETCH command to move the cursor to a
different row. The common options are NEXT, PRIOR, FIRST, and LAST. These
retrieve the indicated row. Figure 7.27 outlines the cursor procedure that begins at
the	last	row	and	moves	up	to	the	first	row.	Note	that	you	must	declare	the	cursor	
as scrollable with the SCROLL	keyword.	Of	course,	it	would	be	more	efficient	to	
simply	sort	the	data	in	reverse	order	and	then	move	forward;	but	the	objective	is	

Original Data Cursor Modified	Data Insert
Name	 Sales
Alice	 444,321
Carl	 254,998
Donna	 652,004
Ed	 411,736

1.	Read	Alice
2.	Read	Carl

4.	Move	Prior	
but	get	Bob	
instead	of	Alice

Name	 Sales
Alice	 444,321
Bob	 333,229
Carl	 254,998
Donna	 652,004
Ed	 411,736

3.	Bob	inserted	by	
second	process

Figure 7.28
Transaction concurrency in cursor code. Your cursor code has tracked down through
the data to Carl. It then tries to go back to the prior row with FETCH PRIOR. But,
if another transaction has inserted a new row (Bob) in the meantime, your code will
pick up that one instead of the original (Alice).

DECLARE	cursor2	SCROLL	CURSOR	FOR
SELECT	…
OPEN	cursor2;
FETCH	LAST	FROM	cursor2	INTO	…
Loop…
	 FETCH	PRIOR	FROM	cursor2	INTO	…
End	loop
CLOSE	cursor2;

Figure 7.27
FETCH options. A scrollable cursor can move in either direction. This code moves
to the last row and then moves backward through the table. Other FETCH options
include FIRST, ABSOLUTE, and RELATIVE.

381Chapter 7: Database Integrity and Transactions

to show that you can move in either direction. Additional FETCH scroll options
include	the	ability	to	move	to	the	first	row	(FETCH	FIRST)	and	to	jump	to	a	spe-
cific	row	in	the	dataset.	For	example,	FETCH	ABSOLUTE	5	will	retrieve	the	fifth	
row in the dataset. Since you rarely know the exact row number to retrieve, the
relative scroll option is more useful. For instance, FETCH RELATIVE -3 skips
back three rows from the current position.

The ability to move backward in the list of rows highlights another transaction
concurrency issue. What happens if you work your way down a set of rows and
issue	the	FETCH	PRIOR	command?	Most	of	the	time,	you	would	simply	retrieve	
the row before the current one. But what happens if another transaction inserts a
new	row	immediately	before	the	FETCH	PRIOR	command	is	executed?	Figure	
7.28 shows the problem. Your code has tracked down to Carl, but a second process
has inserted Bob into your list. The FETCH PRIOR command will return data for
Bob instead of the data for Alice that you expected to see. The SQL standard solu-
tion to this problem is to make the dataset insensitive to other changes. You sim-
ply add a keyword to the cursor declaration (DECLARE cursor3 INSENSITIVE
CURSOR FOR …). Effectively, the DBMS copies the results of the query into a
temporary table that is not affected by other commands. Although this approach
will work, it can be an expensive use of database resources. Instead, be sure to ask
yourself	why	you	need	to	move	backward.	In	most	cases,	you	will	find	that	it	is	
unnecessary. For example, if you want to calculate differences by subtracting the
value on the current row from the value on the prior row, simply store the “prior”
value in memory, then fetch the next row and perform the subtraction. There is no
need to move backwards and risk getting the wrong value.
You	might	notice	that	there	is	no	procedure	to	find	a	row	within	the	retrieved	

dataset and move the cursor to that row (such as a SEEK command). Although
some systems provide this feature, it is rarely needed. Instead, you should create
the WHERE condition to only retrieve exactly the rows you want.

Changing or Deleting Data with Cursors
A common situation that a cursor-based application encounters is the need to
change or delete the data at the current row. For example, Figure 7.29 shows a
table created to hold sales data for analysis. A standard SELECT command with a
GROUP BY clause can compute the sales totals by year. You need to write a cur-
sor-based procedure to compute the increase (or decrease) in sales for each year.

Year Sales Gain
2000 151,039
2001 179,332
2002 195,453
2003 221,883
2004 223,748

Figure 7.29
Sales analysis table. A standard SELECT query can compute and save the sales total
by year. You now need to write a cursor-based procedure to compute the sales gain
from the prior year.

