
558

What You Will Learn in This Chapter
•	 How	does	a	DBMS	store	data	for	efficient	retrieval?
•	 How	does	a	DBMS	interact	with	the	file	system?
•	 What	are	the	common	database	operations?
•	 What	options	does	a	DBMS	have	for	storing	tables?
•	 How	is	one	data	row	stored?
•	 How	can	you	improve	performance	by	specifying	where	data	is	stored?
•	 How	does	a	DBA	control	file	storage?
•	 What	performance	issues	might	arise	at	Sally’s	Pet	Store?

Chapter Outline

Physical Database Design
12Chapter

Introduction,	559
Two-Minute	Chapter,	560
Physical	Data	Storage,	560
Table	Operations,	561

Retrieve Data, 562
Store Data, 563
Reorganize the Database, 564
Identifying Problems, 565

Data	Storage	Methods,	565
Sequential Storage, 566
Pointers and Indexes, 567
Linked Lists, 569
B+Trees, 571
Direct or Hashed Access, 574
Bitmap Index, 575
Comparison of Access Methods, 575

Storing	Data	Columns,	576
Text and Numbers, 576
Image and Binary Data, 578
Transferring Data with Delimited Files,
578

Data	Clustering	and	Partitioning,	579
Data Clustering, 579
Data Partitioning , 580

Managing	Tablespaces,	582
Sally’s	Pet	Store,	582

Summary,	583
Key	Terms,	584
Review	Questions,	584
Exercises,	585
Web	Site	References,	586
Additional	Reading,	587

559Chapter 12: Physical Database Design

A Developer’s View
 Ariel: How is the new job going,

Miranda?

 Miranda: Great! The other developers are
really fun to work with.

 Ariel: So you’re not bored with the job
yet?

 Miranda: No. I don’t think that will ever
happen—everything keeps
changing. Now they want me to
set up a Web site for the sales
application. They want a site where
customers can check on their order
status and maybe even enter new
orders.

 Ariel: That sounds hard. I know a little
about HTML, but I don’t have any
idea of how you access a database
over the Web.

 Miranda: Well, there are some nice tools out
there now. With SQL and a little
programming, it should not be too
hard.

 Ariel: That sounds like a great
opportunity. If you learn how
to build Web sites that access
databases, you can write your ticket
to a job anywhere.

Introduction
How does a DBMS store data for efficient retrieval? Any database application
is created through the basic steps described in Chapters 2 through 9. You get the
user requirements, design the database through normalization, create the queries
using SQL, build forms and reports and then add the details to create a complete
application. However, with large applications, one more step is critical to the suc-
cess of your application. You must analyze its performance. Performance is large-
ly controlled by telling the DBMS how to physically store and retrieve the data.

If computers were fast enough, how the DBMS physically stored the data for
each table might not matter. Today, for small applications, this situation is prob-
ably true. The default storage method provides acceptable levels of performance,
and you could skip this chapter. However, as databases and applications become
larger or contain specialized types of data, physical storage becomes an important
issue in the performance of your application. Large business applications routine-
ly hold millions or even trillions of rows of data in tables. Proper configuration is
essential—otherwise, even simple queries could take minutes or hours to run.

Two basic questions must be answered to store data tables: (1) How should
each row of data be stored and accessed? and (2) How should individual columns
be stored? The first question is more difficult to answer and is determined largely
by how the data is used. Hence we must first examine the possible uses of the da-
tabase. The answer to the second question depends largely on the type of data be-

Getting Started
A DBMS sometimes provides options on how to physically store data.
Most enable you to add indexes to improve query performance. Some
systems enable you to select hashed or direct storage for data that needs
immediate access. You can also use data clustering and partitioning to
handle large data tables more efficiently.

560Chapter 12: Physical Database Design

ing stored. For traditional business data (numbers and small text), the answers are
straightforward. If your application stores more complex data objects, the second
question becomes more critical.

Two-Minute Chapter
Up to this point in the book, the features of relational databases have been dis-
cussed without the need to understand how data is actually stored and retrieved by
the DBMS. In fact, that is one of the key features of a DBMS—it is free to opti-
mize the storage of data without affecting the overall application design. Howev-
er, sometimes it becomes useful to understand some of the underlying data storage
techniques. When databases get huge and you need to find ways to improve per-
formance, some DBMSs provide storage options that can make a big difference in
usability.

Indexes are the most common method of improving performance for data re-
trieval. Most systems use linked lists and a B+-tree approach to storing indexed
data. These topics are routinely covered in a second programming course in com-
puter science disciplines (data structures). Some examples are given here but pro-
gramming details are left for CS courses.

As pointed out in Chapter 9, adding too many indexes to a table can degrade
performance when inserting or updating data in the table. So two other primary
methods of storing data are sometimes available: simple sequential and hashed-
key tables. It might seem strange, but sometimes sequential storage can be the
fastest approach to handling big tables—as long as the data rarely changes and is
generally retrieved as a large batch. Removing all other overhead items can sub-
stantially improve the raw transfer of the data. Hashed-key tables are trickier and
not always available. They are useful when the data always has its own key value
and you need rapid access to an individual item. For example, a bar-code number
can be used as a key, or a transponder value from an RFID toll device (FasTrak in
California or E-ZPass on the East Coast). The number provided is hashed (simpli-
fied) and directly converted into a physical location in the database file. So indi-
vidual items can be retrieved or updated almost instantaneously.

Another approach that is used for huge databases is to partition the data or clus-
ter items together. Remember the common Sales form that leads to separate tables
for Sales and SaleItems. The related data from these tables (linked by SaleID) is
almost always retrieved together. So some systems provide methods to store the
related data together—making it faster to retrieve from typical disk drives.

Most applications work well with the standard B+-tree indexes, and as disk
drive performance improves (such as using solid-state drives), this approach can
be fast enough for most common business data. But for some specialized situa-
tions, performance can be dramatically improved with different storage approach-
es. Your job is to recognize when those tools are needed.

Physical Data Storage
How does a DBMS interact with the file system? Developers see database stor-
age in terms of tables, but these tables ultimately need to be stored in files on the
operating system. The main job of the database engine is to translate the concept
of tables and rows into physical storage on the computer’s disk drives. In com-
puter science classes (particularly the data structures class), you will spend a lot
of time coding different ways to store this data. This chapter simply introduces
the basic concepts. Figure 12.1 shows how the operating system is responsible

561Chapter 12: Physical Database Design

for translating files into physical storage on the disk drive. The file system (such
as NTFS for Windows), breaks a file into clusters and uses internal pointers to
record the physical location of each cluster. In most cases, the DBMS ignores
the direct disk drive issues and lets the operating system handle the details. In-
stead, the DBMS uses the operating system’s file read and write commands. For
the main data storage, the DBMS creates a file and reserves a specified amount
of disk space. The DBMS extends the allocated file space as the data grows. The
DBMS can write a chunk of data anywhere within the allocated space by using the
standard write command. The DBMS keeps track of which portions of the space
are used by recording the offset (count of the number of bytes) from the start of
the file. If you are familiar with programming, you should recognize the role of
the standard fopen, fseek, fread, and fwrite commands available in stdio in C (and
similar languages), or the fstream objects with open, seekg, read, and write meth-
ods in C++.

The challenge for programmers who create the DBMS is to translate the con-
cepts of tables and rows into this file structure—so that the data can be stored
efficiently and retrieved quickly. Several common storage methods have been de-
veloped over the past few years. One of them (B+tree) is commonly used for gen-
eral data access and is useful in most situations. However, for huge databases, you
might need more control over how the table rows are stored. Some DBMSs give
you more choices and even if you do not intend to become a DBMS programmer,
you need to understand their strengths and weaknesses.

Table Operations
What are the common database operations? To understand the differences be-
tween storage methods, you must first understand how the DBMS will use the
data. Then by evaluating how each storage method affects the various table opera-
tions, you can choose the best method for your particular application. As shown in
Figure 12.2, three major categories of operations affect tables: (1) retrieving data,
(2) storing data, and (3) reorganizing the database. Each category contains more
detailed tasks that are described in the following sections. Every application will
perform all of the operations within the categories. As a developer you need to ex-
amine the application and identify the operations that are affecting performance.

Track
Sector
Byte	Offset

Drive	
Head

File

Random	access.

Move	to	offset	from	
start	of	file.

Usually	write	fixed-
length	chunks.

File	Structure

Cluster	1

Cluster	2

Cluster	3

Operating	System

Figure 12.1
Physical data storage. The operating system breaks files into clusters and writes the
clusters onto the physical disk drive. It uses internal pointers to retrieve the data
sequentially, or randomly based on an offset from the start of the file. The DBMS
uses file read/write commands to store chunks of data.

562Chapter 12: Physical Database Design

Retrieve Data
Retrieving data constitutes some of the most common activities in a database ap-
plication. These operations also present the best opportunity to improve perfor-
mance. Applications commonly perform three types of data retrieval. They read
the entire table, read the next row in a sequence, and find and retrieve an arbitrary
row.

Reading the entire table, or large portions of it, might not seem like a com-
mon operation, but it does occur relatively often when printing reports. For the
example in Figure 12.3, to print weekly paychecks, the application will have to
read every row in the employee table. But what if hourly workers are paid weekly,
but managers are paid monthly? In most companies the managers represent only

Retrieve	data
	 Read	entire	table.
	 Read	next	row.
	 Read	arbitrary	row.
Store	data
	 Insert	a	row.
	 Delete	a	row.
	 Modify	a	row.
Reorganize	database
	 Remove	deleted	rows.
	 Recover	unused	space.

Figure 12.2
Table operations. Every application must perform these operations. The key is to
determine which operation is causing delays.

LastName FirstName Phone
Adams
Adkins
Albright
Anderson
Baez
Baez
Bailey
Bell
Carter
Cartwright
Carver
Craig

Kimberly
Inga
Searoba
Charlotte
Bessie
Lou	Ann
Gayle
Luther
Phillip
Glen
Bernice
Melinda

(406)	987-9338
(706)	977-4337
(619)	281-2485
(701)	384-5623
(606)	661-2765
(502)	029-3909
(360)	649-9754
(717)	244-3484
(219)	263-2040
(502)	595-1052
(804)	020-5842
(502)	691-7565

Figure 12.3
Read a table sequentially. Sequential retrieval requires the data to be sorted; for
example, this customer data is sorted alphabetically by LastName and FirstName.
Fortunately, sort methods are so fast that they do not generally affect the application
performance.

563Chapter 12: Physical Database Design

a small percentage of the total workers, and retrieving 90 percent of a table is no
different in performance than retrieving 100 percent.

Reading the next row in a sequence is related to retrieving all the data in a
table. When an application needs to read an entire table, it is generally retrieved in
some order or sequence. For example, paychecks might be printed in alphabetical
order by employee name, department name, or postal code.

The more challenging retrieval operation is the ability to retrieve any arbitrary
row. It is sometimes called random access because the database does not know
which record might be requested. For example, any customer could place an or-
der at random, and the database would have to retrieve the matching data for that
customer.

This lookup process is one of the most critical elements to affect the perfor-
mance of your application. It is easy to spot in situations like the customer exam-
ple. The clerk enters a customer name or number, and the database has to retrieve
the matching data. Clearly, you want to keep the lookup time as short as possible
to avoid delays for the customer and the clerks.

Yet there is a more critical problem involving lookups. Any time you build a
query, two types of random lookups come into play. First, joining two tables re-
quires the database to match the values in one table with those in a second table.
Second, any time you impose a condition with the WHERE statement, you are
asking the DBMS to find rows that match that condition. So query performance is
directly related to how fast the database can perform lookups and match the data
requested. These lookups are critical because they are so numerous. Joining two
tables could require thousands or millions of lookups—depending on the number
of rows in the two tables. Remember that many tasks throughout the application
use queries. Sequential lookups that retrieve large portions of the table require
minimal optimization, because you have to read the entire table. The random re-
trievals and random lookups require more thought about optimization. However,
storing data sequentially causes other problems when you need to insert, delete, or
modify rows.

Store Data
A DBMS has to perform three basic operations involved with storing data: in-
serting a new row, deleting a row, or modifying the data in a row. Most systems
implement a fast delete operation—they do not actually remove the deleted data.
As shown in Figure 12.4, it is much faster to just mark the row as deleted. Then
when the database wants to retrieve an item, the DBMS first checks to see whether
the item has been deleted. If so, the DBMS ignores that row. Similarly, a good
DBMS attempts to store data in fixed block lengths, so that if a row is modified,
the DBMS can simply overwrite the data. With highly variable-length data, this
operation is not always possible, so the DBMS must perform a delete and an insert
operation.

In terms of performance, the biggest issue with delete operations involves stor-
age space instead of speed. Although a row has been deleted, it still takes up phys-
ical space. Sometimes the DBMS can overwrite the old data, but after a while,
there can be millions of bytes of unused fragments.

Inserting a new row of data is one of the more challenging aspects in a database
management system. Next to random lookups, it is the source of the most perfor-
mance problems. In fact, there is generally a trade-off between the two issues. If
a system is good at random lookups, it is not as efficient at storing new data rows.

564Chapter 12: Physical Database Design

That is, the techniques used to improve random lookups often require significantly
more time to add data rows.

The performance issues of adding new data are somewhat technical and will be
explained in more detail in the section on data storage methods. For now, examine
your application to identify which tables will add new data on a regular basis and
which tables might add data only occasionally. For example, a firm might add
only a few new items a year to the Products table. However, thousands of new
rows could be added to the Order table every day.

Reorganize the Database
Largely because of the deletion method, a database can become disorganized over
time. Data that is flagged as deleted is still hiding in the table space. Empty holes
of storage space are too small to hold new data and data rows that are used to-
gether are no longer stored near each other.

These problems are particularly challenging with relational databases. In a re-
lational database the system data is also stored in tables. For example, the form
layout that you redesigned 20 times is stored as rows in a table. Each time you
redesigned it, the database flagged the old version as deleted and saved the new
version. Complex forms could take up several thousand bytes of storage.

Most systems have an administrative command to reorganize or pack the data-
base. This command causes the DBMS to go through the data and rewrite each ta-
ble—clearing up the storage space. A major challenge to database administration
is to determine how often to run this command. Two complications exist. First,
it can take several hours for this command to process large databases. Second, a
few systems require that all users be logged off the DBMS before the administra-
tor can run this command. You want to avoid database systems with the second
requirement. It prevents you from providing 24-hour access to the database. How-
ever, even if other people can still use the system, database reorganization can
affect the overall performance of the application, so the process generally needs to
be performed during slow periods (e.g., at night).

LastName FirstName Phone
Adams
Adkins
Albright
Anderson
Baez
xBaez
Bailey
Bell
Carter
Cartwright
Carver
Craig

Kimberly
Inga
Searoba
Charlotte
Bessie
Lou	Ann
Gayle
Luther
Phillip
Glen
Bernice
Melinda

(406)	987-9338
(706)	977-4337
(619)	281-2485
(701)	384-5623
(606)	661-2765
(502)	029-3909
(360)	649-9754
(717)	244-3484
(219)	263-2040
(502)	595-1052
(804)	020-5842
(502)	691-7565

Figure 12.4
Delete a row. Deletion is fast because the DBMS just marks the row as deleted. It
does not actually remove the data.

565Chapter 12: Physical Database Design

On the flip side, if you forget to periodically reorganize the database, it can
rapidly fill with wasted space. It is not uncommon for even a small Access data-
base to grow from under 1 megabyte to 5 or 6 megabytes of storage space during
development. Be sure to use the database utilities to compact the database. Doing
so will make it much easier and faster to back up and copy the data files.

Identifying Problems
During the database design stage, you should be able to identify potential prob-
lems. You need to analyze the database usage and volume statistics collected in
Chapter 3. In particular, look for large tables; heavily used tables; transaction ta-
bles requiring fast database responses; and queries with multiple joins, complex
criteria, or detailed subqueries. You should also perform tests during the develop-
ment of the applications. Generate large sample tables and test the performance
of the queries, forms, and reports. Once the database application is operational,
you can use the performance monitoring tools described in Chapter 11 to locate
bottlenecks.

Once you identify the form, report, or query that is causing delays; you need
to determine the cause of the problem: data retrieval, data storage, or data re-
organization. You can use the programming debug feature to step through code
that utilizes many different operations. By timing procedures and loops, you can
determine which section is causing the longest delays. You can also use the Timer
function to record the times of various operations.

Once you have identified the location of the delays, you can test various strate-
gies for improving performance. If the delays involve your program, explore dif-
ferent ways to reorganize your code to improve performance. If delays are due
to data retrieval or storage, think about ways to perform data operations in larger
blocks. For example, your program might run faster if it writes individual changes
to a temporary table and then uses SQL statements to transfer the changes to the
primary tables in one large operation.

A second method to improve performance is to alter the way the data is stored.
Each DBMS provides different controls over data storage. The following sections
summarize the most common techniques.

Data Storage Methods
What options does a DBMS have for storing tables? Three primary methods
are used to store data tables—each with several variations. The simplest method
is sequential storage—putting the data into tables in the order in which it is most
commonly accessed. To provide faster access, particularly for random lookups, a
second approach is to create indexes of the data. A third approach known as direct
or hashed-key storage is radically different and is designed to optimize random
lookup at all costs.

Sequential storage is relatively easy to understand, but probably the least use-
ful. Hashed storage methods are also straightforward, but have their own limita-
tions. Indexed tables are by far the most common means of storing and access-
ing data today. They are complex and have many variations. To choose the best
storage method, you sometimes have to understand the differences between the
variations.

Pointers and linked lists are key topics in understanding how indexes work. You
might have heard computer science students discussing these topics. Do not panic.
You do not need to know how to program routines using pointers and linked lists.

566Chapter 12: Physical Database Design

To understand their strengths and weaknesses, you just need to be able to draw
some basic diagrams.

Sequential Storage
Sequential files are the simplest method of storing data. Each row is stored in a
predefined order as shown in Figure 12.5. As long as the data is retrieved in the or-
der specified, access is fast and storage space is used efficiently. The real problems
arise when data is added or when users need to retrieve data in several different
sequences.
Uses
Sequential storage is useful when data is always retrieved in a fixed order. It is
also useful when the file contains a lot of common data. For example, if most
customers have the same ZIP code, you might as well leave the ZIP code data in
simple sequential storage.

Another use of sequential files is for backup or transporting data to a differ-
ent system. Each database system stores data in a proprietary internal format. To
transfer data from one system to another generally requires exporting the data to
a common format, moving the data, and importing it into the new database. A se-
quential ASCII file is a popular export/import format that most database systems
support.
Drawbacks
To understand the drawbacks to sequential storage, consider the steps involved in
performing the basic database operations listed in Figure 12.2. Reading the entire
table and retrieving the next sequential row are easy. Finding an arbitrary row is
much slower. If the rows can hold different lengths of data, the only way to find
an item is to search from the start of the table until the desired row is found. With
N rows of data, the expected number of retrievals required to find a random row is
(N + 1)/2, or a table with 1,000,000 rows would require 500,000 lookups on aver-
age to find a matching row. Obviously a bad idea.

Another major drawback can be seen by examining the data storage operations.
As with every method, flagged deletion is fast and relatively efficient. The real

ID LastName FirstName DateHired
1
2
3
4
5
6
7
8
9
10

Reeves
Gibson
Reasoner
Hopkins
James
Eaton
Farris
Carpenter
O’Connor
Shields

Keith
Bill
Katy
Alan
Leisha
Anissa
Dustin
Carlos
Jessica
Howard

1/29/....
3/31/....
2/17/....
2/8/....
1/6/....
8/23/....
3/28/....
12/29/....
7/23/....
7/13/....

Figure 12.5
Sequential file. Each row is stored in some predefined order. Sequential storage is
used primarily for backup or for transferring data to a different database.

567Chapter 12: Physical Database Design

problems arise when you want to insert a new row. Examine Figure 12.5 and de-
cide how you would insert data for a new employee with the last name of Inez.
The basic steps are shown in Figure 12.6. If you had to write a program to insert
a row, the most efficient method is to follow four steps: (1) Read each row. (2)
Decide if this row comes before the new row. If so, store it in a new table. (3)
When you reach the insertion point, save the new row of data. (4) Append the rest
of the data to the end of the new table. The main drawback to this approach is that
any time you want to add a row of data, the database has to retrieve (and probably
rewrite) every row in the table.

Pointers and Indexes
The most common solution to the problems of sequential tables is to store each
row separately and use pointers to find a row. This approach also uses indexes to
establish the sequential retrieval of data and to improve searches. Separating rows
of data means that each row is stored as an independent group. (Actually, you can
break rows into smaller chunks, but for now, think of each row stored indepen-
dently.) When a row of data is stored, it is stored at some location. This location is
called an address, and a variable that holds this address is called a pointer. With
most file systems, the address (and pointer value) is a number that represents the
offset in bytes from the start of the file.

Figure 12.7 illustrates how the data is separated. It also shows how an index is
used to retrieve the data. The data is linked to the index via the address pointers.
To retrieve the data sequentially, the DBMS simply loops through the index and
follows the pointers to retrieve the data. The data rows can be stored in any order
in the file structure.

An index is the most common method used to provide faster access to data. An
index sorts and stores the key values from the original table along with a pointer
to the rest of the data in each row. Figure 12.8 illustrates the concept. Notice that
a table can have many indexes. Indexes can also be based on several columns of
data. The ability to create multiple indexes in a table indicates their first strength.

ID LastName FirstName DateHired
8
6
7
2

Carpenter
Eaton
Farris
Gibson

Carlos
Anissa
Dustin
Bill

12/29/....
8/23/....
3/28/....
3/31/....

11 Inez Maria 1/15/....
4
5
9
3
1
10

Hopkins
James
O’Connor
Reasoner
Reeves
Shields

Alan
Leisha
Jessica
Katy
Keith
Howard

2/8/....
1/6/....
7/23/....
2/17/....
1/29/....
7/13/....

Figure 12.6
Insert into a sequential table. Copy the top of the table to a new table. Store the new
data row (Inez). Copy the rest of the data. The system must read every row in the
table.

568Chapter 12: Physical Database Design

Data
Address

Key	value Address
pointer

File	Start

Key	value Address
pointer

Data
Address

Index

Figure 12.7
Use of pointers. The database searches the key values. When it finds the appropriate
key, it follows the pointer to retrieve the associated data stored on the disk.

Figure 12.8
Indexes. An index sorts and stores a key value along with a pointer to the rest of the
data. Indexes can be built for any column or combination of columns in the table.
The two separate indexes provide different sorts and searches for one table.

ID LastName FirstName DateHired
1 Reeves Keith 1/29/2010
2 Gibson Bill 3/31/2010
3 Reasoner Katy 2/17/2010
4 Hopkins Alan 2/8/ 2010
5 James Leisha 1/6/ 2010
6 Eaton Anissa 8/23/ 2010
7 Farris Dustin 3/28/ 2010
8 Carpenter Carlos 12/29/ 2010
9 O'Connor Jessica 7/23/ 2010
10 Shields Howard 7/13/ 2010

ID Pointer
1 A11
2 A22
3 A32
4 A42
5 A47
6 A58
7 A63
8 A67
9 A78
10 A83

A11
A22
A32
A42
A47
A58
A63
A67
A78
A83

Address

LastName Pointer
Carpenter A67
Eaton A58
Farris A63
Gibson A22
Hopkins A42
James A47
O'Connor A78
Reasoner A32
Reeves A11
Shields A83

569Chapter 12: Physical Database Design

They enable relatively fast, sorted access to a table based on any criteria. Index-
es generally provide a clear advantage over straight sequential files because they
support high-speed access to any data columns.

The astute reader will recognize that the index has not really solved all of the
problems—it has simply transferred them to the index file. That is, to store and
retrieve data, you face the same problems in building the index. On the plus side,
the index is smaller and easier to manipulate. It is also possible to create multiple
indexes for any table, so it can be searched or retrieved using different key col-
umns. But, it would be nice to find a better way to handle the index itself.

Linked Lists
To solve the insert problem, indexes are generally based on linked lists instead
of sequential lists. A linked list is a technique that splits data even further than a
sequential index. With a linked list, any index element can be stored separately. A
pointer is then used to link to the next index item. Figure 12.9 illustrates the basic
concepts. In this example each row of data is stored separately. Then an index is
created that is keyed on LastName. However, each element of the index is stored
separately. An index element consists of three parts: the key value, a pointer to the
associated data element, and a pointer to the next index element.

To retrieve data sequentially, start at the first element for Carpenter. Follow
the pointer to the next element (B29 points to Eaton). Each element of the index
is found by following the link (pointer) to the next element. The data pointer in
each index element provides the link to the entire data row for that key value (A67
points to the Carpenter row).

The strength of a linked list lies in its ability to easily and rapidly insert and de-
lete data. Remember the difficulty in inserting data with a sequential table. Even
with a sequential index, inserting a new row generally results in copying half the
index (or more). For large tables this approach is clearly inefficient.

Figure 12.9
Linked list. The index is split into separate index elements. Each element contains
a key value (LastName), a pointer to the next index element, and a pointer to the
rest of the data for that row. To retrieve data sequentially, start at the first element
(Carpenter) and follow the link (pointer) to the next element (Eaton).

CarpenterB87 B29 A67

GibsonB38 00 A22
EatonB29 B71 A58

FarrisB71 B38 A63

7 Farris Dustin 3/28/2010A63

8 Carpenter Carlos 12/29/2010A67

6 Eaton Anissa 8/23/2010A58

2 Gibson Bill 3/31/2010A22

570Chapter 12: Physical Database Design

On the other hand, as shown in Figure 12.10, inserting a new key row into a
linked list requires three basic steps. (1) Store the data and store the index ele-
ment—keeping the address of each. (2) Find the point in the index to insert the
new row using a binary search. In the example, Eccles comes between Eaton
and Farris. (3) Change the link pointers. The link in Eaton should point to Eccles
(change B71 to B14) and the link in Eccles should point to Farris (insert the B71).
Those are the only steps needed. No copying of data keys and no complicated
code.

FarrisB71 B38 A63FarrisB71 B38 A63

EatonB29 B71 A58EatonB29 B71 A58

EcclesB14 B71 A97

B14

Figure 12.10
Insert into a linked list. To add the index element for Eccles: store the new data
element, keep the address (B14); find the sort location—between Eaton and Farris;
move the link pointer from Eaton into Eccles (B71); store the pointer for Eccles
(B14) in Eaton.

1		↓

Adams
Brown
Cadiz
Dorfmann
Eaton
Farris
Goetz

									3				↓
Hanson
Inez

															4 Jones
				2			↑ Kalida

Lomax
Miranda
Norman

Figure 12.11
Binary search. A sorted index can be searched rapidly using a binary search. To find
the entry for Jones, find the middle of the list (Goetz). Jones is past Goetz, so split the
second half in half (Kalida). Keep splitting the remainder in half until you find the
entry.

571Chapter 12: Physical Database Design

Linked lists have substantial advantages for most of the standard table opera-
tions. In particular, they are the most efficient way to insert and change data be-
cause the code simply edits the link pointers to add or delete something from the
list. But, how can linked lists improve searching for and retrieving random items
in the list?

B+Trees
As noted in Chapter 9, sorted lists like indexes provide a relatively efficient meth-
od to search for data. A binary search can take advantage of the sorted data by cut-
ting the search in half at each step. Figure 12.11 shows the search process. Recall
that a binary search can find any specific entry with no more than log2(N) retriev-
als. In this example with 14 entries, log2(14) is 3.8, or a maximum of 4 lookups.
The example specifically uses Jones because it requires all 4 retrievals.

It is clear that binary searches are efficient, but how does that help with linked
lists on indexes. First, recognize that indexes are sorted, so it should be possible to
use a similar approach. Second, think about the list for a few minutes, and you can
see that it can be reorganized. Instead of trying to store it sequentially, grab the
middle entry (the starting point for any search), and build a tree structure. In many
ways, a tree is just a more complex way of storing a linked list. Instead of linear,
it contains multiple links.

One version of a tree is shown in Figure 12.12. Only the key values are shown
in this figure. In practice, each node or element on the tree would contain an index
element much like those in Figure 12.10. That is, each element would contain the
key value, a pointer to the rest of the data, and two link pointers. For the particular
tree in Figure 12.12, each element has at most two links. One link (the line to the
left) points to elements that have lower values. The other link (line to the right)
points to elements that have a value greater than or equal to the value in the node.
The root is the highest node on the tree. The bottom nodes are called leaves be-
cause they are at the end of the tree branches.

The power of the tree lies in its ability to find a data element. To find the data
for Jones, start at the top of the tree (Hanson). Jones is alphabetically greater than
Hanson, so go to the right side. Track down the tree depending on the key value
until you reach the bottom element for Jones. Notice that every element requires
at most four searches because there are only four levels in the tree. Notice that
the search was exactly the same as the binary search. The number of searches is
given by the depth of the tree, which is the number of nodes between the root and
the leaves. Notice that if you compress a B+tree down to one level, each element

Hanson

Dorfmann Kalida

Brown Farriis Inez Miranda

Adams Cadiz Eaton Goetz Jones Lomax NormanInez
Figure 12.12
Simple tree. Each node element has a key value, a pointer to data for that key, and
two link pointers. One pointer is for values less than the key. One is for values greater
than or equal to the key.

572Chapter 12: Physical Database Design

would be in one long key row. In other words, you would end up with indexed
sequential access.

The power of a B+tree for searching is clear, but what if you want to retrieve the
data sequentially? The answer is that the leaves or bottom nodes contain a link to
the next item. When the DBMS reads to the leftmost leaf (Adams), it can follow
points to the right to retrieve each final item in sequence.
B+Tree Definition
On examining Figure 12.12, it quickly becomes clear that there are many ways
to organize a tree. For example, why is Brown listed beneath Cadiz instead of
beneath Adams? There is no good answer to this first question. Minor position-
al choices like this one are arbitrary and do not affect the tree. But the question
shows that there is some flexibility in the final tree. Bigger questions do affect
the tree significantly, such as why is the tree approximately symmetrical—that is,
why not let one side reach lower than the other side? Why does each node split
into two branches—why not three or more?

Answers to each of these questions will affect the layout of the tree. As the
layout changes, so does the performance. Computer scientists have studied these
structures in detail. For database purposes, they have determined that the best
overall performance is provided by a B+tree, which follows the six basic rules
shown in Figure 12.13. The rules are not as complicated as they may first appear.

First, you have to choose the degree of the tree. The degree represents the
maximum number of children that can fall below any node. Choosing the degree
determines how fast the database can find any particular item. In Figure 12.12
the degree was 2, which produced a binary search. Higher degrees result in trees
that are broader, requiring even fewer searches to find any item. Two rules that
give the B+tree its power are that each node must have at least m/2 children (and
no more than m children) and that all leaves must be at the same depth. In other
words, the tree cannot be lopsided, but must be balanced so that data is distributed
relatively evenly across the tree.

Figure 12.14 shows a small B+tree of degree 3. With a degree of 3, a node can
point to three different children. If it does, the node must have two key values,
such as (458, 792). To understand why, search the tree to find key value 692. Start
at the top and note that 692 is greater than 315, so go to the right branch. Now 692
falls between 458 and 792, so branch to the middle child and then drop down to
find the entry on the bottom leaf, which contains a pointer to the rest of the data. A
node with three children must have two keys. Any value lower than the left-most

• Set the degree (m)
 ○ m >= 3
 ○ Usually an odd number.

• Every node (except the root) must have between m/2 and m children.
• All leaves are at the same level/depth.
• All key values are displayed on the bottom leaves.
• A nonleaf node with n children will contain n-1 key values.
• Leaves are connected by pointers (sequential access).

Figure 12.13
B+tree rules. These rules will generate a tree structure that provides good database
performance under a variety of conditions.

573Chapter 12: Physical Database Design

key goes to the left. A value greater than the right-most key goes to the right. Any-
thing between the keys follows the middle path.
Uses
The main strength of the B+tree is that it provides a guaranteed level of perfor-
mance for access to the data. Every element can be found in the same number of
searches—which is determined by the depth of the tree. The tree also provides
fast sequential retrieval. The other power comes from the ability to add or delete
elements from the tree. As in a linked list, adding new items to a tree is rela-
tively easy. The process is a little more complicated in a tree, because the rules
require the tree to be rearranged periodically as data is added. You can study the
details of programming a B+tree in a computer science class. The basic operations
are straightforward, but somewhat tedious. You can also buy software to create
and manipulate B+trees. However, adding items to a tree is still relatively fast and
efficient.

Overall, the B+tree approach provides the best general access to data. If you do
not know anything useful about the data or how it will be used, you should always
choose the B+tree method to store a table. It provides the best overall performance
for typical data—for sequential retrieval, random lookup, and for changes to the
data.
Drawbacks
The drawbacks to B+tree storage are relatively minor. It has been shown to be the
best general purpose storage method, and most DBMSs use it as the main storage
method. One criticism has been that the coding is relatively complex, but standard
algorithms have been developed for several years, so it is not really an issue. The
bigger problem is that for large tables that involve constant changes, it takes time
to reorganize the index for every change. The problem is worse when you create
multiple B+tree indexes on a table. Inserting a row could trigger changes in several
indexes and result in restructuring millions of items in each index. Many systems
recommend that if you are going to bulk insert thousands of rows of data, you
should turn off all indexing, insert the data, then index the table one time. The
only other solution is to use indexes sparingly on tables that have heavy transac-
tion changes.

315< <=

231< <=	< 287 <= 458< <=	< 792 <=

315< <=	<347<= 458< <=	<692 <=156< <= 231< <= 792< <=287< <=

data

Figure 12.14
Sample B+tree of degree 3. Start at the top to find the value 692. It is larger than
315, so go to the right branch. It is between 458 and 792 so go down the middle.
The bottom leaf points to the rest of the data. The bottom leaves also contain links to
provide sequential access.

574Chapter 12: Physical Database Design

Direct or Hashed Access
Some situations require super fast random access to data. For example, in trans-
action situations you might need virtually instantaneous retrieval of some data
items. When a grocery store clerk scans an item, the DBMS must retrieve the
price immediately. A delay of even 5 seconds would be incredibly annoying and
costly given the huge number of items that are scanned every day. In this example,
the computer is given a unique bar-code number and needs to retrieve the match-
ing data. It makes sense to optimize the search for this situation.

A direct access or hashed-key storage method solves this problem better than
any other approach. The method works by first setting aside enough space to store
all the key values you might need in numbered storage locations. Then the key
value (bar code) is converted to a storage location number. Computer researchers
have determined that a prime modulus function usually provides the best conver-
sion. For example, you might have 100 elements with key values ranging from
100 to 9911. You choose a prime number approximately equal to the number of
elements. For this case 101 is a good prime number. Then you divide each key
value by the prime number and look at the remainder. As shown in Figure 12.15, a
key value of 528 has a remainder (or modulus) of 23. Hence data for that key will
be stored in location number 23. There is one catch—some keys might have the
same modulus. The system sets aside an overflow area for these collisions, which
it searches sequentially.
Uses
The hashed-key approach is extremely fast for finding and storing random data.
The key’s value is immediately converted into a storage location, and data can be
retrieved in one pass to the disk. This method works best for transaction opera-
tions that require instantaneous retrieval of small amounts of data.

The hashed-key storage method requires you to know approximately how many
items will be stored in the table. It also works best if the data does not change very
often. It is acceptable to set aside enough space to add a few items. The method
begins to deteriorate if key values are constantly being added to the table.
Drawbacks
One drawback to the hashed-key storage method is that it has little or no provision
for sequential retrieval of data. It is possible to retrieve the data and sort it. Some

711
310

528
Overflow/Collisions

Figure 12.15
Hashed-key access. The key value (528) is converted directly into a storage location
by dividing by a prime number (101). The remainder (23) is used to identify the
storage position. If two keys have the same remainder, one is stored in an overflow
location.

575Chapter 12: Physical Database Design

order-preserving hash functions exist to keep the keys in a predefined order. How-
ever, sequential retrieval will be slower than with a B+tree index.

A second drawback is that the method sets aside storage space for the data, so
you have to know how much space will be needed before you collect the data. If
you add items to the table, they tend to end up in overflow storage, which is sub-
stantially slower. Performance can be improved by reorganizing the table—which
creates more space and uses a new prime number. However, it takes time to reor-
ganize the table, which should be done when the data is not being heavily used.

Bitmap Index
Some vendors (e.g., Oracle) provide highly compressed bitmap indexes for large
tables. With a bitmap index each data key is encoded down to a small set of bits.
The bitmap (binary) image of the entire index is usually small enough to fit in
RAM. High-speed bit operations are used to make comparisons and search for key
values. Hence the bitmap indexes are extremely fast. Bitmap indexes are particu-
larly useful for columns like secondary keys that contain large amounts of repeat-
ing data. They should not be used for a column that contains all unique values.
For example, in a typical SaleItem(SaleID, ItemID, Quantity) table, you could
consider using a bitmap index for the SaleID and ItemID columns. But you would
not want to use a bitmap index for the SaleID column in the Sale table. In Oracle,
you use the CREATE BITMAP INDEX to generate a new bitmap index.

Comparison of Access Methods
All of these access methods are critical to computer scientists who create the
DBMS. As an application developer, you do not need to know the gory technical
details of the various methods. However, you do need to understand the strengths,
weaknesses, and best uses of the methods. A good DBMS will let you choose how
you want to store each table. At a minimum the DBMS will provide the ability to
specify indexes for various columns. To determine which method should be used
to store and retrieve data, you need to know two things: the primary operations
that will be performed on the table and which method best supports those opera-
tions. Figure 12.16 answers the second question by summarizing the comments
from the previous sections.

Operation Sequential B+Tree Hashed
Read	one •• •••• •••••
Read	next ••••• •••• •••
Read	all ••••• •••• •••
Insert • •••• ••••
Delete • •••• ••••
Modify • •••• ••••
Reorganize •• •••• •••

Figure 12.16
Comparison of access methods. The B+tree is the best overall method to store and
retrieve data. Sequential is useful for large tables that do not change often and need
only sequential access. Hashed is useful for rapid access to individual items.

576Chapter 12: Physical Database Design

In practice, you have only three choices. First, the B+tree is the best overall
method to store and retrieve data. In almost any table the primary-key columns
should be stored in a B+tree index to speed the join operations in queries. Sec-
ond, hashed access should be used for tables that do not change often and the
application requires fast retrieval or storage of data based on a key value. Third,
sequential storage can be used if a table almost never changes and the applica-
tion always retrieves data sequentially and in large chunks. Generally, your choice
comes down to B+tree or hashed access. If you have tables that change often, you
should consider removing indexes—which creates a sequential table. Most mod-
ern databases use some version of B+tree storage. Primary keys are almost always
indexed this way by default.

Storing Data Columns
How is one data row stored? The previous section explored the various methods
of storing and retrieving individual rows of data. The second issue in storing data
is how to store individual columns of data within a single row. For basic busi-
ness data consisting of numbers and short text, it rarely matters how individual
columns are stored. However, applications are being developed that need to store
more complex data such as large amounts of text, graphics, sound, and even vid-
eo clips. This data is relatively complex and requires significantly more storage
space. Despite the declining cost of storage space, some of these objects are so
large that you must be careful in how the database allocates storage for each item.

Text and Numbers
Fixed-width or positional storage is the simplest means of storing a row of data as
shown in Figure 12.17. Each column is allocated a fixed number of bytes, and the
data is stored in a set position. When the DBMS retrieves a row, it can find each
column because the table definition lists the starting position of each column. The
biggest drawback to this method is that at the start you must decide on the width
of each column. Any data that does not fit into the assigned width will be truncat-
ed. This decision causes problems. For example, how much space should you set
aside for a customer name? If you pick a small number, you risk throwing away
part of a customer’s name. If you pick a large number, the database sets aside that
much space for every row of data—wasting space for most situations. This type of
storage is used when you specify the domain as numeric or a CHAR column with
a fixed width.

ID Price QOH Description
4 110.00 Dog Kennel-Extra Large
18 1.00 1874 Cat Food-Can-Premium
29 6.00 240 Flea Collar-Cat

Figure 12.17
Fixed-width or positional-column storage. If data widths do not vary much, this
method is a fast, efficient means to store columns. If descriptions can be short or very
long, then you will have to allocate space for the longest possible description, which
wastes space for the short descriptions.

577Chapter 12: Physical Database Design

The problem of deciding how much text space to allocate is common. Hence, a
solution was developed to accommodate text data that is highly variable in length.
For example, descriptions, comments, and memos can be long or short. In these
situations the best storage method to use is the variable length method shown in
Figure 12.18. In this case only a pointer is held in the actual row of the table. The
data is stored in a separate pool. In SQL databases you specify this type of storage
by selecting the VARCHAR column type. Some databases also provide a memo
or comment data type to implement this type of storage. For example, Access pro-
vides a Memo type, which can hold large chunks of text. The Memo type can hold
up to 64,000 characters, whereas text columns are limited to 255. For most sys-
tems you should always use the VARCHAR instead of fixed-width CHAR to store
a text column. The exception is that small text columns, such as a two-letter state
code, will be slightly more efficient if you use fixed width.
Note that numeric data is almost never stored as characters. Instead, it is stored in
binary format to save space. The numbers used in these figures are just for illustra-
tion. You rarely have to worry about the width of numeric columns; they typically
use either 4 or 8 bytes of storage.

One of the more challenging problems is storing variable-length string data,
particularly when the lengths can vary widely, such as comments. If the system
allocates a fixed amount of space, every row would be at the maximum value,
and most of the space would be wasted. On the other hand, if the system allo-
cates space for each row dynamically, then some rows will be shorter than others.
This approach saves space, but makes it more difficult to handle modifications of
the data. If the new data is longer than the old row, the system cannot just over-
write the old row. Some systems (e.g., Oracle) solve this dilemma by allocating
data blocks to hold a group of rows. Each block contains a certain amount of free
space. The DBMS uses this free space to store modified data that is longer than
the existing row. In Oracle, you can control the amount of free space through two
parameters: PCTFREE and PCTUSED. If the current data block is fuller than the
PCTFREE value, no new rows are added to the block. The remaining space is
kept for expansion of existing rows. See the Oracle Server Administrator’s Guide
for details and suggestions on values for these parameters.

A972406.0029

A7518741.0018

A35110.004

DescriptionQOHPriceID

A972406.0029

A7518741.0018

A35110.004

DescriptionQOHPriceID

Dog	Kennel-Extra	Large

Cat	Food-Can-Premium

Flea	Collar-Cat

A35

A75

A97

Figure 12.18
Variable length columns. Text columns that can be variable should be stored as
variable width (varchar). The DBMS stores a pointer to the data that is stored in a
pool.

578Chapter 12: Physical Database Design

Image and Binary Data
Most DBMSs provide the ability to store binary data within the database itself. For
example, you can create a column to hold a picture for each row. Unfortunately,
no standards exist for defining these columns or using this data. Hence, if you use
these features, it is difficult to convert your database to another vendor’s format.
The data type varies depending on the DBMS: Access uses an OLE Object col-
umn, Oracle uses LONG RAW or BLOB (binary large object), SQL Server uses
image. More importantly, the internal data format, and the storage and retrieval
methods are different for each vendor. It is relatively easy to create and store data
in these formats. The only problem is if you need to transfer data from one DBMS
to another. Usually, the only answer is to retrieve each object one at a time, return
it to its native format, and then store it in the new DBMS. It is a relatively painful
process that you want to avoid.

From a performance standpoint, you will have to experiment with each applica-
tion to decide if it is worthwhile to use these binary data types. The advantage of
storing binary data within the DBMS is that you gain the use of the concurrency
protection and database backup facilities. The main drawback is the difficulty in
accessing the binary data using other software. Most software applications (e.g.,
drawing packages) do not know how to store and retrieve data from your DBMS,
so you need to create an intermediate program to handle the exchange.

The alternative to storing binary files within the DBMS is to store them in a
separate subdirectory, and then store only the file name within a text column in
the database. This method is commonly used for Web-based applications. The Pet
Store example uses this method to provide support with different databases.

Transferring Data with Delimited Files
If you need to transfer data to a different database or a different application, you
often have to use a delimited file. It is often called a delimited file because the
table is converted to standard text characters (no binary numbers). As shown
in Figure 12.19, each column is separated by a specific character or delimiter.
A comma is a common delimiter. Because text data might contain commas or
other special characters, text columns are enclosed in quotation marks. Spaces are
eliminated unless they are in quoted text columns. Missing data is simply not dis-
played, so if a column is missing, the data row would have two adjacent commas
(e.g., 110,,“Dog …”). This technique is not very useful for permanent use within
a database. Every time it retrieves a row, the DBMS has to search for the commas
and interpret the quotes to find a particular column. However, it is a good way to
transfer data between different systems. It is also good at saving space—particu-
larly when many columns are missing.

4, 110, , "Dog Kennel-Extra Large"
18, 1, 1874, "Cat Food-Can-Premium"
29, 6, 240, "Flea Collar-Cat"

Figure 12.19
Delimited files. Each column is separated by a special delimiter character (,). Text
columns are quoted to protect spaces and hide special characters like commas. This
method is often used to transfer files to different databases or other applications.

579Chapter 12: Physical Database Design

Data Clustering and Partitioning
How can you improve performance by specifying where data is stored? An-
other way to improve database performance is to control the location of individual
components of the table. For example, some parts of your application may always
be retrieved together, so performance might improve if the two sets of data are
retrieved together. On the other hand, sometimes you collect data that might not
be accessed very often. It is still worthwhile to keep the data, but it might be better
to store it on cheaper, slower drives. A third technique exists to speed up access
to data by spreading it across several disk drives. All three situations are related
in that they involve partitioning data and controlling where it is stored to improve
performance. The key to understanding these methods is to remember that me-
chanical disk drives are slow. Every access to the disk that can be avoided will
improve the application’s speed.

Data Clustering
To improve general system performance, most computers retrieve data in chunks.
They try to anticipate the next demand and read ahead of the current request. If the
system guesses correctly, the next data request can be filled from RAM, which is
substantially faster than waiting for the drive to spin around again.

Database systems designers have used this concept to improve performance of
database applications. Some parts of an application are generally used at the same
time. Consider the example presented in Figure 12.20. Generally, when users look
at order items, they also want to see the related data stored in the order table. By
storing all the data for Order 1123 in the same data block, the data can be retrieved
in one pass. The application will run faster because it avoids a second trip to the
disk drive.

If you are using a DBMS that supports data clustering, you can improve perfor-
mance by identifying data that is commonly accessed together. To create a cluster,
you need to specify the tables involved and the key columns that link those tables.

Order
Order	#1123
Odate
C#	8876

Order#	1123			Item	#240		Quantity		2
Order#	1123			Item	#987		Quantity		1

Order
Order	#1124
Odate
C#	4293

Order#	1123			Item	#078		Quantity		3

Figure 12.20
Data clustering. Order and OrderItem data are usually needed at the same time.
By storing them close to each other, the computer can retrieve them in one pass.
Clustering the data improves application speed by reducing the number of disk
accesses.

580Chapter 12: Physical Database Design

The DBMS then automatically stores and retrieves the related data in the same
cluster. Only some of the large transaction-oriented database systems support
clustering. For example, Oracle has a CREATE CLUSTER command to define
the tables and key columns.

Data Partitioning
Another situation that commonly arises in business applications is that some data
is used more frequently than other data. Even in the same table, you might collect
data that is used only occasionally. For example, a basic customer table could con-
tain information on customers who have not placed orders for several years that
the marketing department wants to keep. Because the data is rarely used, it would
be nice to move it to a cheaper storage location.

As shown in Figure 12.21, this situation would involve a horizontal partition.
Some of the rows (currently active customers) will be stored in one location, and
other rows (inactive customers) will be stored in a different location. The active
data will be stored on high-speed disk drives. In extreme situations, some of this
data could be stored on solid-state RAM drives, which hold all data in semicon-
ductor RAM. On the other hand, the less-used data can be placed on slower-speed
optical drives. The optical drives can hold huge amounts of data at a low cost;
however, their access speeds are somewhat slower.

The key to making this approach work is that after you set it up, a good DBMS
automatically retrieves the data from the appropriate drive. The user does not have
to know that the data is stored on different drives. A single SQL query will retrieve
the data—wherever it is stored. The high-end DBMSs provide several methods
for determining the partition. Common methods include range partitioning (e.g.,

Figure 12.21
Horizontal partition. Data for currently active customers is stored on high-speed
drives. Older data is moved to cheaper, slower drives. The user does not need to
know about the split because the DBMS automatically retrieves the data.

High	speed
SSD

Lower	cost
disk

Customer# Name Address Phone
2234 Inouye 9978	Kahlea Dr. 555-555-2222
5532 Jones 887	Elm	St. 666-777-3333
0087 Hardaway 112	West	2000 888-222-1111
0109 Pippen 873	Lake	Shore 333-111-2235

Active
customers

581Chapter 12: Physical Database Design

specify a range of ID values) and list partitioning (e.g., list the key values that fall
into each partition).

Vertical partitioning uses the same logic. The only difference is that with
vertical partitioning, some columns of data are stored on a faster drive, whereas
others are moved to cheaper and slower drives. Figure 12.22 shows how a prod-
uct table might be split into two pieces. Basic business data used in transactions
is stored on a high-speed disk. Detailed technical specifications and images are
stored on high-capacity optical disks. Most day-to-day operations will use the ba-
sic data stored on the high-speed drive. However, the detailed data is readily avail-
able to anyone who needs it. The only difference is users will wait a little longer to
retrieve the data on the slower drive.

In theory, data can be partitioned using any DBMS. Simply define two tables
that can be joined by a common key. Then store each table on the appropriate
drive. The difficulty with this approach is that anyone who wants to use the data
will have to know that it is stored in different tables. You can circumvent this issue
by building a query that automatically combines the tables. Then users can pull
data from the query without having to know where each piece is stored.

In practice, horizontal partitioning is often used to split data so that it can be
stored in locations where it will be used the most. For instance, you might split
a customer table so that each regional office has the set of customers that it deals
with the most.

On the other hand, vertical partitioning is useful for limiting the amount of data
that you need to read into memory. If some columns are rarely used, they can be
stored in a separate table. Overall performance will improve because the DBMS
will be able to retrieve more of the smaller rows.

Figure 12.22
Vertical partition. Technical data and images that are not accessed very often can be
stored on a high-capacity, low-cost, but slower hard drive or even an optical drive.

High	speed
SSD

Low	cost
disk

Item# Name QOH Description TechnicalSpecifications
875 Bolt 268 1/4”	x	10 Hardened,	meets	standards	...
937 Injector 104 Fuel	injector Designed	1995,	specs	.	.	.

582Chapter 12: Physical Database Design

Managing Tablespaces
How does a DBA control file storage? Each vendor provides different methods
to monitor and control database performance. These tools are a major selling point
for each vendor. Smaller systems like Microsoft Access provide only limited con-
trol over the physical storage of data. System developers generally use the storage
methods that are appropriate for the most general situations (B+tree). You control
column storage by the data type you assign.

Larger systems like Oracle provide a variety of tools to help evaluate and man-
age the performance of the database. For example, Oracle sets clustering and
provides hashed access with the CREATE CLUSTER command. Indexed files
can also be partitioned and clustered. Oracle database performance can also be
tuned with various parameters. For example, the PCTFREE and PCTUSED op-
tions specify how tightly the data should be packed into the defined space. Various
STORAGE parameters specify how the database should be expanded as it grows.
Tables and indexes are stored in tablespaces, which are areas that the database ad-
ministrator allocates on a drive. By specifying the location of the tablespaces, you
can allocate data on specific drives. You can improve performance by storing each
element in a tablespace on a different drive. For example, large databases should
store transaction and recovery logs and main data on different drives.

Sally’s Pet Store
What performance issues might arise at Sally’s Pet Store? At the start the Pet
Store database should have few performance problems. Beginning in one store, an
ambitious system might store the database on a central computer, which is con-
nected to three or four other computers in the store. Reasonably up-to-date per-
sonal computers should be able to handle the initial database. As accounting func-
tions are added, or if the system needs to expand beyond a single store, then the
system would have to be reevaluated.

At the current time, there should be few concerns about performance tuning.
However, to improve performance, all primary keys should be indexed. Microsoft
Access generally defines these indexes by default, but you should examine each
table to be sure. Be careful when assigning indexes to columns that are part of a
concatenated key. The index on a partial key must allow duplicates.

One potential area for problems is the City table. This table currently holds
basic data on cities throughout the United States. Performance could be improved
by reducing the number of cities—on the assumption that most customers would
come from the surrounding communities. However, if you choose to keep the data,
you can improve performance by thinking about how the table will be accessed. In
particular, it is often searched by ZIP code. Similarly, because users often want a
sorted list of the cities, it would be useful to index the City column. Are there too
many indexes for one table? You could test the performance of retrievals before
and after adding the indexes. However, note that the City table is predominantly
used for retrieval and rarely used to add data. Hence building additional indexes
makes sense.

The same situation probably exists for the Merchandise table. Most applica-
tions and users will retrieve data from the Merchandise table, with few updates,
deletions, or insertions. Hence you might build additional indexes on that table.

For now, partitioning and clustering are not warranted. Over time, as the busi-
ness expands, you might want to move some of the older data to less expensive

583Chapter 12: Physical Database Design

storage devices. For instance, data on animals sold more than 5 or 10 years ago
will probably not be used often and could be placed on slower CD-ROM drives.
Similarly, inactive customer data, and older order data can be moved from the pri-
mary tables. The exact dates will depend on the cost of storage, discussions with
Sally, observation of retrieval patterns, and legal needs.

Summary
Large application databases sometimes need to be fine-tuned to improve their
performance. Some systems provide control over how the data is stored and re-
trieved. Three basic types of controls can be used to determine (1) how table rows
are stored and retrieved, (2) how individual columns are stored, and (3) how data
is clustered or partitioned.

The primary choices for storing rows of data are B+tree indexes, hashed-key ac-
cess, and sequential files. The method depends on how the data is used in terms of
the standard database operations. The most challenging operations are searching
for random entries and adding new data to the table. The B+tree approach is the
most common because it provides the best overall access for a variety of situa-
tions. In particular, it provides reasonably fast random access, good sequential re-
trieval, and good performance for inserting and deleting rows of data. In contrast,
the hashed-key approach provides high-speed random access to any data element,
but it is poor at retrieving data sequentially. Sequential files are rarely used, be-
cause although they use a minimum of space, they provide weak access to random
rows of data.

Most DBMSs provide some control over how individual columns can be
stored. The most common feature enables developers to control the storage of text
data. Large text columns should be stored in varying-character columns instead
of fixed-width columns. You should also be familiar with using delimited files for
transferring data to different systems.

Some systems can cluster data in common locations on the disk drive. This ap-
proach improves performance by enabling the disk drive to retrieve related data
in one pass. Another useful technique is to partition data so that data that is used
less often can be moved to less expensive, slower disk drives. RAID systems pro-
vide another performance gain by splitting data and storing it on independent disk
drives within the same system. The RAID drives can store and retrieve data sub-
stantially faster than a single disk drive can. RAID drives can also provide auto-
matic backup by storing each component on two different drives.

Be careful when attempting to improve the performance of an application.
Changes that help one area can adversely affect other operations. This trade-off is
important when creating indexes for columns in a table. Indexes tend to improve
data retrieval but slow down the processing when data is added to the table.

584Chapter 12: Physical Database Design

Key Terms

address
bitmap index
degree
depth
direct access
fixed-width
hashed-key
horizontal partition
index

leaves
node
offset
pack
pointer
root
VARCHAR
variable length
vertical partition

Review Questions
1. What basic data operations are performed on tables?
2. What are the primary data storage methods for tables?
3. What are the strengths and weaknesses of sequential storage?
4. How do linked lists solve insert and delete problems?
5. What are the strengths and weaknesses of indexed (B+tree) storage?
6. What are the strengths and weaknesses of hashed (direct access) data

storage?
7. How does data clustering improve database performance?
8. How does data partitioning improve database performance?
9. How is storage different for CHAR versus VARCHAR data types?

A Developer’s View
As Miranda’s problems indicate, database performance can become an impor-
tant issue. Performance problems should be anticipated and solved as early as
possible in design and development. You do not have to be intimately familiar
with how the DBMS stores data. However, you do need to know which options
are available to you. With many systems, the most important control you have is
in choosing which columns to index. Sometimes you can choose the exact stor-
age method. You need to understand the strengths and weaknesses of the various
methods so that you can choose the method that best fits your application’s needs.
For your class project, you should identify the columns that should be indexed.
You might have to generate sample data and compare processing time for various
operations.

585Chapter 12: Physical Database Design

Exercises
1. Using the documentation for one DBMS, write the commands to create a

table using a hashed-key index on an integer primary key column.
2. Based on the sample data in Figure 12.10, write the logic for the code to

insert a new element in a linked list.
3. Research the documentation, DBAs, magazine, or Internet sources and find

two methods or tricks that can be used to improve performance of your
DBMS. Identify the specific problem the hint is designed to solve.

4. Create a B+tree (degree 3). Show each final tree.
a) The base tree holds the following key values: 1038, 1164, 2314, 3678,

4164, 5931, 6104, 7368, 7547, 8442, 8556, 8777, and 9114.
b) Add the key value 8655.
c) Add the key value 2715.
d) Add the key value 10911.
e) Add the key value 2941.
f) Delete the key value 9114.

5. Draw a linked list.
a) Start with the following key values: 341, 492, 561, 678, 781, and 856.
b) Show how to insert the key value 603.
c) Show how to delete the key 781.

6. Create a hashed storage example. Use a prime number of 53. Show the
storage of the following numbers: 781, 467, 198, 435, 351, 782, and 149.

7. Write the commands to partition a Customer table based on the CustomerID.
Older data has lower values for CustomerID, so split the table into three
partitions based on values of 10,000 and 20,000.

Sally’s Pet Store
8. The basic version of the database is relatively small and there should not

be any current performance problems. However, if the company expands
into several cities with multiple stores, performance could become more
important. Outline a plan for how you could expand the database to handle
this situation. Identify the DBMS software you would choose.

9. Go through the list of tables and classify them into two groups: (1)
Transaction tables that receive many updates, and (2) Lookup or analytical
tables that are used in transactions but are seldom updated, so they can
include more indexes.

10. Copy the City table and remove all of the indexes from the copy. Create a
query that counts the number of customers from each state using the original
City table. Create a second copy of the query that uses the copy of the City
table. Run both queries and comment on the performance of the two queries.

586Chapter 12: Physical Database Design

 Rolling Thunder Bicycles
11. Make a copy of the Rolling Thunder database. Write SQL statements to

perform the following operations on the Bicycle table: (a) add a row, (b)
delete a row, (c) select all rows, and (d) write a program to change one value
in every row. Write four short programs to perform these operations in a loop
that repeats at least 100 times. Run the programs and record the time it takes
to perform the operations. Next, index every column in the Bicycle table and
rerun your tests. Record and analyze your results.

12. Examine the tables and the usage of each table in the Rolling Thunder
application. Identify the primary uses of each table in terms of the table
operations described in this chapter. Use this list to identify desired indexes
and appropriate storage methods for each table if the database becomes large.

13. Examine the tables in Rolling Thunder and identify which tables should be
clustered. Which tables could gain from partitioning? If the application is
expanded, what new data could be added that might gain from partitioning?

Corner Med
14. Examine the tables and the usage of each table in the Corner Med database.

Assume the database is going to become relatively large when it is used at
multiple locations. Identify the tables that are primarily transaction based
versus the lookup and analysis tables. Use these lists to specify additional
indexes that might be added (or removed) to improve performance. What
other options could be used to improve performance?

15. Assuming the company has operated for five years, how would you partition
the data to reduce storage needs and improve performance?

16. If the company decides to digitize other medical records (x-rays, photos,
lab results, prescriptions, and so on), what performance problems can be
expected? How will you minimize these issues?

Web Site References

http://www.sql-server-performance.com Hints	on	improving	performance	for	SQL	
Server.

http://docs.oracle.com/cd/B19306_01/server.102/
b14211/toc.htm	

Oracle	performance	tuning.

http://www.bluerwhite.org/btree/ General	B-tree	information	and	coding.

Corner
Med

Corner
Med

http://www.sql-server-performance.com
http://www.bluerwhite.org/btree/

587Chapter 12: Physical Database Design

Additional Reading
Baeza-Yates, R. and Ribeiro-Neto, B. Modern Information Retrieval, Reading,

MA: Addison-Wesley, 1991. [Computer science approach to storing and
retrieving data, includes Web access and multimedia.]

Goetz, G., Modern B-Tree Techniques, Boston: Now Publishers, 2011. [Basic
textbook on B-tree processing.]

Korfhage, R., Information Storage and Retrieval, New York: Wiley & Sons,
1997. [Summary of data storage methods.]

Loomis, M. Data Management and File Processing, Upper Saddle River, NJ:
Prentice-Hall, 1983. [In-depth treatment of data storage issues such as
B-trees.]

Dunham, J. Database Performance Tuning Handbook, Berkeley: McGraw-Hill,
1997. [In-depth treatment of improving your application’s performance.]

	Chapter 12: Physical Database Design
	Introduction
	Two-Minute Chapter
	Physical Data Storage
	Table Operations
	Retrieve Data
	Store Data
	Reorganize the Database
	Identifying Problems

	Data Storage Methods
	Sequential Storage
	Pointers and Indexes
	Linked Lists
	B+Trees
	Direct or Hashed Access
	Bitmap Index
	Comparison of Access Methods

	Storing Data Columns
	Text and Numbers
	Image and Binary Data
	Transferring Data with Delimited Files

	Data Clustering and Partitioning
	Data Clustering
	Data Partitioning

	Managing Tablespaces
	Sally’s Pet Store
	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading

