
395

What You Will Learn in This Chapter
•	 What	features	need	to	be	included	in	finished	applications?
•	 How	do	you	create	a	consistent	application	design?
•	 How	are	forms	and	reports	integrated	and	organized?
•	 How	can	users	gain	easy	access	to	standard	operations	across	the	application?
•	 How	can	a	computer	application	be	modified	for	people	with	disabilities?
•	 How	do	you	create	custom	help	files?
•	 What	does	your	application	do	when	something	goes	wrong?
•	 How	do	you	know	your	application	works	correctly?
•	 How	will	your	application	be	installed?

Chapter Outline

Application Development
8Chapter

Introduction,	396
Two-Minute	Chapter,	397
Design	Consistency,	398

Page Design Templates, 398
Usability , 399
Fonts and Customization, 400
Mobile Devices, 401

Application	Structure,	402
Designing Applications, 403
The Startup Form, 403
Sally’s Pet Store: Application
Organization, 404
Administrative Tasks, 407

Menus	and	Toolbars,	407
Purpose of the Menu, 408
Toolbars, 409
Creating Menus and Toolbars, 409

Accessibility,	410
Custom	Help,	412

Creating a Help File for Windows, 413
Context-Sensitive Help, 415
Windows Help 3/Help Viewer, 417

Handling	Errors,	419
Catching Errors, 419

Logging Errors, 420
Debugging, 420

Testing,	420
Form and Module Testing, 421
Integrated Application Testing, 422
Stress or Performance Testing, 422
Usability Testing, 422
Security Testing, 423

Deploying	an	Application,	424
Packaging Files, 424
Installation Programs, 425
Server and Database Configuration, 425

Summary,	425
Key	Terms,	426
Review	Questions,	427
Exercises,	427
Web	Site	References,	429
Additional	Reading,	429

396Chapter 8: Application Development

A Developer’s View
 Miranda: Finally. I think I see the end of this

project.

 Ariel:	That’s	terrific.	What’s	left?

 Miranda:	Well,	everyone	is	happy	with	the	
forms and reports. All I have to do
now	is	tie	them	together	into	an	
application.	I	have	a	few	details	to	
add to make the forms a little easier
to use. The salespeople complained
about	having	to	enter	customer	
numbers	twice,	and	they	say	the	
order	lists	are	too	long.	They	want	
to pick from a list of orders just for
the	given	customer.

 Ariel:	That’s	it?	Let’s	celebrate!

 Miranda:	Well,	not	quite	yet.	I	also	have	to	
write	some	help	files.	Then	I	have	to	
create a set of installation disks so
they can install the system on all the
computers.

 Ariel:	Sounds	like	a	lot	of	details.	Will	it	
take	long?

 Miranda:	I	don’t	think	so.	But	it	will	make	
the application more attractive and
easier	to	use,	so	I	really	need	to	
finish	the	details.

Introduction
What features need to be included in finished applications? As a database de-
veloper,	it	is	your	responsibility	to	create	systems	that	help	users	in	their	jobs.	You	
accomplish	 this	 task	by	building	an	application	 to	perform	a	specific	 task.	The	
task	is	defined	by	the	user,	and	your	application	needs	to	be	easy	to	use.	The	goal	
of the application is to collect data and provide information to help users make
decisions.	You	define	tables	to	hold	the	data,	but	you	never	want	users	to	see	the	
underlying	tables.	Instead,	you	create	forms	to	collect	data	and	reports	to	help	us-
ers visualize and analyze the data.

An application is more than a collection of forms and reports. It is a set of
forms	and	reports	that	work	together.	More	specifically,	an	application	has	(1)	an	
internal	consistency	 to	 the	user	 interface,	 (2)	a	structure	or	 layout	 that	 supports	
the	flow	of	user	tasks,	(3)	menus	to	make	it	easy	to	find	things,	(4)	a	help	system	
to	provide	documentation	and	assistance,	(5)	error	handling	to	catch	anticipated	
problems	and	protect	the	user,	and	(6)	a	method	to	deploy	the	application.	At	this	
stage	in	the	design,	you	also	have	to	perform	considerable	testing	and	evaluation	
of the application.
The	first	two	items	(consistency	and	structure)	are	the	defining	elements	of	an	

application.	The	others	are	features	that	are	added	at	this	stage	to	make	the	sys-
tem more reliable and easier to use. The look and feel of the forms is the major

Getting Started
Applications	are	more	than	just	forms	and	reports.	You	need	to	ensure	
all	 forms	and	 reports	have	 the	 same	 look	and	 feel.	You	build	an	 inte-
grated	application	by	linking	everything	with	menus.	You	also	need	to	
add	help	files,	add	error	handling,	and	 test	 the	entire	application.	Part	
of	the	testing	includes	ensuring	that	the	application	is	accessible	to	all	
potential	users.	You	also	have	to	build	administrative	tools	and	deploy	
the application.

397Chapter 8: Application Development

element	of	consistency	and	design.	Every	form	in	an	application	should	have	the	
same	look	and	same	approach	to	entering	data.	Otherwise	users	will	get	confused	
and become frustrated because your application makes it harder to perform their
jobs.	The	topic	of	structure	entails	connecting	forms	and	reports	together.	Users	
entering	data	on	one	form	should	be	able	to	click	a	button,	or	double-click	an	entry	
to	see	more	detail.	Figure	8.1	shows	a	simple	example.	Users	entering	data	on	the	
Order	form	will	probably	want	to	open	the	Customer	form	to	edit	the	data	about	
the	customer.	As	a	developer,	you	have	to	learn	what	connections	are	needed	on	
each form. These connections help create the structure of the application.

Two-Minute Chapter
Applications	begin	with	forms	and	reports	but	require	consistency,	structure,	and	
supporting	details	including	menus,	custom	help	topics,	and	the	ability	to	handle	
errors.	Unless	you	have	been	exceedingly	careful	 from	the	start,	be	prepared	 to	
spend time to rebuild all forms and reports to ensure they have the same “look and
feel.”
Applications	need	to	have	consistent	colors,	fonts,	layouts,	menus,	and	usabil-

ity	features.	When	possible,	build	templates	that	serve	as	the	foundation	for	forms	
and	reports.	These	 templates	usually	set	 the	page	structure	as	well	as	 the	styles	
to	be	used	 in	each	component.	Applications	might	need	different	 templates	and	
styles	 for	different	devices—particularly	 if	mobile	phones	are	going	 to	be	used	
with	smaller	screens.	To	improve	accessibility,	try	to	use	system	fonts	and	colors	
to	support	user	control.	Whenever	possible,	support	multiple	 input	methods,	 in-
cluding	keyboards.
The	 structure	of	 an	application	 is	 important—particularly	where	components	

are	stored	and	run,	as	well	as	how	pieces	connect	together.	Most	applications	re-
quire	some	type	of	menu	or	toolbar	along	with	buttons	and	links	to	help	connect	
forms	and	reports	and	make	it	easier	to	find	various	elements	and	explore	the	ap-
plication capabilities.
Applications	also	need	custom	help	pages	to	answer	user	questions—particu-

larly	by	providing	the	ability	to	search	for	keywords.	Help	topics	are	usually	writ-
ten	as	individual	HTML	topic	pages.	Keywords	can	be	added	to	those	pages	along	
with	using	heading	levels	to	indicate	the	table	of	contents	or	structure.	Windows	
help	files	are	created	by	compiling	the	HTML	files	into	a	single	CHM	file	using	
the	HTML	 help	 compiler	 from	Microsoft	 or	 (expensive)	 third-party	 compilers.	
Context-sensitive	help	is	provided	by	assigning	a	number	to	every	page	using	the	
topics.h	file,	then	entering	the	help	file	name	and	topic	number	into	the	application	
properties;	such	as	the	form	properties	in	Microsoft	Access.

Order
Customer:	1592
Jane	Doe

Customer
CID:		1592
First:	Jane
Last:	Doe
Address:	123	Oak

Edit

Figure 8.1
Application	structure.	Forms	are	connected	so	users	can	click	a	button	or	link	to	get	
more	detail,	open	other	forms,	or	display	reports.

398Chapter 8: Application Development

Applications	also	need	extensive	testing,	including	module,	integration,	stress/
performance,	 usability,	 and	 security	 testing.	Special	 attention	 should	be	paid	 to	
check	for	SQL	Injection	attacks.	At	a	minimum,	all	user	inputs	should	be	cleaned	
and	SQL	queries	should	use	parameters	instead	of	string	concatenation.	Even	with	
extensive	testing,	errors	can	still	arise,	so	the	application	should	have	error	han-
dling	code	that	can	automatically	recover	from	errors	whenever	possible.	It	should	
also	have	the	ability	to	log	errors	so	developers	can	examine	the	log	to	look	for	
common	issues	and	find	improvements	for	the	next	versions.	

Applications also need a deployment method. Server-based systems are
straightforward	and	might	be	deployed	using	basic	script	files.	Client-based	ap-
plications	should	be	packaged	and	installable	from	a	simple	start	command.

Design Consistency
How do you create a consistent application design?	This	question	 is	particu-
larly	important	to	answer	when	several	developers	are	working	on	the	same	proj-
ect.	The	application	design	consists	of	several	levels.	Some	are	easier	to	configure	
and	observe.	At	the	most	basic	level,	all	forms	should	use	the	same	color	scheme.	
Likewise,	reports	should	use	the	same	fonts	and	follow	a	similar	layout.	But,	de-
sign	 also	 includes	 usability	 issues	 such	 as	 the	 page	 layout	 and	 selecting	 items	
from	a	list	instead	of	memorizing	ID	numbers.	Consistency	in	design	also	applies	
to	the	links	between	forms	and	the	use	of	menus	and	toolbars.	The	primary	issues	
discussed	in	this	section	are	related	to	design	and	usability.

Page Design Templates
Look	through	a	book,	magazine,	or	well-designed	application	or	Web	site	and	you	
will	see	that	all	of	the	pages	have	a	consistent	appearance.	Only	a	few	fonts	are	
used,	headings	are	aligned	the	same,	margins	match,	and	colors	blend	and	match	
across	all	of	the	pages.	This	consistency	does	not	happen	by	accident.	Graphics	
designers	first	create	a	template	and	then	apply	the	template	to	all	of	the	pages.	A	
template	defines	the	style	features	of	a	page.	The	capabilities	depend	on	the	sys-
tem	and	tools	available,	but	you	can	usually	define	the	overall	page	layout,	fonts,	
and colors.
Figure	 8.2	 illustrates	 the	 effect	 of	 a	 form	 template.	Take	 a	 look	 through	 the	

forms	you	have	created	for	your	assignments	and	projects	to	this	point.	Do	they	
look	like	the	first	form?	When	you	look	at	a	collection,	do	they	all	look	the	same,	
or	are	they	all	different?	Eventually,	developers	learn	to	pay	attention	to	detail	and	
consistency.	Even	so,	it	is	easy	to	make	mistakes.	A	template	makes	it	easier	for	
everyone	 to	be	consistent	and	 to	 reduce	errors.	Ultimately,	 someone	still	has	 to	
examine	every	form	and	report	to	double-check	consistency,	but	with	templates,	
you	can	come	very	close	on	the	first	pass.	
Each	development	tool	has	different	methods	to	create	and	apply	templates.	A	

few	systems	do	not	support	templates	at	all,	and	some	have	predefined	templates	
that	you	cannot	change.	The	most	common	approach	to	templates	is	to	apply	the	
template	at	design	time.	If	the	template	is	changed	later,	there	is	no	way	to	push	
the	changes	onto	all	of	the	forms	based	on	the	template.	In	other	words:	Be	sure	
your template is complete and accurate before you create the forms and reports.
If	you	have	already	created	complex	forms,	it	is	difficult	to	apply	a	template.	In	
some	cases,	you	can	create	a	new	blank	form	based	on	the	template	and	copy	the	
controls	from	the	original	form.	In	extreme	cases,	you	might	have	to	rebuild	the	
entire form from scratch if you need to apply a template later.

399Chapter 8: Application Development

Application	design	is	something	that	needs	to	be	established	early	in	the	devel-
opment	process.	Even	if	your	system	does	not	support	templates,	you	can	define	a	
style sheet	that	defines	the	overall	page	layout,	the	common	elements	to	include,	
and	the	styles	of	each	major	element	(titles,	labels,	text,	and	so	on).	Each	devel-
oper	is	responsible	for	following	the	guidelines	on	the	style	sheet.	This	process	is	
harder	to	use	than	a	template,	but	it	works	for	every	system.	
Templates	 are	 not	 the	 final	 answer	 to	 design	 questions.	 For	 instance,	 some	

forms	or	reports	may	need	to	add	other	features,	or	change	margins	to	make	some-
thing	fit	on	a	page.	Fortunately,	once	the	template	is	applied,	you	can	override	a	
setting	and	coerce	the	page	to	get	the	layout	you	want.	However,	you	need	to	be	
careful	with	this	power.	As	a	developer,	you	have	to	make	decisions.	It	is	best	to	
maintain	consistency,	but	ultimately,	you	have	to	keep	the	users	happy.	If	a	man-
ager	insists	on	squeezing	an	extra	column	onto	a	report,	you	will	have	to	reduce	
the	margins	or	change	the	font	size.	On	large	projects,	you	should	establish	a	coor-
dinator	who	can	be	consulted	when	you	need	to	override	a	template	specification.	

Usability
Beyond layout,	fonts,	and	colors,	you	need	to	establish	a	consistent	set	of	usability	
standards	for	an	application.	For	instance,	consider	the	issue	of	foreign	keys	such	
as	using	CustomerID	in	the	SalesOrder	table.	When	a	clerk	is	entering	data	into	
the	SalesOrder	table,	it	would	be	painful	to	require	the	clerk	to	memorize	the	Cus-
tomerID	values.	Instead,	the	form	will	have	some	type	of	drop-down	list	or	list-of-
values option that enables the clerk to pick the appropriate customer from a list. In
terms	of	your	application,	you	need	to	be	sure	that	all	foreign	key	references	use	
the	same	approach	to	solve	the	problem.	Consider	the	situation	shown	in	Figure	
8.3,	where	the	Sales	form	uses	a	drop-down	list	to	pick	customers	based	on	phone	
numbers.	 Imagine	how	annoying	 it	would	be	 to	use	a	pop-up	box	 to	search	for	
customers by name on the Receipts form.
When	the	same	users	are	going	to	work	with	multiple	forms,	the	forms	need	to	

use	a	consistent	data-entry	method.	In	general	it	is	better	to	be	consistent	across	all	
of	the	forms.	In	a	few	cases,	one	group	of	users	might	insist	on	a	unique	lookup	
approach	that	more	closely	matches	its	needs,	but	these	variations	should	be	dis-
cussed and approved separately.

Menu Main Print Help
Customer

ID 1523

First Mary

Last Jones

Phone 123-4444

Initial	Form

Title
Label Input

Template

Customer
ID 1523
First Mary
Last Jones
Phone 123-4444

Consistent	Form

Figure 8.2
Template.	The	template	defines	the	structure	of	the	form	and	the	attributes	of	the	
various	elements.	It	can	also	include	common	features	such	as	menus	and	navigation	
buttons.

400Chapter 8: Application Development

The idea of consistency also applies to the tab	order,	choice	of	related	data	to	
display	on	a	form,	subform	layout,	and	similar	topics.	For	example,	when	the	user	
selects	a	customer,	you	might	choose	 to	display	additional	 information,	such	as	
phone	number,	on	the	form.	As	much	as	possible,	 this	same	data	should	be	dis-
played	on	all	forms	involving	customer	lookups.	

Fonts and Customization
Selecting	fonts and color	schemes	for	an	application	is	always	a	challenge.	You	
face	conflicting	goals.	On	the	one	hand,	you	want	to	choose	a	pleasing	design	that	
displays	all	of	the	relevant	information	in	one	place.	On	the	other	hand,	you	need	
to	give	users	control	over	the	displays.	Why	do	users	need	control?	Users	often	
configure	their	systems	to	support	the	way	they	work	or	to	compensate	for	vision	
issues.
Users	can	configure	the	Windows	environment	through	various	settings	in	the	

Control	 Panel—including	 font	 sizes,	 color	 schemes,	 and	 regional	 settings	 such	
as	 date	 displays.	Your	 application	 needs	 to	 support	 these	 settings.	You	 provide	
this	support	by	choosing	system-defined	fonts	and	colors.	Windows	development	
tools,	such	as	Visual	Studio,	provide	font	settings	for	choosing	system	fonts.	Use	
these	 choices	 instead	 of	 picking	 a	 fixed	 typeface	 and	 font	 size.	 Likewise,	 you	
should	choose	the	Windows	palette	colors	instead	of	forcing	a	fixed	color.	When	
your	application	runs,	it	will	pick	up	the	currently-defined	fonts	and	colors.	If	the	
user	changes	those	values,	your	application	will	adapt	and	use	those	colors.	Yes,	
in	some	cases,	 the	user	might	pick	strange	color	combinations,	but	 the	decision	
belongs	to	the	user—not	to	you.
Web	applications	are	somewhat	 trickier—and	 the	capabilities	are	heavily	de-

pendent	on	the	development	tools	you	use.	At	the	moment,	most	systems	do	not	
provide user control over color schemes. Some default schemes are commonly
used	(e.g.,	white	background,	black	text,	and	blue	highlights),	and	you	should	fol-
low	these	schemes	when	possible.	On	the	other	hand,	font	sizes	are	more	flexible,	
and	more	 interesting.	Take	a	 look	at	your	browser	options	and	you	will	find	an	
option	to	control	 the	font	size	(try	Page/Text	Size).	However,	 if	your	Web	form	
specifies	fonts	in	terms	of	points,	this	option	will	not	work	for	the	users.	Also,	if	
you	specify	page	layout	sizes	(e.g.,	tables)	in	terms	of	fixed	measures	such	as	pix-

Sales	Order

209-111-2222 Jones
218-232-3938 Smith
306-335-3048 Jackson
415-209-0398 Sanchez

Customer
Receipts

Jones,	Mary
Jackson Joe 218-232-3938
Jamison Lisa 601-193-4841
Johnson Sam 502-203-8383
Jones Mary 209-111-2222

Customer
Search:	J%	

Figure 8.3
Consistent	usability.	Both	forms	require	the	selection	of	a	customer	since	you	cannot	
expect	people	to	memorize	ID	numbers.	It	would	be	annoying	to	select	customer	by	
phone	number	in	a	drop	down	list	on	the	Sales	form	but	by	a	pop-up	list	organized	by	
name on the Receipts form.

401Chapter 8: Application Development

els,	changes	in	text	size	will	not	work	very	well	as	the	font	changes	but	the	con-
tainer	remains	the	same	size.	Consequently,	you	have	to	use	font	and	size	settings	
based	on	relative	terms	instead	of	absolute	point	values.	A	relatively	new	way	to	
define	sizes	is	to	use	ems,	where	one	em	is	defined	as	the	width	of	the	letter	M	in	
the	current	 font.	With	relative	sizes,	 the	 font	and	 layout	values	will	be	 rescaled	
automatically	when	the	user	changes	the	font	size.

Mobile Devices
Increasingly,	 users	 want	 to	 access	 data	 from	 anywhere—using	 mobile	 devices	
connected	to	internal	applications	or	Web	sites.	Providing	users	with	greater	ac-
cess	 to	 applications	 and	data	 is	 good.	However,	 cell	 phones	 and	other	 portable	
devices	generally	have	smaller	screens.	Many	wireless	plans	also	have	limitations	
on	the	data	transfer	speed	or	monthly	caps	(or	high	prices)	on	the	amount	of	data	
transfer.	Figure	8.4	shows	approximate	sizes	and	pixel	counts	for	a	handful	of	de-
vices.	Keep	in	mind	that	technology	continues	to	evolve,	so	you	need	to	research	
current	values	when	you	build	an	application.	The	main	key	is	that	the	cell	phones	
(Apple	 and	Samsung)	 are	 considerably	 smaller	 and	 use	 fewer	 pixels.	Although	
starting	with	the	Apple	iPhone	4	released	in	2010,	resolutions	have	improved—no	
one	will	be	able	to	read	the	text	if	it	is	drawn	pixel-for-pixel.	Instead,	the	newer	
phones	and	tablets	use	those	pixels	to	display	better-formed	characters—shown	at	
readable	size	but	with	better	resolution	and	clarity.	Compare	an	iPhone	screen	at	3	
x	2	inches	with	a	desktop	monitor	at	about	13	x	8	inches.	Physically,	the	desktop	
screen	can	hold	16	iPhone	screens.	The	pixel	count	works	to	about	the	same	ratio	
with	the	3S,	but	not	the	version	5.	The	point	is	that	even	if	your	application	uses	
only	half	of	the	desktop	monitor,	only	a	small	fraction	of	that	page	could	be	dis-
played on a mobile screen at one time.
Pages	that	work	on	larger	screens	can	become	unusable	at	smaller	sizes—either	

the	fonts	are	too	small	to	read,	or	the	user	has	to	scroll	vertically	and	horizontally	
to	see	the	entire	form.	Unfortunately,	 there	is	no	good	answer	to	creating	pages	
for	different	sizes	of	screens.	Often,	it	is	necessary	to	create	two	versions	of	the	
application—one	for	“regular”	screens	and	one	for	smaller	mobile	screens.	Creat-
ing	different	versions	is	also	useful	because	mobile	devices	often	have	slower	(or	

Figure 8.4
Sample	device	resolution.	Fewer	pixels	means	less	information	can	be	displayed.	
Smaller	size	means	text	and	images	might	be	too	small	to	read,	or	less	information	
can be displayed at readable fonts sizes.

Device Size (Diagonal in.) Pixels
Desktop 24 1920	x	1200
Laptop 15 1440	x	800

1920	x	1080
Apple	iPad 11 2048	x	1536
Google	Nexus	10 10 2560	x	1600
Apple	iPhone	3S 3.5 480	x	320
Apple	iPhone	5 4 1136	x	640
Samsung	S4 5 1920	x	1080

402Chapter 8: Application Development

more	expensive)	network	connections,	so	you	have	to	be	more	cautious	in	using	
graphics	 and	 limiting	 the	 amount	 of	 data	 sent	 to	 the	page.	But	 developing	 two	
versions	of	an	application	takes	more	time--hopefully	less	than	twice	as	much—
because	you	already	have	the	tables,	functions,	and	calculations.	And	you	have	to	
plan	for	more	people	to	handle	maintenance	and	upgrades.

Application Structure
How are forms and reports integrated and organized? The overall structure
is	 an	 important	 feature	 of	 any	 application.	The	 structure	 or	 layout	 defines	 how	
the	user	will	deal	with	the	application.	Most	database	applications	will	use	forms	
and	reports	as	individual	components.	The	first	step	in	designing	the	structure	or	
architecture	of	the	application	is	to	design	each	form.	The	objective	of	application	
structure	is	to	organize	all	of	the	forms	and	reports	to	produce	a	complete	appli-
cation.	In	some	applications,	this	purpose	can	be	achieved	with	a	central	startup	
form,	which	contains	buttons	to	direct	users	to	the	appropriate	form.	More	com-
monly,	you	will	also	need	to	add	interconnection	buttons	on	individual	forms.	For	
example,	a	user	entering	data	on	an	order	form	might	want	to	look	up	additional	
information on the customer form.
Today,	it	is	common	to	separate	a	database	application	into	two	or	three	major	

sections.	As	shown	in	Figure	8.5,	the	front end consists of the forms and reports
that the user sees. The back end consists of the database tables. Sometimes a
middle tier	is	added	that	consists	of	program	code	to	define	and	enforce	business	
rules.	With	a	network,	this	separation	can	be	physical,	and	each	component	can	
run	on	separate	computers.	Even	if	all	of	 the	elements	will	 run	on	a	single	ma-
chine,	it	often	makes	sense	to	separate	them	logically.	This	separation	enables	you	
to	change	each	part	independently.	It	also	makes	it	easier	to	choose	different	tools	

Oracle
SQL	Server
DB2
Access

Visual	Basic
Internet
Oracle	Forms

Back	end:	
Database

Front	end:	
Forms	and	
Reports

If	QOH	<	100	Then
Else
End	If

Middle	Tier:	
Business	Logic

Optional.
Programming	code

Figure 8.5
Application structure. It is common to use different tools for the back-end database
and front-end forms. The use of the middle tier to handle business rules depends on
the	size	of	the	application	and	the	management	details	of	the	firm.

403Chapter 8: Application Development

for	each	purpose.	For	example,	you	could	write	the	front	end	forms	and	reports	
with	Visual	Studio,	store	the	data	in	an	Oracle	database,	and	write	custom	code	to	
evaluate	business	rules.	If	 the	business	changes,	you	could	transfer	the	business	
rules	 to	an	enterprise	resource	planning	system,	or	change	 the	back-end	DBMS	
with	only	minor	changes	on	the	front	end.
Choosing	the	overall	architecture	of	the	application	is	the	first	step	to	designing	

the	application.	The	choice	of	tools	and	structure	will	depend	on	the	organization’s	
needs	and	capabilities.	Some	companies	have	a	formal	process	for	designing	and	
approving	applications.	This	process	is	important	when	applications	need	to	work	
together	and	fit	into	the	overall	structure	of	the	company’s	information	system.

Designing Applications
The	first	step	in	designing	the	application	structure	is	to	identify	the	various	users	
and	outline	the	tasks	that	will	be	performed	with	the	application.	The	application	
must	reflect	the	needs	and	working	habits	of	the	user.	If	several	users	have	differ-
ent	needs,	the	application	can	be	divided	into	sections	for	each	group.	A	central	
startup form can be used to identify the user and direct him or her to the appropri-
ate section.
This	segmentation	reduces	complexity	for	the	users	and	simplifies	their	tasks.	

However,	 it	has	 two	potential	drawbacks.	First,	 if	 the	application	has	 too	many	
layers,	users	will	have	trouble	finding	the	forms	and	reports	 they	need.	Second,	
poor	organization	confuses	users	and	requires	additional	support	and	training.	In	
other	words,	you	must	find	an	application	structure	that	provides	the	functionality	
each	user	needs	but	is	still	easy	to	understand.	The	inherent	conflict	in	these	goals	
is	what	makes	it	so	difficult	to	design	a	good	application	structure.
Even	experienced	programmers	rarely	design	a	“perfect”	application	 the	first	

time.	In	most	cases	you	need	to	develop	several	ideas	and	test	them.	You	can	build	
prototypes	by	creating	sample	forms	and	including	command	buttons	to	tie	them	
together.	These	prototypes	can	be	given	to	users	to	test.	You	then	incorporate	user	
suggestions	 and	modify	 the	prototypes.	By	 testing	different	 structures,	 you	 can	
quickly	learn	which	technique	will	work	best.
In	building	a	complex	application	structure,	it	is	best	to	start	with	the	core	con-

cepts.	Once	you	have	tested	them	with	users,	you	can	add	features.	Each	revision	
constitutes	a	new	application	version.	Keep	track	of	the	version	number;	record	
the	date,	the	reason	for	the	change,	and	the	changes	that	were	made.	Most	com-
mercial	software	vendors	follow	this	development	process.	No	one	tries	to	visual-
ize	a	complete,	massive	application	and	create	it	up	front.	Instead,	developers	start	
with	a	basic	concept	and	build	a	system	that	works	and	implements	the	fundamen-
tal	concepts.	Then	developers	expand	the	capabilities	by	adding	new	features.
The	 two	most	 important	 aspects	 in	 this	 type	 of	 development	 are	 (1)	 getting	

the	overall	structure	correct	up	front	and	(2)	using	a	flexible	design	that	 is	easy	
to	modify	 later.	 For	 example,	 it	 is	 critical	 that	 your	 data	 tables	 be	 normalized,	
because	normalized	tables	can	be	easily	expanded	later	to	provide	new	features.

The Startup Form
Designing	an	overall	structure	and	appearance	often	requires	artistic	sensibility	as	
well	as	logic	and	research.	Each	application	is	different	and	can	require	a	unique	
approach.	Yet,	over	time,	designers	have	learned	that	some	common	elements	can	
be used in many applications. The main menu or startup form is an element that
many	developers	like	to	use.	However,	it	is	not	really	the	ultimate	answer	to	every	
problem.

404Chapter 8: Application Development

The	main	purposes	of	 the	 startup	 form	are	 shown	 in	Figure	8.6.	The	 startup	
form	is	generally	the	first	form	of	the	application.	It	provides	a	centralized	direc-
tory	to	the	rest	of	the	application.	It	often	contains	an	image	or	picture	and	usually	
consists	entirely	of	command	buttons.	Clicking	a	button	brings	the	user	to	another	
menu	form	or	to	a	specific	form	or	report.
Because	the	startup	form	is	the	starting	point	for	the	application,	it	 is	a	good	

place	to	identify	the	user.	If	possible,	you	should	identify	the	user	from	the	net-
work	login	data.	Otherwise,	you	will	have	to	maintain	a	separate	login	for	each	
user.	The	two	primary	reasons	for	identifying	each	user	are	(1)	to	maintain	appro-
priate	security	controls	and	(2)	to	customize	the	application	for	each	user	group.
The	startup	form	can	be	customized	through	layout	and	the	use	of	color.	For	

example,	options	primarily	 intended	for	different	managers	(marketing,	finance,	
etc.)	can	be	displayed	 in	different	colors.	 If	additional	customization	 is	needed,	
individual options can be made invisible and disabled so that users see only but-
tons	that	are	designed	for	their	use.	This	approach	simplifies	the	screen	layout	and	
reduces	confusion.	However,	it	is	less	useful	if	managers	need	to	share	their	tasks.
Keep	in	mind	that	some	applications	will	work	better	without	a	startup	form.	

Think	about	the	applications	you	use	on	a	daily	basis:	word	processing,	spread-
sheets,	and	so	on.	None	of	these	require	startup	forms.	Instead,	they	jump	right	to	
the	primary	user	task	and	rely	on	menus	to	provide	access	to	the	functions.	You	
could	use	this	same	approach	for	users	who	have	a	limited	view	of	the	applica-
tion—such	as	front	line	clerks.	Once	a	clerk	logs	in,	the	application	jumps	imme-
diately to the primary data-entry form. The point is that you should not try to force
a	startup	form	into	every	application.	Look	at	the	jobs	and	talk	with	the	users	to	
find	the	best	way	to	organize	the	forms	and	reports	for	each	task.

Sally’s Pet Store: Application Organization
In	many	ways	the	startup	form	is	a	table	of	contents	into	the	application.	It	pres-
ents	 the	 organization	 of	 the	 application.	 Before	 building	 the	 startup	 form,	 you	
must	decide	how	the	application	will	be	organized.	That	is,	you	must	learn	which	
forms	are	most	important	to	users,	how	they	will	switch	between	forms,	and	how	
often they use each form.
Although	there	are	many	useful	ways	to	organize	any	application,	consider	two	

different	approaches	to	the	Pet	Store	application.	The	first	approach	is	shown	in	
Figure	8.7.	At	first	glance	this	approach	seems	reasonable.	Items	are	ordered,	then	
received	and	then	sold	to	customers.	Hence	the	store	managers	might	want	to	start	
with	orders	and	enter	data	by	following	each	item	from	purchase	through	sale.

•	Directory	for	the	application.
•	Identify	users.
•	Startup	and	shutdown	code.

	○Preload	forms	in	background.
	○Initiate	transaction	and	security	logs.
	○Establish	network	connections.

•	Copyright	and	usage	notes.

Figure 8.6
Uses	of	startup	forms.	As	the	initial	form	for	an	application,	the	main	menu	can	be	
used to control tasks that apply to the complete session.

405Chapter 8: Application Development

Although	 this	 approach	might	 sound	 reasonable	 at	first,	 it	 has	 several	flaws.	
First,	managers	rarely	want	to	track	individual	items.	Perhaps	they	want	to	follow	
individual	animals,	but	rarely	merchandise.	Second,	when	an	order	is	placed,	the	
item	has	not	been	received	yet,	so	there	is	no	point	in	linking	an	order	to	the	re-
ceipt	of	the	shipment.	More	important,	there	is	no	way	to	connect	individual	items	
to	a	sale.	For	example,	you	might	know	that	a	customer	bought	 three	cans	of	a	
particular	dog	food,	but	there	is	no	way	to	tell	exactly	which	cans.	Hence,	manag-
ers rarely need a link from receipt of shipments to individual sales.
An	 improved	 approach	 appears	 in	 Figure	 8.8.	 First,	 notice	 that	 it	 has	 more	

links—including	bidirectional	links.	For	example,	when	a	shipment	arrives,	work-
ers	need	to	pull	up	the	matching	order	to	see	whether	the	proper	items	were	deliv-
ered.	Hence	an	Orders	button	is	placed	on	the	Shipping	Receipt	form.	Once	in	a	
while,	a	manager	might	want	to	check	on	the	shipment	of	a	particular	order,	so	the	
link	is	bidirectional.	Notice	that	Sales	are	connected	to	Orders	and	Receipts—but	
only	 through	 the	 Inventory	 items.	 Inventory	QOH	can	be	displayed	directly	on	
the	Sale	form.	The	Sale	form	also	has	a	connection	to	Orders—to	create	special	

Order
Merchandise

Item

Receive
Merchandise

Item

Sell
Merchandise

Item

Get
Customer

Data

Figure 8.7
Poor	organization	of	the	Pet	Store	application.	The	links	are	at	the	wrong	level	(item	
instead	of	order).	Managers	rarely	need	to	track	individual	items	from	order	to	receipt	
to sale.

Orders Receipt

Sale

Supplier
Customer

Inventory
Items

special
orders

Figure 8.8
Improved	organization	for	the	Pet	Store.	The	lines	represent	links	from	one	form	to	a	
second	form.	The	links	are	usually	created	through	buttons	placed	on	the	form.

406Chapter 8: Application Development

orders.	If	an	item	is	out	of	stock,	a	salesperson	might	want	to	check	on	recent	or-
ders	to	see	when	the	item	might	arrive.	The	designer	should	talk	with	users	to	de-
termine	how	often	this	situation	arises	and	how	it	should	be	handled	on	the	form.
Eventually	the	Pet	Store	application	will	contain	many	forms	and	reports.	Most	

of	them	are	linked	to	a	startup	form.	Many	of	them	are	linked	to	each	other.	But-
tons or events on one form lead the user to a related form. Some of the forms
are	simple	and	affect	one	table,	but	most	display	data	from	several	related	tables.	
Each	 individual	 form	 represents	 specific	 business	 events	 and	 tasks.	 Figure	 8.9	
shows	the	primary	forms	used	by	the	sales	clerk	role.	This	diagram	is	a	simplified	
version	of	a	UML	collaboration	diagram.	The	main	point	here	is	that	it	identifies	
the	initial	forms	needed	by	this	group	of	users.	Consequently,	you	should	put	links	
to	Sales,	Animals,	and	Customers	on	the	startup	for	this	user.	You	will	need	to	cre-
ate	a	similar	diagram	for	the	other	roles	at	the	Pet	Store,	such	as	purchasing	and	
management.
Figure	8.10	shows	one	version	of	a	startup	form	for	Sally’s	Pet	Store.	The	but-

tons	on	this	form	match	the	primary	tasks	identified	for	the	groups	of	users.	The	
buttons	are	color	coded	to	highlight	the	three	groups.	You	could	go	further	and	set	
the	visibility	of	the	buttons	based	on	the	category	of	the	user.	When	each	person	
logs	in,	the	form	displays	the	buttons	or	forms	most	relevant	to	that	person’s	tasks.	
With	some	additional	coding,	you	could	write	the	form	so	each	user	could	select	
a	set	of	buttons	to	personalize	the	main	screen.	However,	customization	is	usually	
easier	on	tool	bars	instead	of	the	main	menu.	In	general,	you	should	avoid	putting	
too	many	buttons	on	the	main	menu.	An	old	rule	of	thumb	states	that	the	average	
person	can	handle	seven,	plus	or	minus	three,	items	at	a	time,	so	four	to	ten	but-
tons	on	a	form	is	a	good	target.	Obviously,	a	complex	application	ultimately	has	
many	more	than	10	forms	and	reports.	With	large	applications,	you	can	extend	the	
startup	form	to	additional	forms	or	submenus.	You	can	also	add	drop-down	menus	
to	make	it	easier	to	find	commonly	used	items.	
Remember	that	you	also	need	to	connect	forms	to	other	forms.	Depending	on	

the	user	interface	you	choose,	you	might	add	buttons	to	forms	or	use	double-clicks	
to	trigger	the	second	form	to	open.	These	links	are	commonly	created	with	foreign	
key	relationships,	such	as	adding	an	Edit	button	to	the	SalesOrder	form	to	open	

Sales

Customers

Animals

Sales	Clerk

Animal	Health

Genealogy

Receipts

Merchandise

Figure 8.9
Collaboration	diagram	for	sales	clerk	section.	Diagramming	the	forms	and	reports	
used	by	an	actor	(employee)	makes	it	easier	to	identify	the	overall	structure	and	menu	
for this role.

407Chapter 8: Application Development

the	Customer	form.	Similarly,	you	can	add	links	to	print	or	preview	reports	from	
various	forms,	such	as	printing	a	sales	receipt	from	the	SalesOrder	form.	The	spe-
cific	links	depend	on	the	needs	of	the	users.

Administrative Tasks
When	you	build	the	application,	you	also	need	to	think	about	the	administrative	
tasks	 that	will	need	 to	be	performed.	Administrative tasks consist of jobs that
need	 to	be	performed	 to	keep	 the	application	 running,	 such	as	updating	data	 in	
lookup	tables,	backing	up	the	database,	and	assigning	users	to	groups.	Depending	
on	the	DBMS,	some	of	these	tasks	are	handled	outside	of	your	application.	If	your	
system	needs	routine	maintenance	or	tasks	performed	on	a	specified	schedule,	you	
should	incorporate	a	set	of	administrative	forms	to	automate	the	tasks.	If	nothing	
else,	collecting	 the	 tasks	 into	one	 location	makes	 them	easier	 to	handle	and	 in-
creases	the	probability	that	they	will	actually	be	done.	Tasks	that	require	external	
steps	 could	 at	 least	 be	 documented	within	 the	 application.	Ultimately,	 you	 can	
hide the administrative tasks from the common users and use the security system
to	make	them	accessible	to	a	few	administrators
Administrative	 forms	 are	 particularly	 important	 for	Web-based	 applications.	

You	will	 find	 that	 it	 is	 convenient	 to	 handle	 administrative	 tasks	 using	 a	Web	
browser	so	the	administrators	can	support	the	application	from	almost	any	loca-
tion.	This	step	is	particularly	critical	when	the	application	will	be	hosted	by	an	ex-
ternal	Internet	service	provider.	On	the	other	hand,	it	sometimes	takes	more	work	
to	create	the	administrative	pages	than	it	does	to	build	the	original	application.

Menus and Toolbars
How can users gain easy access to standard operations across the application?
Contemporary	applications	have	several	features	that	are	designed	to	standardize	
the look and feel of applications and to make your applications relatively easy to
use. Menus or toolbars and the Help system are common elements in most ap-
plications.	Menus	and	toolbars	are	similar	to	each	other	and	often	created	using	
the	same	techniques.	A	toolbar	is	a	collection	of	items	that	perform	some	action	

Figure 8.10
Sample startup form. The buttons match the user’s tasks.

408Chapter 8: Application Development

when	clicked.	The	items	can	be	icons	or	text.	Text	items	can	be	opened	to	provide	
drop-down	lists	of	additional	items.	This	submenu	makes	it	easier	to	organize	the	
many	choices.	A	toolbar	that	primarily	consists	of	text	items	is	often	referred	to	as	
a	menu,	but	the	distinction	is	minor.	Most	systems	enable	you	to	create	multiple	
toolbars	or	menus.	Generally,	you	can	modify	them	on	the	fly	in	response	to	user	
actions.	With	some	systems,	it	is	relatively	easy	to	enable	the	toolbars	so	users	can	
configure	their	own	icons	and	selections	on	a	custom	toolbar.
A	main	menu	 is	generally	 the	 same	across	 the	 application.	Hence,	 the	menu	

centralizes	choices	 that	can	be	activated	at	any	 time.	Menus	are	also	useful	 for	
visually	challenged	workers	and	those	who	prefer	to	use	the	keyboard	instead	of	
a	pointing	device	(mouse),	because	choices	can	be	activated	with	the	keyboard.	
Toolbars usually consist of a set of icons or buttons that perform common tasks.
Some	applications	enable	users	to	customize	the	toolbar	with	specific	buttons	and	
users often reposition toolbars.
Most	menus	 are	 hierarchical:	 that	 is,	 detailed	 choices	 are	 presented	 under	 a	

few	keywords.	The	Windows	 interface	 standard	 specifies	 that	menus	 should	be	
displayed	at	the	top	of	the	application.	However,	users	may	want	to	move	menus	
to	a	different	location.	Most	applications	use	similar	commands	on	their	menus.	
For	example,	the	menu	in	Figure	8.11	contains	top-level	links	for	the	main	startup	
form,	customer	information,	and	help.	Ultimately,	entries	would	be	added	to	cover	
the	other	main	objects	such	as	suppliers	and	animals.	Whenever	you	create	text	
items	on	a	menu,	you	should	define	an	access	key	so	that	users	can	select	the	entry	
directly	from	the	keyboard.	In	a	Windows	environment,	items	are	activated	with	
the	Alt	key	combination,	such	as	Alt+C	to	open	the	main	customers	menu.

Purpose of the Menu
You	might	consider	using	the	basic	DBMS	menu	within	your	application.	Then	
users	will	have	full	control	over	the	database.	In	most	cases,	however,	you	will	be	
better	off	building	a	custom	menu	for	your	application.	A	custom	menu	has	sev-
eral	benefits.	First,	it	can	limit	user	actions.	For	instnace,	if	users	do	not	need	to	
delete	data,	the	menu	should	not	have	the	delete	commands.	You	still	have	to	set	
the	appropriate	security	conditions	to	prevent	them	from	using	other	methods	to	
delete	data,	but	removing	a	command	from	the	menu	helps	to	restrict	user	choices.	
A	second	advantage	of	a	custom	menu	is	that	it	simplifies	the	user	interface.	If	en-

Figure 8.11
Sample	menu.	Note	the	hierarchical	structure.	Also,	the	underlined	letter	represents	
the	access	key,	which	can	be	activated	from	the	keyboard.		You	can	add	shortcut	keys	
(e.g.,	Ctrl+D),	to	activate	a	choice	without	going	through	the	menu.

409Chapter 8: Application Development

try-level	users	need	only	four	or	five	commands,	display	only	those	options	on	the	
menu	to	make	them	easier	to	find.	Third,	you	can	add	special	functions	to	a	cus-
tom	menu.	For	example,	you	might	add	a	special	Help	command	to	send	e-mail	
to	your	support	desk.	Fourth,	menu	choices	can	be	activated	by	keystrokes.	Hence	
touch	 typists	 and	visually	 challenged	workers	 can	use	your	 application	without	
looking	at	the	screen.

Toolbars
Custom menus are usually implemented on toolbars. A toolbar contains a collec-
tion	 of	 buttons	 and	menu	 items.	When	 the	 user	 clicks	 a	 toolbar	 button,	 a	 pre-
defined	operation	is	executed.	A	toolbar	can	contain	traditional	buttons	and	textual	
menus.	Most	toolbars	are	dockable,	which	means	that	users	can	drag	them	to	any	
place	on	the	application	window.	Web-based	forms	rarely	support	dockable	tool-
bars,	but	you	can	put	menu	options	in	a	separate	browser	window	or	frame.
The	purpose	of	a	toolbar	is	to	provide	single-click	access	to	complex	actions	

or	 to	 commands	 that	 are	 used	 frequently.	 For	 example,	many	 toolbars	 have	 an	
icon	to	immediately	save	the	current	work.	As	shown	in	Figure	8.12,	you	can	put	
virtually	any	icon	and	any	command	on	a	toolbar.	You	can	set	different	toolbars	
and	menus	for	each	form.	You	can	even	have	multiple	toolbars.	For	example,	one	
toolbar	might	contain	commands	that	apply	to	the	entire	application.	Then	special	
toolbars can be added as each form is opened.

Creating Menus and Toolbars
To	support	standardization	and	to	simplify	creating	menus,	most	application	de-
velopment	environments	have	a	menu-generation	feature.	The	exact	steps	depend	
on	the	system	you	are	using;	however,	three	basic	procedures	are	used	to	create	a	
menu:	(1)	Choose	the	layout	or	structure,	(2)	Give	each	option	a	name	and	an	ac-
cess	key,	and	(3)	Define	the	action	to	be	taken	when	each	option	is	selected.	The	
main	 steps	 for	 creating	 a	 toolbar	 are	 similar	 except	 that	 you	often	 create	 small	
graphical	icons	instead	of	text	(step	2).	When	you	create	an	icon,	never	assume	

Figure 8.12
Sample	toolbar.	Toolbars	can	contain	buttons	and	menus.	Buttons	generally	display	
icons.	When	the	pointer	moves	over	them,	a	tooltip	is	displayed	that	briefly	describes	
the	button.	When	the	button	is	clicked,	an	action	is	performed	or	a	menu	is	displayed.

Print

·Identify	report

·Ask	for	single	or	
multiple	pages.

·Preview	or	print.Startup

Weekly Sales Analysis
Build	graphs
Print	reports
Export	data	to	spreadsheet	

410Chapter 8: Application Development

that	users	will	recognize	an	icon	or	understand	what	it	represents.	Most	systems	
enable	you	to	define	a	tooltip	for	each	option.	When	the	user	moves	the	pointer	
over	 the	 icon,	 the	tooltip,	or	short	comment,	 is	displayed.	Every	 toolbar	button	
must have a tooltip.
Creating	toolbars	and	menus	is	straightforward	with	recent	application	devel-

opment	systems.	You	can	customize	an	existing	toolbar	by	adding	or	deleting	op-
tions.	 Similarly,	 you	 can	 create	 a	 new	 toolbar.	Button	 icons	 and	menus	 can	 be	
dragged	to	the	toolbar.	The	main	step	is	to	set	the	properties	of	each	item.	Menu	
names	should	be	short	and	descriptive.	You	should	also	try	to	follow	the	standard	
names	used	in	commercial	software.	To	specify	the	access	key,	precede	the	key	
letter	with	 an	 ampersand.	For	 example,	 the	&File	 text	will	 appear	 as	File,	 and	
the	Alt	plus	F	keys	will	activate	that	option.	Shortcut	keys	(e.g.,	Ctrl	+	D)	can	be	
specified	in	the	property	settings	of	the	detail	menu	item	or	the	button	command.
Most	systems	enable	you	to	create	multiple	toolbars	and	then	activate	or	deac-

tivate	toolbars	for	different	users	or	in	different	areas	within	the	application.	You	
generally	have	to	create	a	couple	lines	of	code	to	activate	or	deactivate	a	specific	
toolbar.

Accessibility
How can a computer application be modified for people with disabilities? Ac-
cessibility	 is	 an	 important	 question,	 and	 it	 is	 also	 required	 for	 any	 application	
purchased	 by	 the	 U.S.	 Federal	 government.	 With	 the	 widespread	 adoption	 of	
graphical	user	interfaces	in	the	1990s,	many	people	with	disabilities	encountered	
problems	using	the	new	applications.	People	with	good	vision	might	see	value	in	
dragging	 an	object	 from	one	 location	 to	 another,	 but	many	operations	 that	 rely	
on	vision	are	unusable	by	other	users.	Certainly	users	with	vision	challenges	will	
have	problems,	but	it	can	also	be	difficult	for	other	people	to	control	a	mouse	or	
touch	screen	with	enough	detail	to	select	and	move	items	on	a	screen.
The	most	common	methods	to	improving	accessibility	are:
1.	 Support	multiple	input	methods	(keyboard	as	well	as	mouse).
2.	 Do	not	put	text	into	graphics,	and	use	the	Alt	text	tag	to	describe	all	images.
3.	 Use	default	and	scalable	fonts,	do	not	use	fixed	sizes.
4.	 Select	user-chosen	colors	instead	of	picking	your	own.	In	Windows,use	de-

fined	values	such	as	System.ControlText.
5.	 If	you	must	pick	your	own	colors	on	Web	sites,	use	a	style	sheet	and	stick	

with	high-contrast	colors.
The	goal	 is	 to	 ensure	 that	your	 forms	and	applications	 accept	multiple	 input	

methods.	In	particular,	users	should	be	able	to	navigate	the	application	by	using	
just	the	keyboard.	Menu	and	toolbar	selections	should	include	keystroke	options.	
Typically,	these	selections	are	made	by	using	the	Alt	key	along	with	other	mne-
monic	keys.	Short-cuts	to	specific	actions	are	usually	defined	by	Ctrl key combi-
nations. The Tab	key	should	move	the	selection	point	within	a	form	to	different	
fields	with	Back-Tab	(Shift-Tab)	moving	in	reverse.	Of	course,	all	of	these	keys	
need	 to	be	defined—preferably	 in	one	 location	with	 a	 list	 that	 can	be	 read	 and	
memorized by users.
Along	the	same	lines,	use	system-defined	fonts	and	colors	within	your	appli-

cation.	Avoid	hard-coding	a	font	size	(such	as	11	points)	or	color.	With	existing	
operating	systems,	users	can	define	font	sizes	and	colors	that	work	best	for	them.	
When	you	hard-code	sizes	and	colors	in	your	application,	your	choices	override	
those	of	 the	user.	They	might	 look	good	 to	you,	 but	 they	 could	be	 invisible	or	

411Chapter 8: Application Development

highly	annoying	to	the	users.	Remember	that	many	people	(as	much	as	ten	per-
cent	of	the	U.S.	male	population)	can	be	red-green	color	blind.	Most	systems	en-
able	you	to	select	colors	based	on	the	system-defined	palette.	For	example,	choose	
System.Text	instead	of	“Black”	and	your	application	will	pick	up	the	values	de-
fined	by	the	user.
In	 addition	 to	 input	 issues,	 your	 application	 needs	 to	 be	 conservative	 with	

graphics	and	images.	Vision-impaired	users	often	rely	on	screen	readers	to	pick	
up	the	text	from	the	page	and	read	it	aloud.	In	general,	the	screen	readers	cannot	
read	text	or	interpret	figures	or	directions	written	into	images.	When	images	are	
needed,	be	sure	to	enter	text	in	the	ALT	tag	that	specifies	in	text	what	the	image	
represents or critical information that it contains.
Most	development	systems	today	include	tools	to	provide	these	standard	fea-

tures.	However,	typically	you	need	to	activate	them	and	assign	the	keystrokes	to	
them.	As	shown	in	Figure	8.13,	menu	and	toolbars	are	often	activated	by	adding	
an	ampersand	(&)	in	front	of	the	hot	key	for	that	item.	For	instance	an	entry	of	
&Help	would	generally	be	displayed	with	an	underscore	under	the	H	as	Help. The
inclusion	of	the	ampersand	tells	the	menu	system	to	watch	for	the	Alt-H	combina-
tion	to	trigger	that	selection.	All	of	the	necessary	tools	are	built	into	the	platform,	
but	as	a	developer,	you	must	enter	the	ampersand	every	time	you	define	a	menu,	
button,	or	toolbar	option.
These	secondary	input	methods	are	also	useful	for	people	without	vision	prob-

lems.	Because	 they	are	 triggered	from	the	keyboard,	 they	can	 improve	data	en-
try	speed	for	almost	everyone.	For	example,	practice	with	Word	and	Excel,	using	
keyboard	combinations	 to	 select	menu	 items	and	you	will	find	 that	many	 tasks	
become easier and faster because you do not have to move your hands from the
keyboard to move the mouse.
One	of	the	more	interesting	sources	of	ideas	for	accessibility	is	the	U.S.	gov-

ernment.	The	U.S.	government	has	been	required	to	implement	accessibility	op-
tions	for	several	years.	The	ruling	is	known	as	“Section508”	from	the	number	of	

Figure 8.13
Specify	Alt-letter	combination	with	ampersand.	Every	button,	menu,	and	toolbar	
option	should	have	a	keyboard	definition.	Many	systems	use	the	ampersand	(&)	
method before the key letter.

Ampersand	(&)	Adds	underline	and	Alt-letter	trigger

412Chapter 8: Application Development

the	original	statement.	Government	agencies	have	built	an	official	Web	site	to	dis-
cuss	the	topic:	http://www.section508.gov/.	A	commercial	site	has	similar	notes:	
http://www.ada508.com.	
In	2013,	some	discussion	in	the	Federal	government	suggested	that	Congress	

might	apply	 the	 same	 rules	 to	commercial	Web	sites.	The	Americans	with	Dis-
abilities	Act	 (ADA)	was	written	 to	 require	 physical	 stores	 to	 provide	 access	 to	
everyone.	So	a	few	people	have	suggested	that	those	with	disabilities	should	also	
have	equal	access	to	any	online	site.	It	is	not	clear	if	the	legislation	has	enough	
support	to	pass.	It	is	also	not	clear	that	such	a	requirement	is	necessary.	Presum-
ably,	some	sites	will	find	it	useful	to	provide	accessibility	features.	Is	it	truly	nec-
essary	that	all	sites	provide	the	same	features?	At	the	cost	of	opening	up	all	Web	
sites	to	potential	lawsuits.	(The	ADA	has	resulted	in	several	nuisance	lawsuits	in	
the	physical	world.)	But,	some	of	the	basic	tenets	of	accessibility	are	straightfor-
ward	and	can	be	helpful	to	many	users.	Many	of	the	suggestions	for	Web-based	
forms	can	be	implemented	on	each	page,	such	as	including	text	descriptions	of	all	
functional	images.

Custom Help
How do you create custom Help files?	Online	Help	systems	have	grown	to	re-
place	paper	manuals.	The	goal	is	to	provide	the	background	information	and	the	
specific	instructions	that	a	user	might	need	to	effectively	use	the	application	sys-
tem.	Help	files	can	contain	text-based	descriptions,	figures,	and	hypertext	links	to	
related	topics.	As	much	as	possible,	the	help	messages	should	be	context sensi-
tive.	The	users	should	be	presented	with	information	that	is	designed	to	help	with	
the	specific	task	they	are	working	on	at	the	time.	For	instance,	a	user	might	want	
a	definition	of	some	term	or	more	details	about	what	actions	can	be	performed	on	
a	specific	page.	Yet	the	Help	system	must	also	have	an	extensive	search	engine	so	
that	users	can	find	information	on	any	topic.	Figure	8.14	illustrates	a	sample	page	
from	a	Help	system.
Microsoft	has	embedded	a	Help	system	within	Windows	for	several	years.	This	

product	has	progressed	 through	 several	versions.	Most	 software	developers	use	
this	system	so	users	get	a	consistent	Help	system	across	all	products.	The	Win-
dows	Help	system	displays	the	files,	handles	the	links,	table	of	contents,	indexes,	
and	searches	almost	automatically.	As	a	developer,	you	can	concentrate	on	creat-
ing	the	files	that	contain	the	basic	information	and	the	necessary	links.	Then	the	
help	compiler	converts	your	data	into	a	special	file	that	the	Windows	Help	system	
can	display	and	search.	Once	you	learn	the	basic	elements	of	creating	a	page,	the	
hard	part	 is	writing	 the	hundreds	of	pages	needed	 for	 a	 complete	Help	 system.	
Most	directors	of	large	development	projects	hire	workers	just	to	write	the	Help	
files.
Help	files	built	for	the	Windows	system	can	be	used	with	any	application	that	

runs	 on	 the	Windows	 operating	 system.	 However,	 these	 compiled	 files	 do	 not	
work	on	the	Web.	If	you	are	building	an	Internet-based	application,	you	generally	
need	to	create	a	separate	set	of	Help	pages.	The	Oracle	system	provides	its	own	
Help	compiler	that	you	can	use	instead	of	the	Windows	system.
Most	help	systems	 today	use	HTML-based	pages	 to	display	 the	 text.	Conse-

quently,	the	help	pages	can	also	be	used	as	support	files	for	Web-based	applica-
tions.	However,	 the	Windows-based	 systems	 always	 require	 some	 form	of	 cus-
tomization,	so	it	is	never	as	simple	as	just	copying	files.

413Chapter 8: Application Development

Creating a Help File for Windows
The	first	 and	most	 important	 step	 in	 creating	 a	Help	file	 is	 to	 understand	what	
information	a	user	will	need.	Then	you	must	write	individual	pages	that	explain	
the	purpose	of	the	system	and	how	to	use	it.	As	with	any	communication	project,	
you	must	first	understand	your	audience.	What	 types	of	people	will	use	 the	ap-
plication?	What	is	their	reading	level?	How	much	experience	and	training	do	they	
have	 with	 computers	 in	 general?	 Do	 they	 understand	 the	 business	 operations?	
The	goal	is	to	provide	concise	help	information	in	a	format	that	users	can	quickly	
understand.	Usability	studies	show	that	most	users	do	not	want	 to	use	 the	Help	
system—they	prefer	systems	that	are	easy	to	use.	When	users	turn	to	the	Help	sys-
tem,	they	are	generally	in	a	hurry	and	want	a	simple	answer	to	a	specific	question.
Once	you	understand	the	needs	of	the	users,	you	can	write	the	individual	Help	

pages.	Five	basic	components	are	used	to	create	a	Help	system:	(1)	text	messages,	
(2)	 images,	 (3)	hypertext	 links	between	 topics,	 (4)	keywords	 that	describe	each	
page,	and	(5)	a	topic	name	and	a	number	for	each	page.
Microsoft	currently	supports	two	Help	systems	and	is	developing	a	third.	But	

the	company	has	experimented	with	several	versions	and	it	is	not	clear	if	newer	
versions	are	going	to	be	carried	forward.	The	original	system	generated	HLP	files.	
The	second	and	most	common	one	generates	CHM	files.	A	new	system	was	de-
signed	for	use	with	Visual	Studio	2010.	Its	files	are	ZIP	archives	with	a	suffix	of	
mshc.	It	is	an	improvement	over	Microsoft	Help	2,	which	was	used	for	Visual	Stu-
dio	2003/2005	and	Office	2007	(and	2010);	but	has	been	discontinued.	The	newer	
Microsoft	Help	Viewer	(mshc)	version	has	some	useful	features,	but	it	might	be	a	
while	before	it	is	more	widely	implemented.

Figure 8.14
Sample	help	screen.	The	Windows	help	system	handles	all	of	the	display	and	
searches.	You	just	have	to	write	the	HTML	topic	pages	and	specify	keywords.

414Chapter 8: Application Development

The	discussion	 in	 this	section	 focuses	on	 the	CHM	approach	because	 it	uses	
hypertext markup language (HTML)	files—which	are	 relatively	easy	 to	con-
vert	to	Web	based	help.	The	newer	Help	Viewer	system	also	relies	on	HTML	files	
(technically	well-formed	XHTML	pages),	so	the	base	concept	is	the	same.	Writ-
ing	help	files	in	HTML	is	relatively	easy	and	many	good	tools	exist	for	creating	
Web	pages.	However,	be	careful	with	the	tools:	Some	of	them,	such	as	Microsoft	
Word,	create	complex	code	that	might	not	work	well	with	the	Help	compiler.	You	
want	to	use	an	HTML	editor	that	produces	basic	HTML	code	without	relying	on	
XML	or	JavaScript.
From	a	design	perspective,	 it	 is	 crucial	 that	you	first	 design	a	 style	 for	your	

Help	system	and	define	that	style	using	a	cascading	style	sheet.	A	style sheet sets
the	typeface,	font	size,	colors,	and	margins.	The	power	of	a	style	sheet	is	that	you	
define	all	of	the	layout	options	in	one	place.	Each	page	linked	to	the	style	sheet	
picks	up	those	styles.	So	when	you	want	to	change	the	entire	layout	of	your	Help	
file,	you	make	a	few	changes	to	the	style	sheet	and	every	page	uses	that	style.	
Every	topic	is	created	as	a	separate	HTML	page.	Users	will	be	shown	one	page	

of	material	at	a	time.	Try	to	keep	topics	short	so	they	fit	on	one	screen.	Each	Help	
page	will	 contain	 links	 to	 other	 topics.	Figure	8.15	 shows	part	 of	 a	 basic	Help	
topic.	Each	page	should	have	a	title	(marked	with	the	<title>	tag).	Pages	generally	
have	 links	 to	other	 topics	(using	 the	HTML	standard	<a	href>	 tag).	 Images	can	

<object	type=”application/x-oleobject”	
classid=”clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e”>
				<param	name=”Keyword”	value=”Contents”>
				<	param	name=”Keyword”	value=”Introduction”>
				<	param	name=”Keyword”	value=”Sally’s	Pet	Store”>
				<	param	name=”Keyword”	value=”Management”>
</object>
<html><head>
<title>Sally’s	Pet	Store	Introduction</title>
<link	rel=”stylesheet”	type=”text/css”	href=”PetHelpStyle.css”	/>
</head><body>
<h1>Introduction	to	Sally’s	Pet	Store</h1>
<table><tr>
<td></td>
<td>Sally’s	Pet	Store	is	a	sample	database	project	for	use	with	the	
Database	Management	Systems	textbook	by	Jerry	Post.	The	database	
is	designed	to	be	a	work	in	progress	to	highlight	specific	elements.</td>
</tr></table>
<h2>The	Pet	Store</h2>

Introduction	to	the	Firm
Processes

</body></html>

Figure 8.15
Partial	sample	Help	page.	Create	each	topic	as	a	separate	Web	page	using	HTML.	
The	anchor	<a>	tag	links	to	other	pages.	The		tag	loads	images.	Use	style	
sheets	to	set	fonts	and	design.	Use	a	table	or	a	style	to	control	layout.	Place	keywords	
for	the	page	in	the	<object>	tag.

415Chapter 8: Application Development

be	in	one	of	two	formats:	joint	photographic	experts	group	(JPEG)	and	graphics	
interchange	file	 (GIF).	Most	Help	 images	will	 be	 line-art	 drawings	 and	 should	
be	in	the	GIF	format.	Most	graphics	packages	can	create	and	store	files	in	these	
formats.	When	you	save	the	file,	use	only	letters	and	numbers	in	the	filename—do	
not	 include	spaces.	Because	you	will	eventually	have	hundreds	of	pages,	 it	 is	a	
good	idea	to	keep	a	separate	list	of	the	pages	along	with	a	short	description	of	the	
topic	and	when	it	was	last	modified.	
Keywords	are	an	 important	part	of	every	Help	page.	They	are	used	 to	create	

an	 index	 for	 the	 user.	An	 index	 lists	 the	 keywords	 alphabetically,	when	 a	 user	
double-clicks	a	word,	the	corresponding	Help	page	is	displayed.	The	best	way	to	
create	keywords	is	to	enter	them	on	each	topic	page.	The	easiest	method	is	to	copy	
the	code	from	Figure	8.15	with	the	<object>	tags	and		then	change	the	keywords	
within	that	list	for	each	page.	Each	keyword	is	listed	with	a	separate	<param>	tag.	
If	you	want	multiple	 levels,	you	can	use	a	comma	to	 list	 the	hierarchy.	For	ex-
ample,	the	three	entries:	(1)	Sales;	(2)	Sales,	Merchandise;	and	(3)	Sales,	Animal	
will	create	an	index	entry	of	Sales,	followed	by	two	indented	lines	for	Animal	and	
Merchandise.

Context-Sensitive Help
Consider	an	example	of	using	help.	Users	working	on	the	Sales	form	in	your	ap-
plication	do	not	want	to	wade	through	several	Help	pages	or	try	to	think	of	search	
terms.	Instead,	when	they	press	the	Help	key,	they	expect	to	see	information	on	
that	particular	form.	At	a	minimum,	you	need	to	create	different	Help	pages	for	
each	form	in	your	application.	But	now	you	need	some	method	in	your	database	

Figure 8.16
Setting	context-sensitive	help.	In	every	form,	enter	the	name	of	the	Help	file	in	the	
Help	File	property.	Then	enter	the	topic	number	for	that	form	in	the	Help	Context	ID	
property.	Every	control	or	subform	can	also	have	a	different	Help	topic—just	enter	
the	corresponding	topic	number.

Set	the	help	file	name	in	the	form	properties.

Set	the	topic	number	(Context	Id)	for	each	form	or	control.

416Chapter 8: Application Development

application	 to	 specify	which	Help	 page	 should	 be	 displayed	 for	 each	 form.	As	
shown	in	Figure	8.16,	each	form	has	properties	for	Help	File	and	Help	Context	
ID.	Oracle	and	Visual	Basic	 forms	have	 similar	properties.	You	enter	 the	name	
of	the	file	(e.g.,	PetStore.chm)	in	the	Help	File	property.	The	Help	Context	ID	re-
quires	a	number.	This	number	is	a	long	integer	and	can	range	from	1	to	more	than	
2	billion.
It	is	crucial	to	note	that	applications	require	a	topic	number,	but	your	Help	file	

refers	 to	pages	by	their	filename—not	by	numbers.	To	get	 these	two	systems	to	
match,	you	must	assign	a	unique	number	to	every	topic	page.	With	HTML	Help,	
you	create	a	separate	text	file	(usually	called	Topics.h)	that	maps	this	relationship.	
A	sample	file	is	shown	in	Figure	8.17.	You	can	choose	any	number,	but	it	is	easier	
to	remember	them	if	you	assign	the	numbers	in	groups.	Also,	with	2	billion	num-
bers	available,	you	can	leave	large	gaps	between	the	group	numbers.	For	example,	
it	is	better	to	number	by	hundred	thousands	or	millions	instead	of	by	ones	(1,	2,	
3,	and	so	on).	A	useful	technique	is	to	assign	numbers	by	business	object	(e.g.,	all	
Customer	Help	files	might	be	numbered	from	1,000,000	to	2,000,000).	Once	you	
have	created	the	file,	use	the	HtmlHelp	API	Information	button	(left	side,	fourth	
from	the	top)	to	tell	the	Help	Workshop	to	include	the	file.	Now,	go	through	every	
form	in	your	application	and	specify	the	file	name	and	topic	number	for	that	form.	
Avoid	changing	the	topic	numbers	in	the	Help	file;	they	are	hard	to	find	in	your	
application.
After	you	have	created	all	of	the	files,	you	need	to	run	the	HTML	Help	com-

piler	to	combine	everything	into	a	single	CHM	file.	A	version	of	this	tool	can	be	
downloaded	free	from	Microsoft.	Search	for	the	htmlhelp.exe	file.	However,	it	is	
a	relatively	limited	tool	that	can	be	cumbersome	to	use.	Most	development	teams	
purchase	a	commercial	product	to	gain	more	features	including	support	for	mul-
tiple	writers.	Several	commercial	tools	exist	at	varying	prices,	and	they	generally	
include	features	such	as	support	for	multiple	file	types	and	version	control.

#define	PetStoreIntro	 100
#define	Accounting	 10000
#define	Animal	 20000
#define	AnimalDonation	 30000
#define	ClassDiagram	 40000
#define	Copyright	 50000
#define	Customer	 60000
#define	DatabaseDesign	 70000
#define	Employee	 80000
#define	FirmIntroduction	 90000
#define	FirmProcesses	 100000
#define	Inventory	 110000
#define	Marketing	 120000
#define	MerchandisePurchases	 130000
#define	MerchandiseReceipt	 140000
#define	Sale	 150000

Figure 8.17
Map	file.	Applications	refer	to	topics	by	number,	but	the	help	system	uses	the	
filename.	The	map	file	(Topics.h)	is	a	simple	text	file	that	assigns	a	number	to	each	
page.

417Chapter 8: Application Development

Windows Help 3/Help Viewer
Microsoft	might	be	changing	 the	Windows	Help	system.	Keep	 in	mind	 that	 the	
company	has	tried	at	 least	at	 least	 two	other	times	to	create	a	new	help	system.	
The	current	version,	loosely	known	as	Help	Viewer	or	Help	3	is	an	improvement	
over	Help	2.	Currently,	the	tool	is	only	used	to	create	help	files	that	work	within	
the	Microsoft	Visual	Studio	tool.	However,	there	is	a	chance	that	the	tool	could	be	
applied to other products in the future.
In	 terms	 of	writing	Help	 files	 for	Help	Viewer,	 the	 process	 is	 similar	 to	 the	

existing	HTML	Help:	Begin	by	writing	each	topic	in	a	separate	HTML	file.	One	
important	 catch	 is	 that	 the	HTML	file	 actually	needs	 to	be	XHTML—which	 is	
a	more	precise	version	of	HTML	that	is	compatible	with	XML.	The	headers	are	
slightly	different,	and	all	tags	must	be	complete.	For	example,	a	paragraph	must	
have	both	a	beginning	and	ending	tag:	<p>My paragraph</p>.
The	other	big	difference	is	that	all	metadata	is	stored	in	the	same	file.	There	are	

no	separate	files	for	topics,	keywords,	table	of	content	lists,	or	keywords.	Every-
thing	is	marked	in	the	page	using	special	tags.	Figure	8.18	shows	the	basic	format	
of a simple XHMTL	help	page.	Note	 the	use	of	meta	 tags	 to	 specify	 the	 items	

Figure 8.18
Sample	HTML	Help	3.	Meta	tags	within	the	file	are	used	to	define	the	basic	features	
such	as	title,	ID,	table	of	contents	location,	and	key	words.	Links	use	an	ms-xhelp	
format	to	specify	the	ID	of	the	link	page.	

<?xml	version=”1.0”	encoding=”utf-8”?>
<html	xmlns=”http://www.w3.org/1999/xhtml”>
<head>
				<title>My		Page	Title</title>
				<meta	name=”Microsoft.Help.TopicLocale”	content=”en-us”	/>
				<meta	name=”Microsoft.Help.TopicVersion”	content=”100”	/>
				<meta	name=”Microsoft.Help.Id”	content=”fadf1f04-77dd-43fb-81f6-72e5ae0bfc3d”	/>
				<meta	name=“SelfBranded	content=“true”	/>
				<meta	name=“Microsoft.Help.Locale”	content=“en-us”	/>
				<meta	name=“Microsoft.Help.Package”	content=“My_Help_Package_Pets_en-us_1”	/>
				<meta	name=“Microsoft.Help.F1”	content=“PetStore”	/>
				<meta	name=“Microsoft.TocParent”	content=“-1”	/>
				<meta	name=“Microsoft.Help.Category”	content=“Petstore::Introduction”	/>
				<meta	name=“Microsoft.Help.ContentType”	content=“Concepts”	/>
				<meta	name=“Microsoft.Help.Keywords”	content=“Introduction”	/>
				<meta	name=“Microsoft.Help.Keywords”	content=“Pet	Store”	/>
				<meta	name=“Description”	content=“Basic	description	goes	here…”	/>
				<meta	name=“Microsoft.Help.tocOrder”	content=“1”	/>
</head>
<body	class=“primary-mtps-offline-document”>
				<div	class=“topic”>
								<div	class=“majorTitle”>This	is	the	Page	Title</div>
								<p>Sally’s	Pet	Store	….	</p>
								<p>My	Link

				</div>
</body>
</html>

418Chapter 8: Application Development

needed	to	create	the	help	file—notably	the	TOC	specification	and	the	key	words.	
Entering	a	TOC	value	of	-1	indicates	that	the	entry	(title)	will	be	placed	at	the	top	
of	the	hierarchy.	To	place	an	item	lower	in	the	hierarchy,	simply	enter	the	Help.ID	
value	specified	in	the	parent.
The	nice	thing	about	the	new	format	is	that	you	no	longer	need	a	help	compiler	

to	create	the	final	help	file.	Simply	create	a	new	ZIP	archive	and	place	all	of	the	
text	and	image	files	in	that	compressed	folder.	Add	a	manifest	file	(helpcontentset-
up.msha)	and	rename	the	archive	from	.ZIP	to	.MSHC.	Figure	8.19	shows	a	sam-
ple	manifest	file	with	links	for	two	“packages”	or	mshc	files.	Be	sure	to	specify	
the	names	and	locations	correctly.	For	instance,	the	sample	file	refers	to	the	pages	
stored	within	a	“packages”	subfolder.
At	this	point	in	time,	your	file	will	probably	not	open	because	Windows	(and	

Office)	are	not	set	up	for	the	new	format.	You	might	be	able	to	use	the	HelpLib-
Manager.exe	 program	 to	 install	 your	 new	file	 and	 test	 it.	Eventually,	 either	 the	
new	help	system	will	be	adopted	and	integrated	into	Windows,	or	discarded	for	
something	newer	(again).		Either	way,	the	hard	part	of	creating	Help	files	is	identi-
fying	the	topics	and	writing	text	that	will	actually	benefit	the	users.	These	HTML	
files	can	be	used	for	either	of	the	current	versions	of	HTML	Help	as	well	as	stand-
alone	help	files	on	Web	sites.

Figure 8.19
Sample	manifest	file.	A	package	is	a	single	mshc	help	file.	Name	the	entire	manifest	
to:	helpcontentsetup.msha	and	place	it	into	the	help	archive	folder.

<html	xmlns=”http://www.w3.org/1999/xhtml”>
<head>
		<title>An	optional	title.</title>
</head>
<body	class=”vendor-book”>
		<div	class=”details”>
				Pet	Store
				en-us
				Pet	Store	Sales	
				Pet	Store
		</div>
		<div	class=”package-list”>
				<div	class=”package”>
						package1
						<a	class=”current-link”
								href=”packages\package1.mshc”>package1.mshc
				</div>
				<div	class=”package”>
						package2
						<a	class=”current-link”
								href=”packages\package2.mshc”>package2.mshc
				</div>
		</div>
</body>
</html>

419Chapter 8: Application Development

Handling Errors
What does your application do when something goes wrong? Error handling
is	a	task	that	is	often	relegated	to	coding	on	individual	forms.	However,	it	is	a	crit-
ical	step—particularly	in	terms	of	security—so	you	need	to	review	it	at	this	stage	
of	development.	Also,	error	handling	should	be	consistent	across	the	application	
to	avoid	confusing	users.	At	the	same	time,	you	need	to	create	a	logging	facility	
so	that	runtime	errors	in	the	application	are	recorded	and	reviewed	periodically	so	
the application can be improved.
In	terms	of	security,	it	is	critical	that	your	application	catch	all	errors.	Without	

special	handling	error	messages	can	crash	the	entire	application.	Worse,	they	can	
lead	 to	 overwritten	 code	providing	 an	opportunity	 for	 criminals	 to	 take	 control	
of	a	machine.	Even	 relying	on	 the	system	error	handling	 is	dangerous,	because	
default	error	messages	often	provide	information	that	can	be	used	to	attack	your	
application.

Catching Errors
Most	development	languages	provide	commands	to	trap	runtime	errors.	Most	of	
them	use	a	variation	of	the	try/catch	syntax.	The	code	to	be	protected	is	run	within	
a	try	section.	If	an	error	occurs,	execution	is	transferred	to	the	catch	section.	Your	
error-handling	code	can	look	at	different	types	of	errors	and	handle	them	separate-
ly,	or	simply	treat	all	errors	the	same.	You	ultimate	mission	is	to	devise	error	han-
dling	code	that	can	automatically	deal	with	common	problems.	The	intelligence	
built	into	error-handling	code	is	one	way	to	tell	the	difference	between	amateurs	
and	professional	developers.	Usually,	you	need	users	to	help	create	errors	so	you	
know	what	to	expect	and	the	best	way	to	handle	them.	The	need	for	user	testing	is	
one	of	the	reasons	complex	error	handling	is	added	at	this	stage	of	the	application	
development.
Figure	 8.20	 shows	 the	 basic	 syntax	 for	 several	 programming	 systems.	Most	

use a try/catch	approach	but	the	syntax	varies.	Note	that	Visual	Basic	is	the	same	
as C# but Basic does not use the braces. The basic structure includes a section

Figure 8.20
Common	error-handling	structure.	Most	systems	use	a	try/catch	structure	but	use	
different	syntax	to	define	the	sections.	The	SQL	2003	standard	supports	various	
conditions	(SQLEXCEPTION)	and	can	EXIT	the	existing	code	or	return	to	it	
(CONTINUE)	after	processing	the	handler	code.

Oracle SQL Server C# Access
BEGIN
			{code}
EXCEPTION
WHEN	OTHERS	THEN
			{code}
END

BEGIN	TRY
			{code}
END	TRY
BEGIN	CATCH
			{code}
END	CATCH

try	
{
			{code}
}
catch	(exception	e)
{
				{code}
}		

ON	ERROR	GOTO	errX
			{code}
exitX:
			Exit	Sub
errX:
			{code}
End	Sub

SQL 2003 Standard DECLARE	EXIT	HANDLER	FOR	SQLEXCEPTION
			Sql_procedure_name	
{code}

420Chapter 8: Application Development

or	routine	that	is	executed	when	an	error	arises.	You	have	to	make	sure	that	each	
procedural code section is covered by at least one statement that directs errors to
a	handler.	Then	you	can	write	code	to	identify	the	specific	error	and	find	ways	to	
solve	the	problem	or	send	a	message	to	the	user	and	exit	gracefully.	
One	of	the	challenges	of	database	programming	is	that	procedural	code	can	ex-

ist	in	two	places:	(1)	Within	procedures	on	the	server,	and	(2)	In	routines	such	as	
C#	that	run	on	the	client	computer.	You	need	to	examine	the	application	to	be	sure	
that	both	 types	of	code	are	protected	by	error-handling	routines.	Errors	 that	are	
trapped	within	database	procedure	code	need	to	be	returned	to	the	client	system	to	
perform	additional	error	handling,	including	displaying	warnings	to	the	user.

Logging Errors
An	important	step	in	trapping	errors	is	to	record	them.	Yes,	it	is	helpful	to	display	
problems	to	the	users;	but	users	generally	cannot	do	anything	to	solve	the	prob-
lem.	You	need	to	create	a	routine	that	inserts	the	error	message,	location,	and	date	
into	a	special	table.	Each	error-handling	routine	should	include	a	line	of	code	to	
call	 this	 logging	procedure.	You	might	want	 to	 include	additional	data,	 such	as	
values	of	key	local	variables,	for	complex	procedures.
When	the	system	has	been	running	in	production	for	a	while,	you	can	retrieve	

the	values	from	the	error-logging	table.	A	simply	query	will	show	you	which	code	
sections cause the most problems and help identify the types of mistakes encoun-
tered	by	users.	You	use	this	information	to	fix	code	errors	and	write	more	intelli-
gent	error-handling	code.	The	ultimate	goal	is	to	prevent	users	from	having	to	deal	
with	 run-time	errors.	Your	code	should	be	able	 to	 identify	and	handle	 the	main	
issues	automatically.	Of	course,	you	cannot	solve	every	problem—such	as	hard-
ware	or	network	failures—but	you	can	identify	them	and	give	advice	to	the	user.

Debugging
Once	you	know	the	approximate	location	of	an	error,	you	need	to	track	down	the	
cause.	Fortunately,	most	contemporary	systems	have	interactive	debugging	tools	
that	enable	you	to	set	break	points	and	step	through	the	application	code	line	by	
line.	You	can	examine	the	values	of	local	variables	and	even	test	queries.
The	debugging	process	is	more	complicated	when	you	have	code	running	on	a	

server,	and	considerably	more	difficult	when	code	runs	on	multiple	tiers	includ-
ing	servers,	clients,	and	middle-tier	systems.	Adding	multiple	levels	requires	you	
to	track	down	the	true	location	of	an	error.	Depending	on	your	tools	and	the	final	
configuration,	it	is	more	difficult	to	run	debuggers	on	multiple	levels.
In	many	 cases,	 you	will	 have	 to	 resort	 to	 older	 debugging	methods,	 such	 as	

adding	debugging	print	lines	to	your	procedures	that	report	the	current	values	of	
key	local	variables.	In	multi-tier	systems,	pay	particular	attention	to	the	timing	of	
events	including	the	code	and	when	variables	are	initialized	and	assigned	values.

Testing
How do you know your application works correctly?	Every	application	needs	
to be tested before it is turned over to users in a production environment. As in-
dicated	in	Figure	8.21,	many	levels	of	tests	can	be	performed,	but	ultimately,	you	
can	never	catch	all	of	the	errors.	Your	goal	is	to	find	as	many	of	the	errors	as	pos-
sible	with	the	time	and	money	available.	Keep	in	mind	that	errors	caught	earlier	
are	 easier	 and	 less	 expensive	 to	fix,	 and	 it	 is	 better	 to	 catch	 errors	 before	 they	
cause	expensive	problems	for	users.	Larger	systems	with	multiple	developers	will	

421Chapter 8: Application Development

require	 special	 groups	 of	 testers	 dedicated	 to	finding	 problems.	 In	 smaller	 sys-
tems,	you	might	have	to	test	your	own	work.	In	either	case,	you	should	enlist	the	
assistance	of	actual	users	who	will	always	try	things	that	never	occurred	to	you.	In	
a	twist,	test-based	development	is	a	modern	approach	to	development	where	test	
cases	are	created	first.	Then	whenever	code	is	written	or	changed,	the	test	cases	
are	automatically	rerun	to	ensure	the	code	still	works	correctly.	Several	tools	have	
been	developed	to	help	automate	the	testing	process,	but	it	still	requires	consider-
able time to develop all of the test cases.

Form and Module Testing
The	most	basic	level	of	testing	occurs	when	you	create	modules	and	forms.	Any	
query,	 report,	 procedure,	 or	 section	of	 code	 that	 you	 create	 should	be	 tested	 as	
it	is	written.	When	you	first	create	an	object,	you	should	understand	its	primary	
purpose	and	have	sample	test	data	to	ensure	that	it	works	correctly.	In	particular,	
if	you	need	to	perform	complex	calculations	or	logic,	you	need	to	work	with	users	
to develop suitable test cases. These test cases should be stored and reevaluated at
each	testing	point.	Some	organizations	use	pairs	of	developers,	where	one	person	
is	responsible	for	collecting	test	cases	and	continually	testing	sections	of	the	proj-
ect	as	it	is	being	built.
You	 should	also	 integrate	 the	 testing	with	 form	validation.	Forms	 should	 re-

strict	the	data	that	users	can	enter	to	reduce	the	possibility	of	bad	data,	or	even	in-
tentional	attacks	on	your	application.	Where	possible,	you	should	use	drop	down	
lists	 and	option	choices	 so	users	do	not	have	 to	 type	 in	values.	When	users	do	
enter	values	by	hand,	you	should	include	validation	rules	on	the	form	to	provide	
immediate feedback to the users so the data can be correct as close to the source
as possible.

If	(Sales	>	50)
bonus=10000

Else
bonus=5000

End	If

Modules

Sales Customers

Receipt
Item		Qty			Price
112 2					10.50
178				1					27.85
251				4					21.17

Inventory

Company	X

Integrated	
Application

Forms
Stress

Usability Security

Figure 8.21
Application	testing.	Testing	usually	begins	at	the	detailed	level	of	forms	and	
modules.	When	the	application	is	built,	the	integrated	features	are	tested.	You	also	
test	for	usability	and	performance	under	stress.	Security	testing	should	occur	at	every	
level.

422Chapter 8: Application Development

Integrated Application Testing
Once	the	overall	structure	of	the	application	has	been	created,	it	needs	to	be	tested	
as	a	complete	unit.	In	particular,	you	need	to	ensure	that	data	is	passed	correctly	
across	forms,	modules,	and	reports.	Any	forms	that	contain	links	need	to	be	tested.	
For	 instance,	 linking	a	Sales	Order	 form	 to	 the	Customer	 form	should	 result	 in	
displaying	the	details	for	the	customer	currently	selected	on	the	Sales	form.	But	
you	also	need	to	test	extreme	conditions.	What	happens	if	no	customer	has	been	
selected	yet	and	a	user	clicks	the	link	button?	Likewise,	what	happens	if	the	user	
tries	to	print	a	blank	receipt	report?	Be	sure	that	the	application	continues	to	run	
even	if	absurd	choices	are	made.	Verify	that	data	is	being	stored	properly,	and	that	
security	conditions	are	being	maintained.

Stress or Performance Testing
Many	developers	and	companies	have	encountered	problems	when	an	application	
hits	the	real	world.	Forms	and	reports	that	run	fine	on	the	developer’s	server	die	a	
slow	death	when	pushed	out	to	thousands	of	users	with	millions	of	rows	of	data.	
Unfortunately,	systems	performance	is	not	always	linear.	For	example,	a	task	with	
10	users	might	require	2	seconds	to	run;	but	you	cannot	claim	that	moving	to	100	
users	will	result	in	20	seconds.	More	likely,	instead	of	increasing	by	ten	times,	the	
time	will	increase	exponentially,	requiring	40,	50,	or	even	60	seconds.	Some	sys-
tems	are	more	scalable	than	others—meaning	that	performance	can	be	improved	
by	adding	hardware	capacity	and	the	process	is	close	to	linear.	Other	systems	are	
more	complex,	but	either	way,	you	need	to	stress	test	the	application	to	find	out	
what	will	happen.
The	challenge	is	that	it	is	difficult	to	test	big	applications	with	thousands	of	us-

ers—without	actually	implementing	the	system.	Where	are	you	going	to	find	the	
hardware	and	the	thousands	of	users	to	test	the	system	with	sample	data?	Some	
companies sell tools that help stress test an application. The tools automatically
generate	transactions	and	send	them	through	your	application.	You	can	increase	
the	load	on	the	servers	by	using	only	a	few	automated	client	computers.	You	can	
also	test	the	servers	and	networks	on	a	smaller	scale	by	throttling	down	the	hard-
ware	and	networks.	Instead	of	pushing	1,000	transactions	through	a	100	mbps	net-
work,	you	could	test	with	100	transactions	across	a	10	mbps	network.	It	will	not	
give	exact	results,	but	it	will	help	you	see	what	happens	if	a	key	connection	gets	
overloaded.	This	test	is	particularly	useful	for	connections	from	the	Web	server	to	
the database server.

Usability Testing
In	addition	to	testing	for	accuracy,	errors,	and	performance,	you	also	need	to	en-
sure	that	the	system	performs	the	tasks	that	users	need.	As	part	of	the	process,	you	
need	 to	have	actual	users	work	with	 the	system.	You	need	 to	be	sure	 that	users	
understand	the	forms	and	the	process.	The	system	needs	to	be	easy	enough	to	use	
so	that	it	does	not	require	huge	amounts	of	training.	It	also	needs	to	be	efficient	so	
that	users	do	not	waste	time	entering	unnecessary	data	or	searching	for	informa-
tion.	A	developer	can	spend	hundreds	of	hours	building	forms	and	applications.	At	
some	point,	everything	seems	easy.	You	need	the	fresh	perspective	of	actual	users	
to	identify	bottlenecks	and	other	issues.	At	one	level,	development	is	much	like	
artistic	design.	Developers	make	dozens	of	choices	when	building	applications.	
How	do	you	make	the	best	choice?	The	answer	is	that	usability	needs	to	become	
a	key	component	right	from	the	start.	And	the	application	specifically	needs	to	be	
tested for usability.

423Chapter 8: Application Development

Usability	testing	also	needs	to	include	testing	the	accessibility	features.	First,	
someone	needs	to	go	through	the	entire	application	and	ensure	all	of	the	features	
are	 activated.	 It	 is	 too	 easy	 for	 a	 developer	 to	 forget	 to	 tag	 a	 button,	menu,	 or	
toolbar	so	it	is	accessible	with	a	keyboard.	So	someone	needs	to	go	through	every	
item	on	every	page	and	verify	that	accessibility	is	activated.	Also,	whenever	pos-
sible,	it	would	be	useful	to	have	someone	with	accessibility	issues	to	actually	use	
the	application.	A	real-world	test	can	provide	valuable	insight	into	the	application	
flow,	terminology	issues,	or	other	potential	problems.

Security Testing
Security	concepts	are	explored	in	other	chapters,	but	companies	have	learned	that	
security	also	needs	to	be	addressed	throughout	the	development	process.	It	is	not	
something	 that	 is	 added	on	at	 the	end	of	 the	design.	Testing	 for	 security	 issues	
includes	 some	of	 the	 basic	 tests—particularly	 validation	 and	module	 testing.	 It	
includes	checking	user	input	for	common	SQL	injection	attacks.	A	SQL injection
attack	consists	of	an	attacker	entering	malicious	SQL	code	into	a	text	box	in	your	
application	that	replaces	your	intended	SQL	statement.	The	classic	example	is	cre-
ating	your	own	login	screen	and	allowing	users	to	enter	any	text	as	a	username	
and	password.	The	problem	 is	 compounded	when	you	use	 string	 concatenation	
to	build	the	SQL	query.	You	should	always	use	parameterized	queries	instead	of	
string	concatenation.	More	importantly,	you	should	never	trust	anything	entered	
by	a	user—and	always	restrict	or	validate	what	they	are	allowed	to	enter.
		Consider	the	simple	login	example,	where	your	application	retrieves	a	User-

nameText	and	PasswordText	variable	from	the	input	screen.	It	is	tempting	to	write	
the	 simple	 lookup	 query:	 “SELECT	 UserID	 FROM	 UserList	 WHERE	 User-

Customers Inventory

Receipt
Item		Qty			Price
112 2					10.50
178				1					27.85
251				4					21.17

Forms

Reports

Help

Compiling	and	Packaging Installation

Server	and	Database	
Configuration

Tables	and	
Modules

Data

Figure 8.22
Deployment.	The	forms,	reports,	and	help	files	are	compiled	and	packaged	into	an	
installation	file	that	is	run	on	client	computers.	The	DBMS	is	installed	on	a	server	
and	the	tables	and	modules	are	installed	and	configured.	Initial	data	is	loaded	and	
network	connections	are	established.	

424Chapter 8: Application Development

name=΄	”	+	UsernameText	+	“	΄	AND	Password=΄	”	+	PasswordText	+	“	΄	”.	Ig-
noring	the	fact	that	the	password	should	be	encrypted,	this	query	will	work	fine	
as	long	as	users	enter	legitimate	values.	However,	what	happens	when	an	attacker	
enters	a	special	SQL	string	for	the	UsernameText:	΄	OR	1=1	--.	Plug	this	value	in	
and	write	out	the	SELECT	statement.	The	quotation	mark	closes	the	first	one,	the	
OR	statement	is	always	true,	and	the	two	dashes	comment	out	the	rest	of	the	SQL	
command.	As	a	result,	the	query	will	always	return	valid	UserID	and	the	attacker	
will	be	logged	into	your	system.	Worse,	it	is	possible	to	write	more	complex	SQL	
statements	that	do	nastier	things,	such	as	retrieving	all	of	the	data	from	the	UserL-
ist	table,	or	even	deleting	tables	in	your	database.	However,	all	of	the	SQL	injec-
tion	attacks	have	a	common	element.	They	include	the	single	quotation	mark	to	
close	the	required	opening	quote,	and	they	use	the	double	hyphen	comment	mark.	
The	 simplest	 solution	 is	 to	 test	 all	 input	 code	 and	 remove	 or	 change	 quotation	
marks	and	double	hyphens	to	spaces.	Whenever	possible,	you	should	restrict	the	
length	of	data	entered	by	users	to	prevent	someone	from	writing	long,	dangerous	
code.	Of	course,	restricting	inputs	can	impact	normal	data	entry,	such	as	handling	
the	name	O’Brian	which	contains	an	apostrophe	or	single	quote	character.
Security	 testing	 also	 involves	 testing	 the	 entire	 application—including	 steps	

that	 might	 not	 be	 computerized.	 For	 example,	 how	 are	 passwords	 generated?	
What	happens	if	a	user	loses	a	password—how	is	it	reset?	Is	this	process	secure	
and	logged?		When	the	integrated	application	is	being	tested,	you	should	also	in-
clude	 basic	 security	 tests—particularly	 bad	 data	 that	 includes	 excessively	 long	
values	and	SQL	injection	elements.	For	large	projects,	at	least	one	person	should	
be	 assigned	 to	 attack	 the	 application,	 listing	 potential	 threats	 and	methods	 that	
might	be	used	to	obtain	unauthorized	access.

Deploying an Application
How will your application be installed?	As	shown	in	Figure	8.22,	once	you	have	
developed	an	application,	you	must	collect	all	of	the	associated	files	(e.g.,	data-
base,	system,	forms,	reports,	and	help)	and	distribute	them	to	users	or	install	them	
on	servers.	You	must	also	implement	security	precautions	and	assign	user	access	
rights.	The	details	depend	on	the	type	of	application	system,	whether	the	users	are	
employees,	and	the	size	of	the	application.	It	is	usually	easiest	to	install	applica-
tions	on	a	server	in	one	location.	Even	if	you	need	a	separate	application	(Web)	
server,	 installation	and	maintenance	are	 relatively	easy	when	 the	files	and	data-
bases are in one location. If your application needs to install elements on client
computers,	several	additional	steps	are	needed.

Packaging Files
One	of	 the	first	 steps	 is	 to	 identify	 and	 collect	 all	 of	 the	files.	These	 primarily	
consist	of	the	forms,	reports,	and	help	files.	With	a	small	application,	built	by	one	
or	two	developers,	it	is	relatively	easy	to	identify	and	collect	all	of	the	files.	With	
large	applications	that	include	hundreds	of	forms	and	reports,	you	need	a	version	
control	system	to	name	each	file	and	track	the	versions	and	changes.
Some	systems	store	forms	and	reports	internally,	some	treat	them	as	separate	

files,	and	a	few	compile	them	into	a	set	of	executable	files.	The	method	of	packag-
ing	the	files	varies	in	each	case,	but	it	must	still	be	done.	You	also	need	to	test	the	
resulting	system	to	ensure	all	of	the	files	are	included	and	have	the	correct	names.	
As	much	as	possible,	you	need	to	automate	the	build	process.	Some	systems	in-
clude	an	automatic	build,	in	other	cases	you	will	have	to	write	script	files.	Either	

425Chapter 8: Application Development

way,	 it	 is	 important	 to	 automate	 the	 steps	because	you	will	 have	 to	 rebuild	 the	
application	many	times,	and	it	is	too	easy	to	forget	something.	Scripts	are	easy	to	
modify to avoid mistakes.

Installation Programs
If	you	are	going	 to	put	any	portion	of	 the	application	on	client	computers,	you	
need	to	use	an	installation	program	to	automate	the	installation.	Several	tools	ex-
ist,	 some	versions	 are	 included	with	 the	DBMS	and	other	 versions	 are	 sold	by	
independent	 vendors.	 Installation	 programs	 bundle	 the	 various	 files,	 check	 the	
target	 system	 for	 prerequisite	 files,	 and	 handle	 all	 configuration	 changes.	Most	
of	the	installation	tools	support	packages	delivered	on	CD	or	downloads	from	a	
Web	server.	Some	of	the	newer	tools,	including	the	one	with	Visual	Studio,	can	be	
installed	directly	from	a	Web	site	and	check	for	updates.	The	installation	system	
also	has	to	configure	the	database	connections	so	the	client	component	can	attach	
to the database server.
Microsoft	Access	 adds	more	 complications	 to	 the	 installation	 process.	 In	 its	

most	common	form,	 the	client	computers	will	each	need	a	 licensed	copy	of	 the	
Microsoft	Access	software.	You	will	also	want	to	encrypt	the	database	forms	and	
reports	to	prevent	users	from	changing	them.	In	most	cases,	you	will	want	to	split	
the	database	into	two	pieces.	Details	are	provided	in	the	Access	Workbook.	Mi-
crosoft	provides	another	alternative	if	you	do	not	want	to	install	the	full	copy	of	
Access	on	each	client	computer.	You	can	purchase	the	Access	Developer	kit	which	
includes a runtime module. The installation system can install the runtime module
so	that	you	application	will	run	without	requiring	a	full	copy	of	Microsoft	Access.

Server and Database Configuration
An	application	also	needs	the	servers	and	databases	configured.	The	best	way	to	
handle	the	database	configuration	and	base	data	loading	is	to	write	SQL	scripts.	
You	can	create	the	scripts	as	the	application	is	developed	and	tested.	The	scripts	
make	it	easy	to	load	a	new	copy	onto	a	test	server.	More	importantly,	they	can	be	
used	 to	 create	 a	backup	 server	or	 to	 reinstall	 the	 application	 is	 something	goes	
seriously	wrong.	The	applications	associated	with	these	books	use	script	files,	and	
you	can	use	 them	as	a	 template	 for	your	own	applications.	Even	 if	you	believe	
an	application	will	only	be	installed	one	time,	you	should	create	the	server	script	
files.	You	will	be	surprised	at	how	many	times	you	will	need	to	delete	and	reinstall	
an	application	while	it	is	being	tested.

Summary
An	application	is	a	collection	of	forms	and	reports	designed	to	function	as	a	sys-
tem	 for	 a	 specific	 user	 task.	Applications	must	 be	 easy	 to	 use	 and	 designed	 to	
match	the	tasks	of	the	users.	Application	design	begins	with	the	overall	structure,	
which	is	often	held	together	with	startup	forms.	Menus	and	toolbars	add	structure	
to	the	application	by	providing	commands	that	are	common	to	the	entire	applica-
tion.	Toolbars	can	also	be	created	for	specific	tasks	and	individual	forms.	A	con-
text-sensitive	Help	system	with	both	general	descriptions	and	detailed	help	notes	
is	crucial	 to	creating	a	useful	application.	Most	applications	also	need	 to	define	
individual	transactions	so	that	related	changes	will	succeed	or	fail	together.
You	 need	 to	 add	 error	 handling	 to	 all	 forms	 and	modules	 and	 perform	 sev-

eral	levels	of	tests,	including	performance	and	security	testing.	You	need	to	create	
a	 relatively	 automated	 approach	 to	 deploying	 the	 application—particularly	 if	 it	

426Chapter 8: Application Development

needs	to	be	installed	on	client	computers.	Several	installation	tools	exist	to	pack-
age	the	files	and	support	automated	installation.	For	the	database	and	server-based	
code,	forms,	and	reports,	you	need	to	create	SQL	scripts	that	will	create	tables	and	
load the basic data.

Key Terms

accessibility
administrative tasks
application
back end
cascading	style	sheet
context	sensitive	help
dockable
error	handling
front end
help system

hypertext	markup	language	(HTML)
menu
middle tier
prototype
SQL	injection	attack
style sheet
startup form
template
toolbars
tooltip

A Developer’s View
Miranda	is	learning	that	applications	are	useful	only	if	they	make	the	user’s	job	
easier.	A	good	application	is	more	than	just	a	collection	of	tables	and	forms.	That	
means	 you	 have	 to	 organize	 the	 application	 by	 the	 tasks	 of	 the	 user.	You	 also	
need	to	add	help	files	and	toolbars.	You	need	to	add	error-handling	code	to	your	
application.	Once	the	application	is	fully	tested,	you	need	to	create	an	installation	
package.	For	your	class	project,	you	should	create	the	overall	application	struc-
ture	(switchboard	forms,	interlocking	forms,	toolbars,	help	files,	and	so	on).	You	
should build and test the scripts and installation setup.

427Chapter 8: Application Development

Review Questions
1.	 What	are	the	fundamental	principles	to	follow	when	designing	an	

application’s	structure?
2.	 How	does	the	purpose	of	an	application	(transaction	processing,	decision	

support,	or	expert	system)	affect	the	design?
3.	 How	are	startup	forms	commonly	used?
4.	 What	are	the	potential	problems	with	startup	forms?
5.	 What	is	the	purpose	of	menus	and	toolbars	in	an	application?
6.	 What	features	are	needed	to	make	an	application	more	accessible?
7.	 What	are	the	primary	steps	involved	in	creating	a	context-sensitive	help	file?
8.	 What	are	the	major	methods	for	handling	runtime	errors	in	an	application?
9.	 What	are	the	primary	forms	of	testing?
10.	What	are	the	main	steps	in	deploying	an	application?

Exercises
1.	 Find	examples	of	two	input	forms—such	as	Web	applications	or	business	

forms.	Compare	the	applications	on	design	and	functionality.	Explain	the	
similarities and differences.

2.	 Find	a	Web	site	that	has	a	separate	mobile-based	application.	Explain	the	
similarities	and	differences	between	the	two	types	of	forms.	What	features	
had	to	be	sacrificed	to	make	the	mobile	form?	What	choices	would	you	have	
made	differently?

3.	 HTML5	supports	graphical	actions,	although	the	built-in	capabilities	are	
somewhat	primitive.	Assuming	you	have	programmers	to	create	them,	design	
a	new	Web-based	process	to	purchase	items	and	handle	shopping	carts	that	
use	graphics	and	drag-and-drop	elements.	Just	sketch	the	concepts—it	is	not	
necessary to create them.

4.	 Create	a	custom	toolbar	menu	with	at	least	two	icons	and	two	drop-down	
menus that include at least three options each.

5.	 Briefly	explain	how	a	touch-based	menu	would	be	different	from	a	mouse-
based menu.

6.	 Application	menus	can	have	many	options.	Briefly	explain	how	you	would	
solve	the	question	of	identifying	the	structure	and	items	on	menus.

7.	 Create	a	small	custom	help	file	that	contains	three	pages	of	help.	Create	a	
form	and	assign	the	help	key	to	open	one	of	the	help	topics.

8.	 Examine	at	least	three	Web	sites	and	explore	their	help	sections.	Briefly	
compare	similarities	and	differences	among	the	three	sites.	Explain	which	
features	you	would	use	in	your	own	applications.

428Chapter 8: Application Development

9.	 Write	a	function	to	log	runtime	errors	to	a	special	database	table	or	a	file.	
Create	a	form	with	a	button	that	contains	error-handling	code.	When	the	
button	is	pressed,	it	should	trigger	a	runtime	error	(e.g.,	divide-by-zero),	and	
call	the	logging	function	to	save	the	error	message.	

10.	Research	and	briefly	describe	the	test-based	development	methodology	and	
explain	how	it	could	be	used	in	database	applications.

Sally’s Pet Store
11.	 Find	at	least	two	Web	sites	for	pet	stores	and	compare	them.	Select	the	

primary	features	that	you	would	want	to	use	for	a	site	for	the	Pet	Store.	
Briefly	explain	how	you	would	improve	and	differentiate	your	site.

12.	Design	and	create	a	menu	system	and	toolbars	for	the	Pet	Store	database	that	
would	be	used	by	clerks	and	managers	in	the	store.

13.	Design	a	template	for	the	input	forms.	At	a	minimum,	specify	colors,	fonts,	
and	page	layout.	Rebuild	at	least	two	of	the	forms	in	the	new	template	to	test	
the styles.

14.	Create	and	write	initial	help	files	for	the	Pet	Store.	Include	at	least	three	new	
pages	of	help,	the	table	of	contents,	and	keywords.

15.	 Find	a	user	(non-CS	and	non-IS)	who	can	test	the	application.	Observe	the	
user’s	progress	and	identify	any	problems	or	issues	that	arise.	Describe	
changes	you	would	make	to	improve	the	application.

16.	Assuming	the	store	is	going	to	use	the	finished	application,	outline	a	plan	to	
install	and	deploy	it	in	the	store	on	a	single	computer.

Rolling Thunder Bicycles
17.	Examine	the	Rolling	Thunder	Bicycles	application	and	outline	the	menu	

structure	by	checking	the	forms	and	reading	the	help	file.
18.	Explain	how	the	list	box	is	used	to	handle	receipt	of	merchandise	from	

suppliers.	Outline	the	process	that	is	used	to	tie	the	receipt	to	the	purchase	
order.

19.	Outline	a	plan	for	stress	testing	the	application.	Begin	by	identifying	where	
the	application	will	be	used	and	how	many	people	will	likely	use	it	at	one	
time.

20.	Design	a	new	toolbar	or	menu	that	supports	operations	by	categories	of	users:	
Managers,	Order-clerks,	Production,	and	Finance/Accounting.	You	can	just	
sketch	the	toolbars/ribbons	instead	of	actually	building	them.	

21.	Work	through	the	application	and	test	it	for	accessibility.	Identify	any	
changes	that	need	to	be	made.

429Chapter 8: Application Development

Corner Med
22.	Design	a	menu	or	toolbar	for	Corner	Med	to	make	it	easy	to	use	within	the	

clinics.
23.	 Identify	potential	application	problems	and	failures	that	might	arise	and	

outline	a	plan	to	handle	them.	(Focus	on	software,	not	hardware	or	networks.)
24.	Write	the	deployment	plan	for	the	application,	assuming	there	will	be	one	

workstation	at	the	central	check-in	desk	and	one	in	each	physician	office.	
Typically,	there	are	three	to	five	offices	per	location.	

25.	Design	the	Patient	Visit	form	so	it	can	be	used	on	a	mobile	tablet	with	a	10-
inch screen.

Web Site References

http://www.microsoft.com/enable/ Microsoft	site	for	accessibility	issues.
http://msdn.microsoft.com/windowsvista/uxguide Microsoft	design	guide	for	Windows	Vista.
http://www.sigapp.org/	 Association	for	Computing	Machinery:	

Special	Interest	Group	on	Applied	
Computing.

http://oraclea2z.blogspot.com/	 Oracle	application	tips.
http://www.useit.com Web	site	run	by	Jakob	Nielson	(a	

researcher	in	usability).
http://www.helpwaregroup.com/	 Help	authoring	utilities
http://www.section508.gov	 Federal	government	accessibility	guidelines	

and	blog.
http://www.w3.org/WAI W3C	(Web	governance	group)	on	the	Web	

Accessibility	Initiative.

Additional Reading
Cooper,	A.	About Face: The Essentials of User Interface Design.	Foster	City,	

CA:	IDG	Books,	1997.	[A	good	discussion	of	various	design	issues.]
Ivory,	M.	and	M.	Hearst,	The	State	of	the	Art	in	Automating	Usability,	

Communications of the ACM,	33(4),	December	2001,	470-516.	[General	
discussion	on	evaluating	system	usability.]

Raskin,	J.	Humane Interface, The: New Directions for Designing Interactive
Systems,	Reading,	MA:	Addison-Wesley,	2000.	[The	need	for	a	new	interface	
as	explained	by	the	creator	of	the	Apple	Macintosh	project.]

Corner
Med

Corner
Med

http://www.microsoft.com/enable/
http://msdn.microsoft.com/windowsvista/uxguide
http://www.useit.com

	Chapter 8: Application Development
	Introduction
	Two-Minute Chapter
	Design Consistency
	Page Design Templates
	Usability
	Fonts and Customization
	Mobile Devices

	Application Structure
	Designing Applications
	The Startup Form
	Sally’s Pet Store: Application Organization
	Administrative Tasks

	Menus and Toolbars
	Purpose of the Menu
	Toolbars
	Creating Menus and Toolbars

	Accessibility
	Custom Help
	Creating a Help File for Windows
	Context-Sensitive Help
	Windows Help 3/Help Viewer

	Handling Errors
	Catching Errors
	Logging Errors
	Debugging

	Testing
	Form and Module Testing
	Integrated Application Testing
	Stress or Performance Testing
	Usability Testing
	Security Testing

	Deploying an Application
	Packaging Files
	Installation Programs
	Server and Database Configuration

	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading

