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What You Will Learn in This Chapter
•	 What is the difference between transaction processing and analysis?  
•	 How do indexes improve performance for retrievals and joins?
•	 Is there another way to make query processing more efficient?
•	 How is OLAP different from queries?
•	 How are OLAP databases designed?
•	 What tools are used to examine OLAP data?
•	 What tools exist to search for patterns and correlations in the data?
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A Developer’s View
	Miranda:	Faster. Faster. Come on, run faster!

	 Ariel:	What? Are you training for a 
marathon?

	Miranda:	No. It’s just these queries they want 
me to write are taking forever to 
run. They worked OK when I tested 
them with small amounts of data. 
But now, I don’t know.

	 Ariel:	Maybe you just need a faster 
computer?

	Miranda:	No, I think I need a different 
system. These queries are retrieving 
data, but it is data from many 
different tables. And these managers 

want all of these strange subtotals. 

	 Ariel:	Wow! There are a lot of totals. How 
do you expect anyone to read those? 
I think I see four different levels of 
totals and that’s on one page!

	Miranda:	Yes, and that’s only part of what 
the managers want. I’m happy they 
are using the system, but I don’t see 
how they can make any sense out of 
these reports. I think I might need 
a separate system to reorganize this 
data and create these reports for the 
managers. Then they want to do 
some type of statistical analysis as 
well!

Introduction
What is the difference between transaction processing and analysis? Rela-
tional database systems were designed to store large amounts of data efficiently. 
In particular, they are very good at quickly storing and retrieving basic transaction 
data. Look at the common Sale and SaleItem tables, and you will see data stored 
compactly. For example, the Pet Store SaleItem table has only four columns and 
they all contain simple numbers. An individual sale can be recorded or retrieved 
quickly. Each sale uses a different row, which separates transactions. Each new 
sale or item purchased can be entered into a new row without affecting any of the 
other rows or sales. However, this structure causes problems for other types of 
queries. Queries that involve multiple tables use joins that can require the DBMS 
to match data values from millions of rows. Think about the number of joins and 
subtotals required when someone asks the DBMS to analyze the data by comput-
ing subtotals on several different factors (such as employee, region, product cat-
egory, and month). Computing breaks and subtotals across many factors, multiple 
tables, and millions of rows of data can cause performance problems even on fast 
hardware.

Getting Started
Most companies have data and databases. What managers need are tools 
to organize and analyze the data. Relational databases are good for han-
dling transactions data, but it can be difficult to retrieve and analyze 
huge amounts of data quickly. So you create a data warehouse with a 
structure designed to retrieve data quickly. Add cube browsers to ex-
plore the data. Add statistical tools to analyze the data, and managers 
can make better decisions. 
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Vendors of database systems attempted to solve some of these problems by cre-
ating indexes on the tables. The indexes make it substantially faster for the DBMS 
to find specific rows of data within a table, and particularly to improve join perfor-
mance. An index is a sorted list of the key data that can be searched quickly. How-
ever, there is a trade-off: Adding indexes to a table speeds retrieval queries but 
slows down data updates and transactions because the indexes continually have 
to be rebuilt. This conflict has led to focusing the existing relational systems for 
online transaction processing (OLTP); whereas different storage and retrieval 
systems are used for online analytical processing (OLAP). Data from the OLTP 
is extracted and cleaned, and then it is placed in a data warehouse. The data ware-
house is heavily indexed and optimized for data retrieval and analysis. Additional 
procedures and routines are available to analyze the data, support interactive ex-
ploration by managers, and statistically search it for meaningful correlations and 
information. This chapter looks at the basic concepts to explain why the differ-
ent approaches are needed. The data mining section defines some of the basic 
statistical tools available. The specific details of defining indexes and how to use 
the tools are covered in the workbooks because the details depend heavily on the 
specific DBMS. If you want more detailed explanations of the statistics and tools, 
check out the Data Mining book (http://www.JerryPost.com/Books/DMBook). It 
uses SQL Server and some open-source tools to examine common data mining 
applications.

Two-Minute Chapter
Relational databases are designed to efficiently store and protect transaction data. 
Splitting data into separate tables makes it faster and safer to add new rows. But, 
retrieving the data requires joining multiple tables on primary keys, which can 
be slow. Managers today need to analyze data—which can require retrieving and 
summarizing huge numbers of rows. Most systems add indexes to speed retrieval 
of data. An index is a separate sorted list of data with pointers into the actual 
tables. Adding indexes reduces retrieval time—which is good for data retrieval 
and analysis; but bad for data storage because every index requires time to update 
when data is added or changed. In many cases the best answer is to keep the rela-
tional database for transactions but create a new data warehouse that holds copies 
of the data optimized for data retrieval and analysis. In many cases, extracting and 
cleaning data from multiple sources is the hardest part of building a data ware-
house. The steps need to be automated so data can be extracted on a regular basis. 

A data warehouse is often organized in a star design with a fact table at the 
center, connected to dimension tables that contain attributes of interest to manag-
ers. Multi-dimensional cube browsers are useful for enabling managers to browse 
through data. The cubes display multiple levels of subtotals and managers can 
interactively select which dimensions and levels to display. Data is often orga-
nized in hierarchies (such as time) which managers can roll-up to view totals or 
drill down into for details. Be cautious when defining computed values—sums are 
usually fine but averages or computations requiring multiplication can be tricky 
because you need to specify whether multiplications should be computed first (use 
a query) or last (in the cube browser). The Microsoft PivotTable is an interactive 
cube browser that is easy to use and runs inside Excel and can also create interac-
tive charts.

The SQL standard includes modifications to the GROUP BY clauses to display 
grand totals (super-aggregate totals). The WITH ROLLUP and WITH CUBE op-
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tions combined with the GROUPING function are useful to compute these addi-
tional totals within SQL. SQL also includes the RANK and DENSE_RANK func-
tions to assign sequential numbers to sorted data. For example, employees could 
be ranked by their total sales value for the month. RANK and DENSE_RANK 
treat ties differently, where DENSE RANK does not skip values so you would get 
values such as 1, 2, 3, 3 instead of 1, 2, 2, 4.

The SQL PARTITION command is used to create a “window” to examine a 
moving subset of data. It is particularly useful for computations such as mov-
ing averages such as averaging the three most recent data rows or for computing 
running subtotals. The LAG and LEAD functions provide access to data in rows 
behind or ahead of the current rows.

Reports are used to display data for common operations and transactions. Que-
ries are used for ad hoc questions, and transaction programming. OLAP functions 
are used for aggregates, comparisons, and drill-down operations. Data Mining 
tools are used for deeper analysis and statistical techniques to identify unknown 
relationships. Common methodologies include classification, association rules, 
cluster analysis, and geographic analysis. Classification tools include decision 
trees, Bayesian analysis, and neural networks which attempt to identify how di-
mensions influence fact measure variables. The classic application of association 
rules is market basket analysis to see which items are commonly purchased to-
gether. Cluster analysis is used to identify categories or groups of items such as 
grouping customers who have similar features. Geographic analysis is useful for 
data based on location and often uses mapping systems to display layers of data.

Indexes
How do indexes improve performance for retrievals and joins? Although ta-
bles are often pictured as simple lists of rows and columns, a DBMS cannot sim-
ply store all data in sequential files. Sequential files take too long to search and 

ID LastName FirstName DateHired
1 Reeves Keith 1/29/2013
2 Gibson Bill 3/31/2013
3 Reasoner Katy 2/17/2013
4 Hopkins Alan 2/8/2013
5 James Leisha 1/6/2013
6 Eaton Anissa 8/23/2013
7 Farris Dustin 3/28/2013
8 Carpenter Carlos 12/29/2013
9 O’Connor Jessica 7/23/2013
10 Shields Howard 7/13/2013

Figure 9.1
Find an item in a sequential table. Even if you know the primary key value, the 
system has to start at the first row and continue until it finds the desired match. On 
average, with N total rows, it takes N/2 row retrievals to find a particular item.
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require huge operations to insert new rows of data. Examine the short table of 
employees in Figure 9.1, and consider the steps involved to find the row where 
EmployeeID is 7. The DBMS would have to read each row sequentially and check 
the ID until it found the proper match. In this case, it would have to read 7 rows. 
If there are N total rows, on average, it takes N/2 rows to find a match. If there 
are a million rows, a typical search would require reading 500,000 rows! Clearly, 
this method is not going to work for large datasets. The situation is even worse 
for inserting new rows of data—if you want to keep the list sorted. The system 
would have to read each row of data until it found the location for the new row, 
then continue reading every other row and copy it down by one row. Deletions are 
actually easy because the DBMS does not really remove the data. It simply marks 
a row as deleted. Later, the database can be reorganized or packed to remove these 
marked spaces.

Binary Search
Looking at the data, it is clear that the DBMS is not taking advantage of all of 
the information. In particular, if the data rows are sorted, a substantially faster 
search method can be used to find items. Figure 9.2 shows how to take advantage 
of the sorting. Think of the process as searching through a paper dictionary or 
a phone book. Instead of starting at the first page and checking each entry, you 
would open the book in the middle, then decide whether to search the first half or 
the second half of the book depending on what name you find in the middle. Find-
ing the middle entry of Goetz, you know that Jones falls in the latter half of the 
data. With that one retrieval, you instantly cut your search in half. Following the 
same process, you would divide the remaining entries in half and search only the 
appropriate section. In the example, only 4 attempts are needed to find the entry 
for Jones. This binary search process continues to divide the remaining data in 
half until the desired row is found. In general, with N total rows, a binary search 
will find the desired row in a maximum of m = log2(N) attempts. Another way to 

1  ↓

Adams
Brown
Cadiz
Dorfmann
Eaton
Farris
Goetz

         3    ↓
Hanson
Inez

               4 Jones
    2   ↑ Kalida

Lomax
Miranda
Norman

Figure 9.2
Binary search. To find the entry for Jones, divide the list in half. Jones falls below 
that value (Goetz), so divide the second part in half again. Jones falls above Kalida. 
Continue dividing the remaining sections in half until you find the matching row. 
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understand this formula is to realize that because you cut the list in half each time, 
you are looking for m, where 2m = N. Now consider a table with a million rows of 
data. What is the maximum number of rows you have to read to find an entry? The 
value for m is 20, which is considerably better than the average of 500,000 for the 
sequential approach!

Pointers and Indexes
A binary search is a relatively good way to search data tables that are sorted, so 
it makes sense when you want to search by primary key, which is common for 
table joins. But what if the primary key is a numeric CustomerID and you want to 
search by LastName instead? How can the table be sorted in multiple ways? The 
answer lies with indexes and pointers.

Data is not actually stored in physical tables. It is usually broken into pieces 
and stored within a special file. When it is stored, each piece (perhaps an entire 
row) is placed at an open location and given an address. The address is a pointer 
that tells the operating system exactly where the piece of data is stored. It might 
be as simple as an offset number that specifies the number of bytes from the start 
of the file. Figure 9.3 shows that indexes can be created using the column to be 
searched (ID or LastName) along with the address pointer. The indexes are in-
dependent and have been sorted so they can be accessed quickly. As soon as the 
appropriate entry is found, the address pointer is passed to the operating system 

Figure 9.3
Pointers and indexes. Each piece of data is stored in a location with a specific 
address. An index consists of the column value to be searched along with the pointer 
to the rest of the row. Multiple indexes can be assigned to a table and quickly 
searched.

ID Pointer
1 A11
2 A22
3 A32
4 A42
5 A47
6 A58
7 A63
8 A67
9 A78
10 A83

LastName Pointer
Carpenter A67
Eaton A58
Farris A63
Gibson A22
Hopkins A42
James A47
O'Connor A78
Reasoner A32
Reeves A11
Shields A83

ID Index

LastName Index 1 Reeves Keith 1/29/..A11

2 Gibson Bill 3/31/..A22

3 Reasoner Katy 2/17/..A32

4 Hopkins Alan 2/8/..A42

5 James Leisha 1/6/..A47

6 Eaton Anissa 8/23/..A58

7 Farris Dustin 3/28/..A63

8 Carpenter Carlos 12/29/..A67

9 O’Connor Jessica 7/23/..A78

10 Shields Howard 7/13/..A83

DataAddress
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and the associated data is immediately retrieved. In practice, even the indexes are 
not stored sequentially. They are generally stored in pieces as B-trees. B-trees can 
be searched at least as quickly as can be done with a binary search, and they make 
it relatively easy to insert and delete key values. B-trees are explained in Chapter 
12, but you do not need to know the details to understand the benefits of indexes. 
You can create indexes in SQL using the CREATE INDEX command. Bear in 
mind that the reason for indexes is to substantially reduce the time it takes for the 
DBMS to find (or match) a particular row of data.

Creating Indexes
Most systems automatically create indexes for primary key columns, because 
these are typically used in JOIN statements. Figure 9.4 shows an example of an 
index created on the AnimalID primary key column of the Animal table in the pet 
store case. The example is from Microsoft SQL Server, but other systems, such 
as Oracle, are similar. Microsoft Access also generates primary key indexes auto-
matically, but it has fewer options.

Most DBMSs have a graphical interface tool to create and edit indexes. How-
ever, it is relatively easy to use the SQL CREATE INDEX command. Figure 9.5 
shows the basic format. The command is straightforward, since you just list the ta-
ble name and the columns you want in the index. The example shows a composite 

Figure 9.4
Index for primary key. SQL Server automatically generates and maintains indexes 
for primary key columns. Higher-end systems, such as SQL Server, provide several 
options to optimize the storage and use of indexes. These options can be used to 
improve the performance of your queries and applications.
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index that uses multiple columns. Most systems support additional keywords that 
control the various options, such as whether the index is unique, how and where it 
should be stored, or how to handle columns with long data types. In this example, 
you could include options to specify that the index contains unique values, or to 
store the index on a separate disk drive partition. These options are different for 
each DBMS, so you will have to read the documentation carefully to decide which 
ones you need. Alternatively, most systems provide a query optimizer that will 
automatically suggest indexes for you to add, with the desired attributes.

Problems with Indexes
Consider a table in which 10 indexes (columns) are defined. When a new row 
of data is added to the table, every index has to be modified. At a minimum, the 
database has to insert a new row into each of the 10 indexes. In most cases, it will 
also have to reorganize each index and probably update the statistics tables for the 
indexes. An index substantially improves the ability to search a data table. But for 
every index you create, the DBMS will slow down every time new data is entered 
or modified because the indexes have to be rebuilt. So your big decision is which 
columns to index.

Adding more indexes speeds up data retrieval but slows down data entry and 
data updates. This conflict is the heart of the problem between data analysis and 
transaction processing. Transaction processing—collecting the data—needs to be 
fast to efficiently store and protect the data. On the other hand, data analysis fo-
cuses on retrieving existing data and often needs to retrieve huge amounts of data 
quickly. Building multiple indexes and duplicating data are two ways to vastly 
improve data retrieval speed, but at the cost of interfering with colleting the data. 
A common solution is to create a data warehouse—which holds a copy of the data 
used just for data analysis.

Data Warehouses and Online Analytical Processing
Is there another way to make query processing more efficient? Ultimately, the 
trade-offs with indexes can be insurmountable. To perform complex searches, you 
need many indexes on every table. But too many indexes slow down the trans-
action processing. Additionally, a typical organization has data stored in several 
different databases and sometimes other files. Obviously, the transaction systems 
need priority—without them, the business cannot operate. But managers increas-
ingly need to perform complex analyses of data. The solution: Keep the transac-
tion systems and create a new database for managers to perform online analytical 
processing.

CREATE INDEX ix_Animal_Category_Breed
ON Animal (Category, Breed)

Figure 9.5
SQL CREATE INDEX command. The basic syntax is straightforward. Give the 
index a unique name, then specify the table and columns to be used. Most systems 
support additional options to control the details such as storage and type of index.
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Increasingly, managers want more than the traditional reports that are produced 
by OLTP systems. Managers want the ability to interactively examine the data. 
They do not always know what questions to ask or what they are looking for. 
They need the ability to quickly look at different views of the data. These types of 
queries can involve huge amounts of data and require joins across multiple tables. 
Fortunately, the access is almost always read-only—very little data is altered—
and read-only queries can be several times faster than updateable queries. Manag-
ers also want the ability to statistically analyze the data, and these tools generally 
need to know something about the layout and structure of the data. The answer is 
to put a copy of the data into a new fixed structure.

Data Warehouse Goals
Many organizations have chosen to avoid these conflicts by creating a second 
copy of the database. A data warehouse holds a copy of the transaction data in 
a special database that is dedicated to answering managerial queries. Data may 
come from various sources, but all of it has been cleaned so that it is consistent 
and meets referential integrity constraints. Data can be stored in pre-joined for-
mat, resulting in duplication of data. But, since this data is not updated directly, 
and since storage space is relatively inexpensive, the duplication is well worth 
the increased performance. A second option is to build multiple indexes on ev-
ery table. Again, since the data is not being continually updated, the indexes are 
rarely updated. In both cases, special functions and query controls are included to 
rapidly create different views of the data. Generally, data is transferred from the 
transaction system once or twice a day and moved in bulk to the data warehouse.

The basic concepts of a data warehouse are shown in Figure 9.6. The transac-
tion databases continually collect data and produce basic reports, such as inven-
tory and sales reports. The data warehouse represents a separate collection of the 

OLTP	Database
3NF	tables

Operations
data

Predefined
reports

Data	warehouse
Star	configuration

Daily	data
transfer

Interactive
data	analysis

Flat	files
Figure 9.6
Data warehouse. Data from the OLTP system and other sources is cleaned and 
transferred into a data warehouse on a regular basis. The data warehouse is optimized 
for interactive data analysis.
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data. Although it might use the same DBMS, it requires new tables. On a regular 
basis, data is extracted from the transaction databases and from other files. This 
data is checked to make sure it is consistent; for example, all of the key values 
must match for referential integrity. Then it is added to the data warehouse, which 
usually does not store data in normalized tables. Instead, it has special structures 
like the star configuration. In these cases, data is often duplicated. For example, 
the same city and state combination may show up in thousands of data records.

Online analytical processing is usually related to data warehouses, but techni-
cally, you can build OLAP systems on transaction databases without using the 
intermediate data warehouse. A bigger challenge is that each vendor offers differ-
ent technology and different implementations. In general terms, OLAP consists of 
a set of tools to browse the data and to analyze and compare data in the database.

Managers are also learning to use statistical tools to perform more formal anal-
yses of data. Data mining or business intelligence (BI) tools use automated or 
directed statistical methods to search the data for patterns and relationships. The 
statistical tools include regression, discriminant analysis, pattern recognition (e.g., 
neural networks), and database segmentation (e.g., clusters, k-means, mixture 
modeling, and deviation analysis). These tools generally require substantial com-
puting power and extremely high-speed data retrieval. Even with current high-
speed systems, many of the techniques would need days or weeks to analyze some 
of the large datasets that exist. The point is that if users want to work on this type 
of analysis, the databases will have to be configured and tuned to their specific 
needs.

Data Warehouse Issues
Despite advances in database management systems and improvements in com-
puter hardware, some queries take too long to run. Additionally, many companies 
have data stored in different databases with different names and formats, or even 
data stored in older files. The purpose of a data warehouse is to create a system 
that collects this data at regular intervals, cleans it up to make it consistent, and 
stores it in one location. A second primary goal of a data warehouse is to improve 
the performance of OLAP queries. In most cases, performance is improved by de-
normalizing the data. Joining tables is often the most time-consuming portion of a 
query, so new data structures are created that perform all of the joins ahead of time 
and store redundant data into fewer tables.

Three main challenges exist in creating a data warehouse: (1) Setting up a trans-
fer system that collects and cleans the data, (2) Designing the storage structure to 
obtain the best query performance when handling millions or billions of rows of 
data, and (3) Creating data analysis tools to statistically analyze the data. Most 
companies choose to purchase data mining software for the third step. Few orga-
nizations have programmers with experience writing detailed statistical analysis 
procedures, and several companies sell prepackaged tools that can be configured 
to search data for patterns. The second issue—OLAP design—is discussed in the 
next section.

Cleaning and transferring data is often the most difficult part of establishing a 
data warehouse. Figure 9.7 shows the process known as extraction, transforma-
tion, and transportation (ETT).  You will quickly find that most companies have 
many different databases, with different table and column names, and different 
formats for the same type of data. For instance, one database might have a column 
Customers.LastName declared at 20 characters, and a second database uses Cli-
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ents.LName set at 15 characters. The process of extracting data from these sources 
needs to be automated as much as possible; it is too hard and too expensive to try 
to clean data by hand. Remember that the data has to be transferred on a regular 
basis—at least daily. So you often have to write complex queries to merge data 
from different sources. In this small example, you would probably import one 
table (e.g., Customers), and then run a NOT IN query to get the list of names that 
are in the Clients table but not in the Customers table. These new names would 
then be added to the data warehouse. Some of the DBMS vendors have created 
import tools that will help you automate these data comparisons, but ultimately, 
most companies end up writing custom code to handle this complex process. For 
instance, Microsoft uses SQL Server Integration Services (SSIS). A key element 
in the process is to extract the data from the OLTP systems without interfering 
with the ongoing operations. Specialized tools and queries utilizing parallel pro-
cessing on multiple-processor machines are often used in this step, but the details 
depend on the DBMS, the hardware, and the database configuration. 

One method that can sometimes be used to reduce the data volume is to ex-
tract and transfer only data that has been changed since the last transfer. However, 
this process requires that the OLTP system track the date and time of all changes. 
Many older systems do not record this information for all elements. For instance, 
a sales database has to record the date and time of a sale, but it probably does not 
record the date and time that a customer address was changed.

Transforming the data often involves replacing Null values, converting text to 
numbers, or retrieving a value from a joined table and updating a value in the base 
table. All of these operations can be handled by SQL statements, and you will 
have to create modules that can be executed on a regular basis to extract the data, 
clean the data, and insert it into the new database.

Data	warehouse:
All	data	must be	
consistent.

Customers

Convert	Client	
to	Customer

Apply	standard	
product	numbers

Convert	currencies

Fix	region	codes

Transaction	data	
from	diverse	
systems.

Figure 9.7
Extraction, transformation, and transportation (ETT). Transaction data usually has to 
be modified to make it completely consistent. This process must be automated so it 
can run unattended on a regular schedule.
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Data Extraction, Tansformation, and Transportation
How is data loaded into the data warehouse? One of the most difficult tasks in 
creating a data warehouse is setting up the extraction, transformation, and trans-
portation (ETT) or loading (ETL) of data. Basically, you need to find all of the 
sources of data, find a way to extract it from its existing format, transform the 
data so it is internally consistent with every other piece of data, and load it into 
the data warehouse. More importantly, you have to create programs and tools so 
the entire process is automated. The ETL processes need to run on a timed basis 
(such as once a day). They need to run automatically, with no human intervention. 
As a database developer, it will be your responsibility to create and tests programs 
to handle these tasks. In large projects, developing all of the tools can easily take 
several months.

Figure 9.8 indicates the importance of focusing on the main sources of data: 
SQL databases, CSV files, spreadsheets and proprietary files. SQL databases are 
the easiest to handle. Most of the major DBMSs can be configured to connect to 
“external” databases. Hence, you can create connections from the data warehouse 
to the other databases. Once linked, you can write SQL statements to compare, 
transform, and copy data from the linked table into the warehouse tables. Another 
standard file type is the comma separated values (CSV) file. Data is stored se-
quentially in rows. The columns are separated by commas; although most tools 
enable you to change the delimiter to something else. For example, you might 
want to use tabs (ASCII character 9) in case the text data in a column happens 
to contain commas. In general, the bulk loaders make it relatively easy to import 
CSV data files. 

Excel spreadsheets and other proprietary formats can be more challenging. In 
both cases, you might have to use the original tool (e.g., Excel) to save the data 

Data Warehouse

SQL Database

Spreadsheet

CSV File

Proprietary Files

Figure 9.8
Data sources. The ETL process has to be automated so data can be extracted and 
loaded automatically every day. SQL sources are generally easy because tables can 
be linked and used directly. CSV files are relatively standard and can be handled with 
data loaders. Spreadsheets and other proprietary files can cause problems.
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to a CSV file then call the data warehouse bulk loader to import the CSV file. The 
problem with this approach is that it is more difficult to automate. As shown in 
Figure 9.9, you need to write a program in the operating system that uses a timer 
to start Excel and call an Excel macro to export the data to a CSV file. After the 
file has been saved, the program calls the bulk loader to import the CSV data into 
the warehouse. Then the warehouse programs can run to extract and transform 
the data. You need to know how to use several different programing tools to even 
create this process. It will be difficult to write a program to automatically catch all 
errors and fix them on the fly. More likely, if something goes wrong, the program 
will crash and you will be called to fix the problem. And those calls always come 
at 3 AM. 

Any system that relies on multiple steps across different machines, operating 
systems, and software will have to be modified almost any time one of the com-
ponents changes. For example, when Microsoft updates Excel or Windows, the 
programs will have to be tested and probably modified. The goal here is not to 
scare you (well, maybe a little); but to help you understand some of the challenges 
to developing ETL programs—and why they take so long to create and test.

One of the goals in building an ETL system is to get the data into a SQL data 
source as early as possible. Once the data is in relational tables, you can use the 
full power of SQL to compare and transform the data. You will make heavy use 
of SQL commands of the form: INSERT INTO warehouse_table (…) SELECT … 
FROM linked_table.

Remember that the SELECT statement can transform the data as it extracts 
it. Also, you can use NOT IN or LEFT JOIN clauses to choose only data that is 
missing or is not already in a second source table. If data needs several process-
ing steps, you might have to write stored procedures or functions to perform more 
complex calculations. SQL Server has some useful tricks for creating temporary 
tables within functions and procedures. It is always best to stick with standard 

Figure 9.9
Problems with timing. The operating system has to run a program on a timer that 
calls Excel to export the data to a CSV file. After the file has been saved, the bulk 
loader can import the CSV data into the warehouse. If there is a delay or other 
problem, the system will likely crash and a human has to fix it.

CSV FileSpreadsheet
Data Warehouse

Bulk loaderExport

Need to set a timer to 
automate the data 
export.
Timer runs in operating 
system, so you need an 
OS program to control 
the tool (Excel).

The bulk loader must run 
after the CSV file has been 
created.
If anything goes wrong, it will 
be difficult to fix automatically 
and a person probably needs 
to be called.
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SQL commands, but sometimes you need to rely on the more complex program-
ming tools available. 

The main step is to extract and transform the data so that it is internally con-
sistent. Missing (Null) values are sometimes acceptable, but unmatched data is 
not. For instance, you cannot have a CustomerID in Sales data that lacks a related 
key in the Customer table. If the data all comes from a relational DBMS with 
referential integrity constraints, this problem is minimized. When the data sources 
include multiple databases, spreadsheets, and CSV files, all of the referential in-
tegrity constraints have to be built and tested as the data is loaded. 

Once the data is consistent, the data warehouse has tools to define fact and 
dimension attributes. Most warehouses also support renaming attributes, adding 
descriptions, and assigning formats so that the attributes are easier to understand. 
For instance, if the database files use abbreviations such as CID or EID, you can 
assign the more descriptive titles CustomerID and EmployeeID.

OLAP Concepts
How is OLAP different from queries? Probably the most important goal of 
OLAP is to make the data accessible to managers. They should be able to browse 
through the data without having to write queries. The concept of the multidimen-
sional cube shown in Figure 9.10 turns out to be a useful approach for many prob-
lems. The cube contains data about a specific fact (such as sales), and the dimen-
sions (sides) represent factors that are potentially interesting to the managers. You 
could write queries to retrieve all of the data. In fact, the cube is probably defined 
by a query. However, managers do not want to write queries, and no one wants to 
assume that managers are going to write accurate queries. Consequently, manag-
ers use specific tools to examine the data interactively. For instance, Microsoft 
provides the PivotTable browser for use on the desktop. It can connect to any 

Time

Sale Month

Customer 

Location

Cate
gory

CA

MI

NY

TX

Jan Feb Mar Apr May

Bird
Cat

Dog
Fish
Spider

880 750 935 684 993

1011 1257 985 874 1256

437 579 683 873 745

1420 1258 1184 1098 1578

880 750 935 684 993

1011 1257 985 874 1256

437 579 683 873 745

1420 1258 1184 1098 1578

Figure 9.10
Multidimensional cube. The fact element is sales. The dimensions are location, time, 
and category. Managers are interested in various combinations of the dimensions, and 
can use a cube browser to look at various subtotals.
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common data source and enables managers to interactively see sections of the 
data and subtotals. Other vendors (and Microsoft) provide additional browsing 
tools.

To illustrate the process, consider a simple example from the Pet Store data-
base. Managers are interested in adoptions of animals. In particular, they want to 
look at adoptions by date, by the category (cat, dog, etc.), and by the location of 
the customer (state). The attribute they want to measure is the sale price, but you 
can also create more complex facts, such as price times quantity for merchan-
dise sales. Figure 9.10 shows how this small query could be pictured as a three-
dimensional cube. The OLAP tools enable managers to examine any question that 
involves the dimensions of the cube. For instance, they can quickly examine totals 
by state, city, month, or category. They can look at subtotals for the different cat-
egories or details within individual states. Currently, the front face of the cube 
shows sales subtotals by state and month. The cube browser makes it easy to ro-
tate the cube to display a different face—such as sales by category over time, or 
category by state. Users can also examine just one slice of the cube, such as sales 
by location and category for a specific month. All of these options are performed 
without asking the manager to write SQL. The desktop tools support drag-and-
drop operations to choose the dimensions to be compared. 

The OLAP tools also support the ability to look at tools or to change and look 
at details. Managers might want to start with high-level subtotals and drill down 
to see the details. For instance, a manager might be looking at total sales by month 
and spot a drop in a particular month. He or she can drill down to see the details 
of sales by category or location within that month. The opposite of drill-down is 
to roll up the data into totals or averages. Instead of looking at detail sales for a 
given state, the manager might want to see the totals for an entire month.

A data hierarchy is another common element in OLAP. Many dimensions 
have an explicit hierarchy of values. For instance, Figure 9.11 shows the common 

Figure 9.11
Drill down and Roll up. In a given dimension, drill down provides more detail. Roll 
up aggregates the values from subcategories.
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hierarchy for dates. A given event (e.g., sale) occurs on a specific date, but that 
date is defined by the year, quarter, month, or week in which it occurred. Manag-
ers might want to examine data at any level within the hierarchy, or drill down or 
roll up as they are looking at one level. Several standard hierarchies exist in busi-
ness data—such as dates and locations—and most systems know how to generate 
these levels automatically. However, the tools also enable you to create custom 
hierarchies for specific types of data.

Once the OLAP database is defined, users need tools to analyze the data. A 
cube browser is important because it enables users to look through the data and 
follow interesting observations. Statistical tools fall into the category of data min-
ing or business intelligence. Vendors provide several versions of tools, some are 
more automated than others. The goal in all cases is to identify potentially inter-
esting patterns.

OLAP Database Design
How are OLAP databases designed? Database design for OLAP is different 
from traditional database design. Some of the concepts are similar, but ultimately, 
most OLAP tools store the data in cube structures instead of relational tables. Ad-
ditionally, OLAP design hides table joins from the end user. The manager sees 
only the cube. Consequently, the heart of OLAP design is to identify: (1) Facts to 
be measured, (2) Dimensions to be evaluated, and (3) Data hierarchies. The re-
maining design issues consist of choosing the best way to organize these elements.

Facts are relatively easy to identify. In a business context, a fact is often a dollar 
value, but you can also include counts of items, such as the number of items sold. 
In any case, you can simply ask the managers what items need to be measured. 
All facts must be measures—that is, they must be numeric values. For that rea-
son, you cannot include categorical data (such as “small,” “medium,” or “large”). 
Some systems support multiple facts within a single cube, but they should be re-
lated. For instance, you might include the count of the number of items sold with 
the value of the items sold. Be careful to identify these values with distinctive and 
accurate names so users clearly identify the correct role of the data.

You need to be careful when the fact is a computed value. The problem is that 
you need to control the computational order. What happens if you build the cube 
using the original SaleItem table? Then you could only use Quantity and SalePrice 
as measures. It would be tempting to create a calculated measure: Amount2 = 
Quantity * SalePrice. However, this approach can lead to incorrect results. It is 
critical that you understand the difference between these two approaches. The cor-
rect method is to build a query for any computation that needs to be done on a 
line-by-line basis (Price * Quantity is a common example). If you wait and build 
it in the OLAP design cube as a calculated measure, then the cube will (1) slice 
the data, (2) subtotal any measures separately (Price and Quantity), then (3) per-
form your calculations: Sum(Price) * Sum(Quantity). So your calculations will 
be performed on data that has already been totaled. Figure 9.12 shows the differ-
ence with a small example. When you use a query for the fact table to compute 
the multiplication, the columns are multiplied first and then summed, giving the 
correct total or $23.00. If you use the original table as the fact table and specify 
the computation as the cube’s calculated measure, the cube first adds the quantity 
and price columns and then performs the multiplication, giving the incorrect result 
of $45.00. The solution is detailed line-by-line computations in a query and to use 
that query as the fact table.
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The second step is to choose the attributes or dimensions that form the sides 
of the cube. The dimensions come from columns for which the users want to 
compute subtotals. In one sense, an OLAP cube is like a SELECT statement with 
multiple GROUP BY statements. Any item that would appear in the GROUP BY 
clause becomes a dimension. The user gets to dynamically choose which dimen-
sions to include at any time. The catch is that you have to find all of the tables that 
contain the desired dimensions and be sure they are linked to the desired facts.

The third step is to identify and generate all of the desired hierarchies within 
the dimensions. Some dimensions (e.g., dates) have well-known hierarchies. In 
other cases, you will have to talk with users to identify the desired levels and cre-
ate the hierarchies manually. Each OLAP tool has a different method for defining 
hierarchies, so the actual steps are not covered here.

Snowflake Design
Once you have identified the facts and dimensions needed for a cube, you can 
construct the cube within the OLAP tool. Although the details vary, two general 
models are commonly used to store the data: the snowflake and star designs. The 
snowflake design is similar to a traditional relational design, so it is easy to un-
derstand. However, it might not be the most efficient design. Both designs begin 
with the fact table to define the desired measures. The difference lies in how the 
dimension data is stored and accessed. With the snowflake design, the system uses 
predefined joins to connect any tables. As shown in Figure 9.13, you can connect 
tables through other tables. For instance, City connects through Customer, which 
connects to the Sale table. The data remains in the original normalized tables, and 
all columns in the tables are available to be used as dimensions.

The difficulty with the snowflake design is that the OLAP browser needs to 
process the joins, which can require considerable computational power and time. 
Systems that use this approach rely heavily on indexes to reduce the access times. 
Often, the data is moved out of transaction tables, into a read-only set of tables. 
Since the data is rarely updated, the system can create a huge number of indexes 
without worrying about needing to update them because insertions and deletions 
are not supported. When data is transferred from the OLTP system, the indexes are 
removed, the data loaded, and the indexes are rebuilt at one time. Some tools also 
add internal pointers within the data, essentially integrating the indexes into the 
data for even faster performance.

Quantity Price Quantity*Price
3 5.00 	 15.00
2 4.00 	 8.00
5 9.00 45.00 or 23.00

Figure 9.12
Order of computations. Multiplications should be performed in a query that is 
used for the fact table to get the correct total of $23.00. Computing it in the cube 
calculation causes sums to be computed first and then multiplied to give the incorrect 
value of $45.00.
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Star Design
The star design focuses on speeding up data retrieval, essentially by removing 
joins. It accomplishes this task by denormalizing the data. Essentially, it saves du-
plicate data. In the standard sales example, the customer data would be entered for 
every sale. If you could scroll through the raw data, you would see the customer 
location repeated for every sale. Obviously, this approach requires more storage 
space. However, remember that insert, update, and delete are not supported on the 
individual items. Consequently, the problems discussed in Chapters 2 and 3 that 
are caused by non-normalized data are avoided. Figure 9.14 shows the star de-
sign for the sample sales problem. Once you understand the users’ goals, the star 
design is relatively easy to create. You simply identify the fact measures and the 
dimensions. The system then copies all of the needed data to place the dimensions 
close to the fact measures. If you add enough dimension tables, you will see the 
reason for the star name. The fact table sits in the center and is connected to the 
dimension tables through rays. On the other hand, the snowflake design begins the 
same way, but you can add tables that connect through other dimensions instead 
of directly to the fact table. This extended pattern with multiple levels leads to a 
snowflake appearance.

Which design is better? This question is beyond the scope of this book, because 
it is a difficult question to answer. In fact, vendors continue to argue over the 
benefits and weaknesses of each method. They both work best for non-transaction 
data that is bulk-updated on a regular basis. Both require the storage of additional 
information (either indexes or duplicate data). In the end, performance depends on 
multiple factors. If you are thinking about buying a new system, you need to test 
your specific data with various systems and decide which approach works best in 
your situation. In terms of configuration, it is easiest to think in terms of the star 
design. Identify the facts and connect the dimensions directly to the fact table.

SaleID
ItemID
Quantity
SalePrice
Amount

OLAPItems

ItemID
Description
QuantityOnHand
ListPrice
Category

Merchandise

SaleID
SaleDate
EmployeeID
CustomerID
SalesTax

Sale

CustomerID
Phone
FirstName
LastName
Address
ZipCode
CityID

Customer

CityID
ZipCode
City
State

City

Figure 9.13
Snowflake design. It is less strict than the star design in that dimension tables can be 
joined to other dimension tables before being connected to the fact table.
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OLAP Data Analysis
What tools are used to examine OLAP data? Beyond transaction processing, 
managers collect data to assist in making decisions. Many levels and types of de-
cisions exist in business, so many different tools exist, with new ones created ev-
ery year. Two general categories of tools exist: (1) Cube browsers, and (2) Statisti-
cal tools used for data mining. This section focuses on the cube browsers, and the 
following section summarizes some of the common data mining tools.

The most common form of cube browsers are interactive tools that make it easy 
for managers to examine subtotals, select subsets of the data, and drill down to see 
detailed data. Many vendors provide these interactive cube browsers, but several 
common features exist. Once you understand the overall structure, you can learn 
the details of a specific tool. The SQL standard of 2003 introduced SQL exten-
sions to support retrieval and analysis of OLAP data. Additional standardization 
work concentrates on multidimensional expressions (MDX), or the more recent 
mdXML. Although they are not interactive, SQL or MDX make it easier to write 
code that can be executed to retrieve or analyze data.

Cube Browsers
Vendors who provide OLAP tools generally include a cube browser to support 
interactive browsing by decision makers. All of the major DBMS vendors provide 
similar tools, but the construction and browsing techniques vary considerably. 
Also note that the business intelligence tools might require separate development 
tools and additional licenses (fees) to deploy to users. If you are using a DBMS 
that does not have an integrated BI system or cube browser, you can generally use 
Microsoft Office to build a PivotTable on the desktop that connects to your back-
end database.

Figure 9.15 shows a sample cube for the Pet Store created with the Microsoft 
Business Intelligence Development Studio. The cube data was generated by creat-
ing a view to define the measures and dimensions related to sales of merchandise 
items. The Value fact was created as SalePrice*Quantity, and the SaleDate was 

Sales
Quantity

Amount=SalePrice*Quantity

Fact Table

Products

Customer
Location

Sales	Date

Dimension Tables

Figure 9.14
Star OLAP design. The fact table holds the numeric data managers want to examine. 
The dimension tables hold the characteristics. In a star design, all dimension tables 
connect directly to the fact table.
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extended into a year-month-date time hierarchy. Once the cube is defined, manag-
ers can browse the cube without needing to know anything about the underlying 
structures.

Browsing the cube is as simple as dragging the desired dimensions and facts 
onto the display grid. Users can experiment at will, because the dimensions can 
always be interchanged or removed. Subtotals are automatically generated for hi-
erarchies and the user can click the designated buttons to drill down or roll up 
the totals. Users can place dimensions on the page to use as filters. To show a 
different subset of data, the user simply opens the desired dimension (filter, row, 
or column) and selects the desired attributes. In the example, you could open the 
Sale filter and select only a couple of states to immediately see the Category and 
SaleMonth values for the chosen states. Starting with Visual Studio 2010 (and 
later 2012) the cube browser displays all dimensions in rows and does not support 
column headings. To see a more tabular approach, use a PivotTable.

Microsoft Office contains the PivotTable and PivotChart utilities that can run 
inside of Excel, or even deliver interactive Web pages. A PivotTable is the inter-
active cube browser. A PivotChart uses the same principles to display dynamic 
charts. The primary advantage of charts is the ability to visualize the data—par-
ticularly trends over time on line charts and correlations using scatter charts. 

Figure 9.15
An OLAP cube browser. The time (SaleDate) dimension is shown in the table of 
data along with the merchandise Category. Users can change the display simply by 
dragging the dimensions on or off the grid. They can also add filter fields such as the 
State dimension. The year-month-date hierarchy enables users to drill down or roll up 
data.
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The process of creating PivotTables and PivotCharts is similar. Although you 
could use Microsoft Query to collect and refine the data, it is usually easier to 
save a view in the original database that retrieves the desired data. In particular, 
you should create any needed calculations in the query. Microsoft Excel has menu 
options to help you create PivotTables and PivotCharts, so it is relatively easy to 
create and to use the resulting objects. Figure 9.16 shows a PivotChart based on 
the merchandise sale data. The operation of the PivotChart is similar to the cube 
browsers. Once the chart is built, managers can drag the dimensions around to 
create a new chart.

OLAP in SQL
Think about the concepts of the OLAP cube for a couple of minutes, and you 
will recognize that it is a method of examining the results of multiple GROUP 
BY statements. The cube browsers simply make it easier to display the results 
and interactively explore the relationships. Interactivity is nice but sometimes you 
need a programmatic approach to a problem. Perhaps you need a formal report, or 
to transfer data, or to automate a statistical analysis. The SQL 99 standard added 
some features that provide OLAP-type results within SQL. Several vendors have 
integrated these new commands, although the syntax might be slightly different 
for each vendor.

In the Pet Store example, what happens if you use a GROUP BY statement with 
two columns? Figure 9.17 shows the partial results of a Pet Store query that con-
tains a GROUP BY computation with two columns (animal category and month 
sold). Notice that it provides a subtotal for each category element for each month. 

Figure 9.16
Microsoft PivotChart. Pivot tools make it easy for managers to examine cube data 
from any perspective, to select subsets of the data, to perform calculations, and to 
create charts.
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SELECT Category, Month(SaleDate) As SaleMonth, 
	 Sum(SalePrice*Quantity) As Amount
FROM Sale INNER JOIN SaleItem
	 ON Sale.SaleID=SaleItem.SaleID
  INNER JOIN Merchandise ON 
	 Merchandise.ItemID=SaleItem.ItemID
GROUP BY Category, Month(SaleDate)

Category Month Amount
Bird
Bird

Cat
Cat


	 1
	 2
	  
	 1
	 2
	  

	 135.00
	 45.00
	 
	 396.00
	 113.85
	 

Figure 9.17
SELECT query with two GROUP BY columns. You get subtotals for each animal 
category for each month. You do not see totals across an entire category (Birds for all 
months), and you do not get the overall total. 

SELECT Category, Month(SaleDate) As SaleMonth, 
	 Sum(SalePrice*Quantity) As Amount
FROM Sale INNER JOIN SaleItem
	 ON Sale.SaleID=SaleItem.SaleID
  INNER JOIN Merchandise ON 
	 SaleItem.ItemID=Merchandise.ItemID
GROUP BY Category, Month(SaleDate) WITH ROLLUP;

Oracle syntax:
GROUP BY ROLLUP (Category, TO_CHAR(SaleDate, ‘mm’)

Category Month Amount
Bird
Bird

Bird
Cat
Cat

Cat

(null)

	 1
	 2
	 
	 (null)
	 1
	 2
	 
	 (null)
	 
	 (null)

	 135.00
	 45.00
	  
	 607.50
	 396.00
	 113.85
	  
	 1293.30
	  
	 8451.79

Figure 9.18
ROLLUP option.  Adding the ROLLUP option to the GROUP BY statement 
generates the super-aggregate totals. In this case, the query provides totals for each 
Category element and the overall total. Notice that the corresponding Month is a null 
value.
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Assuming all animal types were sold in all months, you would see 12 values for 
birds, 12 for cats, 12 for dogs, and so on. What you do not get are super-aggre-
gate totals, or totals for an entire category or across all rows. For instance, what is 
the total value of bird merchandise sold for the entire year?
ROLLUP
You could get these super-aggregate totals by using additional SELECT state-
ments. However, SQL 99 added the ROLLUP option specifically to compute su-
per-aggregate totals. Figure 9.18 shows the results for the Pet Store query. The 
total across all months is calculated for each element in the Category column. This 
total is displayed with a null value for the Month column. At the bottom, the over-
all total is displayed with two null values. Of course, the super-aggregate totals 
are not normally printed in bold, so they can be hard to spot. A bigger question 
is, What happens if there is a missing (null) value for some months? In the case 
of a missing date for a sale of bird items, the display would contain two similar 
lines (Bird, null, 32.00). One of the lines would be the total sales of bird products 
for months with missing dates. The second total would be the super-aggregate 
total across all months. But how do you know which is which? It is possible to 
scrutinize the numbers with totals and realize that the larger total should be the 
super-aggregate value. But with other functions, such as Average, there might not 
be any way to tell. Notice that the Oracle syntax is slightly different from the SQL 
Server syntax. The Oracle version is slightly closer to the standard (which does 
not require the parentheses), but you should understand both versions.

SELECT Category, Month(SaleDate) As SaleMonth, 
	 Sum(SalePrice*Quantity) As Amount,
	 GROUPING (Category) AS Gc,
	 GROUPING (Month(SaleDate)) AS Gm
FROM Sale INNER JOIN SaleItem
	 ON Sale.SaleID=SaleItem.SaleID
  INNER JOIN Merchandise ON 
	 SaleItem.ItemID=Merchandise.ItemD
GROUP BY Category, Month(SaleDate) WITH ROLLUP

Category Month Amount Gc Gm
Bird
Bird
 
Bird
Cat
Cat
 
Cat
 
(null)

	 1
	 2
	 
	 (null)
	 1
	 2
	  
	 (null)
	  
	 (null)

	 135.00
	 45.00
	  
	 607.50
	 396.00
	 113.85
	  
	 1293.30
	  
	 8451.79

0
0

0
0
0

0

1

0
0

1
0
0

1

1

Figure 9.19
GROUPING function. The GROUPING function returns a value of one when the 
row displayed is a super-aggregate for the selected column parameter.
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To help identify the super-aggregate lines, the SQL standard introduced the 
GROUPING function. As shown in Figure 9.19, the function usually returns a 
value of 0. When the row displayed is a super-aggregate computation, it displays 
a value of 1. In the example, the totals across months for each category produce 
a value of one for the GROUPING(Category) function. The overall total contains 
values of one in both indicator columns. This function could also be used in other 
computations or even in WHERE conditions. For instance, you might want to per-
form a computation with the super-aggregate totals.
CUBE
Looking at the results, it is clear that the ROLLUP option does not provide all 
of the information a manager might want. Notice that the super-aggregate totals 
only apply to the Category column in the examples. There are no corresponding 
totals for the Month column, which would represent sales of all categories for a 
given month. Of course, you could obtain those totals if you rewrite the query and 
reverse the order of the Category and Month columns in the GROUP BY clause.

The CUBE option provides the solution. The CUBE option is similar to ROL-
LUP, but it computes and displays the super-aggregates for all GROUP BY col-
umns. In Figure 9.20, notice that the only change to the SQL was replacing the 

SELECT Category, Month(SaleDate) As SaleMonth, 
	 Sum(SalePrice*Quantity) As Amount,
	 GROUPING (Category) AS Gc,
	 GROUPING (Month(SaleDate)) AS Gm
FROM Sale INNER JOIN SaleItem
	 ON Sale.SaleID=SaleItem.SaleID
  INNER JOIN Animal ON 
	 SaleItem.ItemID=Merchandise.ItemID
GROUP BY Category, Month(SaleDate) WITH CUBE

Category Month Amount Gc Gm
Bird
Bird
 
Bird
Cat
Cat
 
Cat
 
(null)
(null)
(null)
 
(null)

	 1
	 2
	  
	 (null)
	 1
	 2
	 
	 (null)
	 
	 (null)
	 1
	 2
	 
	 12

	 135.00
	 45.00
	   
	 1358.82
	 45.00
	 113.85
	 
	 1293.30
	 
	 8451.79
	 1358.82
	 1508.94
	 
	 164.70

0
0

0
0
0

0

1
1
1

0

0
0

1
0
0

1

1
0
0

0

Figure 9.20
CUBE option. The CUBE option computes super-aggregate values for all columns in 
the GROUP BY statement. The rows near the bottom with the Gm indicator value of 
1 are the totals by month for all categories of products.
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ROLLUP keyword with CUBE. The result still includes the super-aggregate totals 
across months for each category. These totals have a value of 1 for the Gc indi-
cator column. But, the query also produces the super-aggregate totals for each 
month across all categories of products. The values for the three months are dis-
played near the bottom of the results. Notice the null value under Category, and 
the Gm column value of 1 indicating that it is the super-aggregate total for the 
month. Again, the Oracle syntax is slightly different, where the key phrase be-
comes: GROUP BY CUBE (Category, TO_CHAR(SaleDate, ‘mm’)).

Because of these additional totals, you will most likely use the CUBE option 
more often than ROLLUP. However, if you add several columns to the GROUP 
BY statement, you could get so many subtotals that you might prefer to use ROL-
LUP to simplify the display. Ultimately, the decision comes down to what the us-
ers need to see, or which values you need in additional computations. Remember 
that you cannot rely on the null value to identify super aggregates. You must use 
the GROUPING (e.g., Gc and Gm) function instead.

 The SQL standard provides additional options, including the ability to create 
CUBEs or ROLLUPs based on the combined value from multiple columns. The 
standard calls for a GROUPING SETS function to hide the detail subtotals and 
only display the super-aggregate totals. However, this function is not supported 
by all systems, and it is actually easier to use the GROUPING function directly. 
As shown in Figure 9.21, the SQL is straightforward by adding the conditions to a 
HAVING statement.

Although the ROLLUP and CUBE options bring new features to SQL, the re-
sults can be difficult to read. In terms of OLAP value, you would not want to show 
the results to managers or expect them to be able to use these tools interactively. 
On the other hand, they could be useful for feeding data into a procedure that you 
write which needs to perform more advanced computations or transfer the data to 
a spreadsheet.

SELECT Category, Month(SaleDate) As SaleMonth, 
	 Sum(SalePrice*Quantity) As Amount
FROM Sale INNER JOIN SaleItem
	 ON Sale.SaleID=SaleItem.SaleID
  INNER JOIN Merchandise ON 
	 SaleItem.ItemID=Merchandise.ItemD
GROUP BY Category, Month(SaleDate) WITH CUBE
HAVING GROUPING(Category)=1 Or GROUPING(Month(SaleDate))=1

Category Month Amount
Bird
Cat
 
(null)
(null)
(null)
 
(null)

	 (null)
	 (null)
	 
	 (null)
	 1
	 2
	 
	 12

	 607.50
	 1293.30
	 
	 8451.79
	 1358.82
	 1508.94
	 
	 164.70

Figure 9.21
GROUPING SETS to hide detail. The GROUPING function can be used to hide the 
details so users can focus on the super-aggregate totals.  
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SQL Analytic Functions
The SQL-99 standard added some mathematical functions that are useful for com-
mon OLAP analyses. For example, the statistical functions of standard deviation 
(STDDEV_POP and STDDEV_SAMP), variance (VAR_POP and VAR_SAMP), 
covariance (COVAR_POP and COVAR_SAMP), correlation (CORR), and linear 
regression (REGR_SLOPE, etc.) are now part of the standard. Because most data-
base systems already had proprietary versions of these functions, the impact is not 
that great, but it will help if vendors adopt the standard names for the functions.

Two of the more interesting new functions are RANK and DENSE_RANK. 
These functions assign numbers to the sorted results that indicate the ranking of 
the data. A new table (SampleSales) was created to illustrate the functions. The 
sample data was created specifically to illustrate the difference between the two 
functions. You could create a view in the Pet Store database and run the same que-
ry, but the results will be different. Figure 9.22 shows the query and the results. 
First, note that the syntax is somewhat complicated. The reason for the complex-
ity is because these two functions are designed to work with partitions—which 
are explained in the next section. The query in this example uses all of the rows of 
data, but you still need the OVER clause to specify the correct sort order.

Look closely at the results, and you will see the difference between the RANK 
and DENSE_RANK functions. If you have every worked with ranked data (such 
as sports or election results), you know the basic problem: How do you handle 
ties? Both functions give tied values the same rank (2 in this case). But the RANK 
function keeps counting the number of entries and assigns a rank to the next non-
tied value that includes all of the entries above it. In this example, White receives 
a rank of 4 because three people have higher sales. The DENSE_RANK function 
counts the ranks instead of the rows. Consequently, White receives a dense rank 
of 3 because it is the next ranking value. You can choose whichever function you 
need for a particular problem. The syntax is the same, but you have to remember 
the difference between the two.

SELECT Employee, SalesValue, 
RANK() OVER (ORDER BY SalesValue DESC) AS Rank,
DENSE_RANK() OVER (ORDER BY SalesValue DESC) AS Dense
FROM SampleSales
ORDER BY SalesValue DESC, Employee;

Employee SalesValue Rank Dense
Jones 18000 1 1
Black 16000 2 2
Smith 16000 2 2
White 14000 4 3

Figure 9.22
RANK functions. The sort order for the rank function is specified separately. Ties are 
given the same rank. RANK skips values that would have been assigned to tie values. 
DENSE_RANK does not skip values. 
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SQL OLAP Windows Partition
The SQL-99 standard defines some a useful extension for OLAP that should make 
certain types of queries substantially easier in SQL. The standard introduced the 
concept of partitions or data windows. A partition is similar to a GROUP BY 
clause because you specify columns whose values are used to define the parti-
tions. But partitions offer additional options and enable you to display detail and 
aggregate data at the same time. Figure 9.23 demonstrates an advanced capability 
using the Oracle syntax, which is almost identical to the standard. SQL Server 
2012 supports the same syntax but the date conversion (TO_CHAR) has to be 
replaced with Year(SaleDate)*100+Month(SaleDate).

The main query needs a little explanation. Its goal is to compute a moving aver-
age over time within each Category. A moving average computes the average of 
a specified number of rows, then moves to the next row and slides the window to 
the next rows. The PARTITION BY Category command specifies that the compu-
tations are to be performed for each separate value of the Category variable and 
reset when a new Category value is found.  The ROWS 2 PRECEDING command 

CREATE VIEW qryMonthlyMerchandise AS
SELECT Category, 
   TO_CHAR(SaleDate, ‘yyyy-mm’) As SaleMonth, 
   sum(SalePrice*Quantity) As MonthAmount
FROM Sale INNER JOIN SaleItem ON Sale.SaleID=SaleItem.SaleID
   INNER JOIN Merchandise ON Merchandise.ItemID=SaleItem.ItemID
GROUP BY Category, TO_CHAR(SaleDate, ‘yyyy-mm’)

SELECT Category, SaleMonth, MonthAmount, AVG(MonthAmount)
    OVER (PARTITION BY Category
          ORDER BY SaleMonth ASC ROWS 2 PRECEDING)
    AS MA
FROM qryMonthlyMerchandise
ORDER BY Category, SaleMonth;

Category SaleMonth MonthAmount MA
Bird
Bird
Bird
Bird


2013-01
2013-02
2013-03
2013-06


135
45
202.5
67.5


135
90
127.5
105


Cat
Cat
Cat
Cat


2013-01
2013-02
2013-03
2013-04


396
113.85
443.7
2.25


396
254.925
317.85
186.6


Figure 9.23
SQL-99 OLAP PARTITION versus GROUP BY. The window PARTITION statement 
enables you to display aggregate data (average) along with the detail rows. The 
GROUP BY statement only provides the summarized data. Also note the use of the 
PRECEDING statement in the partition to calculate across previous rows of data. 
This version is based on the Oracle syntax.
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specifies that three rows are to be included in the computation: the current row 
and the two rows before it. If fewer than three rows exist, the DBMS uses only the 
values that do exist. 

One of the strengths of the OVER statement is that you can specify different 
partitions within the same SELECT statement. The standard also supports rela-
tively powerful options to specify a variety of ranges of rows. It is used to perform 
calculations relative to the current row, so you can compute differences and av-
erages backward and forward. Figure 9.24 shows some commonly used options 
for the RANGE function. The entire query computes three values of totals. The 
first SUM command totals the values in the rows from the beginning of the query 
through the current row. The second SUM column does the same thing, but more 
explicitly states the beginning and ending rows. The third SUM column computes 
the total from the current row through the last row of the query. In the second and 

- - Create a view to get the simple monthly merchandise totals
CREATE VIEW qryMonthlyTotal AS
SELECT SaleMonth, Sum(MonthAmount) As Value
FROM qryMonthlyMerchandise
GROUP BY SaleMonth;

SELECT SaleMonth, Value,
	 SUM(Value) OVER (ORDER BY SaleMonth) AS running_sum,
	 SUM(Value) OVER (ORDER BY SaleMonth RANGE
	 	 BETWEEN UNBOUNDED PRECEDING 
	 	 AND CURRENT ROW) AS running_sum2,
	 SUM (Value) OVER (ORDER BY SaleMonth RANGE
	 	 BETWEEN CURRENT ROW
	 	 AND UNBOUNDED FOLLOWING) AS remaining_sum
FROM qryMonthlyTotal
ORDER BY SaleMonth;

Month Value Sum1 Sum2 Remain
2013-01
2013-02
2013-03
2013-04
2013-05
2013-06
2013-07
2013-08
2013-09
2013-10
2013-11
2013-12

1358.82
1508.94
2362.68
377.55
418.50
522.45
168.30
162.70
288.90
666.00
452.25
164.70

1358.82
2867.76
5230.44
5607.99
6026.49
6548.94
6717.24
6879.94
7168.84
7834.84
8287.09
8451.79

1358.82
2867.76
5230.44
5607.99
6026.49
6548.94
6717.24
6879.94
7168.84
7834.84
8287.09
8451.79

8451.79
7092.97
5584.03
3221.35
2843.80
2425.30
1902.85
1734.55
1571.85
1282.95
616.95
164.70

Figure 9.24
OVER and RANGE functions.  The first SUM function computes the total from 
the beginning to through the current row. The second SUM function does the same 
thing more explicitly. The third SUM function totals the values from the current row 
through the remaining rows in the query.
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third examples, notice the use of the UNBOUNDED keyword to specify the start 
or end row. You could have replaced those with specific numbers if you wanted 
to compute only the totals for a specified number of preceding or following rows.

Most database systems also make it easy to use LAG and LEAD functions. 
These functions are designed to be used as inline functions that refer backward 
or forward to a specified number of rows. For example, the LAG function refers 
to values on previous rows. Figure 9.25 shows the basic syntax for Oracle and 
SQL Server with the result of a one-period lag and one-period lead. The power 
of the functions is that it is also easy to use the lag or lead variables in additional 
calculations. These functions are not part of the official SQL standard, so there 
are still some differences among the vendors. For example, you might not be able 
to specify the default value, which is useful for the first (or last) few rows that 
do not have defined values. But because most systems support the functions, and 
because they are so useful, they are worth studying. As of SQL Server 2012, the 
PARTITION, LAG, and LEAD functions are available in SQL Server with the 
same syntax.

Data Mining and Business Intelligence
What tools exist to search for patterns 
and correlations in the data? The goal 
of data mining is to discover unknown re-
lationships that can be used to make bet-
ter decisions. Figure 9.26 summarizes the 
various methods available to retrieve data 
from the database. Reports are predefined 
and generated as part of the transaction 
system. Queries are used to answer ad 
hoc questions, but require knowledge of 
SQL or a query builder. The OLAP cube 

- -LAG or LEAD (Column, # rows, default)
SELECT SaleMonth, Value,
	 LAG(Value, 1, 0) OVER (ORDER BY SaleMonth) AS Prior_
Month,
	 LEAD(Value,1,0) OVER (ORDER BY SaleMonth) AS Next_
Month
FROM qryMonthlyTotal
ORDER BY SaleMonth

SaleMonth MonthAmount Prior_Month Next_Month
2013-01
2013-02
2013-03

2013-12

1358.82
1508.94
2362.68


164.70

0
1358.82
1508.94


452.25

1508.94
2362.68
377.55


0

Figure 9.25
LAG and LEAD functions. As inline functions, they easily return a value from a 
prior or following line. You can specify how many lines to go backward or forward.

The topics in this section are more 
advanced and might be saved for a 
second course. The examples re-
quire installation of the Business 
Intelligence tools. In-depth details 
and explanations are provide in the 
separate Data Mining textbook. But 
this section provides an introduction 
to the basic concepts and goals.
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browser enables managers to retrieve data interactively, but primarily focuses on 
subtotals. Data mining is different in that the tools use statistical comparisons to 
search for patterns, and many of the tools are relatively autonomous. Managers 
have to select the appropriate tool and interpret the results, but the goal of data 
mining is to run with minimal input.

A few tools require more input and specification by model builders. Most of 
the technologies are exploratory, in the sense that you are searching for unknown 
relationships as opposed to trying to confirm a suspected one. Some of the rou-
tines are derived from statistical analysis; others are highly detailed and created 
for specialized tasks. This section presents an overview of some of the more popu-
lar technologies. Detailed statistical and programming issues are not covered here, 
but can be found in specialized textbooks.

Figure 9.27 lists some of the common data mining categories. Occasionally, a 
DBMS vendor will include a few of the technologies with the base system. How-
ever, most vendors sell business intelligence tools as add-on products. Many other 
tools are available from specialized data mining companies. In either case, you 
generally require the services of a modeler to help build the proper models and in-
terpret the results. Data classification and market basket analysis are two common 
methods of analyzing data in business because they are useful for many types of 
problems. Geographic systems are powerful solutions to specific questions. Web 
site analysis through time-series evaluation of logs is increasingly popular. New 
technologies and new methodologies that can evaluate ever-larger datasets are be-
ing developed continually.

Data Configuration
Configuring data is one of the most critical tasks of analysis, and the task a da-
tabase developer is most likely to focus on. The categories in this section are or-
ganized in terms of how the data needs to be organized—which is related to the 
ultimate task. For example, several classification tools exist, but they all rely on 
the same data structure.

Data for analysis can come from a data warehouse or from relational tables. 
Standalone tools, such as the open-source tools, often require that data be stored 
in CSV files. Most data warehouses and relational DBMSs can export data into 

Databases

Reports

Queries

OLAP

Data	Mining

Transactions	and	operations

Specific	ad	hoc	questions

Aggregate,	compare,	drill	down

Unknown	relationships

Figure 9.26
Data mining. With a goal of identifying unknown relationships. Data mining is a 
bottom-up approach. Highly specialized tools scan the data searching for information 
that might be useful.
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CSV files. If nothing else, a SQL SELECT statement can be used to extract the 
data—complete with commas—and then the output can be redirected or saved to 
a text file.

Classification
As shown in Figure 9.28, many business problems can benefit from classifica-
tion analysis. Several tools have been developed to estimate relationships that 
can predict an outcome. Statistical methods like regression are readily available. 
However, the two drawbacks to statistical methods are that they tend to assume 
linear relationships exist, and the estimates are based on averages—but often the 
most important hidden relationships are too small to be identified by averages. For 
example, you might be searching for new customers that can be encouraged to 
return and make more purchases. Since they are new, you might not have enough 
average data to create a statistically important effect.

Problems that can be evaluated by classification analysis have an outcome that 
is affected by a set of indicator attributes. The basic objective is to estimate the 
strength of the effect of each indicator variable and its influence on the outcome. 
For instance, a bank would have historical data on borrower attributes such as job 
stability, credit history, and income. The data mining system could estimate the 

Which borrowers/loans are most likely to be successful?
Which customers are most likely to want a new item?
Which companies are likely to file bankruptcy?
Which workers are likely to quit in the next six months?
Which startup companies are likely to succeed?
Which tax returns are fraudulent?

Figure 9.28
Classification examples. Many common business problems can benefit from 
classification analysis. Each problem has an outcome and the goal is to classify 
elements into the outcome choices based on a set of attributes.

Classification/prediction/regression
Association rules/market basket analysis
Clustering
	 Data points
	 Hierarchies
Neural networks
Deviation detection
Sequential analysis
	 Time series events
	 Website analysis
Spatial/geographic analysis
Textual analysis

Figure 9.27
Data mining techniques. Classification and market basket analysis are popular 
technologies in business. New technologies and new methods of estimating 
relationships are still being developed. 
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effect of each of these variables on the ultimate outcome (paying off the loan or 
defaulting). These weights could be applied to future customer data to help deter-
mine whether to grant a loan, or to affect the interest rate to charge.

  Figure 9.29 shows a tiny sample of data for the lending situation. Note that 
the data might be categorical (Yes/No) or continuous (e.g., Income). Some clas-
sification tools can work with either type of data, but some require you to convert 
to categorical data. For example, the income data could be converted to bins, such 
as low: 0-30,000; medium: 30,000-70,000; high: 70,000-120,000, and wealthy: 
above 120,000. Of course, then you face the new data mining question of where 
to draw the lines to separate the categories. Some tools provide techniques to help 
make this decision as well. 

Common classification tools include: various regression methods, Bayesian 
analysis, decision trees (particularly for hierarchical data), genetic algorithms, and 
neural networks. Of the group, neural networks typically require the least supervi-
sion, whereas advanced regression techniques rely on the skills of an experienced 
modeler. The key issue with any classification analysis is to determine how ac-
curately the model can predict both existing and new cases. All of the techniques 
have strengths and weaknesses that you need to evaluate before choose a tool for 
a specific problem. Most require a solid knowledge of fundamental statistics to 
interpret the results.
Data for Classification
Data for classification problems is typically stored similar to a relational table. 
Each row holds one instance of data and the columns represent the attributes. At 
least one attribute (column) is the predicted or dependent column, but that deci-
sion is made by the analyst or modeler. This data is usually easy to generate be-
cause a SQL SELECT command can commonly be used to choose the columns 
and rows and to perform simple computations.
Example
Most data mining tools require a considerable amount of data to work effectively. 
In most business transaction applications, you will have plenty of data. However, 
the sample Pet Store database is intentionally kept small to make it easier to han-
dle. The Rolling Thunder Bicycle company database has considerably more data 

NoGoodGoodNo75000
NoBadBadYes25000
YesGoodGoodYes50000
SuccessJob	StabilityCredit	HistoryMarriedIncome

NoGoodGoodNo75000
NoBadBadYes25000
YesGoodGoodYes50000
SuccessJob	StabilityCredit	HistoryMarriedIncome

Figure 9.29
Bank loan classification. The indicator attributes affect the outcome in some fashion. 
The data mining software estimates the strength of each attribute on a set of test data. 
The resulting model can be applied to future data to predict the potential success or 
failure of new loans.
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and works better for data mining illustrations. As a classification example, con-
sider a basic goal of examining sales by model type. The goal is to see what fac-
tors affect the choice of model type, so the detail data consists of each individual 
bicycle sale. The fact attribute is the ModelType column. The company collects 
only minimal demographic data—something the managers might want to add in 
the future. However, Gender is available, the SaleYear is available in case pur-
chases changed over time. Additionally, the City table contains two values from 
the Census Bureau: Income and Population which represent average customers 
within a city. A straightforward query generates the data in the correct format.

  The data can be analyzed with standalone tools or a model can be built with-
in the SQL Server Business Intelligence Studio. Every tool uses slightly different 
techniques and algorithms, so the results can vary slightly depending on the tool 
selected. The results shown in Figure 9.30 come from SQL Server’s Decision Tree 
model. This tool examines the data to identify significant change points which are 
then marked as nodes in the tree. The selected node represents sales from 2006 
on from cities with per capita income of about $35,000 and more. The legend for 
that node shows the percentage breakdown of model type sales for that group. The 
marketing managers can compare the values to the nearest node (incomes less 
than $35,000) to see the different purchase patterns.

Many other classification tools can be used. They all examine the impact of the 
selected attributes on the target fact variable. However, the outputs are slightly 
different and can provide different perspectives on the data. Some tools, such as 
regression, require pure numeric data; others can use categorical data.

Figure 9.30
Rolling Thunder Bicycles Model Type decision tree. Attributes Gender, SaleYear, 
Income, and city Population were used to predict the model type selection. Each 
node in the tree represents a significant change variable. The displayed legend shows 
percentage sales by model type for sales from 2006 with relatively higher personal 
incomes ($35,000 or more). 
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Association Rules/Market Basket Analysis
Market basket analysis is the tool that is credited with driving the acceptance 
of data mining. Originally, the techniques were applied to analyzing consumer 
purchases at convenience stores, hence the term market basket. The more generic 
term of association rules indicates that the methodology can be used for other 
situations. The basic question these systems answer is, What items are customers 
likely to buy together? Or, in terms of rules, Does the existence of A imply the 
existence of B? In the classic example, a convenience store discovered that shop-
pers who purchase diapers often purchase beer at the same time—particularly on 
Thursday and Friday nights. The importance of this piece of information is that 
managers can use it to increase sales. For instance, you might consider placing 
the two items close to each other in the store to encourage even more customers 
to purchase both items. Likewise, manufacturers might use similar knowledge to 
cross-sell items by providing coupons or product descriptions in the packaging of 
the related items.

Market basket analysis requires that you have a set of transaction data that con-
tains a list of all items purchased by one person. Today, this data is readily avail-
able from supermarkets and large chains that use bar-code scanners. Most compa-
nies sell this data to specialized firms that resell it to other companies. The analy-
sis software then scans the data and compares each item against the others to see 
if any patterns exist. In the process, the software computes three numbers that you 
use to evaluate the strength of the potential relationship or rule. The definitions 
are easier to understand with pairs of items, but they also apply to multiple items. 
The support for a rule is measured by the percent of transactions that contain both 
items. Statistically, the probability is denoted as P(A ∩ B) (the probability of A 
and B occurring together) and computed by counting the number of transactions 
with both items and dividing by the total number of transactions. Similar numbers 
can be computed for A and B alone, or the percentage of times each individual 
item has been purchased. Higher values of support indicate that both items are fre-
quently purchased together—but the number does not tell us that one causes the 
other. The confidence of the rule (A implies B) is measured by the percentage of 
transactions with item A that also contain item B. Statistically, it is the probability 
that B is in the basket, given that A has already been chosen, denoted P(B|A). By 
statistical definitions, P(B|A) = P(A ∩ B) / P(A), so it is relatively easy to com-
pute. Again, higher values of confidence tend to indicate that purchases of item 
A lead to purchases of item B. The third statistic reported by most data mining 
tools is lift. Lift is the potential gain attributed to the rule, compared to purchases 
without the rule. If the value is greater than 1, the lift is positive. Conceptually, 

Support: 	 P(B ∩ D) = .6	 P(D) = .7	 P(B) = .5
Confidence: 	 P(B|D) = P(B ∩ D)/P(D) = 0.857
Lift:	 P(B|D)/P(B) = 1.714

Figure 9.31
Evaluating a market basket association. Support is the percentage of both items being 
purchased in one transaction. Confidence is the probability of purchasing beer (B) 
given that diapers (D) are purchased. Lift is the contribution of the effect to sales and 
should be greater than 1.
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it indicates the gain in sales resulting from the association. Statistically, it can be 
computed as P(A ∩ B) / (P(A) * P(B)) or as P(B|A)/P(B).

Figure 9.31 shows how the numbers are computed for the diapers and beer 
example. The numbers are fictional but representative of the situation. Notice 
that the lift is substantially higher than 1 (1.714), indicating that the association 
strongly contributes to sales of beer. Data mining software computes all of these 
numbers for essentially all pairs of items. If there are many items, the process can 
take quite a while to run. Also, multiple items could be considered in the analy-
sis: Does the purchase of sheets and pillowcases lead to the sale of more towels? 
However, combining too many dimensions leads to huge computational issues, so 
most analyses are done with a limited set of comparisons. 

Working with market basket analysis, you will quickly encounter several prob-
lems. First, items with a small number of purchases can result in misleading val-
ues. If an item is purchased only once or twice, then almost anything else pur-
chased with it will seem to be related. Consequently, you will have to examine 
the data and change groupings to ensure that most items are purchased with ap-
proximately the same frequency. Figure 9.32 shows a hypothetical situation at a 
hardware store that sells a lot of lumber but only a limited number of nails and 
screws. To prevent spurious rules, the answer is to combine the nails and screws 
into a broader hardware category, and split the lumber transactions into more de-
tailed definitions. How do you know if problems exist? You can use additional 
queries to quickly count the number of sales of each item. The newer OLAP func-
tions also make it easy to compute the percentages if the raw count numbers are 
hard to read.

The other problems that you can encounter with market basket analysis include 
the fact that some rules identified will be obvious to anyone in the industry. For 
example, a fast food chain would undoubtedly see a relationship between burgers 
and fries. A tricky problem arises when the system returns rules that do not make 
sense or cannot be explained. For example, a hardware chain found that sales of 
toilet rings were closely tied to the opening of new stores. Even if this correlation 
is true, what do you do with it?
Data for Association Analysis
Data for association analysis generally comes from transaction systems—particu-
larly sales data. The catch is that analysis systems use two different methods for 

Freq.Item

2%4” nails
50%Lumber

1%3” nails
1%2” nails
2%1	“ nails
Freq.Item

2%4” nails
50%Lumber

1%3” nails
1%2” nails
2%1	“ nails

Freq.Item

15%Finish	lumber
15%Plywood
20%Dim.	Lumber
15%Hardware
Freq.Item

15%Finish	lumber
15%Plywood
20%Dim.	Lumber
15%Hardware

Figure 9.32
Balanced frequencies. Items that are rarely purchased will lead to false rules. The 
solution is to define the items so that they balance. In this case, combine nails into a 
hardware category and split lumber into smaller categories.
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arranging data. You need to read the tool’s documentation carefully to determine 
the correct layout. Figure 9.33 shows the two common layouts, labeled transac-
tion and basket. The transaction format mirrors the relational database approach. 
Essentially you just need data from the SaleItem table, and perhaps the Merchan-
dise table if the manager wants to analyze data by category instead of ItemID. The 
data can be retrieved easily using a standard SELECT statement. 

Unfortunately, some of the early tools created for association analysis were 
written with the requirement that each basket be specified as one line of text, with 
the item values separated by commas. Each row represents one basket and the 
rows are variable length. There is no easy way to convert relational data into this 
basket format. It can be done, but it requires writing programming code that us-
ers a cursor to track through each row of data in the SaleItem table. The ItemID 
values are collected and built into a new string that appends a comma and the new 
ItemID for each row. When the SaleID switches, the new string row is written to 
the file. The code is straightforward, but eventually you will need a generic pro-
gram that can be applied to any table or query because you will tire of rewriting 
the code every time it is needed.

Figure 9.33
Two data formats for association analysis. Coming from a  relational database, the 
top format is the easiest to create. The second format requires programming. It could 
be based on Category instead, but not both ItemID and category at the same time.

SaleID ItemID Description Category
4 36 Leash Dog
4 1 Dog Kennel-Small Dog
6 20 Wood Shavings/Bedding Mammal
6 21 Bird Cage-Medium Bird
7 40 Litter Box-Covered Cat
7 19 Cat Litter-10 pound Cat
7 5 Cat Bed-Small Cat
8 16 Dog Food-Can-Premium Dog
8 36 Leash Dog
8 11 Dog Food-Dry-50 pound Dog

Transaction data. It is easy to extract with SQL on the 
SaleItem and Merchandise tables.

36, 1
20, 21
40, 19, 5
16, 36, 11

Basket data. Converting from the SaleItem table to this format requires 
a cursor program that builds each row as a string for each SaleID.
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Example
It can be fun to experiment with market basket analysis. In some cases, it is ob-
vious which items are purchased together (burgers and fries), in other cases the 
results are surprising. It is the surprising results that are the most useful. Still, 
association analysis can generate hundreds or even thousands of rules. It takes 
time and some experience to read through the rules and find the ones that can be 
useful. Rolling Thunder Bicycles has a couple of possibilities for using associa-
tion analysis. It might be tempting to look at the traditional market basket and see 
which items were purchased at the same time. However, remember that almost all 
bicycles are built using groups of components. A group specifies all of the default 
components, so a market basket analysis would simply identify all of the compo-
nents within a group. But, we already know those values, so there is no surprise. If 
customers routinely overrode the defaults and selected their own components, the 
results would be more interesting. 

Instead, Figure 9.34 shows the results of examining model type purchases by 
customer. Essentially, CustomerID is the market basket and model types are the 
items purchased. Customers can buy multiple bicycles, perhaps at different times. 

Figure 9.34
Association rules for bicycles purchased by each customer. Same customer, possibly 
different times. Microsoft’s probability and importance calculations are non-
traditional but the interpretation is the same. Rules with high probability and high 
importance are likely to repeat. 
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The question being asked is whether there is a pattern in purchases of model types. 
Consider the first rule which has a high probability (1.00) and relatively high im-
portance (0.261). It says the customers who purchased a track and a hybrid bi-
cycle also purchased a road bike. Consequently, future customers who purchased 
the first two model types should be contacted to suggest that they might also want 
to buy a road bike. Alternatively, the company could offer discounts on hybrid or 
track bikes which might then increase the sales of road bikes—which would not 
be discounted. Only some of the rules are shown in the figure. The challenge with 
association rules is to find the ones that are strong, important, and meaningful.

Cluster Analysis
Cluster analysis is used to identify groupings of data—data points that tend to be 
related to each other. It can be used to identify groups of people, for example, to 
categorize customers. If you know that customers fall within certain groupings, 
you can use the information about a few customers to help sell additional products 
to the others in the group. Most likely, customers in the same group will want 
similar products. For instance, a bookstore can use the purchases of some items to 
categorize a customer and then identify books that similar customers bought and 
suggest them to the other shoppers. Likewise, you could use cluster analysis to 
categorize the skills of employees that work in various departments and use that 
information when hiring new workers.

As shown in Figure 9.35, clusters are relatively easy to see in two dimensions. 
The objective of the software is to identify the data points that are close to each 
other (small intra-cluster distance), yet further away from other points (larger 
inter-cluster distance). Unfortunately, most datasets do not exhibit clustering as 
strongly as shown in this example. But cluster analysis is a useful data exploration 
technique because it can reveal patterns that you might not see with other tools. 
However, keep in mind that datasets with a large number of observations (rows) 
and many dimensions are extremely difficult to cluster. Even with relatively mod-
ern computers, it can take hours or days to evaluate large, complex problems. So 
start cautiously and try to build clusters using smaller samples and a limited num-
ber of dimensions.

Small	intra-
cluster	
distance

Large	inter-
cluster	
distance

Dimension	A

B

Figure 9.35
Cluster analysis. The goal is to find data points that are grouped close to each other 
and farther from other groups. Larger datasets with multiple dimensions are difficult 
and time-consuming to evaluate.
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Data for Cluster Analysis
Data for cluster analysis is straightforward because it is similar to relational ta-
bles. Each column defines values for a chosen attribute. Each row represents one 
instance of the data. If the query results contain two attributes (columns), then 
each row represents one point on the two-dimensional chart. This data is easily 
retrieved using a standard SELECT query. 

The one catch with cluster analysis is that some versions will not run if the 
dataset is too large. Too large is defined both in terms of the number of dimen-
sions (columns) and the number of observations (rows). The specific limits de-
pend on the algorithm used by the tool and the processing speed of the computer. 
This problem is similar to the issue of dimensionality in association analysis. You 
might need to reduce the number of dimensions, or combine items into aggre-
gates. For example, it might make sense to examine sales of categories instead of 
individual items. Ultimately, this decision must be made by the manager or statis-
tical analyst. However, it is often wise to start with smaller problems using aggre-
gated data. Once these work, you can begin disaggregating the data and looking at 
larger problems.
Example
Rolling Thunder Bicycle Company presents several opportunities for cluster 
analysis. Aligning with the other examples, this example builds cluster based on 

Figure 9.36
Cluster based on bicycle attributes. This chart focuses on model type. Based on the 
shading, the two main clusters are split by road/race bikes versus mountain/hybrid 
types. Details within the two groups are based on sale price and order year. Bike size 
also plays a role in differentiating the clusters.

Mountain and Hybrid

Road, Race, Track
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model type. It is possible to include multiple attributes for each point so the data 
examines each bicycle in detail: Construction type (which is a proxy for material 
used), order year, sale price, bike size, and time to build. The attributes selected 
depend on the goals of the analysis. You might want to start with a smaller number 
of attributes—partly because including too many dimensions makes the model 
more difficult and time-consuming to estimate.

Figure 9.36 shows one version of the cluster results. Note the two large group-
ings—these are largely determined by model type. The top grouping consists of 
mountain and hybrid bikes. The lower group consists of road and race bikes. The 
tools provide additional charts to enable you to determine the differences between 
the clusters within the groups. These charts are not shown here, but they indicate 
that the details are determined by order year, sale price, and bike size. If manag-
ers want to examine these effects in more detail, it would make sense to run ad-
ditional cluster analyses focusing on two or three of these attributes at one time. 
Ultimately, managers will want to see results from a variety of different models. 
For example, clusters might generate some intuition about the data, which could 
then be analyzed with classification tools. 

Geographic Analysis
Geographic information systems (GIS) display data in relation to its location. 
The systems are generally classified as visualization systems. They are useful for 
displaying geographical relationships and showing people how data is influenced 
by location. Few systems have true data mining capabilities for scanning the data 
to find patterns. Nonetheless, they are an important tool in analyzing data. Some 
relationships are much easier to understand if you see them on a map. Figure 9.37 

Figure 9.37
Geographic analysis. This basic map shows sales by state. As shown by the key, 
darker colors represent larger sales. Additional data, such as income, could be shown 
as overlays or compared in charts.
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shows a simple map of sales by western states. Additional data could be displayed 
with more colors or charts could be placed on each state.

Larger DBMS vendors have begun incorporating spatial and GIS systems into 
their offerings. You can also purchase standalone systems from other vendors. Be-
yond drawing maps, a true GIS has several methods for displaying data on the 
map. Basic techniques include shading and overlays, often used to display sales 
by region. Overlays show multiple items on different levels, making it easier to 
see how several items relate to each other as well as to location. For instance, mar-
keters might compare sales, income, and population by geographic region.

In addition to the software, you need two important components for geographic 
systems. First, you need map data. Generally, this data is sold with the analysis 
system, but detailed data is sometimes sold as an add-on option. Highly detailed 
data down to individual street level is available for the United States (and much 
of Europe), but it is a large database. Second, you need to geocode your data 
and probably buy additional demographic data that is already geocoded. Essen-
tially, you need to collect and store some type of geographical tag for your data. 
At a basic level, you probably already know country and state. But you might also 
want to add a region code, or a city code, or perhaps even latitude and longitude. 
If all of your sales are through individual stores, it is relatively easy to get the 
geographic position of each store from maps or GPS systems. An interesting pos-
sible option in the future arises from the increasing use of cell phones. Because of 
federal emergency regulations (e-911), cell phones are required to have position-
ing systems. Eventually, it is conceivable that this information will be provided to 
businesses, so your transaction systems can record exact locations of salespeople, 
and possibly even of customers. Please keep in mind the serious privacy issues 
these technologies create, but as you build new databases, you should think about 
incorporating geocode information into the data capture tables. Once the data has 
been collected, the GIS makes it easy to display relationships.
Data for Geographic Analysis
Most GIS tools are standalone tools. For example, Microsoft’s MapPoint is in-
tegrated into Excel. On a larger scale, ESRI’s ArcGIS is definitely a standalone 
(or Web based) tool. Similarly, Google Earth is largely Web based. Most of these 

Figure 9.38
Common geographic identifiers. At least one of these attributes must be coded into 
the data to use a GIS.

State
Country
Region (custom defined)
Latitude, Longitude
Address
City
County
ZIP Code
Census Tract
Standard Metropolitan Statistical Area
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tools can extract data from a DBMS and use it in their displays and analyses, so 
data preparation can still be handled within the DBMS. 

GIS data is typically stored in a relational format. Each column represents a 
single attribute and each row contains values for one location. The critical point is 
that at least one column must contain a geographic identifier. For example, a que-
ry might compute sales by state, so one column contains the state code. Each tool 
supports different types of geographic codes, but Figure 9.38 shows the types of 
geographic identifiers support by most systems. Some of the items in the list are 
defined within the U.S. only; however, there are often similar values in other na-
tions. For instance, Postal Code is an international version of the U.S. ZIP Code.

At least in the U.S., some national data is already coded geographically. In par-
ticular, data collected by the Census Bureau is tagged by several identifiers such 
as City, State, ZIP Code, Census Tract, and Standard Metropolitan Statistical Area 
(SMSA) or large city region. Some tools include access to common Census data, 
but much of the data is available for free download from the Census Bureau Web 
site. This data is useful for comparisons or overlays with your business data. In 
particular, economic models suggest that it is useful to compare average income 
to sales.
Example
GIS systems are different from most other data mining tools. You need a spe-
cific tool to be able to plot data geographically, and these tools are almost always 
standalone tools. Consequently, you generally export the data from the database. 

Figure 9.39
Sales of bicycles by state in 2009. The legend is hidden but states colored in darker 
green represent higher sales based on dollar value.
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A relatively inexpensive tool is Microsoft’s Map Point software. You also might 
be able to use online tools such as Google Earth—but even some of those carry 
fees if you want to add your own data. Some applications can be handled online, 
such as placing stick pins or drawing routes in Google Maps or Microsoft Maps. 
Shading regions or states based on sales data has usually more difficult with the 
online tools.

As a small example of Microsoft Map Point, it is straightforward to write a 
query to retrieve sales value by state for 2009. Running the query, the results can 
be copied and pasted into an Excel spreadsheet. Once Map Point is installed, it 
can be run as an add-in. The tool automatically picks up the state codes (although 
it does not recognize PR for Puerto Rico). Figure 9.39 shows the data plotted us-
ing darker colors for higher sales. It is also straightforward to insert push pins, 
sized dots, or data charts.

Summary
Large databases are optimized for transactions processing—to handle day-to-day 
operations efficiently, data is stored in normalized tables. But most managers need 
to join several tables to retrieve and understand the data. Indexes speed joins and 
data retrieval, but slow down transactions. This dichotomy means that it is often 
better to create a separate data warehouse to use for data analysis. Data can be 
extracted and cleaned from transaction systems, and placed into star or snowflake 
designs enabling managers to focus on the dimensions that surround a particular 
fact.

OLAP cubes are a powerful tool to enable managers to quickly sift through 
data and examine subtotals from a variety of perspectives. Without writing intense 
SQL queries, managers can compare values across product categories, time, and 
even across multiple dimensions simultaneously. OLAP cube browsers also con-
tain easy methods to filter the data to specific rows or cube sections.

Many statistical data mining tools have been developed to help managers ana-
lyze data. They often require training and specialized knowledge by the workers, 
but can be powerful tools to understand relationships among the data. Classifi-
cation and clustering algorithms help break the data into groups. Comparing the 
various groups makes it possible to better understand customers and expand the 
market. Association or market basket rules are popular with stores that sell a large 
variety of items. Identifying items that are purchased together makes it possible 
to suggest products to other customers. It can also lead to insights in store layout 
and customer psychology. Geographic systems are useful for any problem involv-
ing location. Specialized tools and demographic data are available to see the geo-
graphic relationships that exist.
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Key Terms

Review Questions
1.	 Why are indexes so important in relational databases?
2.	 Given the power of a relational DBMS, why might a company still need a 

data warehouse?
3.	 What main problems are encountered in setting up a data warehouse?
4.	 How are OLAP queries different from traditional SQL queries?
5.	 What is an OLAP cube?
6.	 What are hierarchical dimensions and how do they relate to roll up and drill 

down operations?
7.	 What basic analytical functions are defined in SQL? 
8.	 What is the goal of data mining?
9.	 What are the main categories of data mining tools?
10.	 How is data organized in a data warehouse?

association rules
binary search
business intelligence (BI)
classification analysis
cluster analysis
comma separated values (CSV)
confidence
data hierarchy
data mining
data warehouse
DENSE_RANK
dimensions
drill down
extraction, transformation, and 

transportation (ETT)
fact table
geocode

geographic information systems 
(GIS)

lift
market basket analysis
measures
multidimensional expressions (MDX)
online analytical processing (OLAP)
online transaction processing (OLTP)
partition, SQL
pointer
RANK
roll up
snowflake design
star design
super-aggregate
support

A Developer’s View
Miranda saw that some business questions are difficult to answer, even with SQL. 
When managers are not exactly sure what they are looking for, you need to con-
sider the OLAP and data mining approaches. Providing an OLAP cube is a good 
first step because it makes it easy for managers to see subtotals and slice the data 
to whatever level they want. More sophisticated statistical data mining tools are 
available, but generally require additional training and knowledgeable users. Just 
remember that performance often requires moving OLAP data into a separate 
data warehouse.
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Exercises
1.	 Find at least two commercial OLAP tools and compare the features.
2.	 Find a commercial data mining tool and outline the steps needed to extract 

and transform data from a typical DBMS so it is usable by the system.
3.	 Find a commercial data mining tool and outline the steps needed to perform a 

market basket analysis.
4.	 Assume you have two separate sets (tables) of customer data. You need to 

merge the two sets and eliminate the duplicates. The two tables use different 
ID/key values. Describe any problems you expect to encounter and how you 
might resolve them.

5.	 This question requires some tricky SQL. Assume you have a query 
(AnnualSales) with columns for SaleYear and Sales. Write the plain SQL 
(without the LAG function) to compute the difference in sales (current year 
value – prior year). 

Most of the following questions require an OLAP cube processor. You should 
have access to SQL, an OLAP browser within the DBMS, or a PivotTable. For the 
data mining tools, if you do not have access to specialized software, you can use 
Excel for simple analyses.

Sally’s Pet Store
6.	 Create a cube to browse merchandise sales by date, state, employee, and item 

category.
7.	 Create a cube to browse animal adoptions by time, category, breed, gender, 

and registration.
8.	 If you are using SQL Server or Oracle, write the grouping and cube query to 

compute sales by employee by month, similar to the query in Figure 9.21.
9.	 Create a cube to browse purchases of merchandise from suppliers based on 

time, employee, and location. As facts, include the value of the purchase, the 
shipping cost, and the delay between order and receipt.

10.	 If you have access to market basket software, evaluate the sales tables to see 
if any associations exist. If you do not have the software, set up the query to 
retrieve the data.

11.	 Using SQL Server or Oracle, create a view to compute sales by month 
(YearMonth). Use the Lag function to compute the percentage change from 
the previous month.

12.	 Using SQL Server or Oracle, create a view as in the previous question that 
computes the sales by month. Then use the AVG and OVER functions to 
compute the three-month moving average.

13.	 Using SQL Server or Oracle, create a view that computes the total 
merchandise purchases by month. Then create a query that displays the 
month, total, and running total to date.
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14.	 Identify at least two specific data mining tools that would be useful for this 
company and explain what data would be used and how they might be used 
to improve sales or operations.

15.	 Using monthly sales of merchandise, forecast sales for the next three months.
16.	 Is there a geographic pattern to sales? Do some states or regions have more 

sales?
17.	 Compute the total sales by employee for the year and list them in descending 

order with the computed ranking, similar to Figure 9.22.
18.	 Use the bulk load or import facilities of your DBMS to load several new 

items into the Merchandise table. File: MerchandiseNew.csv. Hint: Import 
the CSV file into a new table and use an INSERT statement to move the data 
into the Merchandise table.

19.	 Import the CSV file NewCustomers.csv into the database as a new, temporary 
table. Add the customers to the Customer table but be careful. Some of the 
“new” customers already exist in the Customer table—do not add duplicate 
values.

20.	 Import two CSV files (NewSales.csv and NewSaleItems.csv). The Sale 
file has a SaleID and a CustomerID. The CustomerID is valid, but the 
SaleID values are temporary can cannot be used in the main database. The 
NewSaleItems file has the matching SaleID and an ItemID. The ItemID is 
valid, and the SaleID matches the temporary value in the matching NewSales 
file. Import both files into the database, insert the new sales into the main 
Sales table, generating a new SaleID value. Assign that new SaleID value to 
insert the NewSaleItems entries into the SaleItem table. 

 Rolling Thunder Bicycles
21.	 Create an OLAP cube to evaluate sales (value and quantity) by model type, 

state, time, and sales employee.
22.	 Create an OLAP cube to evaluate production time (ShipDate – OrderDate) 

by order date (time), model type, month, and employee who assembled the 
frame.

23.	 Create an OLAP cube to evaluate purchases of components by time, 
manufacturer, road or mountain bike, and component category.

24.	 Run a regression analysis to determine how sales by city by year are affected 
by population and income.

25.	 Using monthly sales by model type, forecast sales for the next six months.
26.	 Write a query to retrieve the data to perform a market basket analysis of 

component sales—to test which components were installed on the same bike. 
27.	 Create an OLAP cube to evaluate sales (quantity) by paint type, letter style, 

and model type. 
28.	 Create a query that computes total sales by year. Create another query that 

displays those annual values and computes the percentage change from year 
to year. Hint: Define a new column as PriorYear = Year-1 and use it in a join.
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29.	 Using SQL Server or Oracle, create  query that computes total sales by Year 
and Model Type and compute and show only the super-aggregate totals for 
model type and year.

30.	 Using SQL Server or Oracle, create a query that displays Year, Month (year/
month), Sales, and year-to-date sales using the SQL Analytic functions. 
Hint: The syntax is slightly easier if you first create a view to compute 
MonthlySales (Year, YearMonth, Sales).

31.	 Using SQL Server or Oracle, if it does not already exist, create a View that 
computes total sales by YearMonth. Using the SQL Analytic functions create 
a query to compute a 3-month moving average by model type. Hint: Leave 
out the Hybrid and Track model types because of their limited sales.

32.	 If you have access to a GIS such as Microsoft MapPoint, write the query and 
import the data to display a map similar to Figure 9.39 showing sales of Race 
bikes in 2012.

Corner Med 
33.	 Use association software or computations to see if some diagnoses 

commonly arise together.
 34.	Assume the ICD10 conversion does not exist. Use the crosswalk tables 

to identify the matching values for the existing ICD9 codes in the 
VisitDiagnoses table. Comment on any problems you find.

35.	 Using categorization software, such as regression, neural network, or 
decision tree, try to identify features of patients that spend the most money.

36.	 Create an OLAP cube to explore physician data in terms of patients and 
procedures. Managers want to focus on revenue and patients visited per day, 
week, and month.

37.	 Forecast the number of patients expected for a specific month. Hint: Use 
simple regression unless you have access to a time series analyzer.

38.	 Using SQL Server or Oracle SQL Analytic functions, show the monthly 
revenue generated by procedures by each of the physicians, along with the 
super-aggregate totals. Including the Grouping values. 

39.	 Using SQL Server or Oracle SQL Analytic functions, count the number of 
patient visits per day for the month of March, and show the running total for 
the month.

40.	 Create a view that computes Revenue by month. Using either the Lag 
function or a JOIN by Year – 1, compute the percentage change in revenue by 
month.

Corner
Med

Corner
Med
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 Web Site References
http://www.oracle.com/technology/tech/bi/index.html Oracle business intelligence tools
http://www.microsoft.com/en-us/bi/default.aspx Microsoft SQL Server analysis tools
http://www-03.ibm.com/software/products/us/en/
category/SWQ20

IBM DB2 business intelligence tools

http://publib.boulder.ibm.com/infocenter/rbhelp/
v6r3/index.jsp?topic=%2Fcom.ibm.redbrick.
doc6.3%2Fsqlrg%2Fsqlrg36.htm

SQL 99 OLAP standards and example.

Additional Reading
Apte, C., B. Liu, E. Pednault, and P. Smyth, Business applications of data mining, 

Communications of the ACM, 45(8) August 2002, 49-53. [Some examples of 
data mining, also part of a special issue on data mining.] 

Golfarelli, M, and S. Rizzi, A Methodological Framework for Data Warehouse 
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warehousing and OLAP, 1998, ACM Press, 3-9. [ Relatively formal 
definition of facts, dimensions, and hierarchies.]

Han, J. and M. Kamber, Data Mining: Concepts and Techniques, San Francisco: 
Morgan Kaufmann/Academic Press, 2001. [A general introduction to data 
mining techniques.] 

Hastie, T., R. Tibshirani, and J. Friedman, The Elements of Statistical 
Learning/2e, New York: Springer-Verlag, 2009. [A strong foundation book 
on the statistics and algorithms of data mining including all of the math.]

Peterson, T., J. Pinkelman, and B. Pfeiff, Microsoft OLAP Unleashed, 
Indianapolis: Sams/Macmillan, 1999. [Details on OLAP queries and data 
warehouses in SQL Server.]

Post, Gerald, Data Mining Applications/2e, 2012, http://www.JerryPost.com/
Books/DMBook. [Detailed applications of data mining with SQL Server and 
some open-source tools.]
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September 1998, 64-65. [Brief comments on Comcast using a Web interface 
for its data warehouse.] 

http://www.oracle.com/technology/tech/bi/index.html

	Chapter 9: Data Warehouses and Data Mining
	Introduction
	Two-Minute Chapter
	Indexes
	Binary Search
	Pointers and Indexes
	Creating Indexes
	Problems with Indexes

	Data Warehouses and Online Analytical Processing
	Data Warehouse Goals
	Data Warehouse Issues

	Data Extraction, Tansformation, and Transportation
	OLAP Concepts
	OLAP Database Design
	Snowflake Design
	Star Design

	OLAP Data Analysis
	Cube Browsers
	OLAP in SQL
	SQL Analytic Functions
	SQL OLAP Windows Partition

	Data Mining and Business Intelligence
	Data Configuration
	Classification
	Association Rules/Market Basket Analysis
	Cluster Analysis
	Geographic Analysis

	Summary
	Key Terms
	Review Questions
	Exercises
	Additional Reading