382Chapter 7: Database Integrity and Transactions

DECLARE	cursor1	CURSOR	FOR
SELECT	Year,	Sales,	Gain
FROM	SalesTotal
ORDER	BY	Year
FOR	UPDATE	OF	Gain;
priorSales,	curYear,	curSales,	curGain
BEGIN
	 priorSales	=	0;
	 OPEN	cursor1;
	 Loop:
	 	 FETCH	cursor1	INTO	curYear,	curSales,	curGain
	 	 UPDATE	SalesTotal
	 	 SET	Gain	=	Sales	–	priorSales
	 	 WHERE	CURRENT	OF	cursor1;
	 	 priorSales	=	curSales;
	 Until	end	of	rows	 	
	 CLOSE	cursor1;
	 COMMIT;
END

Figure 7.30
Cursor code for update. The FOR UPDATE option in the declaration enables the
Gain	column	to	be	changed.	The	WHERE	CURRENT	OF	statement	specifies	the	row	
pointed to by the cursor.

DECLARE	cursor2	CURSOR	FOR
SELECT	ItemID,	Description,	Price
FROM	Inventory
WHERE	Price	<	:maxPrice;
maxPrice	Currency;
BEGIN
	 maxPrice	=	…	 --	from	user	or	other	query
	 OPEN	cursor2;	 --	runs	query	with	current	value
	 Loop:
	 	 --	Do	something	with	the	rows	retrieved
	 Until	end	of	rows
	 CLOSE	cursor2;
END

Figure 7.31
Parameterized cursor query. Your code sets the value of maxPrice through user input
or calculation or another query. When this cursor is opened, the value is applied to
the SELECT statement and only the matching rows are returned.

383Chapter 7: Database Integrity and Transactions

The catch is that you need to store this computed value back into the table. To do
that, you need to specify that the cursor is updateable, and then write an UPDATE
statement that stores the calculation in the row currently pointed to by the cursor.
Figure	7.30	shows	the	main	code	needed	to	perform	the	calculations.

Notice that the cursor declaration states that only the Gain column is update-
able. This option protects the database slightly. If you make a mistake or someone
else	modifies	your	code	later,	the	DBMS	will	allow	only	the	Gain	column	to	be	
changed. An attempt to change the Year or Sales column will generate an error.
The other important element is the WHERE CURRENT OF cursor1 statement.
This condition states that the row currently fetched, or pointed to by the cursor,
is the one to be changed. The UPDATE statement will apply only to this row. An
almost identical statement can be used to delete the current row (DELETE FROM
SalesTable WHERE CURRENT OF cursor1).

Cursors with Parameters
Occasionally, you need a more dynamic query, where you want to pick the spe-
cific	 rows	 based	 on	 some	 variable	within	 your	 procedure.	 For	 example,	 a	 user	
might enter a price, or your program compute a price based on some other query.
Then,	you	want	to	retrieve	only	the	rows	that	are	less	than	the	specified	price	and	
perform some computation on those rows. You can enter local variables as param-
eters in the cursor query. Figure 7.31 shows the basic elements of the parameter-
ized cursor. You enter the name of a variable within the cursor’s SELECT state-
ment. Within the procedure, you assign a value to this variable. The value might
be computed from other variables, input by the user, or even retrieved from a dif-
ferent cursor or query. When the parameterized cursor is opened, the current value
is substituted into the query, so that it returns only the rows that match the request.
Parameterized queries in the cursor provide powerful tools to dynamically evalu-
ate data automatically in response to other changes.

Be aware that each DBMS uses a different notation to indicate parameters. The
standard uses a colon in front of the variable name (:MyVar). SQL Server uses an
“at” sign (@MyVar). Oracle does not use any characters in front of the parameter
variable,	but	requires	a	colon	in	assignment	statements	(MyVar	:=	100).	Microsoft	
Access	does	not	require	any	special	notation.	The	benefit	to	marking	parameters	is	
that it makes them easier to spot when reading code written by others. When you
work in systems without the notation, you might want to adopt a policy of naming
parameters and variables to make them easier to recognize (such as v_MyVar).

SaleItem Table Event Code Merchandise
SaleID
ItemID
Quantity
SalePrice

1.	 Item	is	sold	by	adding	
row	to	SaleItem.

2.	 Quantity	is	subtracted	
from	QuantityOnHand.

ItemID
Description
QuantityOnHand
ListPrice
Category

Figure 7.32
Processing inventory changes. When an item is sold, the quantity sold is entered into
the SaleItem table. This value has to be subtracted from the QuantityOnHand in the
Merchandise table.

384Chapter 7: Database Integrity and Transactions

Merchandise Inventory at Sally’s Pet Store
What issues arise when maintaining totals in the database?	?	To	understand	
the value of procedural code, it helps to look at an example. Handling inventory
updates is often a tricky procedure in business database applications. In many sit-
uations, employees need to know the quantity on hand for a particular item. An
employee may be looking at items to reorder, or a manager might want to know
which items are overstocked and have not been selling fast enough. Two basic
methods exist to determine the quantity on hand in a database system. First, you
could write a procedure that computes the current total on hand whenever it is
needed. The routine would add every purchase and subtract every sale of the item
to reach the current inventory level. In a large application, this process might be
slow. The second approach is to keep a running total of the quantity on hand in the
inventory table. This value must then be updated whenever an item is purchased
or sold. This second process provides the total very quickly, but faces the draw-
back of some slightly complicated programming. Keep in mind that both methods
also	 need	 an	 adjustment	mechanism	 for	 “inventory	 shrink,”	 to	 use	 the	 accoun-
tant’s euphemistic term for inventory items that have disappeared.

Looking at the Merchandise table from Sally’s Pet Store, shown in Figure 7.32,
you will notice that it contains a column for QuantityOnHand, so the plan is to
use the second inventory approach and keep an updated total for each item. Ulti-
mately, you will need three sets of procedures: One to handle item purchases, one
for	item	sales,	and	one	to	adjust	for	inventory	shrinkage	identified	from	physically	
counting	the	stock.	The	adjustment	procedure	is	straightforward,	but	you	have	to	
work on the user interface to make it easy to use. The purchase and sale processes
are similar to each other, so the discussion here will examine only the sale of an
item.

Whenever something changes in the SaleItem table, the total in the Merchan-
dise	table	has	to	be	adjusted.	Figure	7.33	shows	the	four	basic	changes	that	can	
arise in the SaleItem table. For instance, when an item is sold, a new row is added
to the SaleItem table keyed by the SaleID and ItemID. The row includes the quan-
tity	of	 the	 item	being	purchased,	 such	as	10	cans	of	dog	 food.	This	quantity	 is	
used	to	adjust	the	QuantityOnHand	in	the	Merchandise	table.	These	events	might	

SaleItem
SaleID
ItemID
Quantity
SalePrice

1.	 Add	a	row.
2.	 Delete	a	row.
3.	 Update	Quantity.
4.	 Update	ItemID.

Figure 7.33
SaleItem	events.	Driven	by	business	operations,	four	major	events	can	arise	in	the	
SaleItem table. The QuantityOnHand must be altered in the Merchandise table for
each of these events.

385Chapter 7: Database Integrity and Transactions

not be immediately obvious, so consider the following business actions that drive
them.

1. A new sale results in adding a row to the SaleItem table, so
QuantityOnHand must be decreased by the quantity sold.

2. A clerical error or a customer changing his or her mind could result
in the cancellation of a sale or of an item, so a row is removed from
the SaleItem table. Any quantity that was already subtracted from the
QuantityOnHand must be restored to the total.

3. An item could be returned, or the clerk might change the Quantity
because	of	an	error.	The	quantity	adjustment	must	be	applied	to	the	
QuantityOnHand total.

4. An item might have been entered incorrectly, so the clerk changes the
ItemID. The QuantityOnHand for the original ItemID has to be restored,
and the QuantityOnHand for the new ItemID has to be reduced.

You can use database triggers to make the process easier by writing code for
each	specific	event.	If	you	are	working	with	a	DBMS	without	database	triggers,	
the	corresponding	code	has	to	be	written	into	the	forms;	this	process	is	similar,	but	
you need to validate each form to make sure it has the necessary code.
The	first	situation	of	adding	a	new	row	is	straightforward.	Figure	7.34	shows	

the logic needed for the database trigger. Only one UPDATE statement is needed:
subtract the newly entered Quantity from the QuantityOnHand in the Merchan-
dise	table.	If	you	are	responsible	for	reviewing	or	fixing	code	in	an	existing	appli-
cation,	you	should	find	that	this	event	is	usually	handled	correctly.	The	problem	is	
that many developers forget about the other events.

CREATE	TRIGGER	DeleteSaleItem
AFTER	DELETE	ON	SaleItem
REFERENCING	OLD	ROW	AS	oldrow
FOR	EACH	ROW
	 UPDATE	Merchandise
	 SET	QuantityOnHand	=	QuantityOnHand	+	oldrow.Quantity
	 WHERE	ItemID	=	oldrow.ItemID;

Figure 7.35
Delete Row trigger. This trigger reverses the original subtraction by adding the
Quantity back in.

CREATE	TRIGGER	NewSaleItem
AFTER	INSERT	ON	SaleItem
REFERENCING	NEW	ROW	AS	newrow
FOR	EACH	ROW
	 UPDATE	Merchandise
	 SET	QuantityOnHand	=	QuantityOnHand	–	newrow.Quantity
	 WHERE	ItemID	=	newrow.ItemID;

Figure 7.34
New Sale trigger. Inserting a new row triggers the event to subtract the newly entered
quantity sold from the quantity on hand.

386Chapter 7: Database Integrity and Transactions

The	second	event	of	handling	deleted	rows	is	no	more	difficult	than	the	code	
for	 inserting	a	 row.	Figure	7.35	 shows	 the	new	 trigger	 that	 is	needed.	Deleting	
a row from SaleItem indicates that the item was not really sold. Consequent-
ly, the trigger reverses the effect of the sale by adding the Quantity back to the
QuantityOnHand.

As shown in Figure 7.36, the situation for changing data is more complex. You
need to think about what it means when the Quantity value is changed. Say that
the	QuantityOnHand	for	 the	specified	item	begins	at	50	units.	Then,	a	SaleItem	
row	was	 inserted	with	 a	Quantity	of	 10.	The	 insert	 trigger	fired	 and	 subtracted	
those	10	units,	leaving	the	QuantityOnHand	at	40	units.	The	clerk	now	changes	
the	Quantity	 from	10	 to	8.	Since	2	 fewer	units	were	sold,	 the	QuantityOnHand	
needs	to	be	adjusted.	

CREATE	TRIGGER	UpdateSaleItem
AFTER	UPDATE	ON	SaleItem
REFERENCING	 OLD	ROW	AS	oldrow
	 NEW	ROW	AS	newrow
FOR	EACH	ROW
	 UPDATE	Merchandise
	 SET	QuantityOnHand	=	QuantityOnHand	
	 	 +	oldrow.Quantity	–	newrow.Quantity
	 WHERE	ItemID	=	oldrow.ItemID;

Figure 7.37
Update Quantity trigger. If Quantity is changed, you must add back the old value and
then subtract the new value.

Figure 7.36
Errors arise if you do not handle changes in quantity. If Quantity is changed, you
must add back the old value and then subtract the new value. The top steps show the
error in QOH if you do not handle changes.

SaleItem Clerk Event	Code Merchandise
SaleID	 101
ItemID	 15
Quantity	 10

Quantity	 8

1.	Enter	new	sale	item,	
enter	Quantity	of	10.

3.	Change	Quantity	to	8.

2.	Subtract	Quantity	10	
from	QOH.

4.	Subtract	Quantity	8	from	
QOH.

ItemID	 15
QOH	 50

QOH	 40

QOH	 32

Solution	that	Corrects	for	Change
SaleID	 101
ItemID	 15
Quantity	 10

Quantity	 8

1.	Enter	new	sale	item,	
enter	Quantity	of	10.

3.	Change	Quantity	to	8.

2.	Subtract	Quantity	10	
from	QOH.

4.	Add	original	Quantity	
10	back	and	subtract	
Quantity	8	from	QOH.

ItemID	 15
QOH	 50

QOH	 40

QOH	 42

387Chapter 7: Database Integrity and Transactions

As	shown	 in	Figure	7.37,	 the	easiest	way	 to	understand	 the	adjustment	code	
is	to	think	of	it	as	adding	the	original	10	units	back	and	then	subtracting	the	new	
Quantity of 8 units. The net result will leave QuantityOnHand at 42 units. Notice
that	you	need	access	to	the	old	row	value	(10).	All	trigger-based	systems	have	a	
way to obtain this value. If you have to build the inventory code on a form, it is
slightly	more	complicated	to	obtain	this	value;	but	it	can	be	done.
The	fourth	change	to	the	code	is	more	difficult	 to	portray.	What	happens	if	a	

clerk	changes	the	ItemID	value?	Ultimately,	you	have	to	restore	the	QuantityOn-
Hand	for	the	original	ItemID,	then	subtract	it	for	the	new	ItemID.	The	first	com-
plication is that database triggers might not have separate events for each column
being changed. So you have to integrate the changes due to the ItemID into the
previous code written to handle Quantity changes. Again, you need to think about
the	individual	steps.	Start	with	a	QuantityOnHand	of	50	for	ItemID	1,	then	enter	
a	sale	of	10	items.	The	Insert	trigger	reduces	QuantityOnHand	to	40	units.	Now	
the clerk changes the ItemID from 1 to 11. That means that no units of ItemID 1
were	actually	sold,	so	the	10	units	have	to	be	added	back	to	its	QuantityOnHand.	
Additionally,	 the	 10	 units	 have	 to	 be	 subtracted	 from	 the	QuantityOnHand	 for	
ItemID 11. As shown in Figure 7.38, this trigger requires two separate UPDATE
statements.	Notice	that	the	WHERE	clause	in	the	first	statement	uses	the	oldrow.
ItemID and the second one uses the newrow.ItemID. Also, look more closely at
the	two	SET	statements.	The	first	one	adds	the	oldRow.Quantity,	the	second	one	
subtracts	the	newRow.Quantity.	Why	is	this	difference	important?	First,	it	is	pos-
sible that the clerk changed the Quantity along with the ItemID, and you need to
make sure the old Quantity is used for the old ItemID. Second, and more impor-
tantly, this trigger also handles the simple change in Quantity, even if the ItemID
is not changed. Assume the ItemID is set at 1 and is not changed. Start with a
QuantityOnHand	of	50	units,	and	an	initial	Quantity	sold	of	10,	leaving	a	current	
QuantityOnHand	of	40	units.	Read	through	the	code	to	see	how	it	works	if	only	

CREATE	TRIGGER	UpdateSaleItem
AFTER	UPDATE	ON	SaleItem
REFERENCING	 OLD	ROW	AS	oldrow
	 	 NEW	ROW	AS	newrow
FOR	EACH	ROW
BEGIN
	 UPDATE	Merchandise
	 SET	QuantityOnHand	=	QuantityOnHand	+	oldRow.Quantity
	 WHERE	ItemID	=	oldrow.ItemID;

	 UPDATE	Merchandise
	 SET	QuantityOnHand	=	QuantityOnHand	–	newRow.Quantity
	 WHERE	ItemID	=	newrow.ItemID;
	 COMMIT;
END

Figure 7.38
Final update trigger. If the ItemID is changed, you must restore the total for the
original item and subtract the new quantity from the new ItemID.

388Chapter 7: Database Integrity and Transactions

the	Quantity	is	changed	from	10	to	8	units.	First,	the	old	Quantity	(10)	is	added	
back to the QuantityOnHand. Second, the new Quantity (8) is subtracted, leaving
42 units on hand. This process is the same as that shown in Figure 7.37, but it is
accomplished in two steps instead of one.

The same code must be written for the purchase table (OrderItem) with the
same logic. However, for business reasons, you might want to wait to update the
QuantityOnHand until the items actually arrive. If you do decide to wait, your
primary initial trigger is not on the OrderItem INSERT event, but on the UPDATE
event on the MerchandiseOrder table. Have the trigger look for an entry in the
ReceiveDate column, and then do the QuantityOnHand updates.

Summary
Although SQL commands are powerful, you sometimes need a procedural lan-
guage to gain detailed control over updates or to connect to other devices or ap-
plications. Depending on the DBMS, procedural code can exist within modules,
within forms, or in external applications. Database triggers are an important appli-
cation of procedural code. These procedures are triggered or exectued in response
to some database event, such as inserting, updating, or deleting data. Triggers can
be used to enforce complex conditions or to execute business rules. For instance,
a trigger might be attached to QuantityOnHand within an Inventory table to auto-
matically notify a supplier when the value falls below a certain level. Cascading
triggers	arise	when	a	change	in	one	table	fires	a	trigger	that	causes	changes	in	ad-
ditional	tables,	that	might	trigger	even	more	events.	Long	cascades	can	be	difficult	
to debug and use substantial server resources.

Transactions are critical applications in most business operations. They repre-
sent a collection of changes that must succeed or fail together. Setting start and
ending points for transactions is an important step in application development to
protect the integrity of the data. Concurrent access where multiple users attempt
to modify the same data at the same time is another substantial threat to database
integrity. Pessimistic locks have often been used to protect data through serializa-
tion so that only one transaction can see data at a time. However, multiple locks
eat up resources and can lead to deadlock issues. Optimistic locks assume that
collisions are unlikely, but code must be added to handle the situations when they
do arise. The ACID acronym (atomicity, consistency, isolation, and durability) is a
useful way to remember the main features desired of a DBMS to protect transac-
tion integrity.

Generating keys is an important step in many relational databases, since it is
difficult	 to	 trust	humans	 to	create	unique	 identifiers.	Two	common	methods	are	
used to generate keys: (1) automatically create them when a row is added to a
table, or (2) provide a separate function that generates keys on demand. Both
methods	create	complications.	The	automatically	generated	keys	are	difficult	 to	
obtain and use in secondary tables. The generation functions require programmers
to write code for every table and every insertion procedure.

Database cursors provide a method for procedural code to retrieve multiple
rows of data from a query to step through the rows one at a time. The cursor points
to	one	current	row	that	can	be	examined,	modified,	or	deleted	by	your	code.	Scrol-
lable cursors move forward or backward through the rows, but whenever possible,
you should try to move only in one direction. With updateable cursors, code can
change or delete the data in the current row. With a parameterized query, code can
dynamically choose the rows to be retrieved in response to other conditions.

389Chapter 7: Database Integrity and Transactions

Key Terms

Review Questions
1.	 Why	would	you	need	a	procedural	language	when	SQL	is	available?
2.	 What	is	the	purpose	of	data	triggers?
3.	 What	is	the	purpose	of	form	events?
4.	 What	is	a	transaction	and	why	do	they	have	to	be	defined	by	developers?
5.	 How	do	you	start	and	finish	a	transaction?
6.	 How	is	pessimistic	locking	different	from	optimistic	locks?
7.	 What	code	do	you	need	to	add	to	handle	conflicts	with	optimistic	locks?
8.	 What	is	an	ACID	transaction?
9.	 What	are	the	most	common	methods	used	to	generate	keys?
10.	How	do	you	obtain	the	most	recently	generated	key	in	the	DBMS	you	are	

using?
11.	What	is	a	database	cursor	and	why	is	it	important?
12.	What	is	the	program	logic	to	using	a	database	cursor	to	alter	data?

atomicity
cascading triggers
concurrent access
consistency
database cursor
deadlock
durability
isolation
isolation level

optimistic lock
persistent stored module (PSM)
pessimistic lock
procedural language
scope
serialization
syntax
transaction
trigger

A Developer’s View
Miranda learned that even a good DBMS often requires programming to handle
some complex issues. In developing your application, you should examine all of
the business processes and identify transaction elements. Also, be sure that your
UPDATE and DELETE procedures can handle concurrency issues. Remember
that a professional application anticipates and handles errors gracefully. Write
data triggers or module code to automate basic processes and perform all needed
calculations. Write additional cursor-based code if needed to perform advanced
calculations.

390Chapter 7: Database Integrity and Transactions

Exercises
1. Create a small database with tables for Customers and Employees. In

addition to name and phone number, each table should hold a date column
for	when	the	person	first	started	(as	either	a	customer	or	hire	date).	Write	
a function that returns a percentage discount that uses a phone number to
decide if the buyer is a customer or employee. Customers for less than one
year	get	no	discount,	1-3	years	(2%),	4-7	years	(4%),	8	or	more	years	(5%).	
Employees	for	less	than	one	year	get	no	discount,	1-2	years	(5%),	3-5	years	
(7%),	6	or	more	years	(10%).	

2. Create a database table of Employees that includes the maximum number of
vacation days and number of sick days allowed each year.
Employees(EmployeeID, LastName, FirstName, Phone,
VacationDays, SickDays, DateHired, Dateborn)

Create a second table with keys for EmployeeID and Year that has values for
number of vacation days and sick days taken that year.
 EmployeeDays(EmployeeID, EYear, NVacation, NSick)

 Write a function that has input parameters for Year, EmployeeID, number
of days off, and whether they should be recorded as sick or vacation days.
If the employee exceeds the number of allotted sick days, assign the days as
vacation time instead. Excess vacation days do not get counted as sick days.

3. Using the same two tables as the prior exercise (Employees and
EmployeeDays), write a database trigger that prevents anyone from entering
a value for vacation days taken that exceeds the maximum allowed.

4. Create a table that lists item category and the level of tax on that category.
For	example,	food	(0	percent),	clothing	(3	percent),	entertainment	(10	
percent). Write a function with category and price as parameters. Compute
and return the appropriate tax. Normally, you would use an SQL statement
for this computation, but if the tax table is provided on a separate system, you
might need to write code.

5.	 Create	a	data	trigger	that	writes	a	row	in	a	new	table	whenever	employee	
salary is changed. Store the date changed, the employee, the old salary and
the new value.

6. Create a data trigger that will prevent anyone from increasing an employee
salary	by	more	than	75	percent.

7.	 Create	a	data	trigger	(or	form	code	if	triggers	are	not	available)	that	adjusts	
inventory quantity on hand whenever an item is sold. You need a SaleItem
and Item table.

8. A Web site sells custom components for cell phones. The site often offers
daily	deals	which	consist	of	“packages”	of	related	items	for	a	specific	phone.	
Table: PackageItems(PackageID, ItemID, SalePrice) For example, one deal
might contain a case, screen protector, and color-matched earphones. Each
item is listed separately in the Items table of the database which includes

391Chapter 7: Database Integrity and Transactions

the Quantity On Hand value. Table: Items(ItemID, Category, Description,
ListPrice, QOH) Write a transaction function to safely handle the sale of one
package that updates all of the QOH values as part of a transaction.

9. Using the basic Items table that contains a QOH column, create a form that
lets users edit the data directly. (Normally, you would use a Sale form but
keep it simple for now.) Using default settings, determine what happens if
two	people	change	the	same	data	at	the	same	time.	Adjust	the	settings	to	
check for optimistic and pessimistic locking if they are available. Hint: You
might want to create two separate forms connected to the same table for
testing purposes.

10.	Assume	you	are	building	a	database	for	a	Web-based	form	where	a	manager	
loads and displays all of the employee data for editing. At the end of the
session, the changes made to the data are sent back to the database. Write
the SQL command to safely update the table using optimistic concurrency.
Assume you have an array that holds (a) the original values read from the
database	and	(b)	the	new/changed	values.

11. Create a table for LoanPayments(LoanID, PaymentNo, DateDue, Amount).
Write a function that is called whenever a new loan is created, to load the
payments table with the scheduled payments and amount due.

12. Given the following table, write a cursor-based procedure to loop through
the table and compute the percent change from the prior month and store that
value in the current row.

SalesMonth Sales PercentChange
01 25,123
02 24,331
03 32,992
04 37,102
05 42,474
06 46,551

13. Using the table in the previous exercise, write a cursor-based procedure to
compute the average monthly sales (without using the SQL AVG statement).

Sally’s Pet Store
14. Where would you put the code (which Event) in each of the following

situations?	Note	if	you	are	using	Access	or	SQL.	You	do	not	have	to	create	
the code for this exercise.
A. Notify a purchasing manager whenever inventory drops below a

specified	amount.
B. Compute the Sales Tax owed on a Sale.
C. Notify a supplier when an order is received.
D. Notify adoption groups of the total amount of donations they received for

the day.
E. Validate a new employee’s Taxpayer ID with an online company.

392Chapter 7: Database Integrity and Transactions

15.	Write	a	function	to	compute	the	average	purchase	cost	of	an	item	over	the	
prior year and provide a warning if the ListPrice of the merchandise is lower
than that value.

16. Write a function to insert a new Customer and return the generated key value.
Inputs to the function include the LastName, FirstName, and Phone number.

17. Create a table to hold totals of merchandise sales by month and a percentage
increase in sales from the prior month. Write a (SQL) function to compute
the monthly totals and transfer them into the table. Add code to compute the
percentage changes.

18. Write the code to increase quantity on hand when an item is purchased—
specifically	when	the	receive	date	is	set.	Be	sure	to	handle	it	as	a	transaction,	
since quantity on hand can also be affected by sales.

19. The Pet Store is thinking about purchasing scanners to use at checkout. These
scanners will pick up the ItemID of each merchandise item scanned. Assume
that this data will trigger an event when an item is scanned. Write a function
that can be called by this event. This function should create a new sale, and
store the data for the items sold. You can emulate the scanner trigger by
creating	a	form	with	a	control	to	select	an	ItemID	and	a	button	to	fire	the	
trigger.

Rolling Thunder Bicycles
20.	Create	a	function	to	compute	the	great	circle	route	(shortest)	distance	

between two geographic locations.
21. Where would you put the code (which Event) in each of the following

situations?	Specify	if	you	are	using	Access	or	SQL.	You	do	not	have	to	create	
the code for this exercise.
A. Send an e-mail message to a customer when a bicycle is shipped.
B. Send an e-mail message to a supplier to order more components when

quantity on hand drops below a preset level.
C. Notify a manager when an employee is involved with purchases of more

than	$50,000	in	a	month.
D. Notify (e-mail) a manager if the daily sales value of bicycles exceeds a

preset level (both high and low) in terms of percentage change from the
prior year.

E. Notify a purchasing manager of all items that were ordered within the
last month but not yet received.

22. Create a table to log changes to Employee salaries (SalaryChange(ChangeID,
ChangeDate, EmployeeID, OldSalary, NewSalary, User). Write trigger code
on the Employee table to record any changes to the salary into the log table.

23. Create a function that estimates the time to build a new bicycle. It should use
the	average	number	of	days	for	the	same	model	type	but	adjust	the	days	by	
the number of orders of all bikes made in the past 14 days.

393Chapter 7: Database Integrity and Transactions

24.	Create	a	form	or	a	function	that	lets	the	finance	manager	safely	record	
payments to manufacturers.

25.	Write	a	function	to	update	the	BalanceDue	column	in	the	Customer	table	
while avoiding concurrency issues. The function needs input parameters for
CustomerID and ChangeAmount which can be positive or negative.

26. Create a query to compute sales by month for each model type. Create a
temporary table to hold that data and to hold the percentage change. Write a
program that executes the query, placing the data into the table. Then cursor-
based code computes the percentage change in sales. The function should
return the new balance value.

27. Write a procedure to add an interest charge to customer accounts with a
balance	due.	Make	sure	to	handle	concurrency/locking	problems.

28. Write a program to automatically generate a new purchase order when
quantity	on	hand	falls	below	a	specified	level.	Add	the	ReorderPoint	column	
to the Component table and enter sample data.

Corner Med
29. Where would you put the code (which Event) in each of the following

situations?	Specify	if	you	are	using	Access	or	SQL.	You	do	not	have	to	create	
the code for this exercise.
A. Two physicians sign up for vacation on the same days.
B. E-mail notices sent to the director physician whenever a patient is

diagnosed	with	a	set	list	of	codes/diseases	(particularly	some	contagious	
diseases).

C. A warning message sent to the physician and business manager whenever
the	AmountCharged	for	a	Visit	Procedure	is	below	50	percent	of	the	base	
cost.

D. An e-mail sent to the business manager whenever the amount paid by the
insurance company plus the amount paid by the patient differs from the
total amount charged for a visit.

E. A warning notice sent to the physician when the Systolic pressure for
a	visit	is	greater	than	140	and	the	patient	is	prescribed	a	drug	from	a	
certain list.

30.	Write	a	function	that	reduces	the	amount	charged	for	a	procedure	for	a	
specific	patient	(VisitProcedureID)	and	reduces	the	patient	amount	owed/
paid.

31. Create a table to hold revenue earned per week, using a date format of
yyyy-ww. Include a column to hold percentage change from the prior week.
Write a query to compute the totals and a routine to compute and store the
percentage change.

32. To facilitate loading data from the company’s older system, write a function
that creates a new patient record given LastName, FirstName, Gender,
DateOfBirth as input parameters, and creates a new visit record for that
patient for a VisitDate parameter. The function should return the newly
generated VisitID.

Corner
Med

Corner
Med

394Chapter 7: Database Integrity and Transactions

33. Write a database trigger to record the date, user, and patient name any time a
patient row is deleted.

34. Change the tables so that patients can make multiple payments. Include
the date, amount of payment, and visit. Write a function to return the total
amount	paid	by	a	patient	for	a	given	VisitID.	Briefly	explain	why	this	method	
is better than the current tables.

Web Site References

http://www.sigplan.org/	 Association	for	Computing	Machinery—
Special	Interest	Group	on	Programming	
Languages	(advanced).

http://support.microsoft.com/kb/115986	
http://speckyboy.com/2012/05/13/six-common-web-
programming-mistakes-and-how-to-avoid-them/

Avoiding	common	database	programming	
mistakes.

Additional Reading
Baralis, E. and J.Widom, An Algebraic Approach to Static Analysis of Active

Database Rules, ACM Transactions on Database Systems (TODS),	25(3)	
September	2000,	269-332.	[Issues	in	database	triggers	and	sequencing,	but	
plenty of algebra.]

Ben-Gan, I., L. Kollar, and D. Sarka, Inside Microsoft SQL Server 2005: T-SQL
Querying,	Microsoft	Press:	2006.	[Discussion	and	examples	of	advanced	
topics for SQL Server.]

Gray, Jim and Andreas Reuter, Transaction Processing: Concepts and
Techniques,	San	Francisco:	Morgan	Kaufmann	Publishers,	1993.	[A	classic	
reference on all aspects of transaction processing.]

ISO/IEC	14834:1996,	Information Technology—Distributed Transaction
Processing—The XA Specification, 1996.	[A	discussion	of	the	common	
method of handling transactions across multiple systems.]

Sanders, R. and J. Perna, DB2 Universal Database SQL Developer’s Guide, Burr
Ridge,	IL:	McGraw-Hill,	1999.	[Using	embedded	SQL	with	IBM’s	DB2	
database.]

Urman, S., R. Hardman, and M. McLaughlin, Oracle Database 10g PL/SQL
Programming, Oracle Press:	2005.	[One	of	many	references	providing	an	
introduction to SQL Server programming.]

Vossen, G., G. Weikum and J. Gray, Fundamentals of Transactional Information
Systems : Theory, Algorithms, and Practice of Concurrency Control
and Recovery,	San	Mateo,	CA:	Morgan	Kaufmann,	2001.	[Detailed	
programmer’s perspective of transaction details.]

	Chapter 7: Database Integrity and Transactions
	Introduction
	Two-Minute Chapter
	Procedural Languages
	Where Should Code Be Located?
	User-Defined Functions
	Looking Up Data

	Programming Tools
	Data Triggers
	Statement versus Row Triggers
	Canceling Data Changes in Triggers
	Cascading Triggers
	INSTEAD OF Triggers
	Trigger Summary

	Transactions
	A Transaction Example
	Starting and Ending Transactions
	SAVEPOINT

	Multiple Users and Concurrent Access
	Optimistic Locks
	Pessimistic Locks: Serialization
	Multiuser Databases: Concurrent Access and Deadlock

	ACID Transactions
	Key Generation
	Database Cursors
	Cursor Basics
	Scrollable Cursors
	Changing or Deleting Data with Cursors
	Cursors with Parameters

	Merchandise Inventory at Sally’s Pet Store
	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading

