
588

What You Will Learn in This Chapter
•	 Why	would	anyone	need	a	non-relational	database?
•	 What	are	the	main	features	of	non-relational	databases?
•	 How	are	databases	designed	and	queried	using	Cassandra?
•	 How	does	cloud	computing	benefit	key-value	pair	databases?

Chapter Outline

Non-Relational Databases
13Chapter

Introduction,	589
Two-Minute	Chapter,	591
Non-Relational	Databases:	Background,	
592

Key-Value Pairs, 594
Sparse Data and Flexible Columns, 595
Distributed Data, 597
Consistency and Integrity, 598
Optimizing Data Storage for Queries,
600

Cassandra,	601
Installation Issues, 601
Pet Store Web Example, 602
Database Design, 603
Primary Keys, 605
Initial Queries, 607
Indexes, 609
Querying Tables with Compound Keys,
612
INSERT and UPDATE, 613

Cloud	Databases,	614
Summary,	616
Key	Terms,	618
Review	Questions,	618
Exercises,	619
Web	Site	References,	621

Additional	Reading,	621

589Chapter 13: Non-Relational Databases

A Developer’s View
 Ariel: Why the puzzled look, Miranda?

 Miranda: Well, my company built this great
Web site that lets customers post
comments, rate products, and
interact with each other…

 Ariel: Yes, that sounds fairly standard
today.

 Miranda: But, there are millions of
customers! We ran some tests
with sample data and it runs really
slowly. Plus, it looks like we would
need a huge server, and the DBMS
license fees will be enormous—
just to provide a free service to
customers.

 Ariel: Wow! That does sound like a
problem. Are there any other
options.

 Miranda: Yes, that is the confusing part. Big
companies like Facebook have
developed non-relational DBMSs
that emphasize scalability and
speed. Some are even open-source
so we don’t have to pay license fees
for each copy. All of which is great,
but these things are really new and
they keep changing, so it is difficult
to figure out how to structure the
data and write the code.

 Ariel: Hmm. That does sound tricky. But
it sounds like it is useful to learn the
basics to help you decide when to
use the tools.

Introduction
Why would anyone need a non-relational database? The importance of the
Web has three major impacts on technology systems: (1) The need to run 24-7
(24-hours a day, 7-days a week); (2) The ability to handle relatively complex ob-
ject data (pictures, long text, and so on); and (3) Handling data for millions of
users. In terms of Web 2.0 (Web services and social interaction), the other key
aspect is that companies provide these services with minimal or no fees on cus-
tomers. The large scale of the applications causes several problems with perfor-
mance, reliability, and cost. This last element has led large Web firms to develop
open source tools to handle many computing aspects in an attempt to hold down
licensing costs. Along the way, they decided to use a different data model to im-

Getting Started
Web applications tend to handle data in a relatively unique pattern: Most
data is exchanged as key-value pairs. Starting with data on forms passed
to a Web server, the data is coded with a key (such as the textbox name)
and the corresponding value. Large Web sites also struggle with han-
dling data for millions of users. So new systems have been defined to
store and retrieve these individual pieces of data as quickly as possible.
The Cassandra project is one of the most popular. It focuses on the abil-
ity to store data across multiple servers; both for performance and to
minimize disruptions if one node fails. The data design for these systems
is not normalized, and Joins are not supported. This chapter presents the
basic elements of design and data retrieval in non-normal databases.

590Chapter 13: Non-Relational Databases

prove performance and reliability. These newer systems do not use relational data
storage. The early versions had minimal support for data storage and retrieval, so
some people referred to them as NoSQL databases. But it is better to refer to them
as non-relational, because the major differences lie in the data model and stor-
age, not in the query language. Of course, as Chapter 1 points out, non-relational
systems have been around longer than relational, so how are these new systems
different from the old tools? The answer to that question revolves around two key
features: distributed databases and key-value data storage.

The new DBMSs are evolving rapidly. Most of the tools were originally de-
veloped by specific companies for their particular needs (such as BigQuery (Big-
Table) and MapReduce by Google, Hadoop (HBase) by Yahoo, and DynamoDB
by Amazon). The open-source community then developed variations on the tools.
Some similarities exist across the tools, but in the end they are all different. As of
2013, some Web sites list 150 variations of NoSQL tools. To illustrate the con-
cepts, this chapter explains the general concepts but focuses on one DBMS: Cas-
sandra. Cassandra is in the top 3 list for non-relational DBMSs in terms of popu-
larity or usage. It is also one of the best performing and has ongoing development
with installation files for several operating systems (including Amazon EC2). It
also has an interactive query language which makes it possible to explore the data
without detailed programming. However, any real-world application would re-
quire programming, which is also supported through several languages.

Chapter 11 introduces how distributed databases can improve reliability and
scalability. Data storage in the non-relational systems was built from the ground
up to run as distributed systems. In particular, Cassandra operates as peer-to-peer
distributed nodes. The system is designed to be installed on multiple servers, in
multiple clusters, and across multiple data centers—which could be located any-
where in the world. Any piece of data is replicated across multiple servers, and
typically each server holds only a portion of the data. If any node fails, the data
is available from other nodes. As the database grows, more server nodes can be
added to the clusters to scale the operations linearly.

The other defining aspect to the new systems is that data is stored as key-value
pairs. The key can be any type of data, but must be unique. The data value can be
any data element and might be a complex object or collection of items. The key-
value concept is important in Web-based applications. For example, each text box
on a Web-browser form has a unique ID. When the user submits the form to the
server, the browser packages the data and sends it as pairs of the form: ID=value.
The browser and Web server programming tools are designed to handle these
pairs of data. So, it made sense to build a DBMS that uses this same concept to
store and retrieve the data from files. The key-value concept is similar to the pri-
mary key in a relational DBMS, but most of the new systems are far more flexible.
In particular, the new systems routinely violate the definition of first normal form
(storing atomic, single-valued data in one cell). The data stored can be a single
item (such as a last name), but it can also contain repeating items such as multiple
e-mail addresses.

Retrieving data is quite different from the SQL approach. The most important
limitation is that the query systems do not support any type of table JOIN—which
is the main reason for the NoSQL name. Data can be retrieved from only one table
at a time—by providing the key data. Some additional queries can be supported
by predefining indexes on the desired search columns. But queries are limited to
improve performance.

591Chapter 13: Non-Relational Databases

This chapter explores these fundamental differences between Cassandra and
traditional systems. It explains how the database model design is different and
how to handle common situations. A small example of the Pet Store is used to il-
lustrate data storage for a simple Web application. You can download and install
a copy of Cassandra from the Web (www.DataStax.com is recommended), and
then download and install the sample Pet Store Web database to test the basic
concepts.

Two-Minute Chapter
Data storage is the defining difference between traditional relational DBMSs and
the new non-relational systems. To improve performance, the new systems require
that indexes be defined for every item that needs to be queried later. So the data
storage model must be defined in terms of the queries that will be used. The stron-
gest limitation is that the query systems do not support any type of JOIN state-
ment. Data is retrieved from one table at a time. Retrieving matching data from a
second table requires writing code to extract a key for the second table and then
writing another query to obtain the data from the second table. For even faster per-
formance, data is often duplicated. For example, to avoid a lookup for Customer
Name, many designers would store the Customer Name column along with the
transaction data so it can be retrieved immediately. The assumption is that disk
space is cheap, but Web response delays are expensive because people will leave
a slow site.

The DBMSs do not provide referential integrity, so data entered in one table
might not exist or match in a second table (unless application code is written to
maintain integrity). Similarly, there is no guarantee that each node in the system
has the exact same data for each item. A node or connection might fail or updates
might be slow so a node might have older data. The goal of the new systems is
to emphasize performance over strict data integrity. In their defense, an argument
has been put forward that it is probably impossible to guarantee data integrity in a
distributed system—without severe performance issues. Interestingly, Cassandra
provides the ability to specify the level of consistency desired with each query.

The issue of handling one-to-many relationships is still important, and in many
cases it makes sense to create separate tables to handle them. But the new systems
often encourage storing multi-valued items in a column or cell (which violates the
first normalization rule). Cassandra supports the definition of sets and lists within
a single column. Again, the point is that anything stored with the original row key
will be retrieved immediately. So any data that is used together should be stored
together.

In Cassandra, a keyspace is similar to a schema in that it holds all of the tables
for a single application. A Table holds a collection of rows, and each table must
have a primary key—preferably based on a single column. One-to-many relation-
ships are handled by defining two columns in a compound primary key. A non-key
column can hold single-valued data, or sets, lists, and maps can be used to store
repeating data.

Database design is more flexible than the relational model, with few strict rules.
Start by normalizing the data into tables and then decide how to duplicate or com-
bine data to improve performance. Ultimately, the design is based on the queries
that will be needed by the application.

Cassandra uses the CQL query language to define the database structure and
retrieve data. Additional programming (CLI) tools are available but CQL provides

http://www.DataStax.com

592Chapter 13: Non-Relational Databases

commands that are similar to SQL—without the JOINs and with severe restric-
tions on retrieving data. The CREATE TABLE command is similar to SQL (with
different options). The SELECT command is used to specify columns and the ta-
ble name. A WHERE condition can be used but it can only include columns that
are in the primary key or supported by a secondary index.

Non-Relational Databases: Background
What are the main features of non-relational databases? Technically, a non-
relational database could be any data storage method that does not support the
data normalization rules. In fact, the earliest data storage methods were flat files
and hierarchical databases, which were then expanded into network databases
(which had nothing to do with LANs or distributed databases). In some ways, the
resurgence of non-relational systems is a continuation of the arguments for those
earlier data storage methods. A primary argument was that data stored in non-rela-
tional systems could be retrieved faster. And in some cases, that answer was true.
What Codd successfully argued is that the relational system separated the data so
that it was stored more efficiently and provided support for ad hoc queries. The
relational model also provides tools to ensure data integrity and consistency. So
overall, it provides the best performance across a wide range of uses.

However, the relational approach is not necessarily the absolute fastest way to
store and retrieve individual pieces of data. In particular, if data is always stored
and retrieved in a specific way, it can be considerably faster to optimize the data
storage to match the application needs. For instance, Chapter 12 explains the
hashed or direct key access method. Given a unique key, its value can be hashed
or converted into a specific location address and the data associated with that key
can be stored and retrieved almost instantly. But, the application has to always
store and retrieve the data using the key. The current non-relational systems utilize
this hashed-key approach to store and retrieve data—with a few additional twists.

In a Web application environment data is often collected and transferred in key-
value pairs, so it makes sense to store data using the key. Data related to individu-
als or to specific items is also easy to identify with unique keys. Data storage and
retrieval can be optimized for these transactions. The data storage will fail if a
manager wants to do a more complex search; but data could be extracted and
stored in a data warehouse for purposes of data mining or complex searches.

The problem with Web applications is that users expect instantaneous results.
In the early years, Google asked users if they would prefer 10 results or 30. Most
people opted for the larger number. Until Google ran actual tests and found that
people were dissatisfied with larger results page—as much as a 20 percent drop
in usage. The reason: it took a half-second less time to generate the smaller page.
Marissa Mayer (then at Google) gave a couple of talks with summaries on the Web
such as http://www.zdnet.com/blog/btl/googles-marissa-mayer-speed-
wins/3925. The point is that timing can be critical on Web pages, and as the num-
ber of users and amount of data increase, delay times can increase exponentially.
It is far better to scale up the servers linearly as the number of users increases.

To improve speed, non-relational systems emphasize hashed-key data access,
and storing data on distributed servers. Multiple servers are important for scale—
adding new servers should improve the overall performance of the data storage.
The Web also has geographic implications because of the location of users and
bandwidth constraints. Distributed systems are useful because the data can be
placed around the world where local sites can respond faster to user requests.

http://www.zdnet.com/blog/btl/googles-marissa-mayer-speed-wins/3925
http://www.zdnet.com/blog/btl/googles-marissa-mayer-speed-wins/3925

593Chapter 13: Non-Relational Databases

The challenge with distributed systems lies with maintaining data integrity.
Specifically, how can the DBMS ensure that all nodes in the system have the same
up-to-date copy of data? Relational systems emphasize the importance of data in-
tegrity. Most use locking mechanisms and transaction logs to ensure that data is
always accurate across the entire system. But these mechanisms add delays to
processing data—particularly storing or updating values. And, in the end, it is still
hard to guarantee that every node will always maintain consistent data—particu-
larly if network connections fail.

So, the simple difference with non-relational systems is that they focus on per-
formance and worry less about data consistency. To improve performance, they
also limit the ways in which the data can be queried. Consequently, the database
design ultimately must be based on identifying exactly how the data will be used
and queried. Figure 13.1 shows the main conceptual differences between a table
in a relational database and in a key-value pair database. Relational tables have
fixed columns with atomic, single-valued cells. Data for rows is retrieved via an
indexed primary key, but keys can use several columns. For key-value tables, a
primary key is almost always a single column and data is primarily retrieved only
by a specific key. The rest of the row value can hold almost anything. In table
terms, the columns are treated as another set of key-value pairs. So new columns
can be added to any row at any time, simply by adding new key-value pairs to the
row data. But, searching for data by any column other than the key requires creat-
ing a new index on that column.

CID LastName FirstName Email
101 Brown Bobby BBrown@gmail.com
102 Jones Jackie JJackie@live.com
103 Piste Paula SkiFast@yahoo.com

Relational	table:	Primary	key	(with	index).
Atomic	cell	data,	JOINs	to	other	tables.
Fixed	columns,	all	columns	searchable.

Key Value
91e83b31... LN=Brown,	FN=Bobby,	E=BBrown@gmail.com
4f763ab4... LN=Jones,	FN=Jackie,	E=JJackie@live.com
754d4a... LN=Piste,	FN=Paula,	E=SkiFast@yahoo.com

Key-value	pairs.	Row	key	is	unique	and	defines	storage	partition.
Row	key	is	the	default	way	to	retrieve	a	row.
Searching	by	other	columns	requires	a	secondary	index.
Data	value	can	be	almost	anything.	
Columns	are	treated	as	more	key-value	pairs	and	are	flexible	by	row.

Figure 13.1
Relational v. Key-value pair table. Both use indexed primary keys to locate a row,
but columns in a relational table are fixed and hold single, atomic values. With key
values, rows are retrieved with a row key and the value can be almost anything;
including more key-value pairs that are essentially columns.

594Chapter 13: Non-Relational Databases

Some non-relational systems also provide more flexibility in defining tables—
particularly columns. Primary keys identify rows of data, but with some tools it
is possible to put anything into a row. Which means that each row might hold
different columns and even different types of data. Early proponents of the non-
relational approach argued that this flexibility made it easy to expand the database
to add new columns and new data later. In a world of Web applications that start
small and then add features with each new version, there is some appeal to this
flexibility. On the other hand, putting different columns and data into every row is
a programmer’s nightmare because the code has to continually check to see what
data exists for each row. In most cases, it is safer to simply add new columns to
tables and ensure that each row is at least somewhat consistent.

Key-Value Pairs
A key-value pair is probably the simplest data structure available for storing and
locating data. Each item to be stored is identified with a key and the key is the
only data needed to find the value item. The key could be any data type. A long
integer is probably best to ensure that the values are unique, but text values can be
converted into numbers through a hashing algorithm. As noted, Web forms make
heavy use of key-value pairs, so most Web servers and other tools also use them.
For instance, a basic customer Web form would send pairs of data to the server
based on the text boxes, of the form: LastName=’Jones’, Email=’John@Jones.
com’, and Category=’Student’.

For storing data in a database, the concept is similar; but a database table has
rows and columns. So each row needs to have a unique key entry. In the case of
Customer data, it would make sense to invent a CustomerID to use as the primary
key. So a data row for a specific customer might be stored with a value for Cus-
tomerID of 10938374. The remaining “columns” of associated data (FirstName,
LastName, Email, and so on) would be stored in the space identified by the pri-
mary key value. Figure 13.2 gives an example of the key-value concepts. The
primary key is similar to most other lookups, where the key is converted into a
storage location. Some tools use indexes, others might use a hashed-key conver-
sion directly to the physical address.

Figure 13.2
Key-value pairs for identifying rows and for extracting column data within a row.
The row primary key is just a direct/hashed-key lookup. The column storage shows
how key mappings are used to support flexible rows that can hold different data.

10938374 LastName=‘Jones’,	FirstName=‘John’,	…	

29274367 LastName=‘Brown’,	FirstName=‘Barb’,	…	

38739415 LastName=‘Crow’,	FirstName=‘Candy’,	…	

Primary	Key

Row identifier/hash Column Key-value pairs

595Chapter 13: Non-Relational Databases

The interesting twist with non-relational systems is that they might also store
the column or cell data using key values where the key is the name of the column.
Instead of allocating space for each column, the data storage consists of a mapping
array that retrieves a value based on the key. With the sample data, data might be
retrieved by specifying CustomerID=10938374. Then the application requests the
value on that row associated with the key of ‘LastName’ or ‘FirstName’.

Obviously, the row keys need to hold unique values. The column names also
have to be unique, but in most cases those are predefined. The challenge with row
keys becomes more difficult in the distributed environment of most non-relation-
al systems. Think about the challenge of inventing a key number that has to be
unique across all of the servers. A relational DBMS probably has a key-generation
method that creates incremental values. It might store the latest ID values in a ta-
ble and then generate the next value on demand. However, this approach requires
that all servers have access to the same consistent table data. The non-relational
approach avoids enforcing consistency, so a different method is needed to create
ID values. The most common approach is to use a number known as a universally
unique identifier (uuid). These numbers have been used for several years for
similar purposes, so software exists to generate them reliably on almost any de-
vice. Microsoft has used a variation known as globally unique identifier or GUID,
but an ISO standard now exists. By the standard, a uuid is a 128-bit number repre-
sented by 32 hexadecimal digits and written in standard form with hyphens, such
as:

71c1da88-88af-4217-aa41-332ea3d33ae9

Several methods have been defined to generate uuid values. The earliest ones
(type: Version 1) used the MAC address of the computer’s network card and a
measure of time. Because each network card is assigned a unique MAC address
by the vendor, the UUID generated is known to be different from one generated by
any other computer. Other methods also exist, including purely random numbers
(Version 4), which could result in duplicates with a tiny probability; or (Version
5) numbers generated with security hash algorithms. In any case, primary pro-
gramming languages all have algorithms to generate uuid values. The drawback
to uuids is that they are a pain to type if you want to manually test a query. But
they are necessary in distributed computing environments, and most of the time a
programming language generates the value or retrieves it from an existing table.

Sparse Data and Flexible Columns
The second part of Figure 13.2 hints at how columns in non-relational systems
are different from those in relational tables. In a relational DBMS, each table has
a fixed set of columns and each row/column cell has exactly one value. Once the
relational rules are discarded, it is easier to think of a row as just a collection of
bytes. The row key retrieves those bytes, but the application can store or retrieve
almost anything in that space. Most systems define the column space as a data
map which is just another set of key-value pairs.

One benefit to the mapping approach arises for data with many missing entries,
or sparse tables. Each row only stores the data columns that exist so if much of
the data is missing no space is wasted. For instance, one Customer entry might
have values only for LastName and FirstName, so the map contains only those
two entries. Another row might have several items, including a photograph. Ap-
plication do have to be slightly cautious and test for missing values when request-
ing items within a row.

596Chapter 13: Non-Relational Databases

Some systems and some developers take this approach to the extreme and claim
that the flexibility enables them to store different key items in every row. For ex-
ample, one Customer row might contain entries for LastName, FirstName, and
Phone, while another could hold data for FamilyName, Nickname, and Skype ad-
dress. Even if a system does support this level of flexibility, it should be avoided.
Changing column names/keys means that every application needs to know all of
the possible values and test for them within the code. Making data storage more
“flexible” at the cost of making program code harder to write, read, and test is a
bad tradeoff in most situations.

Another approach to flexible column data is the ability to store complex data
within a single cell (or column). For example, Cassandra supports set, list, and
map data types. A set is an unordered collection, a list has an index order (1, 2,
…), and a map is a collection of key-value pairs. Each of these can be used to
store multiple entries in a single column for one row of data. They should be used
only for small lists because the query system will retrieve every value at the same
time.

Figure 13.3 shows an example where a set or list might be used to enable cus-
tomers to enter multiple e-mail addresses or multiple phone numbers. For in-
stance, to store two e-mail addresses, a set could define

E-mail = {‘John@Jones.com’, ‘JJones@gmail.com’}

A map uses a key to define the difference between the two addresses such as
E-mail = {‘Home’ : ‘John@Jones.com’, ‘Work’ : ‘JJones@gmail.com’}.

Collections support any data type and the map can contain any key definitions
needed by the application. But, the application programmers need to remember all
of the keys and handle them within the program, so the programming can become
more complex and subject to more errors. In some ways, the collection types are
not radically different from the relational DBMS. Most relational systems today
support an XML data type which makes it possible to store complex data, includ-
ing lists and collections in a single column. And the same warnings apply to using
the XML data types—they make the application programming more complex and
harder to test and debug.

Figure 13.3
Data collection map for e-mail addresses. Multiple values can be stored in the
E-mail column, but the key-values are defined and handled by the application. Using
collections is similar to using XML. It is more flexible but requires more application
code to handle the data storage and retrieval details which increases the programming
difficulty and probability of introducing errors.

10938374 LastName=‘Jones’,	FirstName=‘John’,	…
E-mail={‘Home’	:	‘John@Jones.com’,	

‘Work’	:	‘JJones@gmail.com’}

Primary	Key

Row identifier/hash Column Key-value pairs

597Chapter 13: Non-Relational Databases

Distributed Data
The non-relational systems are built from the ground up to handle highly distribut-
ed data. Cassandra has a particularly interesting version because it is peer-to-peer
instead of using a central server approach. Every server node in the Cassandra
network is independent and shares data directly with other nodes. No single node
coordinates or controls the others. Figure 13.4 shows the basic elements of the
Cassandra network. A data partitioner defines a range of key values for each node.
When the database is created, the designer specifies a replication level—3 in this
example. Data is then written to the appropriate server based on the value of the
key and replicated to the specified number of servers. Each node communicates
with the others via a gossip channel to share status information. If a server fails
to respond, it is moved from the active list and others pick up the lost key range.
Similarly, when a new server is added, the key ranges are redefined and gossip is
used to synchronize the data updates across the new server.

Distributed data in Cassandra is actually much more sophisticated, but most of
the details are not important to the design or queries so they are not covered in this
chapter. Basically, servers can support virtual nodes which simplifies replication
assignments. More interestingly, it is possible to incorporate the physical layout of
the servers into the replication design. For example, servers located in the same
rack are connected by high-speed networks and can quickly share data; but they
are more at risk for collective failure (e.g., power or network). Nodes in a different
data center might be a different geographical location, so data is more protected if
spread across centers, but updates are slower. Cassandra data models support de-
fining these characteristics and the data partitioner optimizes the data replication.

Other systems have different features, and some rely on a central server to co-
ordinate data storage and status messages. With Cassandra, data queries and write
operations can be connected to any node and the system will function the same
way each time, even if one node crashes or becomes inaccessible. Most of the
non-relational systems use some form of distributed data storage; both to provide
data protection through replication and to improve performance by having mul-
tiple servers and multiple drives handling the data.

Figure 13.4
Cassandra data storage overview. Servers are configured as (virtual) nodes. They
communicate with each other via gossip for status (every second). A data partitioner
assigns data to an initial server based on key value. The replication parameter
specifies the number of copies.

servers

000-200 201-400 301-600 601-800 801-1000

Replication	=	3 Data:	key=325

Gossip/status

598Chapter 13: Non-Relational Databases

In terms of physical computers, the server processing is important, but the data
storage methods are more important. Because Cassandra automatically handles
replication of the data, RAID 1+0 drives are not recommended. RAID 1+0 drives
make physical replicas of data being written so if one drive fails the others can
rebuild the content. But Cassandra already handles the replication so using RAID
1+0 just wastes space. RAID 0 drives are still useful because they multiply the
access speeds with physically independent disks. But high-end Cassandra imple-
mentations still recommend even faster solid state drives (SSDs) for all data
storage.

Other than performance and backup, the nice feature of the distributed systems
is that they are invisible to the application. The application (writing and retrieving
data) just issues queries and the DBMS handles all of the details automatically. Of
course, setting up and monitoring the distributed network takes additional time.
But, application transparency is important because the data storage can be res-
caled at any time without altering the application.

Consistency and Integrity
Largely because of the distributed structure, one of the key aspects of non-rela-
tional databases is the limitations on consistency and integrity. A key strength of
traditional relational systems are the built-in controls to ensure data consistency;
which makes them valuable for business transactions. The problem is that abso-
lute consistency is difficult to guarantee in a widely distributed system. It would
require that all nodes maintain communication during all updates. Worse, strict
consistency can require that some transactions (reads and writes) be delayed until
all nodes are consistent. But the point of a distributed system is that it should be
able to handle short-term failures in some nodes and connections; and maintain
high performance even under heavy load.

Figure 13.5
Cassandra tunable consistency. Developers can choose a consistency level for any
write (or read) operation. The lowest level (ANY) has the least delays. The ALL level
requires all replicas to be updated before continuing.

Level Nodes Description
ANY	(lowest) 1 Write	will	still	succeed	if	a	hinted	

handoff	has	been	written.
ONE,	TWO,	THREE 1,	2,	or	3 Write	must	be	logged	and	committed	

to	the	specified	number	of	replica	
nodes.

QUORUM Replication/2	+	1 Write	logged	and	committed	to	at	
least	half	the	replication	nodes.

LOCAL_QUORUM Same	data	center Same	as	quorum	within	the	local	data	
center.

EACH_QUORUM All	data	centers Same	as	quorum	within	all	data	
centers.

ALL	(highest) All	replicas Write	must	be	logged	and	committed	
to	all	replicas.

599Chapter 13: Non-Relational Databases

Non-relational systems relax the constraints on absolute consistency and allow
nodes to be inconsistent—at least for a short period of time. Actually, in terms of
read and write transactions, Cassandra provides the ability for developers to spec-
ify the desired level of consistency, calling it tunable consistency. As shown in
Figure 13.5, write consistency specifies the number of replicas that need to return
an acknowledgement of success. The lowest level (ANY) operates with the least
delays. The highest level of consistency (ALL) requires all replicas to be updated
and committed before continuing. It is similar to the consistency requirements in
traditional relational systems.

However, several consistency issues exist beyond read and write transactions.
First, non-relational systems do not support referential integrity. The DBMS does
not have a method to verify that foreign keys are valid. For example, a Customer-
ID entered into a Sale table could be wrong. Similarly, when a row is deleted from
the Customer table, there is no automatic mechanism to delete the corresponding
data in tables that use that data (cascade delete). So the programmer is responsible
for maintaining data integrity.

A second consistency issue arises because non-relational designs often dupli-
cate data to improve performance. Consider the standard Sale and Customer tables
again. Instead of relying on the CustomerID to look up the customer name in the
Customer table, many designers will duplicate and store the customer name in the
Sale table. That way the name (and other data) can be retrieved at the same time
the sale data is read, without requiring an additional lookup in the Customer table.
But again, the DBMS has no method to ensure consistency of data. Changing the
address in one location does not affect the others. This action might have some
use—the sales data could contain different addresses for a customer depending on
when the sale was made. Many Web databases rely on keeping different values of
data at different points in time. But users do need to remember that the data can be
inconsistent at times.

Figure 13.6
Non-relational storage affects how data can be retrieved. Hierarchical systems stored
and located data by starting at the top level and working down. Network allowed
more flexibility by separating the tables and linking them through indexes that had to
be built to support queries. Key-Value combines elements of both by using indexes
on keys to locate individual rows. Any other searches require additional indexes.

Customers

OrdersOrdersOrders

Order	ItemsOrder	ItemsOrder	Items

Hierarchical

Customers

Orders

Order Items

Network

Index/links
Customers

Orders	+	Customer

Order Items

ID

ID

Key-Value	Pairs
IndexKeys

600Chapter 13: Non-Relational Databases

Optimizing Data Storage for Queries
Figure 13.6 shows that the original non-relational DBMSs (hierarchical and net-
work) were relatively rigid in the way data was retrieved. Hierarchical models ad-
opted features of paper filing cabinets. A cabinet (database) would hold folders of
Customers stored alphabetically. Each folder would contain the individual orders,
and the orders would contain the detailed items purchased. As long as you only
wanted to retrieve data by Customer and then find individual orders, the system
was relatively fast. But, if you wanted to find customers who ordered a specific
product, the system would have to start at the top and go through every customer
and every order. The Network model attempted to support these additional search-
es by separating the storage of each table and then building indexes and links to
all of the data. So, if the developer knew in advance that someone might want
to search for customers who ordered a specific product, an index could be built
on the ItemID, and then the back-links could be traced to identify the specific
customers.

The newer key-value systems adopt some elements from both of these models
(as well as a couple from the relational model). Data stored in separate tables is
indexed by the primary key. Using multi-level indexes and the power of distrib-
uted data, the storage and retrieval of the associated row data is fast. For even
faster access, data is often duplicated. For example, designers might include the
Customer name and shipping address with the Order data. Likewise, the Order
Item data might be stored within the Orders row, similar to the way it would be
handled with a hierarchical model. The critical design concept to remember is that
the DBMS can only retrieve data using the primary key. In fact, queries probably
cannot use other data in WHERE conditions. This limitation is demonstrated in
the query section. However, a few systems, particularly Cassandra, support the
creation of additional indexes that can be used for searching. In the example, if the
developer knows that someone will want to search for customers who ordered a
specific product, a separate index can be created using ItemID on the Orders table.

 The most important point of this section: Unlike the relational data normal-
ization rules, there is no fixed method for defining data storage using key-value
pairs. Instead, the designer must know how the data will be generated and queried
and then design the data storage to optimize the overall performance. Figure 13.7

Figure 13.7
Non-relational storage affects how data can be retrieved. Hierarchical stored and
located data by starting at the top level and working down. Network allowed more
flexibility by separating the tables and linking them through indexes that had to be
built to support queries. Key-Value combines elements of both by using indexes on
keys to locate individual rows. Any other searches require additional indexes.

1.	 Identify	the	basic	data	to	be	stored.
2.	 Do	a	base	data	normalization	to	identify	potential	tables.
3.	 Identify	all	the	ways	an	application	will	need	to	query	the	data.
4.	 Identify	the	primary	key-value	pairs	(base	tables).
5.	 If	needed,	duplicate	data	to	improve	performance.
6.	 Create	additional	indexes	to	support	queries	not	covered	by	primary	keys.
7.	 Test	performance,	combine	data	and	reduce	indexes	if	needed.

601Chapter 13: Non-Relational Databases

defines the basic steps that can be used to design data storage for a key-value
DBMS. But, each design will be unique and require experimentation to find the
best storage approach. The basic rule is that any data that can be accessed via a
key will be relatively fast. Storing all related data in one row is faster—even if it
means duplicating some information. Searching on non-key items requires creat-
ing additional indexes, but adding indexes slows down performance on updates
and inserts because the indexes have to be rebuilt. If a design for a transaction
system starts to require dozens of indexes, it will probably be better to eliminate
all but the essential indexes and create a data warehouse to enable managers to
perform additional searches on a copy of the database (see Chapter 9).

Ultimately, getting the best performance out of a key-value pair database re-
quires experimentation with the design. Eventually, as the system software grows
and stabilizes, perhaps computer scientists will be able to develop rules to im-
prove the designs.

Cassandra
How are databases designed and queried using Cassandra? All of the key-val-
ue pair DBMSs are slightly different and each application requires a custom data-
base structure. Although the general elements are similar, it is important to look at
a specific DBMS and a specific problem to understand the features and constraints
of the tools. Cassandra is one of the leading non-relational DBMSs, with strong
developer support including a company (www.DataStax.com) that specializes in
advancing the software and providing support. This level of support is useful to
help ensure the DBMS will survive for at least a few years. Remember that these
tools are relatively new and many companies are experimenting with different ap-
proaches. A second useful feature of Cassandra is that it has an interactive query
system that makes it possible to experiment with the database without needing to
write code for each example. Ultimately, each application still has to be written in
some programming language, but it is helpful to be able to test designs and que-
ries before writing code.

Installation Issues
One of the strengths of the non-relational systems, particularly Cassandra, is the
ability to run as a distributed database on multiple server nodes. A drawback to
running multiple servers is the cost of the servers—both hardware and software
licensing costs. Consequently, most of these tools are open-source projects that
are also designed to run on open-source systems—reducing the licensing costs.
(Some of the hardware costs can be handled by using cloud-based computing as
described in the last section of this chapter.) A challenge with open-source operat-
ing systems is that they can be harder to install and manage than Windows-based
systems. Also, several variations exist, leading to differences in installation and
operating procedures. Cassandra is written in the Java programming language,
which means that versions have been compiled to run on most systems (including
Windows—but it is not recommended). Cassandra also requires the Python pro-
gramming language (for the query tool).

It is highly recommended that Cassandra be installed on a virtual machine run-
ning an open-source operating system. The Debian version is relatively straight-
forward to install and it uses packages to install most software which simplifies
installation of applications and tools. DataStax has packaged versions and instruc-

602Chapter 13: Non-Relational Databases

tions for a couple of the more-popular Linux variants including Debian. Figure
13.8 outlines the basic steps, but several details can be required for each step so
you might want to obtain assistance from a local Linux user. Installing the proper
version of Java and setting it as the default version is one of the more complex
steps.

Cassandra has several useful configuration options for production systems.
These options are used to initialize and coordinate the multiple nodes in the dis-
tributed system. They are not needed for the sample demonstration files—which
are tiny. They are critical for optimizing performance in large production data-
bases, but they focus on the distributed networking issues so are not covered in
this chapter.

Pet Store Web Example
Many of the non-relational benefits arise when millions of people need to store
and access data—particularly on the Web. Figure 13.9 shows a common exten-
sion to the Pet Store case. Customers will choose a category and see items in that

Figure 13.8
Summary installation steps. Follow the detailed installation steps in the Apache
Cassandra Documentation from DataStax: http://www.datastax.com/docs. Be certain
to install the recommended version of Java before attempting to install Cassandra.

1.	 Install	Virtual	Machine	Server—open	source:	Debian
http://www.debian.org/releases/stable/installmanual
2.	 Sun/Oracle	version	of	Java:	at	least	JRE	and	JNA
	 a.	 Java	–version	(default	is	open	source	Java)
	 b.	 Download	and	install	from	Oracle,	then	set	as	default
http://www.oracle.com/technetwork/java/javase/downloads/index.html		
3.	 Download	and	install	Cassandra	from	DataStax	(Community	edition)
4.	 Several	configuration	steps	for	production	are	not	needed	for	the	sample	and	

testing.	And	only	one	node	is	needed.
	 a.	 Download	and	install	the	PetStoreWeb	files.
	 b.	 Unzip	and	copy	them	to	a	folder
	 c.	 In	terminal	mode,	run	the	cql	command	to	install:
	 	 cqlsh	–f	PetStoreWeb.txt

Customer	logs in:
Username
Password

Searches	for	
products	by	category

Selects a	product

Comments

Add

CustomerID ItemID

Figure 13.9
Pet Store Web Site Usage. Customers see merchandise items based on a selected
Category. When an item is selected, the page displays the product, description, price,
and a set of comments from other customers. Customers who are logged in can add
their own comments.

603Chapter 13: Non-Relational Databases

category. When they select a specific item, the details of the product are shown
along with a set of comments entered by other customers. Once the customer is
logged in, he or she can add a comment to the list. A customer can make only one
comment on a given product, but some might want to change the comment later.
The basic process should be familiar, because many Web sites support comments
by users. With potentially millions of customers and their comments, the database
could become large. It is also important that the page displaying a product be re-
trieved and generated quickly—customers will not tolerate delays.

Think about the usage display for a minute in terms of data. The existing (re-
lational) database already has tables for Customer and Merchandise. Those basic
tables will probably transfer cleanly—but the ID values will have to be changed
to uuids. A new table will probably have to be defined for the Comments, and the
details are covered in the next section. But also think about the potential queries
needed by the application. Figure 13.10 shows the main queries that will be need-
ed by the application. These queries are important because they will affect the
design of the database. Queries using IDs will become key-value pairs or primary
keys, and the others will have to be handled by separate indexes.

Database Design
Figure 13.11 shows the three tables needed for the Pet Store Web application.
The Customer and Merchandise tables are essentially copied from the relational
design, except that the primary keys are uuids. The ItemComments table is new.
Notice that the keys are the same as they would be in a relational database: ItemID
+ CustomerID. Also, notice the duplication of the ScreenName in the ItemCom-
ments table (from the Customer table). By placing this small piece of data that is
displayed with the comment inside the comment table, it saves a lookup into the
Customer table so it can be retrieved significantly faster. But the application will
be responsible for maintaining data consistency.

To understand the challenges of design, consider the ItemComments table. The
first question to ask: Why is it a separate table? Why not just store the comments
within the Merchandise table? It would be straightforward to add a column to
the Merchandise table that could hold a repeating set of data as comments. The
drawback to storing all comments in one row of the Item table is that retrieving a
row of data always retrieves the entire row. If a popular product gets thousands of
comments, it could take too long to retrieve that one row. Additionally, it is more
difficult to include the other attributes (CustomerID, Date, Rating, and so on). It
can be done—but only by creating a fairly large mapped object inside each row,
which slows down retrieval and processing. Using both ItemID and CustomerID
as keys also makes it straightforward to search for comments by Customer.

Figure 13.10
Initial application queries. These queries will affect the database design. Lookups by
ID are handled as primary keys. Other lookups will require additional indexes.

•	 Find	CustomerID	given	the	Username
•	 List	Merchandise	given	a	Category
•	 Display	Merchandise	data	given	an	ItemID
•	 List	all	comments	and	customer	screen	name	for	a	specified	ItemID
•	 Insert	a	new	comment	given	ItemID	and	CustomerID

604Chapter 13: Non-Relational Databases

Before creating the tables, Cassandra requires that all tables be defined within
a keyspace, which is similar to a schema in Oracle or SQL Server. It simply sepa-
rates one collection of tables from another by assigning a name. Generally, a key-
space is defined for each application. The syntax to create a keyspace is straight-
forward, as is the command to switch to a new (or different) key space:

CREATE Keyspace PetStoreWeb;
USE PetStoreWeb;

Tables are created within a keyspace. In earlier versions, and in some existing
documentation and error messages, a table was called a column family. In current
versions, the two terms are synonyms, but it is easier to think of the data as a table
than a family. Tables hold columns, which are not exactly the same as SQL col-
umns; but in most situations, they are similar. The differences are greater in terms
of data storage (and keys) because the columns are actually stored as key-value
pairs within each row.

Note that keyspace, table, and column names in Cassandra are normally not
case sensitive. The key words (CREATE) are also not case sensitive. But this book
uses case to highlight the key words and names to make them easier to read. There
are two catches in Cassandra: (1) Double quotes placed around a name make it
case sensitive and quotes are then required in all future usage. (2) Cassandra au-
tomatically converts all names to lower-case when it stores them. A few proce-
dures (notably COPY) seem to automatically use quotes, so if a command does
not work, try entering all names in lower-case.

Figure 13.12 shows the CREATE TABLE commands used to define the tables
in Cassandra. The syntax of the command is similar to that in SQL but it has dif-
ferent data storage options, which are not shown here. The default options are fine
for the sample database. Also, notice the uuid data type for each of the ID col-
umns. These values will have to be generated by the application. Note the specifi-
cation of both columns as the PRIMARY KEY for the new ItemComments table.
Although this syntax looks similar to SQL, the effects are quite different as will
be explained shortly. Finally, notice the use of the set<text> definition for the e-

Figure 13.11
Data tables for Pet Store example. Customer and Merchandise are base tables and the
ID key columns are uuids. ItemComments are new and each customer can comment
once on a given item (but can change the comments later). Notice the duplication of
ScreenName in the ItemComments table.

*CustomerID
FirstName
LastName
ScreenName
Username
Password
Email

*ItemID
Description
QuantityOnHand
ListPrice
Category

*ItemID
*CustomerID
CommentDate
ScreenName
Title
Comment
Rating

Customer Merchandise ItemComments

605Chapter 13: Non-Relational Databases

mail address in the Customer table. Defining it as a set means that the table can
hold multiple e-mail addresses for each customer. It is still up to the application to
handle the collection and editing of that data and it slightly complicates the syntax
for storing them, but it demonstrates the additional flexibility of collections.

Figure 13.13 shows the primary data types available in Cassandra. For business
applications, the most common data types are the standard uuid, int, varchar (or
text), decimal (for currency values), timestamp, boolean, and possibly float (for
percentages). Avoid the more exotic types of counter and varint, and you should
almost always use varchar instead of ascii, which does not support international
characters. Collections are defined with the set, list, and map keywords followed
by the type of data that will be stored. Most collections will use the text data type.

Primary Keys
The Primary Key definition syntax is similar to that used in SQL. However, pri-
mary keys are considerably different in Cassandra than in relational databases;

Figure 13.12
Data tables for Pet Store example. Customer and Merchandise are base tables and the
ID key columns are uuids. ItemComments are new and each customer can comment
once on a given item (but can change the comments later). Notice the duplication of
ScreenName in the ItemComments table.

CREATE	TABLE	Customer(
		CustomerID	 uuid,
		FirstName	 varchar,
		LastName	 	varchar,
		ScreenName	 varchar,
		Username	 varchar,
		Password	 varchar,
		Email	 	 set<text>,
		PRIMARY	KEY	(CustomerID)
);
CREATE	TABLE	Merchandise	(
		ItemID		 uuid,
		Description	 varchar,
		QOH	 	 int,
		ListPrice	 decimal,
		Category	 varchar,
		PRIMARY	KEY(ItemID)
);

CREATE	TABLE	ItemComments(
		ItemID		 uuid,
		CustomerID	 uuid,
		CommentDate	 timestamp,
		ScreenName	 varchar,
		Title	 	 varchar,
		Comment	 varchar,
		Rating	int,
		PRIMARY	KEY	(ItemID,	CustomerID)
);

606Chapter 13: Non-Relational Databases

particularly when the primary key contains more than one column. Recall that
data is stored as a key-value pair. Specifically, each row must have a key that is
used in the index to find a specific location. In case you are curious, that key can-
not be a counter type, and uuid is by far the most common.

A critical difference with Cassandra is that when the primary key consists of
multiple columns or a compound primary key, only the first column is used as
the partition key—which determines where data is stored. The other columns are
clustering columns and data is stored together. In fact, the clustering columns are
used to sort the data. In the ItemComments example of PRIMARY KEY (ItemID,
CustomerID), the ItemID determines where the data row is stored, and the com-
ments are stored sorted by the CustomerID. Depending on the application goals, it
might be useful to change the keys to: PRIMARY KEY (ItemID, CommentDate).
This definition would store the comments in order of date, making it easy to re-
trieve and display them in that order. However, the timestamp data type only splits
time down to seconds, so the application would have to be careful to ensure that
no two comments are ever written with the exact same date and time.

In some situations, it can be useful to partition the row data on more than one
key value. The composite primary key is used to define multiple columns as the
partitioning key by using a second set of parentheses, such as PRIMARY KEY (
(ItemID, CustomerID), optional columns). The difference with a composite key is
important. Think of it as defining the data storage by both keys: ItemID + Custom-
erID. Without the parentheses, only the first column partitions the storage, with
the extra parentheses both keys define the storage location—and both are required
to retrieve the data. Because Cassandra retrieves all rows based on the partition
key, the difference affects the queries.

With a simple compound key (ItemID, CustomerID), a query would retrieve
data by specifying ONLY the ItemID value, which would return all of the com-
ments made by each customer. With a composite key ((ItemID, CustomerID)),
a query requires BOTH the ItemID and CustomerID values to return exactly one
row. The Pet Store application has to use the simple compound key, because when
it displays an item, it knows only the value of the ItemID, not all of the Custom-

Figure 13.13
Cassandra data types. The most commonly used types in business applications should
be: uuid, int, varchar (or text), decimal (for currency), and timestamp.

Data	Type Description Data	Type Description
ascii US	ASCII	text	string inet IP	address	as	string
bigint 64-bit	signed	integer int 32-bit	integer
Blob Binary	object/picture text	or	varchar UTF-8	string
boolean true/false timestamp Date+	time,	8	bytes
counter 64-bit	integer,	but… uuid Type	1	or	4	uuid
decimal variable	precision	

decimal
varint Arbitrary-precision	int

double 64-bit	floating	point Java	classes Optional	classes	in	Java
float 32-bit	floating	point

607Chapter 13: Non-Relational Databases

erIDs who have entered comments. And realistically, there is no way to obtain the
list of CustomerIDs—without testing every possible value, which would be hor-
ribly slow.

Figure 13.14 illustrates the difference using some of the sample data. The com-
pound key uses only the first column (ItemID) to partition (store and retrieve) the
data. So a query needs to know only the value of the ItemID and it will return
comments from all customers in that “row.” The composite key uses an extra set
of parentheses to partition by both the ItemID + CustomerID columns. A query
needs values for both ID columns to retrieve exactly one row of data. The com-
posite key approach is faster—if the application always has values for both ID
columns. In the Pet Store example, the usage description says that the application
knows only the ItemID, so the design needs to use a compound key based only the
ItemID column.

Some of these points might seem a little confusing at the moment. Do not panic.
They are easier to understand once you see the limitations of queries as explained
in the next section. So, read the section on queries and then come back and re-
read the design guidelines. Remember that data design and storage depend on the
queries that need to be answered, so the design (and learning) process is iterative.

Initial Queries
The real differences with a non-relational DBMS arise when looking at queries—
which partly explains the misnomer: NoSQL. Interestingly, Cassandra now has
an interactive query language named CQL (Cassandra Query Language). CQL

Figure 13.14
Compound v. Composite key. The compound key partitions by the first column
ONLY. A query specifies just the value for ItemID and returns comments by all
customers for that item. A composite key partitions by both columns. A query must
list both the ItemID and CustomerID values to retrieve exactly one row. The problem
is that there is no easy way to get the list of all CustomerID values in the case of the
composite key.

ItemID CustomerID Data
588e633f… 7f81c5d6…

804a2cdb…
Not	big	enough…
Easy	to	assemble…

7ee762a1… 04201f56…
3e137d55…
538adbba…

Smells	bad…
Yummy…
Too	big…

ItemID CustomerID Data
588e633f… 7f81c5d6… Not	big	enough…
588e633f… 804a2cdb… Easy	to	assemble…
7ee762a1… 04201f56… Smells	bad…
7ee762a1… 3e137d55… Yummy…
7ee762a1… 538adbba… Too	big…

Compound	key:	ItemID,	CustomerID

Composite	key:	ItemID +	CustomerID

608Chapter 13: Non-Relational Databases

borrows some of the basic structure of SQL, which makes it a little easier to write
the syntax, but ultimately, the queries have almost nothing in common with even
simple SQL queries. But it is not just a limitation of the query system. The re-
strictions arise because of the way the DBMS stores the data, which is done to
improve performance for specific queries. This section shows some basic queries
using the sample Pet Store Web data. A different approach is used here compared
to learning SQL: Several of the initial queries will not work—specifically to dem-
onstrate the limits. If at all possible, you should install Cassandra and the sample
database and run the queries to follow along. Start the CQL processor by opening
a terminal window and typing: cqlsh (for CQL shell). Remember to enter the com-
mand to use the keyspace: use PetStoreWeb; Note that the use of uuids makes it a
challenge to type some of the queries.

Figure 13.15 shows two basic CQL queries using the SELECT command. The
first uses the Count function to return the number of rows in the table. Count is
the only aggregation function supported by CQL, but it can be useful to identify
large tables. The second query looks similar to a simple SQL query. The SELECT
clause can use * for all columns or the names of individual columns can be en-
tered. The WHERE clause is even more restrictive. Initially, the only conditions
you can enter in the WHERE clause are conditions on the primary key (Customer-
ID in the example). Remember that rows are stored as key-value pairs and initially
data can be retrieved only through the primary key.

Figure 13.16 shows some basic queries to experiment with variations of the
WHERE condition in the SELECT command. The bottom line is that the WHERE
clause can contain conditions that only use the primary key and an equals sign. It
does not even support conjunctions (And, Or). However, it does support the IN
() condition which takes multiple key values and finds matching rows based on
equality—which is equivalent to several OR conditions. A token () function exists
which does support inequality conditions. However, the token function converts
the values to their hashed-storage values and then makes the comparison. The de-
fault hashing function essentially randomizes the values, so the results are usually

Figure 13.15
Two basic CQL queries. The basic CQL syntax is similar to SQL but much more
limited. Count is the only aggregate function supported. The SELECT clause lists
columns to retrieve and the WHERE clause can be used to specify primary key
entries.

SELECT	Count(*)
FROM	Customer;
count

				99
SELECT	*	FROM	Customer
WHERE	CustomerID=71c1da88-88af-4217-aa41-332ea3d33ae9;
customerid						email																																																																							firstname			lastname…	
-----------------+--+-------------+----------------+
71c1da88…	|		{BCummings@gmail.com,	bignotes@gmail.com}	|				Brent				|		Cummings	|

609Chapter 13: Non-Relational Databases

meaningless. However, Cassandra does support a ByteOrdered partitioner, which
arranges tokens in the same order as the keys. If this partitioner is specified as the
storage mechanism when the table is created, the token function might be useful.

The purpose of the examples is to demonstrate the constraints of the query sys-
tem. Although the SELECT command might look a little like simple SQL, it is far
more limited. Remember that the data storage places strong limits on what can be
done to retrieve data. At the moment, the SELECT command can retrieve only
data based on specified values of the primary key.

Indexes
Obviously, retrieving data based only on primary keys is too restrictive. Look
again at the usage goals for the Web site. At a minimum, it requires finding a
Customer based on Username, and retrieving Merchandise based on the Category
value. Neither of these columns is in the primary key. In fact, Category could
never be a primary key column because it is not unique. So how can Cassandra
retrieve data using those conditions? The answer is to create indexes. An index is
basically just another set of key-value pairs.

Figure 13.16
Experiments with CQL SELECT. Initially, a table can be searched only by individual
values of the primary key. Conjunctions (Or, And) and inequalities (<, >) are not
allowed. The IN (…) condition is used to find multiple values in one command. The
token () function does support inequality values but the comparison is made based
on the hashed value of the key which is probably random.

SELECT	*	FROM	Customer	WHERE	
CustomerID=	71c1da88-88af-4217-aa41-332ea3d33ae9	OR
CustomerID=	378feb73-34cd-451f-90a9-a739a94c30f4;

>>>	Error:	Expected	EOF	at	OR…
SELECT	*	FROM	Customer	WHERE	CustomerID	IN	
(71c1da88-88af-4217-aa41-332ea3d33ae9,
		378feb73-34cd-451f-90a9-a739a94c30f4);

>>>	Retrieves	two	rows.
SELECT	*	FROM	Customer	
WHERE	CustomerID	>	71c1da88-88af-4217-aa41-332ea3d33ae9;

>>>	Error:	Must	use	EQ	or	IN
SELECT	CustomerID,	LastName	FROM	Customer
WHERE	token(customerid)	>	token(00000000-0000-0000-0000-000000000000);

>>>	Retrieves	random	rows	where	the	hash	value	is	greater	than	the	hash	of	0…

610Chapter 13: Non-Relational Databases

Figure 13.17 shows how to create an index on Merchandise Category so that
the application can retrieve all items that match a specified category. The CRE-
ATE INDEX syntax is similar to SQL:

CREATE INDEX indexName ON table (column);

Technically, the index name is optional, but it should always be used because
then the DROP INDEX command can be used to remove it later. Note that prima-
ry keys cannot be indexed—but it would not make any sense to do that. After the
index has been created, the specified column can be used in the WHERE clause
of a SELECT query—but only with an equals sign. In production databases, the
CREATE INDEX command should be issued when the tables are CREATED and
before data is loaded.

Figure 13.18 shows an interesting effect of using an index. Remember that only
the Category column has been indexed. Yet, now the SELECT statement supports
additional conditions in the WHERE clause—as long as the condition applies to
a non-key column and the ALLOW FILTERING clause is added to the query.
CQL will provide a warning if the ALLOW FILTERING clause is missing. In-
equality searches are potentially expensive and slow, so be certain that they are

Figure 13.17
Creating an index to search by non-key columns. The CREATE INDEX command
builds an index that can be used to add new conditions to a SELECT statement. The
application requires searching by Category.

SELECT	*	FROM	Merchandise
WHERE	Category	=	‘Cat’;

>>>	Error:	No	indexed	columns	present…
CREATE	INDEX	idxMerchandiseCategory	
ON	Merchandise	(Category);
SELECT	Category,	Description,	ListPrice
FROM	Merchandise
WHERE	Category	=	’Cat’;
category description listprice
---------+-----------------------+----------
 Cat | Cat Bed-Small | 25
 Cat | Cat Litter-10 pound | 8
 Cat | Cat Food-Dry-10 pound | 10
 Cat | Cat Food-Dry-5-pound | 7
 Cat | Cat Toy | 3
 Cat | Cat Food-Dry-25 pound | 18
 Cat | Cat Food-Can-Regular | 0.5
 Cat | Brush-Soft | 8
 Cat | Cat Food-Can-Premium | 1
 Cat | Cat Bed-Medium | 35
 Cat | Flea Collar-Cat | 6
 Cat | Collar-Cat | 8
 Cat | Litter Box-Covered | 15
 Cat | Litter Box | 8

611Chapter 13: Non-Relational Databases

necessary before using them. It is often useful to include the LIMIT statement
to restrict the number of rows returned. In fact, Cassandra has a default value of
10,000 for the number of rows returned for any query. Queries that might return
more rows need to use the LIMIT statement to increase that value. But, before
blindly inserting a large number, ask yourself why you need a query to return so
many rows. No one is going to read that many, and a large value would slow down
almost any Web site. The statement would be useful when it is necessary to extract
large chunks of data to transfer to other systems, but small values would be used
in production applications.

Note that the additional clause (AND ListPrice > 10) can be used only if the
Cat condition is used. Try running the SELECT query with just the ListPrice con-
dition and it will generate an error (no index). If a new index is created for List-
Price the inequality condition by itself (ListPrice > 10) still will not work—be-
cause indexed columns can be searched only using equality conditions. The basic
SELECT search rule is that a WHERE clause can search for only primary keys

Figure 13.18
Secondary indexes enable additional conditions. Conditions on other (non-indexed)
columns can be added as long as the ALLOW FILTERING phrase is added at the
end. The LIMIT n command can be used in any SELECT query and defaults to
10,000 rows if not specified.

SELECT	Category,	Description,	ListPrice
FROM	Merchandise
WHERE	Category	=	‘Cat’
AND	ListPrice	>	10
LIMIT	10
ALLOW	FILTERING;
category description listprice
---------+-----------------------+----------
 Cat | Cat Bed-Small | 25
 Cat | Cat Food-Dry-25 pound | 18
 Cat | Cat Bed-Medium | 35
 Cat | Litter Box-Covered | 15

Index Issues
Technically, indexes are supposed to be built on existing data as soon as the CREATE
INDEX command is issued. However, some queries in testing returned no matching
values after the index was created (Cassandra 1.2). In production situations, it is best
to create all indexes before loading data. For the examples in the book, it might be
necessary to create the index, remove the data, and reload the data:

CREATE INDEX ON Merchandise(…);
TRUNCATE Merchandise;
COPY petstoreweb.merchandise(itemid, description,
qoh, listprice, category) FROM ‘Merchandise.csv’;

Production databases also require periodic use of the nodetool command to repair the
database or force updates with the UNIX command line:

nodetool repair

612Chapter 13: Non-Relational Databases

and indexed columns using equality conditions. It is possible to add additional
filtering conditions but only on the other non-key columns which are stored in the
same row.

Once more look at the usage plan for the Pet Store Web application. What
searches are required in the application that will require indexes? The second is-
sue is the search by Username. When a person logs in, only the Username and
Password are provided. The Username has to be unique, so the application needs
to retrieve the Customer row with that Username and then verify that the password
values match. Because Username is not a primary key, it needs to be indexed:

CREATE INDEX idxCustomerUsername ON Customer (Username);

The index can be tested by searching for a known Username (BCummings):
SELECT CustomerID, Username, Password
FROM Customer
WHERE Username=’BCummings’;

Querying Tables with Compound Keys
The Pet Store Web application needs one more SELECT statement—to retrieve
the comments for a given Item. This data is in the ItemComments table which
has a compound primary key (ItemID, CustomerID). What command is needed
to retrieve this data? Does it need a secondary index? The answer to the second
question is “no,” which makes the SELECT query straightforward.

Figure 13.19 shows the Pet Store Web query for retrieving the first 10 com-
ments for a specific ItemID. From the usage diagram, when a user clicks on an
item, a page is generated that displays the basic item information (a different que-
ry), and then displays some of the comments for that item. The ItemID value is
available to the application from the Web click. The designers decided to limit
the comments to no more than 10 per page to improve the page performance. The
query is relatively simple, which is good. This result is exactly what is needed

Figure 13.19
Queries on compound primary keys. Only the first column in a compound key
controls storage so only the ItemID is needed for a search condition. No indexes are
necessary and the query will return all rows with the specified key value. A lower
LIMIT value is useful for Web pages.

SELECT	CommentDate,	ScreenName,	Title,	Comment,	Rating
FROM	ItemComments
WHERE	ItemID=7ee762a1-3a27-42a0-a51e-e7988250ecd5
LIMIT	10;

commentdate screenname title comment rating
------------+------------+----------+-------------------------+------
2014-11-14… | Gazer33 | Smells… | The smell is horrible… | 4
2014-11-01… | Caged19 | Yummy… | My human/slave feeds… | 5
2014-15-21… | Cathouse | Too big… | OK I only have one cat… | 3
2014-03-07… | RedStar | Not… | Not sure it matters… | 3

613Chapter 13: Non-Relational Databases

for the application, which is why the compound key was chosen in the database
design. The key (ItemID, CustomerID) supports a many-to-many relationship that
returns all of the customer comments for a given item.

From an application perspective, it might be nice to retrieve the Customer com-
ments sorted by date, but CQL does not support any sorting by clustered columns
(as of version 1.2). Instead, the application could read the rows into an array and
then sort the data in the code.

What about querying for comments made by a specific customer? As shown
in Figure 13.20, because CustomerID is part of the primary key, yes the query
will work—but it requires using the ALLOW FILTERING command. What about
finding the Item information? CQL does not support any type of JOIN command
so the Item data cannot be retrieved with a single query. Instead, the application
would have to examine the initial results row-by-row, and then create a new query
to retrieve the matching data from the Item table using a single ItemID value at a
time.

The point of the example is that the database design was specifically chosen
to make the first query easy—not just easy to write but easy and fast to execute.
In fact, go back and look at the data storage again in conjunction with the queries
used to retrieve the data. The application needed only two secondary indexes to
use simple queries to retrieve all of the data. The data was stored in three tables in
a distributed system that supports fast write and retrieval. All without using JOIN
statements and extra lookups. But, the data tables had to be designed specifically
to match the query needs for the application.

INSERT and UPDATE
Cassandra CQL also supports INSERT and UPDATE commands to add new
rows or change the data in an existing row. The syntax for both resembles SQL, as
can be seen from two simple examples:

INSERT INTO Customer(CustomerID, FirstName, LastName, ScreenName,
Username, Password, Email)
VALUES (469aac21-5600-47c3-882f-f7a1ca269ede, ‘Jones’, ‘Jackie’, ‘JJJ’,
‘JJones329’, ‘password’, {‘JJones329@gmail.com’});

Figure 13.20
Query a compound primary key on the second column. The second (and later)
columns in a compound key effectively already have an index and can be retrieved
directly with a WHERE statement as long as the ALLOW FILTERING command is
used.

SELECT	ItemID,	CommentDate
FROM	ItemComments
WHERE	CustomerID=9f9f66c2-a949-4f60-b21b-1ec95158583c
ALLOW	FILTERING;

itemid commentdate
-------------------------------------+-------------
563907d0-16bf-4b17-b516-3f42b7c787b7 | 2013-02-10…
7cbc9858-3cf6-41e7-aba3-db09cc27ebbb | 2013-02-03…

614Chapter 13: Non-Relational Databases

UPDATE Customer
SET Password=’password2’, ScreenName=’JJ3’
WHERE CustomerID=469aac21-5600-47c3-882f-f7a1ca269ede;

Note the importance of listing the column names in the INSERT statement. The
columns in the primary key are the only required columns, all of the others are op-
tional, so the column names need to be listed to ensure the values are matched cor-
rectly to the columns. Observe the braces used in the syntax for the e-mail column
because it is defined as a set. Lists use square brackets ([‘a’, ‘b’]) instead. And
mappings require braces and colons such as { ‘cost’ : ‘3200’, ‘name’ : ‘test15’ }.

The UPDATE command changes the column values to the new items. Multiple
columns can be set at one time, but the WHERE clause must specify exactly one
row. So the UPDATE (and INSERT) command lack the power of the SQL ver-
sions. Still, it is convenient to use similar syntax.

A far more interesting twist is what happens if an INSERT command is issued
with an ID value that already exists. For instance, assume the two commands have
been issued as shown in the short example. Then enter a new command:

INSERT INTO Customer(CustomerID, Username, Password)
VALUES (469aac21-5600-47c3-882f-f7a1ca269ede, ‘JJones329’, ‘pass-
word’);

Note that the CustomerID value exactly matches the one used above. What will
be the result of this command? An error message—because of duplication of the
IDs? A duplicate row? Try entering the three commands in the order shown, and
then issue a SELECT command to examine the values for the specified Custom-
erID. The answer is that the query processor knows that the CustomerID value
already exists, so it effectively converts the INSERT statement into an UPDATE
statement. The result is that the Username and Password columns are reset to the
values in the last command for the specified CustomerID. Technically, this result
means the UPDATE command is not really needed; but what it really means is
that you must be careful with any INSERT commands to ensure that the ID values
are new (and unique). It is the reason that uuid and timeuuid are important data
types—because they ensure that INSERT commands will never overlap an exist-
ing ID value.

Cloud Databases
How does cloud computing benefit key-value pair databases? Cloud providers
offer a variety of database tools including traditional relational and newer non-
relational systems. Some of these DBMSs are available directly from cloud-com-
puting companies, such as DynamoDB from Amazon and App Engine Datastore
(bigtable) from Google among others. On the other hand, Cassandra also has an
installation script for creating your own cloud using Amazon’s EC2 computers.
EC2 systems are virtual machines that can be configured quickly and essentially
rented by the hour.

A major goal of cloud computing is provide a way to quickly scale an appli-
cation to handle greater loads—without the need for high upfront fixed costs.
Most clouds accomplish this task through distributed virtual servers. With public
clouds, a company runs large data centers and installs thousands of servers con-
nected to large-capacity networks. Other companies (you) then configure a virtual
machine server and pay hourly (or monthly) rates for using the virtual machine.

615Chapter 13: Non-Relational Databases

If security is critical and cannot be handled through encryption, a company might
choose to build its own data centers, but the distributed concepts and virtual ma-
chine configurations are largely the same. In both cases, you will be responsible
for configuring and running the server and its applications.

DataStax provides a special copy of Cassandra and instructions for installing
nodes on an Amazon EC2 cluster. As Figure 13.21 shows, with these tools, it is
straightforward to build as many nodes as necessary on Amazon’s system. Be-
cause Cassandra is designed to be distributed, it runs well on the distributed serv-
ers. Detailed configuration options provide control over replication within and
across data centers to meet a variety of different Web needs. And more nodes can
quickly be added as the number of users increases. Once the base system is con-
figured, it is directly accessible to a Web application running on any server.

In the case of huge applications with millions of global users, the Web applica-
tion can be written to connect to the closest geographical data center. Cassandra
eventually replicates the data so it is available everywhere, even if a few nodes
are inaccessible. Yet, most of the data is provided locally to the user, reducing the
need to transmit data immediately around the world; which improves performance
of the applications.

If you do not want to install and run your own copies of the DBMS, many
tools (such as DynamoDB and App Engine Datastore) are available for hourly or
monthly lease charges. In these cases, you simply define the tables and columns
needed and tell the application to use the cloud databases instead of your own
copy. Data distribution and backups are handled by the cloud provider.

The difference between the options largely comes down to cost. Running your
own data centers involves a substantial upfront fixed cost, along with expertise
and people to manage the centers on a day-to-day basis. Using virtual servers and

Figure 13.21
Cassandra on Amazon EC2. EC2 has multiple servers in multiple data centers around
the world where virtual machines can be rented by the hour. Each VM becomes a
node on a Cassandra network. The Web application just writes data to the Cassandra
keyspace application and it is distributed across the Amazon network. New nodes can
be added in minutes to expand capacity with almost no fixed costs.

Web	server

HTML	
Page

Developer
User

Amazon	EC2

VM

VM

VM VM

VM

VM
Cassandra	nodes

data

616Chapter 13: Non-Relational Databases

configuring your own databases through companies such as Amazon and Rack-
space eliminates the fixed cost of installing the physical servers and networks. But,
the monthly operating costs are higher than if you ran the same capacity on your
own machines. The third option of using a prebuilt database cloud (DynamoDB
or Google bigtable) has even higher monthly costs, but requires less expertise to
configure and manage.

Many times it is difficult to predict the exact level of capacity needed for each
month. Cloud-based systems have slightly higher marginal costs, but remove the
need to guess ahead of time on the necessary capacity, because they are easy to
expand or contract when needed. They also provide professional-level manage-
ment and bandwidth to even tiny firms. Small firms can get the same high-level of
distributed systems without having to pay huge upfront costs, just by purchasing
capacity on the public cloud systems. If customer demand increases, presumably
the revenues will also increase to cover the higher costs.

Summary
Web-based applications are important to many organizations. Some Web appli-
cations are like any other business application, but a few are radically different.
Applications built to be used by millions of customers to store data online, such as
the social-based sites, have different data needs than a standard business applica-
tion. Performance and continuous accessibility are critical to these applications.
Transactions and perfect data consistency are less important. Cost is another criti-
cal factor, particularly when the social features are offered at low or minimal cost.

Highly-distributed databases are an important tool to address these new appli-
cations. These systems can use hundreds or thousands of servers in data centers
around the world to provide the data backbone for the application. To hold down
the licensing costs, several new non-relational database systems were created to
provide these features, by using open-source servers and software. Cassandra is a
leading tool in many organizations, including Facebook. These new systems focus
on storing data in key-value pairs; and replicate data automatically across multiple
server nodes.

Database design is important to non-relational systems, but the rules are more
flexible. It is useful to start with normalized tables, and then adjust the design to
optimize performance for the specific application. The key point is that the design
must match the individual needs of the application, so it is important to lay out the
usage (use cases in OO terms) and identify all data retrieval needs.

Tables contain primary keys but the keys typically use uuid values which are
safer to generate in a distributed system. Initially, rows can be retrieved from a ta-
ble only through the primary key values; and those values must only use equality
conditions. Queries on additional columns can be supported by adding a second-
ary index on that column, but those queries can also only use equality conditions.
Adding too many indexes will slow down processing of new data, so the design
has to be conservative. Table JOINs are not supported, so data is often duplicat-
ed by including base information in transaction rows. For instance, a Sale table
would likely include Customer name and shipping address so that information
can be retrieved automatically with each Sale instead of requiring an additional
lookup.

Many-to-many relationships are indicated by specifying both columns in the
primary key; just as in the relational model. However, the difference between
compound and composite keys is critical. Compound keys are written as (ItemID,

617Chapter 13: Non-Relational Databases

CustomerID); while composite keys include an extra set of parentheses: ((ItemID,
CustomerID)). Compound keys store data using only the first column, while com-
posite keys use both columns to partition the data. Consequently, data stored with
compound keys require only a value for the first column (ItemID) to retrieve a
row; while composite keys require both values. A compound key actually returns
multiple “rows” but a composite key returns exactly one row that matches all of
the ID values. Typical applications will likely use compound keys instead of com-
posite keys.

Queries in CQL use a simplified SELECT command. But the command is even
more limited than it appears. JOINs are not supported and WHERE conditions
are almost always based only on equality constraints. Additional constraints often
require the ALLOW FILTERING clause to indicate they might be slower que-
ries. Data results are always limited to a specified number of rows. The default is
10,000 rows, but the value can be changed with the LIMIT clause.

The DMBSs, including Cassandra, are constantly being revised and updated, so
limitations are likely to change; but the main limitations of the query system are
due to the data storage model and the emphasis on performance. If an application
needs more complex queries, it would probably be easier to move it to a relational
DBMS or perhaps a data warehouse. The purpose of key-value pair non-relational
DBMSs is to provide a fast, reliable way to store and retrieve individual pieces of
data to millions of users.

A Developer’s View
As more applications move to the Web, performance and continuous availability
can become critical. Distributed databases can be significantly more responsive
in this environment, but installing thousands of servers and copies of the DBMS
software can be expensive. Open-source non-relational systems, such as Cassan-
dra, are designed to handle these issues. Data is stored and retrieved as key-value
pairs, which is fast for retrieving specific pieces of data. The tools do not support
JOINs, referential integrity, or complex queries; so they are less useful for com-
plex, interrelated business data. But there are times when you need a different
tool to handle performance issues, and a DBMS like Cassandra can solve prob-
lems that are difficult and expensive to handle with a relational DBMS. However,
the performance gains also arise through careful database design adjusted specifi-
cally for each application.

618Chapter 13: Non-Relational Databases

Key Terms

ad hoc queries
ALLOW FILTERING
Cassandar Query Language (CQL)
column family
columns
composite primary key
compound primary key
gossip
INSERT
keyspace
key-value pair
LIMIT

list
map
non-relational database
NoSQL
peer-to-peer
primary key
set
solid state drives (SSDs)
sparse table
tunable consistency
universally unique identifier (uuid)
UPDATE

Review Questions
1. How is a table in a key-value pair database different from one in a relational

database?
2. How do highly-distributed databases create problems with data consistency?
3. What are the benefits and drawbacks to changing table columns over time?
4. What consistency problems can arise in a key-value pair database like

Cassandra?
5. A database contains tables for Employee, Factory, and Assembly, where the

Assembly table records which parts were installed by each employee at a
specified time in each factory. Why would some of the employee data be
stored in the Assembly rows?

6. What programming language is Cassandra written in and why does it matter?
7. What are the benefits and drawbacks to using uuids as primary key values?
8. Briefly explain what queries are supported by a table with a compound key of

two columns, without adding indexes.
9. Why does Cassandra require indexes for some queries?
10. How is a composite key different from a compound key?

619Chapter 13: Non-Relational Databases

Exercises
1. Explain why you should avoid storing totals (such as inventory quantity on

hand) in a key-value pair database and briefly describe an alternative to avoid
totals.

2. An online site wants to hold medical health records for patients in a specific
program. The records include basic patient data (name, birthdate, gender),
and medical test results at various points in time that include levels for
standard items such as Glucose, Potassium, and blood pressure. Design
the tables you would use to store the data in Cassandra. Highlight the main
queries.

3. Define the key-value-pair tables that would be needed for a Web site that
sells custom shirts. Customers choose colors and sizes, and can enter text to
be printed on the back, front, or sleeves.

4. Using Exercise 2 in Chapter 3 as a guide, define the key-value-pair tables
needed for a Web site that lets individuals track their weight-lifting progress.
Each session has multiple exercises (equipment), with different sets of weight
levels, and a need to record the number of repetitions. For instance, a bench
press might involve set1: 135 pounds, 10 reps, 185 pounds, 10 reps; and so
on.

5. Looking at the previous exercise on weight lifting, explain how to change
the design to support an application that shows the maximum weight lifted in
an exercise over time (session). For example, the highest weight lifted in the
bench press over the last year.

6. A Web site is built to access a database of music/songs (not classical
music which has unique data elements). Users have the ability to rate each
individual song. Define the key-value-pair tables needed for this site. Identify
common queries that will be used and any indexes needed to support those
queries.

7. Define the tables needed by Cassandra to build a Web site for a basketball
league that records points scored by each team, the name of the referee, and
the names of the players on each team. Similar to Chapter 3, Exercise 3.

8. Research Cassandra and briefly explain the difference between the timestamp
and timeuuid data types.

9. Find a programming tool (not an online Web service) and generate 5 uuid
values.

10. Find a different key-value-pair (NoSQL) DBMS and briefly compare it to
Cassandra.

Sally’s Pet Store
Using the Pet Store Web sample database for Cassandra, write the queries to an-
swer the following questions.

11. Get the Description, ListPrice, and QOH for Item 5e9c2e10-3db1-4189-
8c0d-0c700d421f17.

620Chapter 13: Non-Relational Databases

12. List all items in the Fish category? What indexes are needed?
13. List all items in the Dog category with a list price above $20 and a QOH

greater than 50. What indexes are needed?
14. Write a query that enables the system to e-mail the username/password to

users who cannot remember what they entered, but do know their e-mail
address and name. What indexes are needed?

15. List all of the comments with a rating of less than 3. What indexes are
needed?

16. If the application needs to display only the first 10 (earliest) comments fir a
specific item (on the Web page), how should the design be modified and what
is the new query?

17. How many comments have been made by the user with the screen name of
Caged19? What indexes are needed?

18. Run the three UPDATE and INSERT queries in the text and issue a SELECT
statement to see the ending values for the new CustomerID;

19. Change the list price on item ed7bb389-152c-4bdb-8546-4cd070fb4ae9 to
$10.

20. Add a new comment to the ItemComments table.

Rolling Thunder Bicycles
21. Rolling Thunder managers want to create a Web site to let owners upload

photos of their custom bikes and let other users submit comments or
questions; which can then be answered by other users (basically a discussion
list). Define the tables needed for this application.

22. Assuming standard Web conventions, such as login by Username, what initial
indexes will be needed for the discussion Web site in the previous question?

23. If Rolling Thunder managers decide to build the entire main ordering system
as a Web site, would it be better to use a traditional relational DBMS or a
key-value pair system like Cassandra? Explain your answer.

Corner Med
24. The managers of Corner Med want a Web site that handles communication

between physicians and patients. They do not want to put all the patient visit
data online, but want a secure site that enables patients to ask questions that
are answered by physicians. What Cassandra tables would be needed for this
site?

25. Assuming the solution to the previous question includes at least a Person and
Discussion table, write the query to list all of the questions posted from a
specific patient. What indexes would be needed?

Corner
Med

Corner
Med

621Chapter 13: Non-Relational Databases

Web Site References

http://cassandra.apache.org Open-soure	location	of	code.
http://www.datastax.com/docs DataStax	documentation	site.
http://nosql-database.org/ List	of	NoSQL	database	projects.
http://planetcassandra.org/ Cassandra	background	(DataStax)
http://aws.amazon.com/nosql/ Amazon	NoSQL	options.
https://developers.google.com/appengine/ Google	App	Engine.

Additional Reading
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem. Interesting,

readable comments on distributed transactions, scalability, and consistency
as a reason for non-relational databases. (Brewer’s CAP Theorem and
references to other articles.)

	Chapter 13: Non-Relational Databases
	Introduction
	Two-Minute Chapter
	Non-Relational Databases: Background
	Key-Value Pairs
	Sparse Data and Flexible Columns
	Distributed Data
	Consistency and Integrity
	Optimizing Data Storage for Queries

	Cassandra
	Installation Issues
	Pet Store Web Example
	Database Design
	Primary Keys
	Initial Queries
	Indexes
	Querying Tables with Compound Keys
	INSERT and UPDATE

	Cloud Databases
	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading

