
Database
Management
Systems

Designing & 
Building Business 

Applications

Gerald V. Post

Sixth Edition



Database
Management
Systems
Designing and Building
Business Applications

Version 6.0.0

Gerald V. Post
University of the Pacific



Database Management Systems
Designing and Building Business Applications

Copyright © 2014 by Gerald V. Post
All rights reserved. No part of this publication may be reproduced or distributed 
in any form or stored in any database or retrieval system without the prior written 
consent of Gerald V. Post.

Students:
Your honesty is critical to your reputation. No company wants to hire a thief—
particularly for jobs as critical as application development and database adminis-
tration. If someone is willing to steal something as inexpensive as an e-book, how 
can that person be trusted with billions of dollars in corporate accounts? 

You are not allowed to “share” this book in any form with anyone else. You can-
not give or sell any information from this publication in any form to anyone else. 

To purchase this book or other books: http://JerryPost.com/Books

http://JerryPost.com




vPreface

v

Preface
Goals and Philosophy

Working with business information systems is exciting. You get to work with peo-
ple to find ways to improve their jobs. You get to use your creativity to build new 
applications. You often work on teams to share ideas and techniques. In the end, 
you get to see an application that you built help companies and people. Database 
management systems are key components in almost every business application. 
They organize and store the data so it can be retrieved and analyzed. 

The goal of this text is straightforward: At the end of the text students should be 
able to evaluate a business situation and build a database application.

Building an application requires four basic steps. The book is organized by 
these four steps: (1) Database Design, (2) SQL Queries, (3) Application forms and 
reports, and (4) Database administration.

The first two steps (design and SQL) are standard for almost every database 
management system. Normalization shows how to carefully design databases to 
gain the strengths of the database approach. SQL is a standard query language that 
is used for virtually every step of application development. These two topics must 
be covered carefully and thoroughly, particularly because they are both difficult 
topics for students.

The concepts of forms and reports are relatively standard, but every database 
system has different tools to build applications. Similarly, database administrators 
perform relatively standard tasks at every company, but the tools are different for 
every system. The main textbook explains the basic tasks in neutral terms that ap-
ply to every database management system.

Workbooks
Students need to do more than learn the basic concepts and theory. They need 
to actually build an application. A database management system (DBMS) is a 
complex tool with thousands of options and individual quirks. The accompany-
ing workbooks are designed to show students how to build and application using 
a particular DBMS. The workbooks follow the main text chapters but focus on 
creating an application for a specific company. 

The first step in using the Workbooks is to choose a DBMS. Be sure all of 
the components of the DBMS are available and installed. In particular, Oracle 
requires several components and Microsoft SQL Server needs Visual Studio. A 
nice feature of the Workbooks is that they all use the same case. So students can 
learn one DBMS and then later use a different workbook to learn the details of a 
new DBMS.

Learning Assessment
Learning assessment is important to students as well as faculty and employers. 
Students need to determine what aspects they are strong in and which ones need 
additional work. Students need to understand that if they can successfully learn 
this material, they will have acquired several skills that will get them jobs and 
help them contribute to businesses by being able to quickly build and maintain 
business applications. 

Learning assessment in this book is straightforward: At the end of the book, 
students should be able to analyze a business situation and develop a database 



viPreface

application. The complexity of the application and tools used will depend on the 
specific class and the background of the students. Students should develop a term-
project as part of a course. Several sample projects are included as a separate proj-
ect book and several more are in the workbooks. The project provides an excellent 
opportunity to assess overall learning. The final project can be evaluated in terms 
of (1) correctly meeting the business needs, (2) an efficient database structure, and 
(3) usability. 

It is also useful to assess individual skills independently—particularly if groups 
are used to create the final project. In this case, assessment consists of individual 
exams for (1) database design and normalization, (2) SQL and creating queries 
from business questions, and (3) selected topics including database programming, 
security, data mining, and distributed systems.

Organization
The organization of the text 
follows the basic steps of ap-
plication development: de-
sign, queries, applications, 
administration, and advanced 
topics. Some instructors 
might prefer to teach queries 
before database design, so 
the initial chapters are written 
with that flexibility.

The introduction explains 
the importance of databases 
and relates database applica-
tions to topics the students 
have likely seen in other 
classes.

The section on database 
design has two chapters: 
Chapter 2 on general de-
sign techniques (systems 
techniques, diagramming, 
and control) and Chapter 3, 
which details data normaliza-
tion. Chapter 2 leans towards 
an object and graphical ap-
proach, while Chapter 3 emphasizes normalization rules. The objective is to cover 
design early in the term so that students can get started on their end-of-term proj-
ects. Students should use the online Database Design system to work on exercises 
for both chapters to obtain feedback.

Queries are covered in two chapters. Chapter 4 introduces queries and focuses 
on the fundamentals of converting business questions to SQL queries. Chapter 5 
discusses more complex queries. including subqueries and outer joins. 

Part 3 describes the development of database applications, beginning with the 
essentials of building forms and reports in Chapter 6. Chapter 7 examines the 
common problems created in a multiuser environment. It explains the techniques 
used to handle data integrity and transactions. Chapter 8 shows how to put ev-

Chapter 1: Introduction

Part 1: Systems Design
 Chapter 2: Database Design
 Appendix: Database Design System
 Chapter 3: Data Normalization
	 Appendix:	Formal	Definitions	of	Normalization

Part 2: Queries
 Chapter 4: Data Queries
 Appendix: SQL Syntax
 Chapter 5: Advanced Queries and Subqueries
 Appendix: Introduction to Programming

Part 3: Applications
 Chapter 6: Forms and Reports
 Chapter 7: Database Integrity and Transactions
 Chapter 8: Applications
 Chapter 9: Data Warehouses and Data Mining

Part 4: Database Administration and New Systems
 Chapter 10: Database Administration
 Chapter 11: Distributed Databases
 Chapter 12: Physical Data Storage
 Chapter 13: Non-Relational Databases



viiPreface

erything together to build a complete application, including navigation and help 
files. Chapter 9 explains why analytical processing requires a different database 
configuration than transaction processing. It covers the main tools for analysis and 
data mining in a nonstatistical context.

Part 4 examines various topics in database administration and new tools. Chap-
ter 10 examines management issues emphasizing planning, implementation, per-
formance, and security. It explains the major tasks and controls needed by an 
administrator. Chapter 11 investigates the growing importance of providing dis-
tributed access to databases. It examines the impact of various network configura-
tions. Chapter 12 leans toward computer science when it looks at how the DBMS 
physically stores data. The last two chapters can be difficult to cover in a single-
term course, but are presented at an introductory level. Chapter 13 is new with the 
sixth edition and introduces contemporary non-relational databases typically used 
for high-scalability, massively parallel Web-based tasks. The design, queries, and 
tradeoffs are illustrated with the Cassandra DBMS. 

Additionally, four chapters have appendixes that discuss programming con-
cepts that are more technical. The appendix to Chapter 2 describes the online data-
base design system that is available to instructors and students. It provides imme-
diate feedback on database designs, making it easier for students to understand the 
problems and explore different designs. The appendix to Chapter 3 presents the 
formal definitions of normalization. They are provided for instructors and students 
who want to see the more formal set-theory definitions. The appendix to Chapter 
4 is a convenient list of the primary SQL statements. The appendix to Chapter 5 
provides an introduction to programming. It is designed as a summary or simple 
reminder notes. 

Pedagogy
The educational goal of the text is straightforward and emphasized in every chap-
ter: By the end of the text, students should be able to build business applications 
using a DBMS. Throughout the text, many examples are used to apply and illus-
trate the concepts. The Web site also provides several databases so students can 
work with data, queries, forms, and applications. Students should be encouraged 
to apply the knowledge from each chapter by solving the exercises and working 
on their final projects.  

Each chapter contains several sections to assist in understanding the material 
and in applying it to the design and creation of business applications:

• What You Will Learn in This Chapter. A list of questions that are an-
swered within the chapter. Each question is echoed at the start of a section.

• A Developer’s View. A student’s perspective of the chapter contents.
• Chapter Summary. A brief review of the chapter topics.
• A Developer’s View. A short summary of how the material in the chapter 

applies to building applications.
• Getting Started. A short statement of the main goal of the chapter focused 

on how the chapter contributes to designing and building applications.
• Key Words. A list of words introduced in the chapter. A full glossary is pro-

vided at the end of the text.



viiiPreface

• Additional Reading. References for more detailed investigation of the 
topics.

• Website References. Some sites provide detailed information on the topic. 
Some are newsgroups where developers share questions and tips.

• Review Questions. Designed as a study guide for the exams, with a focus on 
the major topics within the chapter.

• Exercises. Problems that apply the concepts presented in the chapter. Most 
require the use of a DBMS.

• Projects. Several longer projects are available in a separate online docu-
ment. They are suitable for an end-of-term project.

• Workbooks. Each workbook outlines the steps to build an application using 
a specific DBMS. Each workbook chapter illustrates tasks that match the 
discussion in the textbook. The workbook also provides exercises to build 
six other databases for different companies. 

• Sample Databases. Three sample databases are provided to illustrate the 
concepts. Sally’s Pet Store illustrates a database in the early design stag-
es, whereas Rolling Thunder Bicycles presents a more finished application, 
complete with realistic data. Corner Med is a database for a neighborhood 
medical facility that tracks patient and physician interactions. Exercises for 
all three databases are provided in the chapters. The sample databases can be 
installed in several DBMS formats.

Features of the Text
1. Focus on modern business application development.

• Database design explained in terms of business modeling.
• Application hands-on emphasis with many examples and exercises.
• Emphasis on modern graphical user interface applications.
• Chapters on database programming and application development.
• Introduction to data mining.
• Some answers to exercises are provided to students through the online sys-

tem. The exercises with answers are highlighted in the text with a check 
mark icon. Sometimes students need to see a solved problem.

2. Hot topics.
• Description and use of the unified modeling language (UML) for modeling 

and system diagrams. 
• In-depth discussion of security topics in a database environment.
• Development of databases for the Internet and intranets.
• Emphasis on SQL 92, with an introduction to SQL 99 and the XML features 

of SQL 2003 and SQL 2008.
• Integrated applications and objects in databases.
• Introduction to non-relational (NoSQL) systems such as Cassandra.



ixPreface

3. Applied business exercises and cases.
• Many database design problems.
• Exercises covering all aspects of application development.
• Sample cases suitable for end-of-term projects.

4. A complete sample database application (Rolling Thunder Bicycles).
• Fully functional business database.
• Sample data and data generator routines.
• Program code to illustrate common database operations.

5. Two additional databases (Sally’s Pet Store and Corner Med) for comparison 
and additional assignments.

6. Lecture notes as PowerPoint slide show.
7. Hundreds of database exercises and problems for students to work on. 
8. Workbooks built for specific database technologies that illustrate the hands-

on steps needed to build an actual application. Check the online site for ver-
sions of the workbooks for additional systems.

End-of-Term Projects
Several projects are described in the project document available online. These 
cases are suitable for end-of-term projects. Students should be able to build a 
complete application in one term. The grading focus should be on the final proj-
ect. However, the instructor should evaluate at least two intermediate stages: (1) a 

CustomerID
LastName
FirstName
Phone
…

EmployeeID
LastName
FirstName
Commission
…

OrderID
OrderDate
EmployeeID
CustomerID
…

ItemID
Description
Price
…

CustomerID
Contact
Terms
…

CustomerID
Contact
Agency
…

Warehouse
Location
…

ShipID
ShipiDate
…

Customer

Order

Corporation Government

Warehouse
Shipment

SalesPerson

Item

Shipment

1…1

0…*
1…1

0…*

0…*

0…*

0…*
0…*

1…1

1…1

1…*

0…1

UML class diagram.



xPreface

list of the normalized tables collected shortly after Chapter 3 is completed and (2) 
a design preview consisting of at least two major forms and two reports collected 
shortly after Chapter 6. The six additional cases in the workbook can also be used 
as an end-of-term project.

Some instructors may choose to assign the projects as group assignments. 
However, it is often wiser to avoid this approach and require individual work. The 
project is a key learning tool. If some members of the group avoid working on the 
project, they will lose an important learning opportunity.

Database Design and the Unified Modeling Language
For several years, entity-relationship diagrams were the predominant modeling 
technique for database design. However, this approach causes problems for in-
structors (and students) because there are several different diagramming tech-
niques. This edition continues to help solve these problems by incorporating the 
Unified Modeling Language (UML) method, instead of traditional entity-rela-
tionship (ER) diagramming, as the modeling technique for database design. This 
change will be most apparent in the replacement of the ER diagram notation and 
terminology with the parallel concepts in UML class diagrams.

UML class diagrams, although very similar to ER diagrams, are superior in 
several ways. First, they are standardized, so students (and instructors) need learn 
only one set of notations. Second, they are “cleaner” in the sense that they are eas-
ier to read without the bubbles and cryptic notations of traditional ER diagrams. 
Third, they provide an introduction to object-oriented design, so students will be 
better prepared for future development issues. Fourth, with the rapid adoption of 
UML as a standard design methodology, students will be better prepared to move 

Customer

SalesPerson
Order

Item
Corporation Government

Warehouse

Shipment

CustomerID

LastName

FirstName

Phone

OrderID

OrderDate

EmployeeID

CustomerID

Custom
erID

Contact
Term

s

Custom
erID

Contact
Agency

Is A

EmployeeID

LastName

FirstName

Commission

Item
ID

Description
Price

Warehouse

Location

Corresponding Entity Relationship diagram.



xiPreface

into future jobs. Many of the systems design organizations have adopted UML as 
a standard method for designing systems. UML has the support of major authors 
in systems design (e.g., Booch, Rumbaugh, and Jacobsen) as well as being sup-
ported by the major software development firms including IBM, Microsoft, and 
Oracle. Note that Microsoft Access and SQL Server both use a diagramming tool 
that is similar to UML. In addition, students should have little difficulty transfer-
ring their knowledge of the UML method if they need to work with older ER 
methods.

The basic similarities between ER and class diagrams are (1) entities (class-
es) are drawn as boxes, (2) binary relationships (associations) are drawn as con-
necting lines, and (3) N-ary associations (relationships) are drawn as diamonds. 
Hence, the overall structures are similar. The main differences between UML and 
ER diagrams occur in the details. In UML the multiplicity of an association is 
shown as simple numerical notation instead of as a cryptic icon. An example is 
shown in the accompanying figures.

UML also has provisions for n-ary associations and allows associations to be 
defined as classes. There are provisions for naming all associations, including di-
rectional names to assist in reading the diagram. Several situations have defined 
icons for the association ends, such as composition (rarely handled by ER) and 
subtypes (poorly handled by ER). 

More details of the UML approach are shown in Chapters 2 and 3. Only a small 
fraction of the UML diagrams, notation, and terminology will be used in the da-
tabase text. You can find the full specification on the Web at http://www.omg.org/
spec/UML/ with some introductory descriptions at http://www.ibm.com/devel-
operworks/rational/library/769.html.

Instructional Support
• The online Database Design expert system. It has been statistically proven 

to help students learn database design. It provides immediate feedback to 
students. It saves hours of instructor grading time. It contains over 100 de-
sign problems that can be used for teaching or testing.

• A test bank with multiple choice and short answer questions.
• Lecture notes and overheads are available as slide shows in Microsoft Pow-

erPoint format. The slides contain all the figures and additional notes. The 
slides are organized into lectures and can be rearranged to suit individual 
preferences.

• The sample databases and solutions can be downloaded from the online 
site. The instructor can add new data, modify the exercises, or use them to 
expand the discussion in the text. The databases are provided for several 
DBMSs.

• The Instructor’s Manual contains answers to the exercises.

The Online System
All of the instructional material is available online. The main reason for this move 
is cost. The main textbook and the workbooks were rewritten and expanded. The 
costs and student prices for print books are out of line. Electronically, it is pos-
sible to make the entire set available for an almost trivial fee. It is impossible to 



xiiPreface

illustrate multiple DBMSs within a single textbook. Splitting the workbooks from 
the main text makes it possible to cover a variety of DBMSs—without confusing 
the reader. The DBMS market is becoming increasingly fragmented, and students 
need (1) a relatively agnostic main textbook to describe the common features, and 
(2) a workbook that provides the hands-on steps to actually build a database ap-
plication. The online e-book method provides the additional benefit of showing 
the students how to accomplish the same tasks with multiple DBMSs. Even if 
students begin by learning one DBMS, they can download a second or third work-
book and transfer their knowledge to a new DBMS. 

E-books provide additional benefits, including advanced search capabilities. 
Students can also set bookmarks and highlight sections. More importantly, they 
get to keep the books, instead of being forced to sell them back at the end of the 
term. Database application development is an important topic, and the examples, 
comments, and tips in the books will be valuable to students throughout their 
careers. 

Major Changes with the Sixth Edition
The overall goals and structure remain the same with the sixth edition. Several 
sections were rewritten to improve clarity and incorporate some newer concepts. 
But the biggest change in each chapter was the addition and rewriting of most of 
the exercises. 

Every chapter has a new Two-Minute Chapter section. This section summarizes 
the most important topics and overall goal of the chapter. It is useful for review to 
ensure students understand the key topics.

The new text also has a stronger bias towards Web-based applications. Almost 
any new application built today is either Web-based or possibly phone-based. Web 
(and mobile) applications heavily use centralized databases. Database design and 
queries remain similar, but interface, usability, and management issues are differ-
ent from traditional in-house applications. As part of this emphasis, a new chapter 
(13) has been added to discuss features and limitations of the new crop of non-
relational (sometimes called noSQL) database systems. These tools are designed 
for specific tasks: writing and retrieving specific data for millions of users. The 
open-source project Cassandra is used as an example to demonstrate the design 
and query tradeoffs in a highly-parallel environment.



xiii

Brief Contents
1 Introduction

Part One: Systems Design
2 Database Design
3 Data Normalization

Part Two: Queries
4 Data Queries
5 Advanced Queries and Subqueries

Part Three: Applications
6 Forms and Reports
7 Database Integrity and Transactions
8 Applications
9 Data Warehouses and Data Mining

Part Four: Database 
Administration and New Systems
10 Database Administration
11 Distributed Databases
12 Physical Data Storage
13 Non-Relational Databases



xivContentsContents
Goals and Philosophy, v
Workbooks, v
Learning Assessment, v
Organization, vi
Pedagogy, vii
Features	of	the	Text,	viii
End-of-Term	Projects,	ix
Database	Design	and	the	Unified	Modeling	
Language, x
Instructional Support, xi
The Online System, xi
Major	Changes	with	the	Sixth	Edition,	xii

Introduction, 1
Introduction, 2
Two-Minute Chapter, 3
A Small Sample Database Application, 4
Databases and Application Development, 6
Components	of	a	Database	Management	
System, 10

Database Engine, 10
Data Dictionary, 11
Query Processor, 12
Report Service, 13
Forms Development, 14
Management Utilities and Security, 15

Advantages	of	the	Database	Management	
System Approach, 16

Focus on Data, 17
Data Independence, 18
Data Independence and Web Applications, 
19

Leading Commercial Database Systems, 20
The	Evolution	of	Database	Management	
Systems, 21

Hierarchical Databases, 21
Network Databases, 23
Relational Databases, 23
Object-Oriented Databases, 24

Key-Value Pairs: Cassandra, 28
Drawbacks to Database Management Systems, 
29
Application Development, 30
Introduction to this Book’s Databases, 31

Sally’s Pet Store, 31
Corner Med, 32
Rolling Thunder Bicycles, 33

Starting	a	Project:	The	Feasibility	Study,	33
Costs, 33
Benefits, 35

Summary, 36
Key Terms, 37
Review Questions, 37
Exercises, 38
Web	Site	References,	41
Additional Reading, 41

Systems Design, 42

Database Design, 43
Introduction, 44
Two-Minute Chapter, 45
Models, 46
Getting Started, 47
Designing Databases, 48

Identifying User Requirements, 48
Business Objects, 48
Tables and Relationships, 50
Definitions, 50
Primary Key, 51

Class Diagrams: Introduction, 51
Classes and Entities, 52
Associations and Relationships, 53
Class Diagram Details, 53

Quick Start, 54
Creating a Class Diagram, 55
Primary Keys and Relationships, 57

Class Diagrams: Details, 59
Association Details: N-ary Associations, 60
Association Details: Aggregation, 61
Association Details: Composition, 62
Association Details: Generalization, 63
Association Details: Reflexive Association, 
66

Sally’s Pet Store Class Diagram, 66
Data Types (Domains), 69

Text, 69
Numbers, 69
Dates and Times, 72
Binary Objects, 72
Computed Values, 73
User-Defined Types (Domains/Objects), 73

Events, 73
Large	Projects,	75
Rolling Thunder Bicycles, 77
Application Design, 81
Corner Med, 82
Summary, 87
Key Terms, 88
Review Questions, 88



xvContents

Exercises, 89
Web	Site	References,	98
Additional Reading, 98
Appendix: DBDesign, 99
Getting	Started:	Identifying	Columns,	100
Creating a Table and Adding Columns, 101
Relationships: Connecting Tables, 102
Saving and Opening Solutions, 104
Grading: Detecting and Solving Problems, 105
Specifying	Data	Types,	107
Generating Tables, 108

Data Normalization, 111
Introduction, 112
Two-Minute Chapter, 113
Tables, Classes, and Keys, 113

Composite Keys, 114
Surrogate Keys, 115
Notation, 116

Database Normalization: Atomic Values and 
Dependency, 117

Atomic Data Values, 117
Dependency, 119

Sample	Database	for	Typical	Sales,	121
Initial Objects, 122
Initial Form Evaluation, 123
Problems with Repeating Sections, 125

First Normal Form, 125
Repeating Groups, 125
Multiple Repeating Groups, 127
Nested Repeating Groups, 127

Second Normal Form, 128
Problems with First Normal Form, 128
Second Normal Form Definition, 129

Third Normal Form, 132
Problems with Second Normal Form, 132
Third Normal Form Definition, 132
Checking Your Work, 135

Beyond Third Normal Form, 135
Boyce-Codd Normal Form, 136
Fourth Normal Form, 137
Domain-Key Normal Form, 137
Summary, 139

Data Rules and Integrity, 139
The	Effects	of	Business	Rules,	141
Converting a Class Diagram to Normalized 
Tables, 143

One-to-Many Relationships, 144
Many-to-Many Relationships, 146
N-ary Associations, 147
Generalization or Subtypes, 149

Composition, 150
Recursive (Reflexive) Associations, 151

The Pet Store Example, 151
View Integration, 153

The Pet Store Example, 154
Rolling Thunder Sample Integration Problem, 
156

Data Dictionary, 162
DBMS Table Definition, 163
Data Volume and Usage, 166

 Summary, 168
Key Terms, 170
Review Questions, 170
Exercises, 171
Web	Site	References,	179
Additional Reading, 179
Appendix:	Normal	Form	Definitions,	181

Queries, 185

Data Queries, 186
Introduction, 187
Two-Minute Chapter, 188
Three	Tasks	of	a	Query	Language,	189
SQL SELECT Overview, 190
Four Questions to Retrieve Data, 191

What Output Do You Want to See?, 191
What Do You Already Know?, 192
What Tables Are Involved?, 192
How Are the Tables Joined?, 193

Sally’s Pet Store, 195
Vendor	Differences,	196
Query Basics, 196

Single Tables, 197
Introduction to SQL, 198
Sorting the Output, 200
Distinct, 200
Criteria, 201
Pattern Matching, 202
Boolean Algebra, 204
DeMorgan’s Law, 206
Useful WHERE Clauses, 208

Computations, 209
Basic Arithmetic Operators, 209
Aggregation, 210
Functions, 212

Subtotals and GROUP BY, 214
Conditions on Totals (HAVING), 216
WHERE versus HAVING, 216
The Best and the Worst, 217

Multiple Tables, 218
Joining Tables, 219



xviContents

Identifying Columns in Different Tables, 220
Joining Many Tables, 220
Hints on Joining Tables, 222
Table Alias, 223
Create View, 224

Newer Searches and Patterns, 226
XQuery, 227
Regular Expressions (RegEx) Patterns, 233

Summary, 239
Key Terms, 240
Review Questions, 240
Exercises, 241
Web	Site	References,	247
Additional Reading, 247

Advanced Queries and Subqueries, 251
Introduction, 252
Two-Minute Chapter, 253
Sally’s Pet Store, 254
Outer Joins (LEFT JOIN), 255
Subqueries: IN and NOT IN, 258
Subqueries, 261

Calculations or Simple Lookup, 262
Calculations for Percentages, 262
Subqueries and Sets of Data , 264
Subquery with ANY, ALL, and EXISTS, 266

Correlated Subqueries, 268
More Features and Tricks with SQL SELECT, 270

UNION, INTERSECT, EXCEPT, 270
Multiple JOIN Columns, 272
Reflexive Join, 273
CASE Function, 275
Inequality Joins, 276
Exists and Crosstabs, 277
SQL SELECT Summary, 280

SQL	Data	Definition	Commands,	280
SQL Data Manipulation Commands, 283

INSERT and DELETE, 283
UPDATE, 284

Quality: Testing Queries, 285
Summary, 287
Key Terms, 288
Review Questions, 289
Exercises, 290
Web	Site	References,	295
Additional Reading, 295
Variables and Data, 296
Variable Scope, 297
Computations, 298
Standard Internal Functions, 300

Input and Output, 300
Conditions, 301
Loops, 303
Subroutines, 304
Summary, 305

Applications, 306

Forms and Reports, 307
Introduction, 308
Two-Minute Chapter, 310
Effective	Design	of	Reports	and	Forms,	310

Human Factors Design, 311
Standard Form Controls, 313
User Interface—Events, 316
User Interface—Accessibility Issues, 316
User Interface—International Environment, 
317
Style Sheets and Templates, 320

Form Layout, 320
Tabular Forms, 321
Single-Row or Columnar-Forms, 322
Subform Forms, 322
Startup Forms, 324

Creating Forms, 325
Updateable Queries, 326
Linked Forms, 327
Properties and Controls, 327
Controls on Forms, 328
Multiple Forms, 332

Direct	Manipulation	of	Graphical	Objects,	333
Sally’s Pet Store Example, 334
The Internet, 335
Complications and Limitations of a Graphical 
Approach, 335

Database Design Revisited, 336
Reports, 337

Report Design, 338
Terminology, 339
Basic Report Types, 340
Charts, 346

Summary, 346
Key Terms, 348
Review Questions, 348
Exercises, 349
Web	Site	References,	352
Additional Reading, 352

Database Integrity and Transactions, 353
Introduction, 354
Two-Minute Chapter, 355
Procedural Languages, 355



xviiContents

Where Should Code Be Located?, 356
User-Defined Functions, 357
Looking Up Data, 358

Programming Tools, 359
Data Triggers, 360

Statement versus Row Triggers, 361
Canceling Data Changes in Triggers, 362
Cascading Triggers, 363
INSTEAD OF Triggers, 364
Trigger Summary, 365

Transactions, 366
A Transaction Example, 366
Starting and Ending Transactions, 367
SAVEPOINT, 368

Multiple Users and Concurrent Access, 369
Optimistic Locks, 370
Pessimistic Locks: Serialization, 373
Multiuser Databases: Concurrent Access and 
Deadlock, 373

ACID Transactions, 375
Key Generation, 377
Database Cursors, 378

Cursor Basics, 379
Scrollable Cursors, 380
Changing or Deleting Data with Cursors, 381
Cursors with Parameters, 383

Merchandise Inventory at Sally’s Pet Store, 384
Summary, 388
Key Terms, 389
Review Questions, 389
Exercises, 390
Web	Site	References,	394
Additional Reading, 394

Application Development, 395
Introduction, 396
Two-Minute Chapter, 397
Design Consistency, 398

Page Design Templates, 398
Usability , 399
Fonts and Customization, 400
Mobile Devices, 401

Application Structure, 402
Designing Applications, 403
The Startup Form, 403
Sally’s Pet Store: Application Organization, 
404
Administrative Tasks, 407

Menus and Toolbars, 407
Purpose of the Menu, 408
Toolbars, 409
Creating Menus and Toolbars, 409

Accessibility, 410
Custom Help, 412

Creating a Help File for Windows, 413
Context-Sensitive Help, 415
Windows Help 3/Help Viewer, 417

Handling Errors, 419
Catching Errors, 419
Logging Errors, 420
Debugging, 420

Testing, 420
Form and Module Testing, 421
Integrated Application Testing, 422
Stress or Performance Testing, 422
Usability Testing, 422
Security Testing, 423

Deploying an Application, 424
Packaging Files, 424
Installation Programs, 425
Server and Database Configuration, 425

Summary, 425
Key Terms, 426
Review Questions, 427
Exercises, 427
Web	Site	References,	429
Additional Reading, 429

Data Warehouses and Data Mining, 430
Introduction, 431
Two-Minute Chapter, 432
Indexes, 433

Binary Search, 434
Pointers and Indexes, 435
Creating Indexes, 436
Problems with Indexes, 437

Data Warehouses and Online Analytical 
Processing, 437

Data Warehouse Goals, 438
Data Warehouse Issues, 439

Data	Extraction,	Tansformation,	and	
Transportation, 441
OLAP Concepts, 443
OLAP Database Design, 445

Snowflake Design, 446
Star Design, 447

OLAP Data Analysis, 448
Cube Browsers, 448
OLAP in SQL, 450
SQL Analytic Functions, 455
SQL OLAP Windows Partition, 456

Data Mining and Business Intelligence, 458
Data Configuration, 459
Classification, 460



xviiiContents

Association Rules/Market Basket Analysis, 
463
Cluster Analysis, 467
Geographic Analysis, 469

Summary, 472
Key Terms, 473
Review Questions, 473
Exercises, 474
Additional Reading, 477

Database Administration, 478

Database Administration, 479
Introduction, 480
Two-Minute Chapter, 481
Data Administrator, 482
Database Administrator, 483
Database Structure, 485
Metadata, 486
Database Tasks by Development Stages, 488

Database Planning, 488
Database Design, 489
Database Implementation, 489
Database Operation and Maintenance, 490

Backup and Recovery, 492
Physical	Configuration,	494
Security and Privacy, 496

Data Privacy, 497
Threats, 498
Physical Security, 499
Managerial Controls, 500
Logical Security, 500
Division of Duties, 506
Software Updates, 507

Encryption, 507
Sally’s Pet Store, 510
Summary, 512
Key Terms, 514
Review Questions, 514
Exercises, 515
Web	Site	References,	519
Additional Reading, 519

Distributed Databases, 520
Introduction, 521
Two-Minute Chapter, 522
Distributed Databases, 523

Goals and Rules, 524
Advantages and Applications, 525
Creating a Distributed Database System, 526
Network Speeds, 527

Query Processing and Data Transfer, 529
Data Replication, 530
Generating Keys with Replicated Data, 532
Concurrency, Locks, and Transactions, 533
Distributed Transaction Managers, 535
Distributed Design Questions, 536

Client/Server Databases, 536
Client/Server versus File Server, 537
Three-Tier Client/Server Model, 539
The Back End: Server Databases, 540
The Front End: Windows Clients, 540
Maintaining Database Independence in the 
Client, 541

Centralizing with a Web Server, 542
Web Server Database Fundamentals, 543
Browser and Server Perspectives, 545

Data Transmission Issues in Applications, 546
Cloud Databases, 548

Cloud Computing Basics, 548
Data Storage in the Cloud, 549
Sally’s Pet Store, 550

Summary, 551
Key Terms, 553
Review Questions, 553
Exercises, 554
Web	Site	References,	557
Additional Reading, 557

Physical Database Design, 558
Introduction, 559
Two-Minute Chapter, 560
Physical Data Storage, 560
Table Operations, 561

Retrieve Data, 562
Store Data, 563
Reorganize the Database, 564
Identifying Problems, 565

Data Storage Methods, 565
Sequential Storage, 566
Pointers and Indexes, 567
Linked Lists, 569
B+Trees, 571
Direct or Hashed Access, 574
Bitmap Index, 575
Comparison of Access Methods, 575

Storing Data Columns, 576
Text and Numbers, 576
Image and Binary Data, 578
Transferring Data with Delimited Files, 578

Data Clustering and Partitioning, 579
Data Clustering, 579
Data Partitioning , 580



xixContents

Managing Tablespaces, 582
Sally’s Pet Store, 582
Summary, 583
Key Terms, 584
Review Questions, 584
Exercises, 585
Web	Site	References,	586
Additional Reading, 587

Non-Relational Databases, 588
Introduction, 589
Two-Minute Chapter, 591
Non-Relational Databases: Background, 592

Key-Value Pairs, 594
Sparse Data and Flexible Columns, 595
Distributed Data, 597
Consistency and Integrity, 598
Optimizing Data Storage for Queries, 600

Cassandra, 601
Installation Issues, 601
Pet Store Web Example, 602
Database Design, 603
Primary Keys, 605
Initial Queries, 607
Indexes, 609
Querying Tables with Compound Keys, 612
INSERT and UPDATE, 613

Cloud Databases, 614
Summary, 616
Key Terms, 618
Review Questions, 618
Exercises, 619
Web	Site	References,	621
Additional Reading, 621



1

What You Will Learn in This Chapter
•	 What is a database? 
•	 What do database applications look like?
•	 How are databases used to build applications? 
•	 What	are	the	major	components	of	a	database	management	system?	
•	 What	are	the	advantages	of	using	a	database	management	system?	
•	 What are the main database management systems?
•	 How have database management systems changed over time? 
•	 What potential problems exist with a DBMS approach? 
•	 What is an application? 
•	 What databases are used with this book? 
•	 What	are	the	first	steps	to	start	a	project?

Chapter Outline

Introduction
1Chapter

Introduction, 2
Two-Minute Chapter, 3
A Small Sample Database Application, 4
Databases and Application Development, 6
Components	of	a	Database	Management	
System, 10

Database Engine, 10
Data Dictionary, 11
Query Processor, 12
Report Service, 13
Forms Development, 14
Management Utilities and Security, 15

Advantages	of	the	Database	Management	
System Approach, 16

Focus on Data, 17
Data Independence, 18
Data Independence and Web 
Applications, 19

Leading Commercial Database Systems, 
20
The	Evolution	of	Database	Management	
Systems, 21

Hierarchical Databases, 21
Network Databases, 23
Relational Databases, 23

Object-Oriented Databases, 24
Key-Value Pairs: Cassandra, 28
Drawbacks to Database Management 
Systems, 29
Application Development, 30
Introduction to this Book’s Databases, 31

Sally’s Pet Store, 31
Corner Med, 32
Rolling Thunder Bicycles, 33

Starting	a	Project:	The	Feasibility	Study,	33
Costs, 33
Benefits, 35

Summary, 36
Key Terms, 37
Review Questions, 37
Exercises, 38
Web	Site	References,	41
Additional Reading, 41



2Chapter  1: Introduction

A Developer’s View

Introduction
What is a database? Do you want to build computerized business applications? 
Do you want to create business applications that operate in multiple locations? Do 
you want to conduct business on the Internet? Do you want to enable customers to 
place orders using the Web? If you are going to build a modern business applica-
tion, you need a database management system.

Think about applications that you use: Almost any Web application, student 
course registration or billing systems, calendars, even games. All of them need 
to store data. If you are creating an application you have to identify the data to be 
stored and the best location to store it. You could use file read/write tools to save 
the data in a proprietary format that could only be read by your custom applica-
tion. Or, you could store the data using a database management system. database 
management system (DBMS) is a software tool created to solve the common 
problems of sharing data among multiple users and applications. It has many fea-
tures that make it easy to store and retrieve data efficiently. 

The alternative to using a DBMS is to write file storage routines for every ap-
plication that you create. For each application, you could store data in separate 
files, but only your application would know how to retrieve that data. Imagine 

 Miranda: My uncle just called me and said 
his company was desperate. It needs 
someone to build an application for 
the sales team. The company wants 
a laptop system for each salesperson 
to enter orders. The system needs to 
track the order status over time and 
generate notices and weekly reports. 
My uncle said that because I know 
a lot about computers, I should 
call and get the job. His company 
is willing to pay $6,000, and I can 
work part-time.

 Ariel: Wow! Sounds like a great job. 
What’s the problem?

 Miranda: Well, I know how to use basic 
computer tools, and I can program a 
little, but  I’m not sure I can build a 
complete application. It could take a 
long time. 

 Ariel: Why not use a database 
management system? It should 
be easier than writing code from 
scratch.

 Miranda: Do you really think so? What can 
a database system do? How does it 
work?

Getting Started
You need to choose a DBMS to use for exercises and projects. The 
Workbooks support Microsoft Access, Microsoft SQL Server, and Or-
acle. You can also use any SQL-based DBMS for most of the chapters. 
If necessary, install the DBMS on your computer—this step can take a 
few hours if you need to download the software. This chapter describes 
the basic features of a DBMS, but you will learn the details in the later 
chapters. You should read the descriptions of the sample databases, in-
stall them, and check out some of the data.



3Chapter  1: Introduction

how difficult it would be for you to write a new application that uses data created 
by a program that someone else wrote ten years ago. Also, for every file-based 
application, you would have to rewrite the data-handling routines to deal with 
multiple users accessing the data at the same time (concurrent access). You would 
also have to provide security and data management routines. It is far easier and 
more reliable to use a database management system. It already has these features 
and more, so you can concentrate on building an application that meets the needs 
of the users.

Business applications often utilize common types of data—information about 
customers, employees, products, sales, purchases, and so on. A database system is 
one of the most powerful tools you can use to build business applications because 
it easily handles common business data, supports security controls, and sharing. 
Most systems also have query systems, powerful report writers, and application 
systems that make it easy to quickly build applications and retrieve data to support 
common business needs.

The most important features of a DBMS are the ability to define a database, 
store the data efficiently, and retrieve data with a query language. A database is 
a collection of data stored in a standardized format designed to be shared by mul-
tiple users. These concepts and the tools are discussed in detail in this book. The 
key point to remember now is that a database is independent of any specific appli-
cation. Once you create a database within a DBMS, the data can be accessed with 
a variety of tools. The DBMS provides many tools to manage the data including 
security controls, data storage options, and backup facilities. 

This chapter describes the basic role of a DBMS in application development. It 
also describes the major features of a DBMS and how you will use them in build-
ing business applications. It also summarizes the evolution of DBMS technology 
so you understand some of the background and can think about possible changes 
for future systems. This book focuses on building applications that use databases. 
It avoids detailed discussions of how database management systems are written.

Two-Minute Chapter
Chapter 1 is an introduction to databases and what they provide to developers of 
business applications. The main purpose is to explain their importance and outline 
how this book can be used to learn how to build and create applications using da-
tabase systems. Database management systems are powerful tools that are used in 
almost all business applications. They solve many common problems for storing 
and accessing data and maintaining the integrity of the data with multiple users 
making changes. But, databases must be carefully designed to obtain these ben-
efits. Relational databases are the most common tools in business and a set of nor-
malization rules are used to identify exactly which columns belong in a table and 
when data need to be split into multiple tables with additional key columns. Chap-
ters 2 and 3 focus on the rules for designing tables. One of the main strengths of a 
DBMS is the separation of the data from the application. By concentrating on the 
data storage, the data remains protected and accessible to almost any application. 
Tools and applications can change, and the data remains useful and accessible.

Newer key-value pair highly-distributed databases, such as Cassandra, are de-
signed for massive Web sites with millions of users, where performance of a few 
specific queries takes priority over everything else. Database design is also critical 
for these tools, but it is not as rigid—which means that experience and experi-
mentation are needed to determine how to optimize the storage and retrieval for 



4Chapter  1: Introduction

each specific problem. Chapter 13 explores the specific details of key-value pair 
databases, but it relies on basic understanding of relational design and queries—at 
least chapters 2 and 4.

Most DBMSs include the data storage engine and a query processor. SQL is a 
standard language used by most relational systems. Basic queries are straightfor-
ward, but SQL has powerful features to help answer complex business questions. 
Chapters 4 and 5 focus on constructing SQL queries to answer common business 
questions. 

Ultimately, databases are not built in isolation are part of an application. The 
database is likely to be invisible to most users. Instead, users interact with the ap-
plication through forms and reports. These tools can be created with desktop tools 
or as Web-based forms. The capabilities and tools for building forms and reports 
present the greatest differences between database tools. Eventually, developers 
need to learn to use at least one set of tools in depth. The basic skills are transfer-
rable to other tools, but a lack of standards requires learning picky details for each 
system. Chapters 6, 7, and 8 explain the process in general; but individual details 
for specific tools are covered in the accompanying workbooks.

Increasingly, managers are looking to expand their use and understanding of  
a huge amount of data being collected. Much of this analysis requires statisti-
cal knowledge and tools that require additional background. However, the data 
storage needs are slightly different, so data warehouses and some basic analytical 
tools are covered in Chapter 9.

Chapter 10 examines some of the issues involved in setting up and maintaining 
a database. Security is important in all business applications today and DBMSs 
provide tools for assigning and monitoring various security conditions. Chapter 
11 looks at the basic issues involved in distributed systems—where data is stored 
across multiple servers to improve performance and reliability. Chapter 12 is a 
bridge to computer science. DBMSs use specific methods to store and retrieve 
data. These topics are critical in computer science classes, and the chapter briefly 
shows how they are used to build the DBMS software; which highlights some of 
the strengths and weaknesses of the software.

A Small Sample Database Application
What do database applications look like? You have probably worked with sev-
eral database-oriented applications and were not aware of the role of the database 
or the DBMS. In a business application, users do not care about the underlying 
data storage mechanism—they are only interested in the final application features 
and usability. But a DBMS can provide amazing functionality with less effort than 
programming for many applications. Before trying to explain the functions and 
benefits of a DBMS it is useful to look at some of the basic application features. 
This book uses several sample databases to illustrate the various capabilities and 
features. You should download them from the Web site and look through the ap-
plications. Note that the versions in Microsoft Access have more elements (forms 
and reports) than those in the server-based systems. These versions are also easier 
to examine—but you need a copy of Microsoft Access software. 

A couple of examples from the Pet Store database are useful to understand how 
a database can be used to create business applications. The Pet Store database is 
a partially-completed application. It has all of the tables and a small amount of 
sample data. But only a couple of forms and reports were created. The Bicycle 
application is much larger and contains several useful and more complex forms. 



5Chapter  1: Introduction

The Bicycle case is good for examining detailed features of a mostly finished ap-
plication. But it is easier to see the process of creating an application by looking 
at the partially finished Pet Store or CornerMed examples. Figure 1.1 shows a 
simple Employee form which is used to add data for new employees or edit values 
for existing workers. The form focuses attention on a single Employee at a time. It 
contains controls to make some tasks easier including selecting cities (or manag-
ers) from a list. 

The Employee form is relatively simple because it shows only one concept: 
information about a person. Business applications are often more complex. Figure 
1.2 shows a basic purchase order form, where the Pet Store is buying bulk items 
from a supplier. This form needs to display information about the order itself: 
Dates, the supplier, and total cost. It also needs to collect data on the individual 
items being purchased such as the cost and the quantity. The form is also capable 
of computing totals automatically. In this example, the repeating Value column, 
Subtotal, and Total values are computed based on arithmetic formulas that are 
programmed as properties in the form. Many additional features can be added 
such as filters to show all orders from a single supplier, orders within a range of 
dates, or orders that have not yet been received.

Applications usually have reports that can include tables, subtotals, and charts. 
Increasingly, these tools are interactive, where users can click buttons to com-
pare totals across various categories or quickly create charts to see how values 

Figure 1.1
Sample Employee form. Users see a form with controls to help them enter and edit 
data. The data items are stored in the database but the form could be located on a 
single computer, a Web site, or even a mobile application.



6Chapter  1: Introduction

change over time. These capabilities are often built into the DBMS tools and can 
sometimes be created in a few minutes by a skilled developer. In other cases, a 
programmer needs to write custom applications that provide tools to the users and 
interact with the database to store and retrieve the desired data. 

The key thing to remember is that all of the data is handled by the DBMS. Even 
if the forms and reports are created with traditional programming tools, the DBMS 
stores and controls the data centrally. And the DBMS handles security controls, si-
multaneous access by multiple users, data backup, and data integrity issues—such 
as preventing negative values for prices.

Databases and Application Development
How are databases used to build applications? It is rare that someone would 
ask you to build a database and just use it to store and retrieve data. In almost all 
situations, someone asks you to build an application. The difference is that an ap-
plication is used to perform specific tasks. In the process, you will use the DBMS 
to store and retrieve the data, but ultimately, you are building the database as part 
of the solution to the user’s problem.

As shown in Figure 1.3, the database itself is just one element of the applica-
tion. Developers define tables to hold the data in the DBMS. Application forms 
are screens displayed to the user to collect or display data. The data is stored in the 
underlying tables. Reports are structured displays of data from the tables—typi-
cally containing subtotals and charts. In new applications, these forms and reports 
are accessible using a Web browser. Applications built with older systems might 
require database components installed on each computer. 

Figure 1.2
Sample Purchase Order form. The order form is more complex and handles data 
entry for the order itself as well as the individual items being purchased in the detail/
repeating section.



7Chapter  1: Introduction

Several different DBMS tools exist today and one of the first decisions you 
must make is to select the DBMS for the application being built. In many situa-
tions, this choice has already been made for you. For example, your instructor has 
probably already selected a DBMS, or within a large company, one tool is used 
as the standard platform. The Workbooks that accompany this textbook provide 
details about several specific DBMS platforms, including Microsoft Access, Mi-
crosoft SQL Server, and Oracle. Each of them uses different tools to create forms 
and reports, but the Workbooks provide examples and steps for using those tools.

Storing and retrieving data is relatively standard today—most of the DBMSs 
use the SQL query language. Designing the database tables and retrieving the data 
are critical tasks that are essentially the same regardless of the DBMS. Chapters 2 
and 3 of this book focus on database design. Chapters 4 and 5 explore the power 
of SQL to retrieve and manipulate data. These chapters and tasks apply to almost 
any DBMS.

Building applications sometimes requires writing programming code. Some 
tools require more programming than others. Some tools have their own inter-
nal programming language, while others rely on standard languages (such as C++ 
or Java), and embed the database elements as extensions to the language. In any 
case, database applications will be easier to understand if you have already had at 
least one programming course.

The development process for a DBMS is somewhat different from traditional 
programming. One of the key changes is that your primary focus is on the data 
and how it is organized. Later, you can build forms and reports. To gain the ad-
vantages, data must be carefully organized. The query language is also a power-
ful component of a DBMS. It makes it easy to retrieve data—usually with a few 

Database Server

Application Server

Users

Application FormsDevelopers and
Administrators

Database Tables
Forms, Reports,
Programs

SQL Queries

Data

Figure 1.3
Application development with a DBMS. Developers and administrators define the 
database in the form of tables. They then create forms and reports on the application 
server. Users run the application and enter data or make choices.



8Chapter  1: Introduction

lines of simple commands. Once you understand the concepts of database design, 
queries, and application building, you will be able to create complex applications 
in a fraction of the time it would take with traditional programming techniques. 
Figure 1.4 illustrates the tradeoffs that you face in building applications. It is criti-
cal that you spend time and design your database correctly. You also need to use 
the query language (SQL) to do the heavy work in retrieving data. With these two 
tools, your application programming becomes easy and you can spend most of 
your time building forms and reports with automated tools. It still takes time and 
effort, but it is considerably easier than relying on detailed coding.

In the last few years, database systems have become the foundation of almost 
all application development projects. From large enterprise resource planning 
systems, to e-business Web sites, to standalone business applications, database 
systems store and retrieve data efficiently, provide security, and make it easier to 
build the applications. Today, when you build or modify an application, you will 
first create the database. To understand the capabilities of a DBMS and how you 
will use them to create applications, it is best to examine the process used to de-
velop applications.

Organizations typically follow the basic steps outlined in Figure 1.5 when cre-
ating technology applications. Larger projects may require several people in each 
phase, whereas smaller projects might be created entirely by one or two develop-
ers. Organizations can rearrange the tasks that fall within each step, but all of the 
tasks must be completed for a project to be successful. The feasibility step defines 
the project and provides estimates of the costs. During the analysis phase, systems 
analysts collect data definitions, forms, and reports from users. These are used to 
design the database and all of the new forms, reports, and user interactions. Dur-
ing the development step, the forms, reports, and application features such as help 
files are created. Implementation generally consists of the transfer of data, instal-
lation, training, and review.

D
es

ig
n

D
es

ig
n

SQ
L

SQ
L

Pr
og

ra
m

Pr
og

ra
m

Best:
Spend your time on 
design and SQL.

D
es

ig
n

D
es

ig
n

SQ
L

SQ
L

Pr
og

ra
m

Pr
og

ra
m

Worst:
Compensate	for	poor	design	and	limited	
SQL with programming.

Figure 1.4
Creating business applications. A DBMS can save you hundreds of hours of work 
in building applications. However, you must design your database correctly and use 
SQL to do the heavy work. 



9Chapter  1: Introduction

For database-driven applications, the design stage is critical. Database systems 
and the associated development tools are incredibly powerful, but databases must 
be carefully designed to take advantage of this power. Figure 1.6 shows that the 
business rules and processes are converted into database tables and relationship 
definitions. Forms are defined that transfer data into the database, and reports use 
queries to retrieve and display data needed by users. These forms and reports, 
along with features such as menus and help screens, constitute applications. Users 
generally see only the application and not the underlying database or tables.

Designing the database tables and relationships is a key step in creating a data-
base application. The process and rules for defining tables are detailed in Chapters 
2 and 3. Using the database requires the ability to retrieve and manipulate the data. 
These tasks are handled by the query system, which is described in Chapters 4 and 
5. With these foundations, it is relatively easy to use the tools to create forms and 
reports and build them into applications as discussed in Chapters 6, 7, and 8. 

Implementation

Development

Design

Analysis

Feasibility
Identify scope, costs, and schedule

Transfer data, install, train, review

Create forms, reports, and help; test

Define tables, relationships, forms, reports

Gather information from users

tasks

time

Figure 1.5
Systems development. Particularly for large projects, it is useful to divide application 
development into separate steps. They can be used to track the progress of the 
development team and highlight the steps remaining. For some projects, it is possible 
to overlap or even iterate the tasks, but steps should not be skipped.



10Chapter  1: Introduction

Components of a Database Management System
What are the major components of a database management system? To un-
derstand the value of a DBMS, it helps to see the components that are commonly 
provided. This basic feature list is also useful when you evaluate various products 
to determine which DBMS your company should use. Each DBMS has unique 
strengths and weaknesses. You can evaluate the various products according to 
how well they perform in each of these categories. The primary categories are 
the database engine, query processor, report service, forms development, manage-
ment tools, and security. 

Database Engine
The database engine is the heart of the DBMS. It is responsible for storing, re-
trieving, and updating the data. This component is the one that most affects the 
performance (speed) and the ability to handle large problems (scalability). The 
other components rely on the engine to store not only the application data but 
also the internal system data that defines how the application will operate. Figure 
1.7 illustrates the primary relationship between the database engine and the data 
tables.

With some systems the database engine is a stand-alone component that can be 
purchased and used as an independent software module. For example, the Micro-
soft “jet engine” forms the foundation of Access. Similarly, the database engines 
for Oracle and Microsoft SQL Server can be purchased separately.

1. Identify business rules.

2. Define tables and 

relationships.

3. Create input forms and 

reports.

4. Combine into 

applications for users.

Figure 1.6
Steps in database design. The business rules and data are used to define database 
tables. Forms are used to enter new data. The database system retrieves data to 
answer queries and produce reports. Users see only the application in terms of forms 
and reports.



11Chapter  1: Introduction

The database engine is also responsible for enforcing business rules regarding 
the data. For example, most businesses would not allow negative prices to be used 
in the database. Once the designer creates that rule, the database engine will warn 
the users and prevent them from entering a negative value.

As shown in Figure 1.8, the database engine stores data in carefully designed 
tables. Tables are given names that reflect the data they hold. Columns represent 
simple attributes that describe the object, such as an employee’s name, phone, and 
address. Each row represents one object in the table.

Database performance is an important issue. The speed of your application de-
pends on the hardware, the DBMS software, the design of your database, and on 
how you choose to store your data. Chapter 12 discusses some popular methods, 
such as indexing, that improve the performance of a database application. Perfor-
mance is also affected by how the software is written. Tools such as Microsoft Ac-
cess have limitations on the size of the database and on how the data is processed. 
Similarly, free tools, including versions for Microsoft SQL Server, Oracle, and 
IBM, have limits on size and processing (such as support for only one processor). 
More expensive versions and other software tools remove these limitations.

Data Dictionary
The data dictionary holds the definitions of all of the data tables. It describes 
the type of data that is being stored, allows the DBMS to keep track of the data, 
and helps developers and users find the data they need. Most modern database 
systems hold the data dictionary as a set of system tables. For example, Microsoft 
Access keeps a list of all the tables in a hidden system table called MsysObjects. 
The larger systems like SQL Server and Oracle also have proprietary tables such 
as sys.dba_tables in Oracle. However, most of the vendors (except Oracle) have 

Data
Tables

Database
Engine

Product
ItemID Description
887 Dog	food
946 Cat	food

Order
OrderID ODate
9874 3-3-97
9888 3-9-97

Customer
CustomerID Name
1195 Jones
2355 Rojas

Product
ItemID Integer, Unique
Description Text, 100 char

Customer
CustomerID Integer, Unique
Name Text, 50 char

SecurityUser Identification
Access Rights

Utilities

Concurrency and
Lock Manager

Backup and
Recovery

Administration

Data
Dictionary

Figure 1.7
Database engine. The engine is responsible for defining, storing, and retrieving the 
data. The security subsystem of the engine identifies users and controls access to 
data.



12Chapter  1: Introduction

standardized on the Information_Schema queries, such as the Information_Sche-
ma.Tables view. These tools and related administrative issues are described in 
Chapter 10. If you need to install your own copy of the DBMS software now, you 
should read the basic steps in Chapter 1 of the associated Workbook. You can also 
skim through Chapter 10 if you want more detailed explanations.

These meta-data tables are used by the system, but most database systems also 
provide visually-oriented administration tools so you do not have to memorize 
commands. For example, it is relatively easy to obtain a list of tables using the 
basic administration tools for Access, SQL Server, Oracle, and DB2. For inde-
pendent tools like MySQL, you will probably have to track down and install a 
separate management utility.

Query Processor
The query processor is a fundamental component of the DBMS. It enables devel-
opers and users to store and retrieve data. In some cases the query processor is the 
only connection you will have with the database. That is, all database operations 
can be run through the query language. Chapters 4 and 5 describe the features and 
power of query languages—particularly standard SQL.

Queries are derived from business questions. The query language is necessary 
because natural languages like English are too vague to trust with a query. To 
minimize communication problems and to make sure that the DBMS understands 

Figure 1.8
Database tables in Access. Tables hold data about one business entity. For example, 
each row in the Animal table holds data about a specific animal.



13Chapter  1: Introduction

your question, you should use a query language that is more precise than English. 
As shown in Figure 1.9, the DBMS refers to the data dictionary to create a query. 
When the query runs, the DBMS query processor works with the database engine 
to find the appropriate data. The results are then formatted and displayed on the 
screen.

Report Service
Most business users want to see summaries of the data in some type of report. 
Many of the reports follow common formats. A report writer enables you to set 
up the report on the screen to specify how items will be displayed or calculated. 
Most of these tasks are performed by dragging data onto the screen. Profession-
al-level writers enable you to produce complex reports in a short time without 
writing any program code. Chapter 8 describes several of the common business 
reports and how they can be created with a database report writer. Increasingly, 
vendors are shipping report services that run as Web applications to make it easy 
to deliver your reports to users without relying on paper. Users can choose to ex-
plore the data interactively, or print the report on their own printer.

The process of exploring data interactively is increasingly important. The sys-
tem demands for this type of application are quite different from traditional trans-
actions and reporting systems. Consequently, most companies rely on separate 
report services and online analytical processing (OLAP), and statistical data 
mining tools. Database designs and application tools are relatively new and sub-
stantially different from traditional database applications, so they are examined 
separately in Chapter 9.

The report writer can be integrated into the DBMS, or it can be a stand-alone 
application that the developer uses to generate code to create the needed report. As 

CountGroup ByTotals
Descending

Animal
AnimalID

Or
Criteria
Sort

AnimalTable
CategoryField

CountGroup ByTotals
Descending

Animal
AnimalID

Or
Criteria
Sort

AnimalTable
CategoryField

AnimalID
Name
Category
Breed

Animal

All Data

Database Engine
Data Dictionary

Query Processor

3Spider
6Mammal
6Reptile
14Fish
15Bird
47Cat
100Dog
CountOfAnimalIDCategory

3Spider
6Mammal
6Reptile
14Fish
15Bird
47Cat
100Dog
CountOfAnimalIDCategory

Figure 1.9
Database query processor. The data dictionary determines which tables 
and columns should be used. When the query is run, the query processor 
communicates with the database engine to retrieve the requested data.



14Chapter  1: Introduction

shown in Figure 1.10, the developer creates a basic report design. This design is 
generally based on a query. When the report is executed, the report writer passes 
the query to the query processor, which communicates with the database engine to 
retrieve the desired rows of data. The report writer then formats the data according 
to the report template and creates the report complete with page numbers, head-
ings and footers. 

Figure 1.11 shows the report writer that Microsoft SQL Server provides with its 
Business Intelligence Reporting Services tool. The report writer generates reports 
that are posted to a Web site to be run by other users. You set up sections on the 
report and display data from the database. The report writer includes features to 
perform computations and format the columns. You also have control over colors, 
you can place images on the report (e.g., logos), and you can draw lines and other 
shapes to make the report more attractive or to call attention to specific sections.

Forms Development
A forms builder or input screen editor helps the developer create input forms. 
As described in Chapter 7, the goal is to create forms that represent common user 
tasks, making it easy for users to enter data. The forms can include graphs and 
images. The forms builder enables developers to create forms by dragging and 
dropping items on the screen. Figure 1.12 shows that forms make heavy use of the 
query processor to display data on the form.

Many database systems also provide support for traditional, third-generation 
languages (3GL) to access the database. The issues in writing programs and ac-
cessing data through these programs are directly related to the topics discussed in 
Chapter 7.

One of the most important questions you need to address for new projects is 
whether the application needs to be built as a Web site. Today, most new develop-

Figure 1.10
Database report writer. The design template sets the content and layout of the report. 
The report writer uses the query processor to obtain the desired data. Then it formats 
and prints the report.

All Data

Database Engine
Data Dictionary

Query Processor

Report
Format

and Query

Report Writer



15Chapter  1: Introduction

ments are based on Web pages. However, the tools for building Web sites varies 
greatly depending on the underlying platform. For example, Microsoft uses its 
ASP.Net server to create and deliver pages, Java platforms (including Oracle) use 
the Java language and Java application servers, other tools use the open-source 
Apache server and often the PHP or Python programming languages to develop 
Web forms. The overall approach to building forms and reports is similar in these 
tools, but the methods and details are quite different.

Management Utilities and Security
Because data is so important to organizations, the DBMS includes several mecha-
nisms and tools to protect the data and assign security permissions. As a result, 
someone needs to be in charge of assigning security, monitoring the database, and 
performing other management chores. A DBMS typically provides command-line 
tools as well as visual tools to help you perform these jobs. Chapter 10 describes 
the various tasks and introduces some of the commonly available tools. Typical 
features include backup and recovery, user management, data storage evaluation, 
and performance-monitoring tools.

Figure 1.11
Oracle Reports report writer. The Data Model is used to create a query and select the 
data to be displayed. Then Reports creates the basic report layout. You can modify 
the layout and add features to improve the design or highlight certain sections.



16Chapter  1: Introduction

For security to work, it has to be embedded into the database engine. Conse-
quently, you will encounter some security questions before you reach Chapter 10. 
In most cases, you will have a separate security account that has the permissions 
needed to complete most of the exercises in the book. However, if you need to 
share a database with dozens of other students, you might be denied the ability to 
perform some tasks, such as deleting data or tables. The challenge is even greater 
in Chapter 10. If you are serious about learning database administration tasks, you 
will need to install your own copy of the DBMS so that you have complete access 
and the ability to alter detailed elements.

Advantages of the Database Management System Approach
What are the advantages of using a database management system? Many 
business applications need the same features (efficient storage and retrieval of 
data, sharing data with multiple users, security, and so on). Rather than re-create 
these features within every application program, it makes more sense to purchase 
a database management system that includes these basic facilities. Then develop-
ers can focus on creating applications to solve business problems. The primary 
benefits provided by a DBMS are shown in Figure 1.13.

First, the DBMS stores data efficiently. As described in Chapters 2 and 3, if you 
set up your database according to a few basic rules, the data will be stored with 
minimal wasted space. Additionally, the data can be retrieved rapidly to answer 
any query. Although these two goals seem obvious, they can be challenging to 
handle if you have to write programs from scratch every time.

The DBMS also has systems to maintain data consistency with minimal effort. 
Most systems enable you to create basic business rules when you define the data. 
For example, price should always be greater than zero. These rules are enforced 

Figure 1.12
Database form. A form is used to collect data. It is designed to match the tasks of the 
user, making it easy to enter data and look up information. The query processor is 
used to obtain related data and fill in look-up data in combo boxes. 

All Data
Database Engine
Data DictionaryQuery Processor

Form Builder

Input
Form

Design



17Chapter  1: Introduction

for every form, user, or program that accesses the data. With traditional programs, 
you would have to force everyone to follow the same rules. Additionally, these 
rules would be stored in hundreds or thousands of separate programs—making 
them hard to find and hard to modify if the business changes.

The DBMS, particularly the query language, makes it easy to integrate data. 
For example, one application might collect data on customer sales. Another ap-
plication might collect data on customer returns. If programmers created sepa-
rate programs and independent files to store this data, combining the data would 
be difficult. In contrast, with a DBMS any data in the database can be easily re-
trieved, combined, and compared using the query system.

Focus on Data
With the old programming-file method, developers focused on the process and 
the program. Developers started projects by asking these kinds of questions: How 
should the program be organized? What computations need to be made? The da-
tabase approach instead focuses on the data. Developers now begin projects by 
asking: What data will be collected? This change is more than just a technicality. 
It alters the entire development process.

Think about the development process for a minute. Which component changes 
the most: programs (forms and reports) or the data? Yes, companies collect new 
data all the time, but the structure of the data is relatively constant.  And when it 
does change, the reason is usually that you are adding new elements—such as cel-
lular phone numbers. In particular, business data is intentionally kept similar to 
enable comparisons over time. Sales, Costs, Inventory, and so on are stable num-
bers that are always collected. On the other hand, users constantly need modifica-
tions to forms and reports.

As shown in Figure 1.14, the database approach concentrates on the data. The 
DBMS is responsible for defining, storing, and retrieving the data. All requests 
for data must go through the database engine. Hence the DBMS is responsible 
for efficient data storage and retrieval, concurrency, data security, and so on. 
Once the data structure is carefully defined, additional tools like the report writer, 
forms generator, and query language make it faster and easier to develop business 
applications.

•	 Minimal data redundancy
•	 Data consistency
•	 Integration	of	data
•	 Sharing	of	data
•	 Enforcement	of	standards
•	 Ease	of	application	development
•	 Uniform	security,	privacy,	and	integrity
•	 Data independence

Figure 1.13
Advantages of a DBMS. The DBMS provides a solution to basic data 
storage and retrieval problems.  By using a DBMS to handle data storage 
problems, programmers can concentrate on building applications—saving 
time and money in developing new systems and simplifying maintenance of 
existing applications.



18Chapter  1: Introduction

Data Independence
The other important feature of focusing on the data is the separation of the data 
definition from the program—known as data independence. Data independence 
enables you to change the data definition without altering the program. Similarly, 
data can be moved to new hardware or a completely different machine. Once the 
DBMS knows how to access the data, you do not have to alter the forms, reports, 
or programs that use that data. Similarly, you can alter individual programs with-
out having to change the data definitions.

There are exceptions to this idealistic portrayal. Obviously, if you delete entire 
chunks of the database structure, some of your applications are not going to work 
properly. Similarly, if you make radical changes to the data definitions—such as 
changing phone number data storage from a numeric to a text data type—you will 
probably have to alter your reports and forms. However, a properly designed data-
base rarely needs these radical changes.

Consider the problem of adding cell phone numbers to an Employee table. Fig-
ure 1.15 shows part of the data definition for employees. Regardless of how many 
forms, reports, or programs exist, the procedure is the same. Simply go to the 

All Data

DBMS

Program1 Program2Queries
Reports

Figure 1.14
DBMS focus on data. First, define the data. Then all queries, reports, and programs 
access the data through the DBMS. The DBMS always handles common problems 
such as concurrency and security.

Field Name Data Type Description
EmployeeID
TaxpayerID
LastName
FirstName
…
Phone
…

Number
Text
Text
Text

Text

Generated
Federal ID

CellPhone Text Cellular number

Figure 1.15
Adding cellular phone numbers to the Employee table. Adding a new element to a 
table does not affect the existing queries, reports, forms or programs.



19Chapter  1: Introduction

table definition and insert the entry for CellPhone. The existing queries, forms, re-
ports, and programs will function exactly as they did before. Of course, they will 
ignore the new phone number entry. If you want to see the new values on a report, 
you will have to insert the new field onto the report. With a modern report writer, 
this change can be as simple as dragging the CellPhone item to the appropriate 
location on the form or report. 

The focus on data and careful design enable database systems to avoid the 
problems experienced with traditional programming-file methods. The consolida-
tion of common database functions within one application enables experts to cre-
ate powerful database management systems and frees application programmers to 
focus on building applications that solve business problems.

Data Independence and Web Applications
For several years, business applications were built on a client-server model, where 
personal computers ran heavy applications such as DBMS and spreadsheet soft-
ware. Data was shared with other users by placing it in a central database server 
and the individual applications connected across a network to retrieve and update 
the data. With the expanding use of the Web, the approach to business applica-
tions is changing. It is increasingly popular to build applications to run completely 
on centralized servers. With the Web approach, users only need access to a Web 
browser that can connect to the application server, which stores data in a database 
server. In many cases, the Web browser could run on simple inexpensive hard-
ware, including cell phones. Although it raises new security issues, the Web ap-
proach also means that users can get access to the business data from almost any 
location.

More importantly, the Web approach makes it easier to modify the application. 
As shown in Figure 1.16, the data and the application forms and reports are all 
stored in a central location. It is easy to create new versions and change the soft-
ware. In many cases, it is even possible to change the entire DBMS and the un-

Developers

Database

Web Server

Web	forms
and reports

data
Users

Reports

Figure 1.16
Web databases. Developers build forms and reports that are stored on a central server. 
Users access the data and display reports using a standard Web browser. 



20Chapter  1: Introduction

derlying hardware. Instead of sending patches and new versions to hundreds or 
thousands of users, the developers simply update the single copy sitting on the 
application server.

Developers can create new applications without altering the database. Simi-
larly, they can expand the database or even move it to multiple servers, and the 
applications remain the same. Users continue to work with their familiar personal 
computer applications. Developers retain control over the data. The DBMS can 
monitor and enforce security and integrity conditions to protect the data, yet still 
give access to authorized users. Chapter 11 discusses the use of distributed data-
base systems in more detail, including building client/server systems on the World 
Wide Web.

Leading Commercial Database Systems
What are the main database management systems? Figure 1.17 lists some of 
the leading database systems, including Oracle, DB2, and SQL Server. Many of 
the systems are available for multiple platforms. The PostgreSQL and MySQL 
tools are generally available free or at a low cost. Many other systems and tools 
exist, but these are the most common ones you will encounter. All of them have 
different strengths and weaknesses. Although the big three (Oracle, DB2, and 
SQL Server) can carry high price tags, the vendors can provide detailed support. 
All three of the vendors also provide inexpensive (or free) versions that are par-
ticularly useful for learning to use the systems. The free versions have various 
performance restrictions, but generally support fairly active smaller databases. 
You can download the free copies from the company Web sites.

Choosing a database system can be a major challenge. Many larger organiza-
tions standardize on a major vendor, negotiate reduced license costs, and make 
it available throughout the organization for all projects. However, if you need to 
choose a DBMS for a specific project, you want to carefully investigate the ven-
dor options.

The premiere database systems are useful for large projects, offer extensive 
options and control over thousands of detailed features. However, these options 
make it difficult for beginners to understand the major concepts. It is general-
ly best if you begin your studies with a simpler database system or stick with a 
smaller subset of options.

Vendor Product
Oracle Oracle
Microsoft SQL Server

Access
IBM DB2

Informix
Open source PostgreSQL
MySQL (Oracle) MySQL

Figure 1.17
Commercial DBMS vendors. These are the leading DBMS products that you are 
likely to encounter. Many older systems exist, and dozens of smaller vendors provide 
complete systems and other tools.



21Chapter  1: Introduction

The Evolution of Database Management Systems
How have database management systems changed over time? Developers 
quickly realized that many business applications needed a common set of fea-
tures for sharing data, and they began developing database management systems. 
Developers gradually refined their goals and improved their programming tech-
niques. Many of the earlier database approaches still survive, partly because it 
is difficult to throw away applications that work. It is worth understanding some 
of the basic differences between these older methods. The following discussion 
simplifies the concepts and skips the details. The purpose is to highlight the dif-
ferences between these various database systems—not to teach you how to design 
or use them.

The earliest database management systems were based on a hierarchical meth-
od of storing data. The early systems were an extension of the COBOL file struc-
ture. To provide flexible access, these systems were extended with network data-
bases. However, the relational database approach originated by E. F. Codd eventu-
ally became the dominant method of storing and retrieving data. As programming 
methodologies changed to object-oriented techniques, developers started looking 
for ways to save internal object data in databases and some OO databases were 
created.With the high popularity of some Web sites such as social networks, new 
systems have been created to handle the huge amounts of specialized data. In par-
ticular, data is often stored in simple key-value pairs. A user uploads content, the 
application generates an ID value and the content is stored in a specialized DBMS 
to be quickly retrieved using the generated key value.

Hierarchical Databases
The hierarchical database approach begins by claiming that business data often 
exhibits a hierarchical relationship. For example, a small office without computers 

Customers

Orders

Item Description Quantity
998 Dog Food 12
764 Cat Food 11

Items

Customer

Order

Items Ordered

Figure 1.18
Hierarchical database. To retrieve data, the DBMS starts at the top (customer). When 
it retrieves a customer, it retrieves all nested data (order, then items ordered).



22Chapter  1: Introduction

might store data in filing cabinets. The cabinets would be organized by customer. 
Each customer section would contain folders for individual orders, and the orders 
would list each item being purchased: Customer -> Orders -> Items. To store or 
retrieve data, the database system must start at the top—with a customer in this 
example. As shown in Figure 1.18, when the database stores the customer data, it 
stores the rest of the hierarchical data with it.

The hierarchical database approach is relatively fast—as long as you only want 
to access the data from the top. The most serious problem related to data storage 
is the difficulty of searching for items in the bottom or middle of the hierarchy. 
For example, to find all of the customers who ordered a specific item, the database 
would have to inspect each customer, every order, and each item.

The hierarchical model is an old concept in management. Many people are fa-
miliar with hierarchical objects and have a tendency to classify items using hier-
archies. Consequently, hierarchical methods come into fashion every few years. 
However, the relational approach is substantially better at storing and retrieving 
data; so you have to be careful when you encounter new data formats. Exten-
sible markup language (XML) is a good example. XML is a standard defined 
to support the transfer of data between diverse machines and companies. All data 
is marked with tags using angle brackets. The person or group transferring the 
data is free to create any labels or structure for the tags. For example, you might 
define an <Order> tag to transfer purchase order data. The structure of an XML 
file tends to be hierarchical instead of relational. It is designed to be parsed or 
searched from the top down. Most DBMSs have implemented the XML data type 
that enables you to store the raw XML file as a single unit within the database. 
This approach keeps the hierarchical structure of the XML file. If you use this 
approach, you need a way to search within the XML file. Many DBMSs support 
the standard XQuery tool for searching XML data. With this approach, you first 
use the relational database to locate a particular XML file, and then call XQuery 
to find individual items within that file. In effect, it squeezes a hierarchical dataset 
into a single cell in a relational database table. This approach has limitations but 

Customer

Order Items
Ordered

Items

Entry point

Entry point

Figure 1.19
Network database. All data sets must be connected with indexes as indicated by the 
arrows. Likewise, all entry points (starting point for a query) must be defined and 
created before the question can be answered.



23Chapter  1: Introduction

works if you really need to keep the XML file in one piece. On the other hand, 
most DBMS vendors recommend that if you want to search the data received in 
an XML file, you should parse the data out and store the individual elements into 
relational database tables. Essentially, you should generally use XML as a transfer 
mechanism and not a storage method.

Network Databases
The network database has nothing to do with physical networks (e.g., local area 
networks). Instead, the network model is named from the network of connections 
between the data elements. The primary goal of the network model was to solve 
the hierarchical problem of searching for data from different perspectives.

Figure 1.19 illustrates the Customer, Order, and Item data components in a net-
work model. First, notice that the items are now physically separated—typically 
stored in separate files. Second, note that they are connected by arrows. Finally, 
notice the entry points, which are indicated with arrows. The entry points are pre-
defined items that can be searched. In all cases the purpose of the arrows is to 
show that once you enter the database, the DBMS can follow the arrows to find 
and display matching data. As long as there is an arrow, the database can make an 
efficient connection.

Although this approach seems to solve the search problem, the cost is high. 
All arrows must be physically implemented as indexes or embedded pointers. Es-
sentially, an index duplicates every key data item in the associated data set and 
associates the item with a pointer to the storage location of the rest of the data. 
The problem with the network approach is that the indexes must be built before 
the user can ask a question. Consequently, the developer must anticipate every 
possible question that users might ask about the data. Worse, building and main-
taining the indexes can require huge amounts of processor time and storage space.

Relational Databases
E. F. Codd originated the relational database approach in the 1970s, and within 
several years three elements came together to make the relational database the pre-
dominant method for storing data. First, theoreticians defined the basic concepts 
and illustrated the advantages. Second, programmers who built database manage-
ment system software created efficient components. Third, hardware performance 
improved to handle the increased demands of the system.

Figure 1.20 illustrates how the four basic tables in the example are represented 
in a relational database. The key is that the tables (called “relations” by Codd) are 
sets of data. Each table stores attributes in columns that describe specific entities. 

Customer(CustomerID, Name, … ) 
Order(OrderID, CustomerID, OrderDate, …)
ItemsOrdered(OrderID, ItemID, Quantity, …)
Items(ItemID, Description, Price, …)

Figure 1.20
Relational database. Data is stored in separate sets of data. The tables are not 
physically connected; instead, data is linked between columns. For example, when 
retrieving an order, the database can match and retrieve the corresponding customer 
data based on CustomerID. 



24Chapter  1: Introduction

These data tables are not physically connected to each other. The connections ex-
ist through the matching data stored in each table. For example, the Order table 
contains a column for CustomerID. If you find an order that has a CustomerID of 
15, the database can automatically find the matching CustomerID and retrieve the 
related customer data.

The strength of the relational approach is that the designer does not need to 
know which questions might be asked of the data. If the data is carefully defined 
(see Chapters 2 and 3), the database can answer virtually any question efficiently 
(see Chapters 4 and 5). This flexibility and efficiency is the primary reason for the 
dominance of the relational model. Most of this book focuses on building applica-
tions for relational databases.

Object-Oriented Databases
An object-oriented (OO) database is a 
different method of organizing data. The 
OO approach began as a new method to 
create programs. The goal is to define 
objects that can be reused in many pro-
grams—thus saving time and reducing er-
rors. As illustrated in Figure 1.21, a class 
or object has three major components: a 
name, a set of properties or attributes, and 
a set of methods or functions. The proper-
ties describe the object—just as attributes 
describe an entity in the relational database. Methods are short programs that de-
fine the actions that each object can take. For example, the code to add a new 

Note: This section contains a rela-
tively detailed description of object-
oriented databases and could be 
skipped for an introductory class. Or 
read it now and return to it later. Ob-
ject features add a level of complex-
ity to problems that can be confus-
ing to beginners.

Customer
CustomerID
Name
…

Add Customer
Drop Customer
Change Address

Order
OrderID
CustomerID
…

NewOrder
DeleteOrder
…

OrderItem
OrderID
ItemID
…

OrderItem
DropOrderItem
…

Item
ItemID
Description
…

New Item
Sell Item
Buy Item …

Government
Customer

ContactName
ContactPhone
Discount, …

NewContact

Government
Customer

ContactName
ContactPhone
Discount, …

NewContact

Commercial
Customer

ContactName
ContactPhone
…

NewContact

Commercial
Customer

ContactName
ContactPhone
…

NewContact

Figure 1.21
Object-oriented database. Objects have properties—just as relational entities have 
attributes— that hold data to describe the object. Objects have methods that are 
functions the objects can perform.  Objects can be derived from other objects.



25Chapter  1: Introduction

customer would be stored with the Customer object. The innovation is that these 
methods are stored with the object definition.

Figure 1.21 also hints at the power of the OO approach. Note that the base 
objects (Order, Customer, OrderItem, and Item) are the same as those for the re-
lational approach. However, with the OO approach, new objects can be defined in 
terms of existing objects. For example, the company might create separate classes 
of customers for commercial and government accounts. These new objects would 
contain (inherit) all of the original Customer properties and methods, and also add 
variations that apply only to the new types of customers. 

Two basic approaches are used to handle true object-oriented data: (1) extend 
the relational model to include typical OO features or (2) create a new object-
oriented DBMS. Today, most commercially successful database systems follow 
the first approach by adding object features to the relational model.

The approach that adds OO features to the relational model is best exemplified 
by the American National Standards Institute (ANSI). Object-oriented features 
were a major component to the SQL 99 version. The SQL 2003 standard clarified 
some of the OO issues as well. In 1997 the SQL3 development group merged with 
the Object Database Management Group (ODMG). Three features are suggested 
to add OO capabilities: (1) abstract data types, (2) subtables, and (3) persistent 
stored modules. DBMS vendors have implemented most of these features.
Object Properties
The first issue involves defining and storing properties. In particular, OO pro-
grammers need the ability to create new composite properties that are built from 
other data types. SQL supports abstract data types to enable developers to create 

GeoPoint
Latitude
Longitude
Altitude

GeoLine
NumberOfPoints
ListOfGeoPoints

Procedure: DrawRegion
{

Find region components.
SQL: Select …

For each component {
Fetch MapLine
Set line attributes
MapLine.Draw

}
}

Europe…France222
Europe…Spain394
World…Europe12

…MapLineSupersetSizeNameRegionID

Europe…France222
Europe…Spain394
World…Europe12

…MapLineSizeNameRegionID Superset

Figure 1.22
Abstract data types or objects. A geographic information system needs to store and 
share complex data types. For example, regions are defined by geographic line 
segments. Each segment is a collection of points, which are defined by latitude, 
longitude, and altitude. Using a database makes it easier to find and share data.



26Chapter  1: Introduction

new types of data derived from existing types. This technique supports inheritance 
of properties. The type of data stored in a column can be a composite of several 
existing abstract types. Consider the example shown in Figure 1.22, which shows 
part of a database for a geographic information system (GIS). The GIS defines 
an abstract data type for location (GeoPoint) in terms of latitude, longitude, and 
altitude. Similarly, a line segment (e.g., national boundary), would be a collection 
of these location points (GeoLine). By storing the data in tables, the application 
can search and retrieve information based on user requirements. The database also 
makes it easier to share and to update the data. In the GIS example, the database 
handles the selection criteria (Region = Europe). The database can also match and 
retrieve demographic data stored in other tables. The advantage to this approach 
is that the DBMS handles the data storage and retrieval, freeing the developer to 
concentrate on the application details.

The abstract data type enables developers to create and store any data needed 
by the application. The abstract data type can also provide greater control over 
the application development. First, by storing the data in a DBMS, it simplifies 
and standardizes the way that all developers access the data. Second, the elements 
within the data type can be encapsulated. By defining the elements as private, ap-
plication developers (and users) can only access the internal elements through the 
predefined routines. For example, developers could be prevented from directly 
modifying the latitude and longitude coordinates of any location by defining the 
elements as private.

SQL provides a second method to handle inheritance by defining subtables. 
A subtable inherits all the columns from a base table and provides inheritance 
similar to that of the abstract data types; however, all the data is stored in separate 
columns. The technique is similar to the method shown in Figure 1.21, which 
stores subclasses in separate tables. The difference is that the OO subtables will 
not need to include the primary key in the subtables. As indicated in Figure 1.23, 
inheritance is specified with an UNDER statement. You begin by defining the 

CREATE SET TABLE CommercialCustomer
(

Contact VARCHAR,
VolumeDiscount NUMERIC(5,2)

)
UNDER Customer;

CREATE SET TABLE Customer
(

CustomerID INTEGER,
Address VARCHAR,
Phone CHAR(15)

)

CustomerID
Address
Phone

Customer

Contact
VolumeDiscount

CommercialCustomer

Inherits columns
from	Customer.

Figure 1.23
SQL subtables. A subtable inherits the columns from the selected supertable. Queries 
to the CommercialCustomer table will also retrieve data for the CustomerID, 
Address, and Phone columns inherited from the Customer table.



27Chapter  1: Introduction

highest level tables (e.g., Customer) in the hierarchy. Then when you create a new 
table (e.g., CommercialCustomer), you can specify that it is a subtable by adding 
the UNDER statement. If you use the unified modeling language (UML) triangle-
pointer notation, or an IS-A icon for inheritance, it will be easy to create the tables 
in SQL. Just define the properties of the table and add an UNDER statement if 
there is a “pointer” to another table. 

Do not worry about the details of the CREATE TABLE command. Instead, it is 
important to understand the difference between abstract data types and subtables. 
An abstract data type is used to set the type of data that will be stored in one col-
umn. With a complex data type, many pieces of data (latitude, longitude, etc.) will 
be stored within a single column. With a subtable the higher level items remain in 
separate columns. For example, a subtable for CommercialCustomer could be de-
rived from a base Customer table. All the attributes defined by the Customer table 
would be available to the CommercialCustomer as separate columns.
Object Methods
Each abstract data type can also have methods or functions. In SQL, the routines 
are called persistent stored modules. They can be written as SQL statements. 
The SQL language is also being extended with programming commands—much 
like Oracle’s PL/SQL extensions. Routines are used for several purposes. They 
can be used as code to support triggers, which have been added to SQL. Persistent 
routines can also be used as methods for the abstract data types. Designers can 
define functions that apply to individual data types. For example, a GIS location 
data type could use a subtraction operator that computes the distance between two 
points. 

 To utilize the power of the database, each abstract data type should define two 
special functions: (1) to test for equality of two elements and (2) to compare ele-
ments for sorting. These functions enable the DBMS to perform searches and to 
sort the data. The functions may not apply to some data types (e.g., sound clips), 
but they should be defined whenever possible.
Object-Oriented Languages and Sharing Persistent Objects
The development of true OODBMS models was initiated largely in response to 
OO programmers who routinely create their own objects within memory. They 
needed a way to store and share those objects. Although the goals may appear 
similar to the modified-relational approach, the resulting database systems are 
unique.

Most OO development has evolved from programming languages. Several lan-
guages were specifically designed to utilize OO features. Common examples in-
clude C++, Smalltalk, and Java. Data variables within these languages are defined 
as objects. Each class has defined properties and methods. Currently, develop-
ers building applications in these languages must either create their own storage 
mechanisms or translate the internal data to a relational database.

Complex objects can be difficult to store within relational databases. Most lan-
guages have some facility for storing and retrieving data to files, but not to data-
bases. For example, C++ libraries have a serialize function that transfers objects 
directly to a disk file. There are two basic problems with this approach: (1) it is 
difficult to search files or match data from different objects, and (2) the developer 
is responsible for creating all sharing, concurrency, and security operations. How-
ever, this approach causes several problems because data is now intrinsically tied 
to the programs and is no longer independent.



28Chapter  1: Introduction

Essentially, OO programmers want the ability to create persistent objects, that 
is, objects that can be saved and retrieved at any time. Ideally, the database would 
standardize the definitions, control sharing of the data, and provide routines to 
search and combine data. The basic difficulty is that no standard theory explains 
how to accomplish all these tasks. Nonetheless, as shown in Figure 1.24, several 
OODBMS exist, and users have reportedly created many successful applications 
with these tools. But, most of these tools have minimal market share and may no 
longer exist.

The key to an OODBMS is that to the programmer it simply looks like ex-
tended storage. An object and its association links are treated the same whether 
the object is stored in RAM or shared through the DBMS. Clearly, these systems 
make development easier for OO programmers. The catch is that you have to be 
an OO programmer to use the system at all. In other words, if your initial focus 
is on OO programming, then a true OODBMS may be useful. If you started with 
a traditional relational database, you will probably be better off with a relational 
DBMS that has added OO features.

In theory, the 1997 agreements between ANSI and ODMG were designed to 
bring the SQL and OODBMS models closer to a combined standard. In practice, 
it could take a few years and considerable experimentation in the marketplace. For 
now, if you are serious about storing and sharing objects, you will have to make a 
choice based on your primary focus: OO programming or the relational database. 
As of 2010, the relational database approach with some OO extensions appears to 
have won out over pure OO database systems. Otherwise, programmers simply 
write data objects to individual files. If speed is an overriding issue, simple files 
are often the best answer.

Key-Value Pairs: Cassandra
The expanding use of highly-popular Web sites has created a need for high-per-
formance, specialized data storage. With hundreds of millions of users uploading 
megabytes of data every hour (or minute), banks of servers are needed to handle 
the heavy demands. In many cases, the data to be stored is also non-traditional—it 
consists of complex objects including photos, raw files, blog entries, or various 
text items. Time is also a common feature, where people want to store multiple 
versions or organize data by the time an object was created. Initially, most big 
sites created proprietary storage methods to handle their unique situation. More 
recently, some people have started sharing portions of their ideas and works. One 
tool has gained some popularity and illustrates some of the features useful in these 
situations. The database system is called Cassandra and is available as an open 

•	 InterSystems Caché 
•	 Progress	Software	ObjectStore
•	 Objectivity
•	 McObject	Perst
•	 Versant
•	 JADE

Figure 1.24
OODBMS vendors and products. Each tool has different features and goals. Contact 
the vendors for details or search the Web for user comments. 



29Chapter  1: Introduction

source project for several different hardware systems—although Linux-based sys-
tems are the most popular. 

Storing data in Cassandra is unlike any of the earlier methods. Cassandra does 
borrow ideas from several advanced features of relational systems but trying to 
compare it with relational systems leads to confusion for beginners, so the details 
are not covered in this chapter. The two most important points are that data values 
are stored and accessed via a key item, and that the data is deliberately designed to 
be spread across multiple servers. By eliminating “relationships” data can be split 
into mostly independent pieces. Spreading these pieces across multiple servers 
enables the system to harness the power of massively parallel systems to perform 
storage, retrieval, and searches simultaneously on thousands of machines working 
independently. Chapter 13 explores the issues of design and querying for non-
relational systems, including examples for Cassandra.

Drawbacks to Database Management Systems
What potential problems exist with a DBMS approach? The discussion of 
OO systems brings up the most common criticism of a DBMS: performance. The 
DBMS is a layer of complex software between the application and the data stor-
age. Although this layer provides many useful features, it can slow down the stor-
age and retrieval of huge amounts of data. And huge amounts of data are where 
the problems arise. Automated systems can easily generate gigabytes of data per 
hour or even faster. Writing massive amounts of data to a disk drive taxes the 
transfer capabilities even for fast servers. Pushing the data through a DBMS adds 
overhead for backup-and-recovery, concurrency controls, and indexes. It is pos-
sible for a DBMS to add two-to-three times the amount of data written for each 
byte of original data.

The high-end DBMSs provide tools to analyze data storage and to improve 
read/write times for large data transfers. But, you must always consider the possi-
bility that it might be necessary to bypass the DBMS and store some data directly 
to the file system.

For example, it is possible to store images and even video data directly into a 
database table. However, in many applications—particularly Web-based ones—it 
is better to store the raw data in separate files and then store just the filename in 
the database. One reason this approach works is because this data rarely needs to 
be altered—once a file is stored, it is rarely edited, or the editing is not relevant 
to the DBMS. Consequently, there is little need to control for multiple users or to 
create repeated backups.

The problem of overhead created by the DBMS arises every few years in the 
industry. For example, around 2010 several writers began pushing the value of 
“non-SQL” database systems. The term is inaccurate because the query language 
SQL is not really the problem. Instead, some examples of extremely large da-
tabases create performance issues in terms of storage. Creating storage mecha-
nisms for extremely large databases is difficult. But, before discarding the DBMS 
approach, you must seriously consider what features you are willing to give up. 
DBMS performance is slower than directly writing data to a disk largely because 
the DBMS provides safety through backup logs and concurrency controls. Alter-
native storage methods that bypass these features can provide faster performance, 
but you often give up the safety and security controls. When you evaluate alterna-
tives, be sure that you understand exactly what features are being removed to pro-



30Chapter  1: Introduction

vide performance increases. And then determine whether you need those features 
or how they might be provided through other methods. 

The examples used in this book, and the Workbooks, are small enough that per-
formance is not an issue. All of the data can be stored in individual tables. How-
ever, you should learn to recognize potential problems so that when you work on 
large-scale applications, you can choose the appropriate time to bypass the DBMS 
and store files directly to a server. 

The other major drawback to a DBMS is the cost of the software. For rela-
tively small projects, this cost can be small or even zero. Microsoft Access works 
for small projects. You can also obtain free copies of software for Oracle, SQL 
Server and IBM’s DB2. These copies have size and performance limitations but 
work for many smaller projects. You can also obtain open-source software such 
as MySQL (now controlled by Oracle) and PostgreSQL. These two have been 
used for relatively large-scale commercial Web sites. However, keep in mind that 
“open-source” ultimately means that you pay for maintenance and support—ei-
ther by paying a third party or by hiring more people. So, open-source is not actu-
ally a zero-cost option.

Application Development
What is an application? If you carefully examine Figures 1.16, 1.17, and 1.18, 
you will notice that they all have essentially the same data sets. This similarity is 
not an accident. Database design methods described in Chapters 2 and 3 should 
be followed regardless of the method used to implement the database. In other 
words, any database project begins by identifying the data that will be needed and 
analyzing that data to store it as efficiently as possible.

The second step in building applications is to identify forms and reports that 
the users will need. These forms and reports are based on queries, so you must 
create any queries or views that will be needed to produce the reports and forms as 
described in Chapters 4 and 5. Then you use the report writer and forms generator 
to create each report and form as described in Chapters 6 and 7. As described in 
Chapter 8, the next step is to combine the forms and reports into an application 
that handles all of the operations needed by the user. The goal is to create an ap-
plication that matches the jobs of the users and helps them to do their work. 

Chapter 7 describes how to deal with common problems in a multiuser envi-
ronment to protect the integrity of the data and support transactions. Chapter 9 
shows one more design method of storing data: the data warehouse. To deal with 
large databases, transaction processing systems use indexes and other features to 
optimize storage tasks. Today, managers want to retrieve and analyze the data. 
Data warehouses provide special designs and tools to support online analytical 
processing (OLAP). 

When the application is designed and while it is being used, several database 
administration tasks have to be performed. Setting security parameters and con-
trolling access to the data is one of the more important tasks. Chapter 10 discusses 
various administration and security issues.

As an organization grows, computer systems and applications become more 
complex. An important feature in modern organizations is the need for users to 
access and use data from many different computers throughout the organization. 
At some point you will need to increase the scope of your application so that it can 
be used by more people in different locations. Distributed databases discussed in 
Chapter 11 are a powerful way to create applications that remove the restrictions 



31Chapter  1: Introduction

of location. The Internet is rapidly becoming a powerful tool for building and 
implementing database applications that can be used by anyone around the world. 
The same technologies can be used for applications that are accessed only by in-
house personnel. Systems that use Internet technology but limit access to insiders 
are called intranets.

Chapter 12 introduces the considerations of how the DBMS physically stores 
data. This chapter is particularly helpful for students who have a background in 
programming, but the topics are presented carefully so that non-programmers can 
understand the issues as well. The basic point is that high-end DBMSs allow the 
administrator to control how the data is stored in operating system files. This level 
of control is sometimes needed to improve the performance of large databases.

Introduction to this Book’s Databases
What databases are used with this book? Several databases are used as ex-
amples in this book. The workbook has an additional database as well but it is 
described in the workbook. These databases are important because they provide 
concrete examples of various issues in database design, queries, and application 
development. You can study the databases to help you understand the topics dis-
cussed in this book. Bear in mind that the databases are not completed. In fact, 
each database is at a different level of completion so that you can see how an ap-
plication is built in stages.

The main database in this book is Sally’s Pet Store. The design is complete, and 
some forms and reports have been created, but many application features need to 
be added. The Corner Med database is newer and it is designed to be a smaller 
application and to provide more examples and exercises that illustrate some com-
mon issues in the healthcare industry. Rolling Thunder Bicycles is a relatively 
large database, in terms of design, application, and data. It was originally devel-
oped in Microsoft Access and contains many detailed forms. Scripts exist to build 
the data tables in other DBMSs, but the forms and reports have not been convert-
ed. The All Powder Board and Ski Shop in the Workbooks has similarities to Roll-
ing Thunder, and many of the forms and reports have been developed for multiple 
DBMSs. Keep in mind that the purpose of the Workbook is to show you all of the 
steps in building an application.

Sally’s Pet Store
A young lady with a love for animals is starting a new type of pet store. Sally 
wants to match pets with owners who will take good care of the animals. The Pet 
Store database was changed for this edition of the book. Specifically, the store no 
longer “sells” animals. Instead, animals are brought in for adoption by various lo-
cal adoption organizations. Customers donate money to the organization to adopt 
an animal. The donations are handled by the store clerks at checkout time and the 
accumulated donations are paid to the adoption organizations. This approach cuts 
down on “backyard breeders,” and enables Sally and her customers to support lo-
cal charitable organizations that help find homes for animals.

At the moment Sally has only one store, but she dreams of expanding into ad-
ditional cities. She wants to hire and train workers to be “animal friends,” not 
salespeople. These friends will help customers choose the proper animal. They 
will answer questions about health, nutrition, and pet behavior. They will even be 
taught that some potential customers should be convinced not to buy an animal.



32Chapter  1: Introduction

Because the workers will spend most of their time with the customers and ani-
mals, they will need technology to help them with their tasks. The new system 
will also have to be easy to use, since little time will be available for computer 
training.

Even based on a few short discussions with Sally, it is clear that the system 
she wants will take time to build and test. Fortunately, Sally admits that she does 
not need the complete system immediately. She has decided that she first needs a 
basic system to handle the store operations: sales, orders, customer tracking, and 
basic animal data. However, she emphasizes that she wants the system to be flex-
ible enough to handle additional features and applications.

Details of Sally’s Pet Store will be examined in other chapters. For now, you 
might want to visit a local pet store or talk to friends to get a basic understanding 
of the problems they face and how a database might help them.

Corner Med
Corner Med is currently a small medical office with big plans. Eventually, the 
owners want to franchise the concept and create a chain of walk-in medical offices 
that are affordable and accessible to customers in cities around the country. Cur-
rently, the company is run by a handful of physicians, supported by nurses and a 
few clerical staff. For the most part, the physicians focus on family practice and 
handle routine medical exams and common problems. More complex cases are 
referred to specialists, but the doctors at Corner Med are often responsible for the 
initial diagnosis and generally participate in the long-term care of the patients.

The company has a small medical lab and can perform simple tests, such as ba-
sic blood workups and routine x-rays. More complex tests and procedures such as 
CT scans and MRIs are handled by specialty firms available in every major city.

In terms of a business application, Corner Med wants to keep basic patient in-
formation in a database instead of thousands of paper folders. Of course, security 
and privacy issues become critical—particularly if the company eventually de-
cides to centralize the data for multiple offices. One simplifying aspect of medi-
cal management and billing is that insurance companies along with various gov-
ernments, and ultimately, the World Health Organization (WHO), have defined 
a common set of numbers used to define diagnoses (conditions) and procedures 
(treatments). The main reference is the International Disease Classification sys-
tem. It is commonly referenced by its initials and the version number. The most 
commonly-used version is ICD-9. However, ICD-10 has been introduced and the 
U.S. government is currently stating that all medical organizations are supposed to 
switch to ICD-10 by 2013.

The version of the database for this edition has been modified to use the ICD-
10 diagnosis and procedure codes (two sets). These codes are available for down-
load from the U.S. government Web sites. The database also uses a DrugListing 
file which contains registered drugs directly from the FDA Web site. However, the 
original ICD-9 codes have been kept in the database tables to provide examples in 
converting data from the older codes to the newer ones.

The sample data for patient visits is derived from a U.S. physician survey. The 
names are fictional, but gender and diagnoses and procedures were created by ran-
domly drawing data from that survey. The fees and payments are weak estimates 
and are likely to be inaccurate, but they illustrate the concepts.

Physicians are familiar with the diagnostic and procedure terms, but they rarely 
memorize the entire list of ICD codes. Many hospitals and large practices hire 

Corner
Med

Corner
Med



33Chapter  1: Introduction

medical encoders to translate the physician’s descriptions into the proper codes. 
In some ways, the codes simplify the medical database. But, as you will see, they 
complicate the user interface because you have to find a way to make the list easy 
to use.

Rolling Thunder Bicycles
The Rolling Thunder Bicycle Company builds custom bicycles. Its database ap-
plication is much more complete than the Pet Store application, and it provides an 
example of how the pieces of a database system fit together. This application also 
contains many detailed forms that illustrate the key concepts of creating a user 
interface. Additionally, most of the forms contain programming code that handles 
common business tasks. You can study this code to help you build your own ap-
plications. The Rolling Thunder application has a comprehensive help system that 
describes the company and the individual forms. The database contains realistic 
data for hundreds of customers and bicycles.

One of the most important tasks at the Rolling Thunder Bicycle Company is 
to take orders for new bicycles. Several features have been included to help non-
experts select a good bicycle. As the bicycles are built, the employees record the 
construction on the Assembly form. When the bicycle is shipped, the customers 
are billed. Customer payments are recorded in the financial forms. As components 
are installed on bicycles, the inventory quantity is automatically decreased. Mer-
chandise is ordered from suppliers, and payments are made when the shipments 
arrive.

The tasks performed at Rolling Thunder Bicycles are similar to those in any 
business. By studying the application and the techniques, you will be able to cre-
ate solid applications for any business.

Starting a Project: The Feasibility Study
What are the first steps to start a project? Ideas for information systems can 
come from many sources: users, upper management, information system analysts, 
competitors, or firms in other industries. Ideas that receive initial support from 
several people might be proposed as new projects. If the project is small enough 
and easy to create, it might be built in a few days. Larger projects require more 
careful study. If the project is going to involve critical areas within the organiza-
tion, require expensive hardware, or require substantial development time, then a 
more formal feasibility study is undertaken.
Feasibility studies are covered in detail within systems analysis texts. However, 
because of their unique nature, it is helpful to examine the typical costs and ben-
efits that arise with the database approach.

The goal of a feasibility study is to determine whether a proposed project is 
worth pursuing. The study examines two fundamental categories: costs and po-
tential benefits. As noted in Figure 1.25, costs are often divided into two catego-
ries: up-front or one-time costs and ongoing costs once the project is operational. 
Benefits can often be found in one of three categories: reduced operating costs, 
increased value, or strategic advantages that lock out competitors.

Costs
Almost all projects will entail similar up-front costs. The organization will often 
have to purchase additional hardware, software, and communication equipment 
(such as a Web server or expand a local area network). The cost of developing the 



34Chapter  1: Introduction

system is listed here, including the cost for all additional studies. Other one-time 
costs include converting data to the new system and initial training of users. Data-
base management systems are expensive software items. For example, for larger 
projects, the cost for software such as Oracle can easily run to several million 
dollars. You will also have to purchase “maintenance” upgrades of the software at 
least on an annual basis.

Hardware and software costs can be estimated with the help of vendors. As 
long as you know the approximate size of the final system (e.g., number of users), 
vendors can provide reasonably accurate estimates of the costs. Data conversion 
costs can be estimated from the amount of data involved. The biggest challenge 
often lies in estimating the costs of developing the new system. If an organization 
has experience with similar projects, historical data can be used to estimate the 
time and costs based on the size of the project. Otherwise, the costs can be esti-
mated based on the projected number of people and hours involved.

Once the project is completed and the system installed, costs will arise from 
several areas. For example, the new system might require additional personnel 
and supplies. Software and hardware will have to be modified and replaced—en-
tailing maintenance costs. Additional training and support might be required to 
deal with employee turnover and system modifications. Again, most of these costs 
are straightforward to estimate—as long as you know the size of the project.

Unfortunately, information system (IS) designers have not been very successful 
at estimating the costs. For example, in January 1995 PC Week reported that 31 
percent of new IS projects are canceled before they are completed. Additionally, 
53 percent of those that are completed are 189 percent over budget. This pattern 
is not unique. A study published in MIS Quarterly in 2000 also estimated that 
30-40 percent of projects “escalated” into late or over budget status. The greatest 
difficulty is in estimating the time it takes to design and develop new software. 
Every developer is different with large variations in programmer productivity. In 

Costs
	 Up-front/one-time
	 	 Software
  Hardware
  Communications
  Data conversion
  Studies and design
  Training
 Ongoing costs
  Personnel
	 	 Software	upgrades
  Supplies
  Support
  Hardware maintenance

Benefits
 Cost savings
	 	 Software	maintenance
  Fewer errors
  Less data maintenance
  Less user training
 Increased value
  Better access to data
  Better decisions
  Better communication
  More timely reports
  Faster reaction to change
  New products and services
 Strategic advantages
  Lock out competitors

Figure 1.25
Common costs and benefits from introducing a database management system. Note 
that benefits can be hard to measure, especially for tactical and strategic decisions. 
But it is still important to list potential benefits. Even if you cannot assign a specific 
value, managers need to see the complete list.



35Chapter  1: Introduction

large projects, where the staff members are constantly changing, accurately pre-
dicting the amount of time needed to design and develop a new system is often 
impossible. Nonetheless, managers need to provide some estimate of the costs. 
On a related note, building anything new can be difficult to estimate in terms of 
time and cost. The Boeing 787 “Dreamliner” took several years longer and mil-
lions of extra dollars to design and build than originally anticipated. The problem 
in estimating information systems and physical systems is that you need to predict 
the future, and it is probably impossible to anticipate every possible problem that 
might arise.

Benefits
In many cases benefits are even more difficult to estimate. Some benefits are tan-
gible and can be measured with a degree of accuracy. For instance, transaction 
processing systems are slightly easier to evaluate than a decision support system, 
since benefits generally arise from their ability to decrease operations costs. A sys-
tem might enable workers to process more items, thus allowing the firm to expand 
without increasing labor costs. A database approach might reduce IS labor costs 
by making it easier for workers to create and modify reports. Finally, a new infor-
mation system might reduce errors in the data, leading to improved decisions.

Many benefits are intangible and cannot be assigned specific monetary values. 
For instance, benefits can arise because managers have better access to data. Com-
munication improves, better decisions are made, and managers can react faster to 
a changing environment. Similarly, the new system might enable the company to 
produce new products and services or to increase the sales of ancillary products to 
existing customers. Similarly, firms might implement systems that provide a com-
petitive advantage. For example, an automated order system between a firm and 
its customers often encourages the customers to place more orders with the firm. 
Hence the firm gains an advantage over its competitors. 

When information systems are built to automate operations-level tasks and the 
benefits are tangible, evaluating the economic benefits of the system is relatively 
straightforward. The effects of improving access to data are easy to observe and 
measure in decreased costs and increased revenue. However, when information 
systems are implemented to improve tactical and strategic decisions, identifying 
and evaluating benefits is more difficult. For instance, how much is it worth to a 
marketing manager to have the previous week’s sales data available on Monday 
instead of waiting until Wednesday?

In a database project benefits can arise from improving operations—which 
leads to cost savings. Additional benefits occur because it is now easier and faster 
to create new reports for users, so less programmer time will be needed to modify 
the system. Users can also gain better access to data through creating their own 
queries—instead of waiting for a programmer to write a new program.

Database projects can provide many benefits, but the organization will receive 
those benefits only if the project is completed correctly, on time, and within the 
specified budget. To accomplish this task, you will have to design the system care-
fully. More than that, your team will have to communicate with users, share work 
with each other, and track the progress of the development. You need to follow a 
design methodology. 



36Chapter  1: Introduction

Summary
One of the most important features of business applications is the ability to share 
data with many users at the same time. Without a DBMS sharing data causes sev-
eral problems. For example, if data definitions are stored within each separate pro-
gram, making changes to the data file becomes very difficult. Changes in one pro-
gram and its data files can cause other programs to crash. Every application would 
need special code to provide data security, concurrency, and integrity features. 
By focusing on the data first, the database approach separates the data from the 
programs. This independence makes it possible to expand the database without 
crashing the programs.

A DBMS has many components. Required features include the database en-
gine to store and retrieve the data and the data dictionary to help the DBMS and 
the user locate data. Other common features include a query language, which is 
used to retrieve data from the DBMS to answer business questions. Application 
development tools include a report writer, a forms generator, and an application 
generator to create features like menus and help files. Advanced database systems 
provide utilities to control secure access to the data, cooperate with other software 
packages, and communicate with other database systems.

Database systems have evolved through several stages. Early hierarchical da-
tabases were fast for specific purposes but provided limited access to the data. 
Network databases enabled users to build complex queries but only if the links 
were built with indexes in advance. The relational database is currently the lead-
ing approach to building business applications. Once the data is defined carefully, 
it can be stored and retrieved efficiently to answer any business question. The OO 
approach is a new technique for creating software. Object-oriented systems en-
able you to create your own new abstract data types. They also support subtables, 
making it easier to extend a class of objects without redefining everything from 
scratch. Recently, key-value databases are being developed to handle massive 
loads of complex data types but they are still evolving.

Regardless of the type of database implemented, application development fol-
lows similar steps. First, identify the user requirements, determine the data that 
needs to be collected, and define the structure of the database. Then, develop the 
forms and reports that will be used, and build the queries to support them. Next, 
combine the various elements into a polished application that ties everything to-
gether to meet the user needs. If necessary, distribute the database across the orga-
nization or through an Internet or intranet. Additional features can be provided by 
integrating the database with powerful analytical and presentation tools, such as 
spreadsheets, statistical packages, and word processors.



37Chapter  1: Introduction

Key Terms

Review Questions
1. What features does a DBMS provide that make application development 

easier?
2. What are the basic components of a DBMS?
3. Why is data independence important and how is it achieved with a DBMS?
4. Why is the relational database approach better than earlier methods?
5. How do relational databases implement object-oriented features?
6. What potential drawbacks exist to a DBMS?
7. What are the main steps in application development with a database system?
8. What is the purpose of a feasibility study?
9. Why do many of the biggest Web sites use non-relational databases?

abstract data types
data dictionary
data independence
data mining
database
database engine
database management system 
(DBMS)
extensible markup language (XML)
feasibility study
forms development
hierarchical database

intranets
network database
object-oriented (OO) database
online analytical processing (OLAP)
persistent objects
persistent stored modules
relational database
report services
report writer
subtable
XQuery

A Developer’s View
For Miranda to start on her database project, she must first know the strengths of 
the tools she will use. At the starting point of a database project, you should col-
lect information about the specific tools that you will use. Get the latest reference 
manuals. Install the latest software patches. Set up work directories and project 
space. For a class project, you should log on, get access to the DBMS, make sure 
you can create tables, and learn the basics of the help system. 



38Chapter  1: Introduction

Exercises
1. Create a new database with the two tables shown in the figure. Feel free to 

add more data. Be sure to set a primary key for the underlined columns. Be 
sure to create a relationship that links the two tables. Use a report wizard to 
create the report shown. You should be able to use a visual tool to create the 
tables. Otherwise, check Chapter 3 for the syntax of the CREATE TABLE 
command.

2. Read the documentation to your DBMS and write a brief outline that explains 
how to:
 a) Create a table.
 b) Create a simple query.
 c) Create a report.

3. Describe two business or Web applications that could use a DBMS. Identify 
some of the main data elements that would be collected.

Report

Ant, Adam 5/5/1964
 Brown, Laura 225.24
 Chen, Charles 47.34
   712.58
Bono, Sonny
 Dieter, Jackie 664.90
 Jones, Joe 114.32
   779.22

Employee
EmployeeID LastName FirstName Address DateHired
332
442
553
673
773
847

Ant
Bono
Cass
Donovan
Moon
Morrison

Adam
Sonny
Mama
Michael
Keith
Jim

354 Elm
765 Pine
886 Oak
421 Willow
554 Cherry
676 Sandalwood

5/5/1964
8/8/1972
2/2/1985
3/3/1971
4/4/1972
5/5/1968

Client
ClientID LastName FirstName Balance EmployeeID
1101
2203
2256
4456
5543
6673
7353
7775
8890
9662
9983

Jones
Smith
Brown
Cieter
Wodkoski
Sanchez
Chen
Hagen
Hauer
Nguyen
Martin

Joe
Mary
Laura
Jackie
John
Paula
Charles
Fritz
Marianne
Suzie
Mark

113.42
993.55
225.44
664.90
984.00
194.87
487.34
595.55
627.39
433.88
983.31

442
673
332
442
847
773
332
673
773
553
847



39Chapter  1: Introduction

4. Find a reference or check Web sites so you can compare the specifications 
on three free DBMS products. At least one of the products should be from a 
major commercial vendor and one from an open-source or free source.

5. Describe how a university club or student organization could use a database 
to improve its service operations.

6. A company wants you to build a custom Web site to support sales of 
computer cables over the Internet. The company anticipates receiving an 
average of 100 orders per business day, with an average of $57.19 per order. 
Gross profit margins (including credit card costs) are about 15 percent. 
Shipping costs are priced directly so do not affect profits. No new workers 
will be needed to package and ship the orders, but the company expects 
to hire a designer with a salary of about $25,000, to keep the product list 
up to date with photos and descriptions. The initial costs include cost of 
the computer hardware and software ($10,000) and the development cost 
($35,000). The ISP costs will be about $400 per month. Annual maintenance 
costs are expected to be $1000 per year. Assuming a project life of five years 
and an interest rate of 8 percent, compute the economic feasibility of the 
project. Compare the costs and benefits to the alternative of selling the items 
through Amazon instead.

7. You have just been hired by a company and have wandered around talking 
to people. A few accountants have developed a database-driven application 
to handle fixed-assets and track depreciation. They claim the system has 
enabled them to function with one less accounting clerk ($30,000/year). 
A guy in finance has created a custom database in Microsoft Access to 
generate reports on a set of financial investments. Much of the data comes 
from brokerage firms and he notes that he is able to save 10 hours a week in 
clerical time (minimum wage). However, he complained about the difficulty 
of loading data from the main company database and says he spends 2 hours 
a week typing in data from printed reports. Two people in marketing have 
created separate databases to track survey and sales results for their projects. 
They claim the projects have not saved any labor costs, but enhance sales 
by at least $1 million a year. Yesterday, your manager said that all of these 
people complained about their existing systems and the inability to get data 
from the corporate database. You need to define projects for each group, 
identify the cost of developing a new system and the potential benefits. Rank 
the projects by economic return and make a recommendation to management. 

8. Find two companies that provide Web-based database hosting and compare 
the basic costs for running an online relational database with 500 GB of data, 
a medium-sized server, and 2 TB of monthly data transfer.

9. Find a company, government agency, or a Web site (perhaps through an 
article or blog) and briefly explain the data collected and how the database is 
used.

10. Use articles or blogs to identify a Web site that relies on a non-relational 
(NoSQL) database and briefly explain the benefits of using that approach 
over a relational DBMS in this situation.



40Chapter  1: Introduction

Sally’s Pet Store
11. Install the Pet Store database or find it on your local area network if it has 

already been installed. Print out (or write down) the list of the tables used in 
the database. Use the Help command to find the version number of Microsoft 
Access that you are using.

12. Visit a local pet store and make a list of 10 merchandise items and five 
animals for sale. Enter this data into the appropriate Pet Store database tables.

13. Identify the hardware and software that would be required to install this 
system in a typical Pet Store. Estimate the costs and the time required to 
build and install the system.

14. Outline the basic tasks that take place in running a pet store. Identify some of 
the basic data items that will be needed.

15. Find an online pet store and estimate the number of different products for 
sale. Assume the company has 500,000 customers and handles 1,000 sales a 
day with about 3 items per sale. Assume it takes 300 bytes to store data for 
one product, 80 bytes for a customer, and 500 bytes for a sale. Estimate the 
amount of data needed to be saved in one year.

Rolling Thunder Bicycles
16. Install the Rolling Thunder database or find it on your local area network if it 

has already been installed. Using the BicycleOrder form, create an entry for a 
new bicycle.

17. Use the Rolling Thunder Help system, or the Web site description, to briefly 
describe the firm and its major processes. Identify the primary business 
entities in the company.

18. Use Web sites or visit a local bike shop to find prices for at least two 
bicycles. Try to find the most expensive bicycle you can.

19. Refer to the relationship/class diagram to explain what a Component is and 
how it is connected to a Bicycle. Give an example from the data.

20. Use the Employee table and Excel to compute the company’s total salary 
costs. What problems might you encounter if you tried a similar approach for 
a table with 5 million customers?

Corner Med
21. Install the Corner Med database if necessary. Use the Patient form to enter 

data for a new patient. 
22. Use the Patient Visit form to enter data for a patient with at least one 

diagnostic code and one procedure code. Describe any usability or 
performance issues that might arise.

23. Make a list with a brief description of other items that the company might 
want to store in the database.

Corner
Med

Corner
Med



41Chapter  1: Introduction

24. Check the U.S. government Web sites (e.g., Health and Human Services) to 
see when the conversion to ICD-10 is going to be required. Also, check the 
Web site to see what information is available for vendors and developers. 
What problems are likely to arise with the conversion from ICD9 to ICD10 
codes?

25. Look at the design for the Corner Med database. Briefly explain the purpose 
of the three tables: VisitDiagnoses, VisitProcedures, and VisitMedications. 
Why is it necessary to have three separate tables instead of combining them 
into a single table?

Web Site References

http://office.microsoft.com/en-us/access/		 Microsoft	Access
http://www.microsoft.com/en-us/sqlserver/default.
aspx 

Microsoft	SQL	Server

http://www.oracle.com Oracle
http://www.oracle.com/technetwork Oracle	technology	network	with	software	

downloads
hhttp://www-01.ibm.com/software/data/db2/ IBM DB2
http://www.mysql.com Free DBMS now controlled by Oracle
 http://www.postgresql.org A	better	free	DBMS
http://www.acm.org Association	for	Computing	Machinery
http://groups.google.com/groups/
dir?sel=usenet%3Dcomp.databases
http://dbforums.com
http://dbasupport.com
http://www.devx.com/outgoing/databasefeed.xml
http://www.sqlservercentral.com

Newsgroups	for	database	questions.

http://www.cms.gov/Medicare/Coding/ICD10/index.
html

U.S. government Web site (HHS) with 
ICD-10 codes.

Additional Reading
Keil, M., J. Mann, and A. Rai, “Why Software Projects Escalate,” MIS 

Quarterly,24(4), 2000. [Estimates 30-40 percent of IT development projects 
escalate above budget.]

Perry, J. and Post, G. Introduction to Oracle 10g, Englewood Cliffs: Prentice-
Hall, 2007. [A step-by-step introduction to Oracle 10g with several 
databases.]

Perry, J. and Post, G. Introduction to SQL Server 2005, Englewood Cliffs: 
Prentice-Hall, 2008. [A step-by-step introduction to SQL Server 2005 and 
Visual Studio 2005.] 

Zikopoulos, P.C. and R.B. Melnyk, DB2: The Complete Reference, McGraw-Hill, 
2001. [One of few reference books on DB2 and written by IBM employees.]

http://www.oracle.com
http://otn.oracle.com
http://www.software.ibm.com/data/db2/
http://www.mysql.com  
http://www.postgresql.org
http://www.acm.org
http://dbforums.com 
http://dbaclick.com 


1Part

Systems Design

To create a useful application, you must first understand the busi-
ness and determine how to help the users. In a database con-
text, the most important issue is to identify the data that must be 
stored. This process requires two basic steps. In Chapter 2 you 
will design a logical (or conceptual) data model that examines 
business entities and their relationships. This logical data model 
is displayed on a class diagram and specifies the various business 
rules of the company.

The second design step is to create an implementation model 
of how the data will be stored in the database management sys-
tem. This step usually consists of creating a list of nicely behaved 
tables that will make up the relational database. Chapter 3 de-
scribes how to create this list of tables and explains why it is im-
portant to define them carefully.

Chapter 2: Database Design

Chapter 3: Data Normalization



What You Will Learn in This Chapter
•	 What is database design and why is it important?
•	 Why are models important in designing systems?
•	 How	do	you	begin	a	database	project?
•	 How do you know what data to put in the database?
•	 What is a class diagram (or entity-relationship diagram)?
•	 Is there an easier way to get started with database design?
•	 How are some common business associations handled in class diagrams?
•	 Are	more	complex	diagrams	different?
•	 What	are	the	different	data	types?
•	 What are events, and how are they described in a database design?
•	 How	are	teams	organized	on	large	projects?
•	 How	does	UML	split	a	big	project	into	packages?
•	 What is an application?
•	 What	process	is	followed	when	starting	a	project?

Chapter Outline

Database Design
2Chapter

Introduction, 44
Two-Minute Chapter, 45
Models, 46
Getting Started, 47
Designing Databases, 48

Identifying User Requirements, 48
Business Objects, 48
Tables and Relationships, 50
Definitions, 50
Primary Key, 51

Class Diagrams: Introduction, 51
Classes and Entities, 52
Associations and Relationships, 53
Class Diagram Details, 53

Quick Start, 54
Creating a Class Diagram, 55
Primary Keys and Relationships, 57

Class Diagrams: Details, 59
Association Details: N-ary Associations, 
60
Association Details: Aggregation, 61
Association Details: Composition, 62
Association Details: Generalization, 63
Association Details: Reflexive 
Association, 66

Sally’s Pet Store Class Diagram, 66
Data Types (Domains), 69

Text, 69
Numbers, 69
Dates and Times, 72
Binary Objects, 72
Computed Values, 73
User-Defined Types (Domains/Objects), 
73

Events, 73
Large	Projects,	75
Rolling Thunder Bicycles, 77
Application Design, 81
Corner Med, 82
Summary, 87
Key Terms, 88
Review Questions, 88
Exercises, 89
Web	Site	References,	98
Additional Reading, 98
Appendix: DBDesign, 99

43



44Chapter  2: Database Design

A Developer’s View

Introduction
What is database design and why is it important? Database management sys-
tems are powerful tools but you cannot just push a button and start using them. 
Designing the database—specifying exactly what data will be stored—is the most 
important step in building the database. The table is the fundamental concept in 
a relational database. A table represents entities or classes of objects in the busi-
ness world (Customer, Employee, Sale, Merchandise, and so on). Its columns de-
fine the properties. So the developer’s main goal is to identify all of the business 
entities and their properties which can be turned into tables. As you will see, the 
actual process of creating a table in a DBMS is relatively easy. The hard part is 
identifying exactly what columns are needed in each table, determining the pri-
mary keys, and determining relationships among tables.

 Miranda: Well, Ariel, you were right as usual. 
A database seems like the right tool 
for this job.

 Ariel: So you decided to take the job for 
your uncle’s company?

 Miranda: Yes, it’s good money, and the 
company seems willing to let me 
learn as I go. But, it’s only paying 
me a small amount until I finish the 
project.

 Ariel: Great. So when do you start?

 Miranda: That’s the next problem. I’m not 
really sure where to begin.

 Ariel: That could be a problem. Do you 
know what the application is 
supposed to do?

 Miranda: Well, I talked to the manager and 
some workers, but there are a lot 
of points I’m not clear about. This 
project is bigger than I thought. 
I’m having trouble keeping track 
of all the details. There are so 
many reports and terms I don’t 
know. And one salesperson started 
talking about all these rules about 
the data—things like customer 
numbers are five digits for corporate 
customers but four digits and two 
letters for government accounts. 

 Ariel: Maybe you need a system to take 
notes and diagram everything they 
tell you.

Getting Started
Begin by identifying the data that needs to be stored. Group the data 
into entities or classes that are defined by their attributes. It is often easi-
est to start with common entities such as Customers, Employees, and 
Sales, such as Customer(CustomerID, LastName, FirstName, Phone, 
…). Identify or create primary key columns. Look for one-to-many or 
many-to-many relationships and use key columns to specify the “many” 
side. Use the online DBDesign to create a diagram of the entities and 
relationships. Add a table and decide which attributes (columns) belong 
in that table. A database design is a model of the business and the tables, 
relationships and rules must reflect the way the business is operated.



45Chapter  2: Database Design

Even the process of defining business entities or classes is straightforward. If 
you use the DBDesign tool (highly recommended), it is easy to define a business 
class and add columns to it. The real challenge is that your database design has 
to match the business rules and assumptions. Every business has slightly differ-
ent needs, goals, and assumptions. Your design should reflect these rules. Con-
sequently, you first have to learn the individual business rules. Then you have to 
figure out how those rules affect the database design. In a real-world project, you 
will need to talk with users and managers to learn the rules. A database represents 
a model of the organization. The more closely your model matches the original, 
the easier it will be to build and use the application. This chapter shows how to 
build a visual model that diagrams the business entities and relationships. Chap-
ter 3 discusses these concepts in more detail and defines specific rules that tables 
need to follow. 

To be successful, any information system has to add value for the users. You 
need to identify the users and then decide exactly how an information system can 
help them. Along the way, you identify the data needed and the various business 
rules. This process requires research, interviews, and cross-checking.

Initially, the main things to look for are: 1. Business entities (Customer, Mer-
chandise, Employee, and so on), 2. Primary keys that identify the entities (Cus-
tomerID, SKU, EmployeeID), and 3. Associations or relationships among the en-
tities. In particular, focus on the degree of the association: Can customers place 
one order or many orders? Is an order assigned to one employee or can many em-
ployees be involved? The answers to these questions can depend on the specific 
business and they will change the overall database design. 

Two-Minute Chapter
Relational databases are powerful tools to build business applications. One of the 
strengths is the way data is separated into tables. A table is a set of data that has 
certain properties, but essentially, data in a table represents a single business ob-
ject (or entity). The columns of a table represent the attributes of the object, such 
as Name, and Phone number for a Customer. Each row is a single instance of 
the object. Defining the tables needed for a business application is the key goal 
of this chapter (and the next). A project often begins with a collection of forms 
and reports that the users need. You need to identify the primary objects on those 
forms and reports. Business objects typically including things such as Custom-
ers, Employees, Items, and Vendors. Other objects arise because of events, such 
as Sales and Purchases. More complex objects arise from repeating sections on 
forms (subforms) and to link tables together.  

A critical feature of a table is that it must have a primary key—which is a col-
umn or set of columns that uniquely identify each row. In base cases, an ID value 
can be generated by the DBMS. For example, a CustomerID column often con-
tains generated values for Customers to ensure the ID is unique. But, avoid us-
ing generated keys for every table. Some tables need multiple columns as part 
of the key. These columns represent many-to-many relationships. The common 
business example is SaleItems—a table that lists items that were purchased on a 
given sale. It contains two columns as part of the key: SaleID + ItemID, because 
each Sale can contain many Items being sold, and each ItemID can be sold many 
times. When trying to decide which columns should be part of the primary key, 
write them down and ask: For each of the other columns (Sale), can there be one 
or many of these items? If the answer is “many,” then set the new column as key. 



46Chapter  2: Database Design

Then turn the question around and ask it again: Can each Item appear on one or 
many Sales? If the answer is many, add that column as part of the key. Getting the 
correct primary key is a critical step in designing a relational database.

This chapter focuses on a visual approach to design where each table is defined 
to represent a single object. Primary keys are defined for each table and highlight 
one-to-many and many-to-many relationships.

Models
Why are models important in designing systems? Small projects that involve a 
few users and one or two developers are generally straightforward. However, you 
still must carefully design the databases so they are flexible enough to handle fu-
ture needs. Likewise, you have to keep notes so that future developers can easily 
understand the system, its goals, and your decisions. Large projects bring addi-
tional complications. With many users and several developers, you need to split 
the project into smaller problems, communicate ideas between users and design-
ers, and track the team’s progress. Models and diagrams are often used to commu-
nicate information among user and developers. 

An important step in all development methodologies is to build models of the 
system. A model is a simplified abstraction of a real-world system. In many cases 
the model consists of a drawing that provides a visual picture of the system. Just 
as contractors need blueprints to construct a building, information system devel-
opers need designs to help them create useful systems. As shown in Figure 2.1, 
conceptual models are based on user views of the system. Implementation models 
are based on the conceptual models and describe how the data will be stored. The 
implementation model is used by the DBMS to store the data.

Three common types of models are used to design systems: process models, 
class or object models, and event models. Process models are displayed with a 
collaboration diagram or a data flow diagram (DFD). They are typically ex-
plained in detail in systems analysis courses and are used to redesign the flow of 

User views
of	data.

Conceptual
data model.

Implementation
(relational)
data model.

Physical
data
storage.

Class diagram that 
shows business 
entities, relationships, 
and rules.

List	of	nicely-behaved	
tables. Use data 
normalization to 
derive the list.

Indexes and storage 
methods to improve 
performance.

Patient(PatientID, LastName,	FirstName,	DateOfBirth,	...)
Visit(VisitID, PatientID, VisitDate, InsuranceCompany, ...)
PatientDiagnoses(VisitID, ICD9Diagnosis, Comments)
VisitProcedures(VisitID, ICD9Procedure, EmployeeID, AmountCharged)
ICD9DiagnosisCodes(ICD9Diagnosis, ShortDescription)
ICD9ProcedureCodes(ICD9Procedure, ShortDescription)
Employee(EmployeeID, LastName, FirstName, EmployeeCategory, ...)
EmployeeCategory(EmployeeCategory)

Figure 2.1
Design models. The conceptual model records and describes the user views of the 
system. The implementation model describes the way the data will be stored. The 
final physical database may utilize storage techniques like indexing to improve 
performance.



47Chapter  2: Database Design

information within an organization. Class diagrams or the older entity-relation-
ship diagrams are used to show the primary entities or objects in the system. Event 
models such as a sequence or statechart diagram are newer and illustrate the tim-
ing of various events and show how messages are passed between various objects. 
Each of these models is used to illustrate a different aspect of the system being de-
signed. A good designer should be able to create and use all three types of models. 
However, the class diagrams are the most important tools used in designing and 
building database applications.

The tools available and the models you choose will depend on the size of the 
project and the preferences of the organization. This book concentrates on the 
class diagrams needed for designing tables. You can find descriptions of the other 
techniques in any good systems analysis book. You can also use the online DBDe-
sign system to help create and analyze the class diagrams used in this book.

Getting Started
How do you begin a database project? Today’s DBMS tools are flashy and al-
luring. It is always tempting to jump right in and start building the forms and 
reports that users are anxious to see. However, before you can build forms and 
reports, you must design the database correctly. If you make a mistake in the data-
base design it will be hard to create the forms and reports, and it will take consid-
erable time to change everything later.

Before you try to build anything, determine exactly what data will be needed 
by talking with the users. Occasionally, the users know exactly what they want. 
Most times, users have only a rough idea of what they want and a vague percep-
tion of what the computer is capable of producing. Communicating with users is a 
critical step in any development project. The most important aspect is to identify 
(1) exactly what data to collect, (2) how the various pieces of data are related, and 
(3) how long each item needs to be stored in the database. Figure 2.2 outlines the 
initial steps in the design process.

Once you have identified the data elements, you need to organize them prop-
erly. The goal is to define classes and their attributes. For example, a Customer is 
defined in terms of a CustomerID, LastName, FirstName, Phone number and so 
on. Classes are related to other classes. For example, a Customer participates in a 
Sale. These relationships also define business rules. For instance, in most cases, 
a Sale can have only one Customer but a Customer can be involved with many 
Sales. These business rules ultimately affect the database design. In the example, 

1.	 Identify	the	exact	goals	of	the	system.
2.	 Talk	with	the	users	to	identify	the	basic	forms	and	reports.
3.	 Identify	the	data	items	to	be	stored.
4. Design the classes (tables) and relationships.
5.	 Identify	any	business	constraints.
6.	 Verify	the	design	matches	the	business	rules.	

Figure 2.2
Initial steps in database design. A database design represents the business rules of 
the organization. You must carefully interview the users to make sure you correctly 
identify all of the business rules. The process is usually iterative, as you design 
classes you have to return to the users to obtain more details.



48Chapter  2: Database Design

if more than one customer can participate in a sale, the database design will be dif-
ferent. Hence, the entire point of database design is to identify and formalize the 
business rules.

To build business applications, you must understand the business details. The 
task is difficult, but not impossible and almost always interesting. Although every 
business is different, many common problems exist in the business world. Several 
of these problems are presented throughout this book. The patterns you develop in 
these exercises can be applied and extended to many common business problems.

Designing Databases
How do you know what data to put in the database? A database system has to 
reflect the rules and practices of the organization. You need to talk with users and 
examine the business practices to identify the rules. And, you need a way to record 
these rules so you can verify them and share them with other developers. System 
designs are models that are used to facilitate this communication and teamwork. 
Designs are a simplification or picture of the underlying business operations.

Identifying User Requirements
One challenging aspect of designing a system is to determine the requirements. 
You must thoroughly understand the business needs before you can create a use-
ful system. A key step is to interview users and observe the operations of the firm. 
Although this step sounds easy, it can be difficult—especially when users disagree 
with each other. Even in the best circumstances, communication can be difficult. 
Excellent communication skills and experience are important to becoming a good 
designer.

As long as you collect the data and organize it carefully, the DBMS makes it 
easy to create and modify reports. As you talk with users, you will collect user 
documents, such as reports and forms. These documents provide information 
about the basic data and operations of the firm. You need to gather four basic 
pieces of information for the initial design: (1) the data that needs to be collected, 
(2) the data type (domain), (3) the amount of data involved, and (4) rules about the 
object relationships.

Business Objects
Database design focuses on identifying the data that needs to be stored. Later, 
queries can be created to search the data, input forms to enter new data, and re-
ports to retrieve and display the data to match the user needs. For now, the most 
important step is to organize the data correctly so that the database system can 
handle it efficiently.

All businesses deal with entities or objects, such as customers, products, em-
ployees, and sales. From a systems perspective, an entity is some item in the real 
world that you wish to track. That entity is described by its attributes or proper-
ties. For example, a customer entity has a name, address, and phone number. In 
modeling terms, an entity listed with its properties is called a class. In a program-
ming environment, a class can also have methods or functions that it can perform, 
and these can be listed with the class. For example, the customer class might have 
a method to add a new customer. Database designs seldom need to describe meth-
ods, so they are generally not listed. 



49Chapter  2: Database Design

Database designers need some way to keep notes and show the list of classes 
to users and other designers. Several graphical techniques have been developed, 
but the more modern approach (and easiest to read) is the class diagram. A class 
diagram displays each class as a box containing the list of properties for the class. 
Class diagrams also show how the classes are related to each other by connecting 
them with lines. Figure 2.3 shows how a single class is displayed. 

When drawing a class diagram, you often begin by identifying the major class-
es or entities. As you create a class, you enter the attributes that define this object. 
These attributes represent the data that the organization needs to store. In the Cus-
tomer example, you will always need the customer name, and probably an address 
and phone number. Some organizations also might specify a type of customer 
(government, business, individual, or something else). 

Customer
CustomerID
LastName
FirstName
Phone
Address
City
State
ZIP Code

Name

Properties

Add Customer

Delete Customer

Methods

(optional	for	database)

Figure 2.3
Class. A class has a name, properties, and methods. The properties describe the class 
and represent data to be collected. The methods are actions the class can perform, and 
are seldom used in a database design.

Customer
CustomerID
LastName
FirstName
Phone
Address
City
State
ZIP Code

Sales
SaleID
SaleDate
CustomerID

1

*

Figure 2.4
Relationships. The Sales tables needs CustomerID to reveal which customer 
participated in the sale. Putting the rest of the customer data into the Sales table 
would waste space and cause other problems. The relationship link to the Customer 
table enables the database system to find all of the related data based on just the 
CustomerID value.



50Chapter  2: Database Design

Tables and Relationships
Classes will eventually be stored as tables in the database system. You have to be 
careful what columns you include in each table. Chapter 3 describes specific rules 
in detail, but they also apply when you create the class diagram. One of the most 
important aspects is to avoid unnecessary duplication of data. Figure 2.4 shows a 
simple example. The Sales table needs to identify which customer participated in 
a sale. It accomplishes this task by storing just the primary key CustomerID in the 
Sales table. An alternative would be to store all of the Customer attributes in the 
Sales table. However, it would be a waste of space to repeat all of the customer 
data every time you sell something to a customer. Instead, you create a Customer-
ID primary key in the Customer table and place only this key value into the Sales 
table. The database system can then retrieve all of the related customer data from 
the Customer table based on the value of the CustomerID.

Notice the 1 and the * annotations in the diagram. These represent the business 
rules. Most companies have a policy that only one (1) customer can be listed on a 
sale, but a customer can participate in many (*) different sales.

Definitions
To learn how to create databases that are useful and efficient, you need to under-
stand some basic definitions. The main ones are shown in Figure 2.5. Codd cre-
ated formal mathematical definitions of these terms when he defined relational 
databases and these formal definitions are presented in the Appendix to Chapter 
3. However, for designing and building business applications, the definitions pre-
sented here are easier to understand. 

A relational database is a collection of carefully defined tables organized for a 
common purpose. A table is a collection of columns (attributes or properties) that 
describe an entity. Individual objects are stored as rows (tuples in Codd’s terms) 
within the table. For example, EmployeeID 12512 represents one instance of an 
employee and is stored as one row in the Employee table. An attribute (property) 
is a characteristic or descriptor of an entity. Two important aspects to a relational 
database are that (1) all data must be stored in tables and (2) all tables must be 
carefully defined to provide flexibility and minimize problems. Data normaliza-
tion is the process of defining tables properly to provide flexibility, minimize re-
dundancy, and ensure data integrity. The goal of database design and data normal-

Figure 2.5
Basic database definitions. Codd has more formal terms and mathematical 
definitions, but these are easier to understand. One row in the data table represents a 
single object, a specific employee in this situation. Each column (attribute) contains 
one piece of data about that employee.

EmployeeID TaxpayerID LastName FirstName HomePhone Address
12512 888-22-5552 Cartom Abdul (603) 323-9893 252 South Street
15293 222-55-3737 Venetiaan Roland (804) 888-6667 937 Paramaribo Lane
22343 293-87-4343 Johnson John (703) 222-9384 234 Main Street
29387 837-36-2933 Stenheim Susan (410) 330-9837 8934 W. Maple

Employee

Properties

Rows/Objects
Class:  EmployeePrimary key



51Chapter  2: Database Design

ization is to produce a list of nicely behaved tables. Each table describes a single 
type of object in the organization.  

Primary Key
Every table must have a primary key. The primary key is a column or set of 
columns that identifies a particular row. For example, in the customer table you 
might use customer name to find a particular entry. But that column does not make 
a good key. What if eight customers are named John Smith? In many cases you 
will create new key columns to ensure they are unique. For example, a customer 
identification number is often created to ensure that all customers are correctly 
separated. The relationship between the primary key and the rest of the data is 
one-to-one. That is, each entry for a key points to exactly one customer row. To 
highlight the primary key, the names of the columns that make up the key will 
be underlined. The DBDesign system uses a star in front of primary key column 
names because it is easier to see. You can use either approach (or both) if you 
draw class diagrams by hand. 

In some cases there will be several choices to use as a primary key. In the cus-
tomer example you could choose name or phone number, or create a unique Cus-
tomerID. If you have a choice, the primary key should be the smallest set of col-
umns needed to form a unique identifier.

Some U.S. organizations might be tempted to use Social Security numbers 
(SSN) as the primary key. Even if you have a need to collect the SSN, you will 
be better off using a separate number as a key. One reason is that a primary key 
must always be unique, and with the SSN you run a risk that someone might pres-
ent a forged document. More important, primary keys are used and displayed in 
many places within a database. If you use the SSN, too many employees will have 
access to your customers’ private information. Because SSNs are used for many 
financial, governmental, and health records, you should protect customer privacy 
by limiting employee access to these numbers. In fact, you should encrypt them to 
prevent unauthorized or accidental release of the data.

The most important issue with a primary key is that it can never point to more 
than one row or object in the database. For example, assume you are building a 
database for the human resource management department. The manager tells you 
that the company uses names of employees to identify them. You ask whether 
or not two employees have the same name, so the manager examines the list of 
employees and reports that no duplicates exist among the 30 employees. The man-
ager also suggests that if you include the employee’s middle initial, you should 
never have a problem identifying the employees. So far, it sounds like name might 
be a potential key. But wait! You really need to ask what the possible key values 
might be in the future. If you build a database with employee name as a prima-
ry key, you are explicitly stating that no two employees will ever have the same 
name. That assumption is almost guaranteed to cause problems in the future. It is 
far safer to use the database to generate a key number—your application can al-
ways provide the ability to search by name, but internally, the DBMS will not mix 
up two people with the same name.

Class Diagrams: Introduction
What is a class diagram (or entity-relationship diagram)? The DBMS ap-
proach focuses on the data. In many organizations data remains relatively stable. 
For example, companies collect the same basic data on customers today that they 



52Chapter  2: Database Design

collected 20 or 30 years ago. Basic items such as name, address, and phone num-
ber are always needed. Although you might choose to collect additional data today 
(cell phone number and e-mail address for example), you still utilize the same 
base data. On the other hand, the way companies accept and process sales orders 
has changed over time, so forms and reports are constantly being modified. The 
database approach takes advantage of this difference by focusing on defining the 
data correctly. Then the DBMS makes it easy to change reports and forms. The 
first step in any design is to identify the things or entities that you wish to observe 
and track. 

Classes and Entities
Figure 2.6 shows some examples of the entities and relationships that will exist in 
the Pet Store database. Note that these definitions are informal. Each entry has a 
more formal definition in terms of Codd’s relational model and precise semantic 
definitions in the Unified Modeling Language (UML). However, you can de-
velop a database without learning the mathematical foundations.

A tricky problem with database design is that your specific solution depends 
on the underlying assumptions and business rules. The design process becomes 
easier as you learn the common business rules. But, any business can have dif-
ferent rules, so you always have to verify the assumptions. For example, consider 
an employee. The employee is clearly a separate entity because you always need 
to keep detailed data about the employee (date hired, name, address, and so on). 
But what about the employee’s spouse? Is the spouse an attribute of the Employee 
entity, or should he or she be treated as a separate entity? If the organization only 
cares about the spouse’s name, it can be stored as an attribute of the Employee 

Term Definition Pet Store Examples
Entity Something in the real world that you 

wish to describe or track.
Customer, Merchandise, 
Sales

Class Description	of	an	entity	that	includes	
its attributes (properties) and 
behavior (methods).

Customer, Merchandise, 
Sale

Object One	instance	of	a	class	with	specific	
data.

Joe Jones, Premium Cat 
Food, Sale #32

Property A	characteristic	or	descriptor	of	a	
class or entity.

LastName, Description, 
SaleDate

Method A	function	that	is	performed	by	the	
class.

AddCustomer, 
UpdateInventory, 
ComputeTotal

Association A relationship between two or more 
classes.

Each sale can have only 
one customer

Figure 2.6
Basic definitions. These terms describe the main concepts needed to create a class 
diagram. The first step is to identify the business entities and their properties. 
Methods are less important than properties in a database context, but you should 
identify important functions or calculations.



53Chapter  2: Database Design

entity. On the other hand, if the organization wants to keep additional information 
about the spouse (e.g., birthday, occupation, or health records), it might be better 
to create a separate Spouse entity with its own attributes. Your first step in design-
ing a database is to identify the entities and their defining attributes. The second 
step is to specify the relationships among these entities.

Associations and Relationships
An important step in designing databases is identifying associations or relation-
ships among entities. Details about these relationships represent the business rules. 
Associations or relationships represent business rules. For example, it is clear 
that a customer can place many orders. But the relationship is not as clear from the 
other direction. How many customers can be involved with one particular order? 
Many businesses would say that each order could come from only one customer. 
Hence there would be a one-to-many relationship between customers and orders. 
On the other hand, some organizations (such as home sales) might have multiple 
customers on one order, which creates a many-to-many relationship.

Associations can be named: UML refers to the association role. Each end of a 
binary association may be labeled. It is often useful to include a direction arrow to 
indicate how the label should be read. Figure 2.7 shows how to indicate that one 
customer places many sales orders. 

UML uses numbers and asterisks to indicate the multiplicity in an association. 
As shown in Figure 2.7, the asterisk (*) represents many. So each supplier can 
receive many purchase orders, but each purchase order goes to only one supplier. 
Some older entity-relationship design methods used multiple arrowheads or the 
letters M and N to represent the “many” sides of a relationship. Correctly identify-
ing relationships is important in properly designing a database application.

Class Diagram Details
A class diagram is a visual model of the classes and associations in an organiza-
tion. These diagrams have many options, but the basic features that must be in-
cluded are the class names (entities) in boxes and the associations (relationships) 
connecting them. Typically, you will want to include more information about the 
classes and associations. For example, you will eventually include the properties 
of the classes within the box.

Employee Employment
Contract

1 1
Employee Employment

Contract
1 1

 sent to
Supplier Purchase

Order
1 *

 sent to
Supplier Purchase

Order
1 *

places 
Customer Sale

places 
Customer Sale

1 *

performs 
Employee Tasks

* *

performs 
Employee Tasks

* *

Figure 2.7
Associations. Three types of relationships (one-to-one, one-to-many, and many-
to-many) occur among entities. They can be drawn in different ways, but they 
represent business or organizational rules. Avoid vague definitions where almost any 
relationship could be classified as many-to-many.  They make the database design 
more complex.



54Chapter  2: Database Design

Associations also have several options. One of the most important database de-
sign issues is the multiplicity of the relationship, which has two aspects: (1) the 
maximum number of objects that can be related, and (2) the minimum number of 
objects, if any, that must be included. As indicated in Figure 2.8, multiplicity is 
shown as a number for the minimum value, ellipses (…), and the maximum value. 
An asterisk (*) represents an unknown quantity of “many.” In the example in Fig-
ure 2.8, exactly one customer (1…1) can be involved with any sale. 

Most of the time, a relationship requires that the referenced entity must be 
guaranteed to exist. For example, what happens if you have a sale form that lists a 
customer (CustomerID = 1123), but there is no data in the Customer table for that 
customer? There is a referential relationship between the sales order and the cus-
tomer entity.  Business rules require that customer data must already exist before 
that customer can make a purchase. This relationship can be denoted by specify-
ing the minimum value of the relationship (0 if it is optional, 1 if it is required). 
In the Customer-Sales example, the annotation on the Customer would be 1…1 to 
indicate that a CustomerID value in the Sales table points to exactly one customer 
(no less than one and no more than one).

Be sure to read relationships in both directions. For example, in Figure 2.8, the 
second part of the customer/sales association states that a customer can place from 
zero to many sales orders. That is, a customer is not required to place an order. 
Some might argue that if a person has not yet placed a sale, that person should not 
be considered a customer. But that interpretation is getting too picky, and it would 
cause chicken-and-the-egg problems if you tried to enforce such a rule. Consider 
the Customer table to include potential customers who have signed up but not 
purchased anything yet.

Moving down the diagram, note the many-to-many relationship between Sale 
and Item (asterisks on the right side for both classes). A sale must contain at least 
one item (empty sales orders are not useful in business), but the firm might have 
an item that has not been sold yet.

Quick Start
Is there an easier way to get started with database design? In the end, details 
are important in designs. But often it helps to focus on the bigger picture first and 
fill in the details later. The sections after this one examine some common patterns 

Customer Order

Item

1 … 1

0 … * 0 … *

1 … *

Figure 2.8
Class diagram or entity-relationship diagram. Each customer can place zero or many 
orders. Each sale must come from at least one and no more than one customer. The 
zero (0) represents an optional item, so a customer might not have placed any orders 
yet.



55Chapter  2: Database Design

that arise in designing business databases, but it is easy to get lost in the details. 
Eventually, you need to understand those details, but first you need to start think-
ing in terms of a few basic concepts. The purpose of this section is to show you 
some ways to begin learning database design.

Creating a Class Diagram
This section summarizes how you begin a class diagram and highlights the issue 
of primary keys. Figure 2.9 outlines the major steps. The real trick is to start with 
the easy classes. Look for the base entities that do not depend on other classes. For 
instance, most business applications have relatively simple classes for Customers, 
Employees, and Items. These tables often use a generated key as the primary key 
column, and the data elements are usually obvious. A generated key is one that is 
created by the DBMS and guaranteed to be unique within that table.

1.	Identify	the	primary	classes	and	data	elements.
2. Create the easy classes.
3.	Create	generated	keys	if	necessary.
4. Add tables to split many-to-many relationships.
5. Check primary keys.
6.	Verify	relationships.
7.	Verify	data	types.

Figure 2.10
Basic Sales form. Look through the form and see if you can identify the basic 
business objects. You should be able to easily find three objects. 

Figure 2.9
Steps to create a class diagram. Primary keys often cause problems. Look for many-
to-many relationships and split them into new tables. 

Sale ID Date

Customer
First Name
Last Name
Address
City, State  ZIPCode
ItemID Description List Price Quantity QOH Value

Total



56Chapter  2: Database Design

Consider the basic Sales form. Figure 2.10 shows a simplified version. Look 
over the form and see if you can identify the main objects it contains. Think about 
standard business sales for a second and you should be able to identify at least 
three common objects contained on the form: Customers, Items, and Sales. Data 
for the Customer object seems to be displayed in its own section of the form so 
that is a useful indicator, but people are often represented as a separate object so 
you should become comfortable with creating that table. The Items are a little 
trickier to see, but think about the business transaction and you can see the im-
portance of treating merchandise items as a separate object. The Sales object is 
slightly trickier because it records an event. But in most cases, the overall form 
itself will become a table—because it ties together all of the other objects. In this 
case, Sales represent the integration of Customers and Items. 

Each of these three tables (Customers, Items, and Sales) can stand alone as a 
base table. Customers are clearly defined in terms of standard properties such as 
name and address. Items have properties such as a description and list price. Sales 
take place on a specified date. Every table needs a primary key, but each of these 
three tables can benefit from using a generated key. Some companies might rely 
on the marketing department to create unique CustomerID and ItemID values, but 
database systems are good at creating unique numbers, so it is far easier to let the 
DBMS generate ID values as new customers, items, and sales are entered. Figure 
2.11 shows these three tables in DBDesign, but you could also draw them by hand 
or write them with the main columns. 

Notice that these three tables are not yet connected to each other. Eventually, 
to be able to recreate the Sales form, all of the tables must be related or connected 
somehow. But it is worth examining exactly how these tables might be connected. 
Begin by focusing on the Customers and Sales tables. Three possibilities exist: 
1. Put the SaleID into the Customers table, 2. Put the CustomerID into the Sales 
table, or 3. Put both ID values into a third table. Before trying to find the answer, 
understand that each of those three possibilities could be correct—the answer de-
pends on the specific business rules. That is, each possibility represents a different 
set of business rules. 

Figure 2.11
Initial objects for the Sales form: Customers, Items, and Orders. Each has a single 
generated column as the primary key because rows are created independently. Notice 
that they are not yet related to each other. 



57Chapter  2: Database Design

Primary Keys and Relationships
Primary keys and many-to-many relationships are often difficult for students. The 
trick is to remember that any column that is part of the primary key represents a 
“many” relationship. Consider the classic Customers-Sales relationship. 

When you are not certain how to identify the keys in a table, Figure 2.12 shows 
a process for identifying the class relationship. Write down the columns you want 
to study with no key indicators. Ask yourself if each customer (first column) can 
place one or many Sales (second column). If the answer is many Sales, add a key 
indicator (underline) to the SaleID. Reverse the process and ask if a specific Sale 
can come from one Customer or many. The standard business rule says only one 

CustomerID SaleID

Each customer can place many Sales (key SaleID).
Each	order	comes	from	one	customer	(do	not	key	CustomerID).

*SaleID
CustomerID

Figure 2.12
Identifying primary keys. Write down the potential key columns. Ask if each of 
the first entity (Customer) can have one or many of the second entity (Sale). If the 
answer is many, key the second item. Reverse the process to see if one of the second 
items can be associated with one or many of the first items.

Each Sale has one Customer

Each Customer can place 
many Sales

Figure 2.13
Relationship between Customers and Sales. CustomerID belongs in the Sales table 
but CustomerID is not part of the key. Each Sale has one Customer—so CustomerID 
is not keyed in the Sales table. Each Customer can have multiple Sales. Read keyed 
columns as “many” and non-keyed columns as “one.”



58Chapter  2: Database Design

customer is responsible for a sale, so do not key CustomerID. The result says that 
SaleID is keyed but CustomerID is not. So you need to put CustomerID into a 
table with only SaleID as the key column. That would be the Sales table.

If you had put the SaleID into the Customers table the relationships would be 
reversed. With CustomerID keyed but not SaleID the design would be saying that 
each customer can never participate in more than one sale, and every sale could 
involve many customers. Read the keyed column as “many” and non-keyed col-
umns as “one.” Figure 2.13 shows the resulting design by placing CustomerID 
into the Sales table where it is not part of the key. From a more mechanical per-
spective, CustomerID could never be keyed in the Sales table. The SaleID is al-
ready a generated key so it is guaranteed to be unique. No other column would 
ever need to be keyed in that table. Generated key columns always stand alone.

The design is closer, but notice that the Items table is still not connected to any 
of the others. Thinking about the business associations, it seems that Items and 
Sales should be related somehow—because the Items are shown on the original 
Sales Form. So try the same key process. Figure 2.14 shows the process. Write 
down SaleID and ItemID and ask yourself if a Sale can contain one or many 
Items. If you are uncertain, look back at the original sales form and notice the 
repeating section that can list many items, so the answer is Many. Mark ItemID 
as a key. Working the other direction: Can an Item be sold more than once? If the 
items are standardized, such as cans of dog food, the answer is also “many” times. 
Yes, a given, specific can is sold only once, but that particular ItemID representing 
a brand and flavor of dog food can be sold many times. So also key SaleID.

Hence, you need a table that contains both SaleID and ItemID as a key. Look 
at your work so far and you will see that no such table exists. So create a new 
table that contains those two keys. Figure 2.15 shows the resulting table and how 
it ties the Sales and Items tables together. Many-to-many relationships are always 
handled with this third table. In DBDesign, note that a blue star is used to repre-
sent the keys in the SaleItems table. Remember that a filled red star is only used 
for generated keys—in the table where the values are created. So a new SaleID 
value will be created when a Sale is added to the Sale table, and that value will 
be inserted into the SaleItems table. Similarly, an existing ItemID from the Items 
table will be inserted into the SaleItems table to indicate which item is being sold. 

SaleID  ItemID

Each Sale can have many Items (key ItemID).
Each Item can be sold many times (key SaleID).

Need a table with both SaleID and ItemID as keys

*SaleID
*ItemID

Figure 2.14
Identifying primary keys. Write down SaleID and ItemID and identify the 
associations. The repeating section in the original sales form shows that a Sale can 
list many Items. When Items are represented as SKUs (such as cans of dog food), the 
item can be sold many times. So a table is needed with both SaleID and ItemID as 
keys. Because this table does not yet exist, it must be created: SaleItems.



59Chapter  2: Database Design

Think of it as a bar code scanner that reads the existing ItemID and inserts it into a 
new row of the SaleItems table.

DBDesign uses a special symbol to show where keys are generated to remind 
you that: (1) In a generating table, the generated key can be the only key column, 
(2) A generated key can be generated only once, and (3) You can never have a 
relationship that ties two generated keys together (because it would never make 
sense to link two randomly generated numbers). 

Getting the primary keys right is critical at this stage of the design. In many 
ways, the keys identify the objects and tables. In the example, the generated keys 
CustomerID, ItemID, and SaleID uniquely identify each related object. The com-
posite key: SaleID+ItemID identifies the many-to-many relationship between 
Sales and Items. From this point, you then assign the other columns as proper-
ties of the correct objects. For instance, Last Name, First Name, and Address are 
attributes of Customers. ListPrice is an attribute of Items because each item has 
one list price, if we do not worry about changes over longer periods of time. And 
QuantitySold is an attribute of the SaleItems because it represents the amount of a 
specific Item on a given Sale.

Class Diagrams: Details
How are some common business associations handled in class diagrams? 
Class diagrams are useful to visualize the business entities and the underlying re-
lationships. Many business entities can be 
represented by simple classes (Custom-
ers, Employees, Merchandise, Sales, and 
so on). However, some common business 
problems can lead to relatively complex 
relationships. Many of these situations 
are tied to events, such as sales or as-

Figure 2.15
Two columns as part of the primary key. Sales and Items have a many-to-many 
relationship which is handled as a new table (SaleItems) with both of the columns 
keyed.

Note: It is possible to temporarily 
skip this section and return to it once 
the student is more familiar with the 
basic design issues.



60Chapter  2: Database Design

sembly. A couple of tricky concepts evolved from object-oriented design require 
special handling in class diagrams, and are trickier to handle within relational da-
tabases. Two classic situations are composition (objects built from other objects), 
and inheritance (objects defined as extensions of parent objects). This section ex-
amines how to diagram these relatively complex topics. 

Association Details: N-ary Associations
Many-to-many associations between classes cause problems in the database de-
sign. They are acceptable in an initial diagram such as Figure 2.16, but they will 
eventually have to be split into one-to-many relationships. This process is ex-
plained in detailed in Chapter 3.

In a related situation, as shown in Figure 2.16, entities are not always obvious. 
Consider a basic manufacturing situation in which employees assemble compo-
nents into final products. At first glance, it is tempting to say that there are three 
entities: employees, components, and products. This design specifies that the da-
tabase should keep track of which employees worked on each product and which 
components go into each product. Notice that two many-to-many relationships 
exist.

To understand the problem caused by the many-to-many relationships, consider 
what happens if the company wants to know which employees assembled each 
component into a product. To handle this situation, Figure 2.17 shows that the 
three main entities (Employee, Product, and Component) are actually related to 
each other through an Assembly association. When more than two classes are re-
lated, the relationship is called an n-ary association and is drawn as a diamond. 
This association (actually any association) can be described by its own class data. 
In this example an entry in the assembly list would contain an EmployeeID, a 
ComponentID, and a ProductID. In total, many employees can work on many 
products, and many components can be installed in many products. Each indi-
vidual event is captured by the Assembly association class. The Assembly asso-
ciation solves the many-to-many problem, because a given row in the Assembly 
class holds data for one employee, one component, and one product. Ultimately, 
you would also include a Date/Time column to record when each event occurred.

According to the UML standard, multiplicity has little meaning in the n-ary 
context. The multiplicity number placed on a class represents the potential num-
ber of objects in the association when the other n-1 values are fixed. For example, 
if ComponentID and EmployeeID are fixed, how many products could there be? 
In other words, can an employee install the same component in more than one 

Employee

Component Product

*
*

* *

Figure 2.16
Many-to-many relationships cause problems for databases. In this example, many 
employees can install many components on many products, but we do not know 
which components the employee actually installed.



61Chapter  2: Database Design

product? In most situations the answer will be yes, so the multiplicity will gener-
ally be a “many” asterisk.

Eventually to create a database, all many-to-many relationships must be con-
verted to a set of one-to-many relationships by adding a new entity. Like the As-
sembly entity, this new entity usually represents an activity and often includes a 
date/time stamp.

As a designer you will use class diagrams for different purposes. Sometimes 
you need to see the detail; other times you only care about the big picture. For 
large projects, it sometimes helps to create an overview diagram that displays the 
primary relationships between the main classes. On this diagram it is acceptable to 
use many-to-many relationships to hide some detail entities.

Association Details: Aggregation
Some special types of associations arise often enough that UML has defined spe-
cial techniques for handling them. One category is known as an aggregation or a 
collection. For example, a Sale consists of a collection of Items being purchased. 
As shown in Figure 2.18, aggregation is indicated by a small diamond on the asso-
ciation line next to the class that is the aggregate. In the example, the diamond is 
next to the Sale class. Associations with a many side can be ordered or unordered. 
In this example, the sequence in which the Items are stored does not matter. If 
order did matter, you would simply put the notation {ordered} underneath the as-
sociation. Be sure to include the braces around the word. Aggregations are rarely 
marked separately in a database design.

Employee
*EmployeeID
Name
...

Component
*CompID
Type
Name

Product
*ProductID
Type
Name

*
* *

Assembly

Assembly
*EmployeeID
*CompID
*ProductID

1

1

1

…Maria Rio12

…Joe Jones11

…NameEmployeeID

…Maria Rio12

…Joe Jones11

…NameEmployeeID

CamaroB17A5411

CorvetteX32A3222

NameTypeProductID

CamaroB17A5411

CorvetteX32A3222

NameTypeProductID

Trunk handleT54888

Trunk hingeH33883

Door hingeH32882

MirrorM15872

WheelW32563

NameTypeCompID

Trunk handleT54888

Trunk hingeH33883

Door hingeH32882

MirrorM15872

WheelW32563

NameTypeCompID

A541188312

A322288212

A322256312

A541156311

A322287211

A322256311

ProductIDCompIDEmployeeID

A541188312

A322288212

A322256312

A541156311

A322287211

A322256311

ProductIDCompIDEmployeeID

Figure 2.17
Many-to-many associations are converted to a set of one-to-many relationships 
with an n-ary association, which includes a new class. In this example each row in 
the Assembly class holds data for one employee, one component, and one product. 
Notice that the Assembly class (box) is connected to the Assembly association 
(diamond) by a dashed line.



62Chapter  2: Database Design

Association Details: Composition
The simple aggregation indicator is not used much in business settings. Howev-
er, composition is a stronger aggregate association that does arise more often. 
In a composition, the individual items become the new object. Consider a bicy-
cle, which is built from a set of components (wheels, crank, stem, and so on). 
UML provides two methods to display composition. In Figure 2.19 the individual 
classes are separated and marked with a filled diamond. An alternative technique 
shown in Figure 2.20 is to indicate the composition by drawing the component 
classes inside the main Bicycle class. It is easier to recognize the relationship in 
the embedded diagram, but it could get messy trying to show 20 different objects 
required to define a bicycle. Figure 2.20 also highlights the fact that the compo-
nent items could be described as properties of the main Bicycle class.

The differences between aggregation and composition are subtle. The UML 
standard states that a composition can exist only for a one-to-many relationship. 
Any many-to-many association would have to use the simple aggregation indica-
tor. Composition relationships are generally easier to recognize than aggregation 
relationships, and they are particularly common in manufacturing environments. 

Bicycle

Size
Model Type
…

Wheels

Rims
Spokes
…

1 2built	from

Crank

ItemID
Weight  

Stem

ItemID
Weight
Size  

1

1

1

1

Figure 2.19
Association composition. A bicycle is built from  several individual components. 
These components no longer exist separately; they become the bicycle.

Sale

SaleDate
Employee

Item

Description
Cost

* *contains

Figure 2.18
Association aggregation. A Sale contains a list of items being purchased. A small 
diamond is placed on the association to remind us of this special relationship.



63Chapter  2: Database Design

Just remember that a composition exists only when the individual items become 
the new class. After the bicycle is built, you no longer refer to the individual 
components.

Association Details: Generalization
Another common association that arises in business settings is generalization. 
This situation generates a class hierarchy. The most general description is given 
at the top, and more specific classes are derived from it. Figure 2.21 presents a 
sample from Sally’s Pet Store. Each animal has certain generic properties (e.g., 
DateBorn, Name, Gender, ListPrice), contained in the generic Animal class.  But 
specific types of animals require slightly different information. For example, for a 
mammal (perhaps a cat), buyers want to know the size of the litter and whether or 
not the animal has claws. On the other hand, fish do not have claws, and custom-
ers want different information, such as whether they are fresh- or saltwater fish 
and the condition of their scales. Similar animal-specific data can be collected for 
each species. There can be multiple levels of generalization. In the pet store ex-
ample, the Mammal category could be further split into Cat, Dog, and Other.

A small, unfilled triangle is used to indicate a generalization relationship. You 
can connect all of the subclasses into one triangle as in Figure 2.21, or you can 
draw each line separately. For the situation in this example, the collected approach 
is the best choice because the association represents a disjoint (mutually exclu-
sive) set. An animal can fall into only one of the subclasses.

An important characteristic of generalization is that lower-level classes inherit 
the properties and methods of the classes above them. Classes often begin with 
fairly general descriptions. More detailed classes are derived from these base 
classes. Each lower-level class inherits the properties and functions from the high-
er classes. Inheritance means that objects in the derived classes include all of 
the properties from the higher classes, as well as those defined in their own class. 
Similarly, functions defined in the related classes are available to the new class.

Bicycle

Size
Model Type
…

Wheels

Crank

Stem

Figure 2.20
Association composition. It is easier to see the composition by embedding the 
component items within the main class.



64Chapter  2: Database Design

Consider the example of a bank accounting system displayed in Figure 2.22. A 
designer would start with the basic description of a customer account. The bank 
is always going to need basic information about its accounts, such as AccountID, 
CustomerID, DateOpened, and CurrentBalance. Similarly, there will be common 
functions including opening and closing the account. All of these basic properties 
and actions will be defined in the base class for Accounts.

New accounts can be derived from these accounts, and designers would only 
have to add the new features—saving time and reducing errors. For example, 
Checking Accounts have a MinimumBalance to avoid fees, and the bank must 
track the number of Overdrafts each month. The Checking Accounts class is de-
rived from the base Accounts class, and the developer adds the new properties and 
functions. This new class automatically inherits all of the properties and functions 
from the Accounts class, so you do not have to redefine them. Similarly, the bank 
pays interest on savings accounts, so a Savings Accounts class is created that re-
cords the current InterestRate and includes a function to compute and credit the 
interest due each month.

Additional classes can be derived from the Savings Accounts and Checking 
Accounts classes. For instance, the bank probably has special checking accounts 
for seniors and for students. These new accounts might offer lower fees, differ-
ent minimum balance requirements, or different interest rates. To accommodate 
these changes, the design diagram is simply expanded by adding new classes be-
low these initial definitions. These diagrams display the class hierarchy which 
shows how classes are derived from each other, and highlights which properties 
and functions are inherited. The UML uses open diamond arrowheads to indicate 
that the higher-level class is the more general class. In the example, the Savings 
Accounts and Checking Accounts classes are derived from the generic Accounts 
class, so the association lines point to it.

Each class in Figure 2.22 can also perform individual functions. Defining prop-
erties and methods within a class is known as encapsulation. It has the advantage 
of placing all relevant definitions in one location. Encapsulation also provides 
some security and control features because properties and functions can be pro-
tected from other areas of the application. 

Animal

Mammal Fish Spider

{disjoint}

DateBorn
Name
Gender
Color
ListPrice

LitterSize
TailLength
Claws

FreshWater
ScaleCondition

Venomous
Habitat

Figure 2.21
Association generalization. The generic Animal class holds data that applies to all 
animals. The derived subclasses contain data that is specific to each species.



65Chapter  2: Database Design

Another interesting feature of encapsulation can be found by noting that the 
Accounts class has a function to close accounts. Look carefully, and you will see 
that the Checking Accounts class also has a function to close accounts (CloseAc-
count). When a derived class defines the same function as a parent class, it is 
known as polymorphism. When the system activates the function, it automatical-
ly identifies the object’s class and executes the matching function. Designers can 
also specify that the derived function (CloseAccount in the Checking Accounts 
class) can call the related function in the base class. In the banking example, the 
Checking Account’s CloseAccount function would cancel outstanding checks, 
compute current charges, and update the main balance. Then it would call the Ac-
counts CloseAccount function, which would automatically archive the data and 
remove the object from the current records.

Polymorphism is a useful tool for application builders. It means that you can 
call one function regardless of the type of data. In the bank example you would 
simply call the CloseAccount function. Each different account could perform dif-
ferent actions in response to that call, but the application does not care. The com-
plexity of the application has been moved to the design stage (where all of the 
classes are defined). The application builder does not have to worry about the 
details.

Note that in complex situations, a subclass can inherit properties and methods 
from more than one parent class. In Figure 2.23, a car is motorized, and it is de-
signed for on-road use, so it inherits properties from both classes (and from the 
generic Vehicle class). The bicycle situation is slightly more complex because it 
could inherit features from the On-Road class or from the Off-Road class, depend-
ing on the type of bicycle. If you need to record data about hybrid bicycles, the 
Bicycle class might have to inherit data from both the On-Road and Off-Road 
classes.

*AccountID
CustomerID
DateOpened
CurrentBalance
OpenAccount
CloseAccount

Class name

Properties

Methods

Savings Accounts
InterestRate

PayInterest

Checking Accounts
MinimumBalance
Overdrafts

BillOverdraftFees
CloseAccount

Inheritance

Polymorphism

Accounts

Figure 2.22
Class inheritance. Object classes begin with a base class (e.g., Accounts). Other 
classes are derived from the base class. They inherit the properties and methods, and 
add new features. In a bank, all accounts need to track basic customer data. Only 
checking accounts need to track overdraft fees.



66Chapter  2: Database Design

Association Details: Reflexive Association
A reflexive relationship is another situation that arises in business that requires 
special handling. A reflexive association is a relationship from one class back 
to itself. The most common business situation is shown in Figure 2.24. most em-
ployees (worker) have a manager. Hence there is an association from Employee 
(the worker) back to Employee (the manager). Notice how UML enables you to 
label both ends of the relationship (manager and worker). Also, the “◄managed 
by” label indicates how the association should be read. The labels and the text 
clarify the purpose of the association. Associations may not need to be labeled, 
but reflexive relationships should generally be explained so other developers un-
derstand the purpose.

Sally’s Pet Store Class Diagram
Are more complex diagrams different? It takes time to learn how to design da-
tabases. It is helpful to study other examples. Remember that Sally, the owner of 
the pet store, wants to create the application in sections. The first section will track 
the basic transaction data of the store. Hence you need to identify the primary en-
tities involved in operating a pet store.

Employee worker
1…*

manager 0…1

managed by

Figure 2.24
Reflexive relationship. A manager is an employee who manages other workers. 
Notice how the labels explain the purpose of the relationship.

Vehicle

Human 
PoweredMotorized On-Road Off-Road

Car Bicycle

or

Figure 2.23
Multiple parent classes. Classes can inherit properties from several parent classes. 
The key is to draw the structure so that users can understand it and make sure that it 
matches the business rules.



67Chapter  2: Database Design

The first step in designing the pet store database application is to talk with the 
owner (Sally), examine other stores, and identify the primary components that 
will be needed. After talking with Sally, it becomes clear that the Pet Store has 
some features that make it different from other retail stores. The most important 
difference is that the store must track two separate types of sales: animals are 
handled differently from products. For example, the store tracks more detailed 
information on each animal. Also, products can be sold in multiple units (e.g., six 
cans of dog food), but animals must be tracked individually. Figure 2.25 shows an 
initial class diagram for Sally’s Pet Store that is based on these primary entities. 
The diagram highlights the two separate tracks for animals and merchandise. Note 
that animals are also adopted instead of sold. Because each animal is unique and 
is adopted only once, the transfer of the animal is handled differently than the sale 
of merchandise.

While talking with Sally, a good designer will write down some of the basic 
items that will be involved in the database. This list consists of entities for which 
you need to collect data. For example, for the Pet Store database you will clearly 
need to collect data on customers, suppliers, animals, and products. Likewise, you 
will need to record each purchase and each sale. Right from the beginning, you 
will want to identify various attributes or characteristics of these entities. For in-
stance, customers have names, addresses, and phone numbers. For each animal, 
you will want to know the type of animal (cat, dog, etc.), the breed, the date of 
birth, and so on. 

The detailed class diagram will include the attributes for each of the entities. 
Notice that the initial diagram in Figure 2.25 includes several many-to-many rela-
tionships. All of these require the addition of an intermediate class. Consider the 
MerchandiseOrder class. Several items can be ordered at one time, so you will 
create a new entity (OrderItem) that contains a list of items placed on each Mer-
chandiseOrder. The AnimalOrder and Sale entities will gain similar classes.

Figure 2.25
Initial class diagram for the PetStore. Animal purchases and sales are tracked 
separately from merchandise because the store needs to monitor different data for the 
two entities.

Animal

CustomerSupplier

Merchandise

Adoption
Group

Merchandise
Purchase

SaleEmployee

*

1

*
1

1

**

1

*
*

*

*

* 1*1



68Chapter  2: Database Design

Figure 2.26 shows the more detailed class diagram for the Pet Store with these 
new intermediate classes. It also contains new classes for City, Breed, and Catego-
ry. Postal codes and cities raise issues in almost every business database. There is 
a relationship between cities and postal codes, but it is not one-to-one. One simple 
solution is to store the city, state, and postal code for every single customer and 
supplier. However, for local customers, it is highly repetitive to enter the name 
of the city and state for every sale. Clerks end up abbreviating the city entry and 
every abbreviation is different, making it impossible to analyze sales by city. A 
solution is to store city and postal code data in a separate class as a lookup table. 
Commonly used values can be entered initially. An employee can select the de-
sired city from the existing list without having to reenter the data.

The Breed and Category classes are used to ensure consistency in the data. 
One of the annoying problems of text data is that people rarely enter data con-
sistently. For example, some clerks might abbreviate the Dalmatian dog breed as 
Dal, others might use Dalma, and a few might enter the entire name. To solve 
this problem, you want to store all category and breed names one time in separate 

Figure 2.26
Detailed class diagram for the pet store. Notice the tables added to solve many-to-
many problems: OrderItem, AnimalOrderItem, SaleItem, and SaleAnimal. The City 
table was added to reduce data entry. The Breed and Category tables were added 
to ensure data consistency. Users select the category and breed from these tables, 
instead of entering text or abbreviations that might be different every time. 

SupplierID
Name
ContactName
Phone
Address
ZIPCode
CityID

Supplier

AnimalID
Name
Category
Breed
DateBorn
Gender
Registered
Color
Photo
ImageFile
Imageheight
ImageWidth
AdoptionID
SaleID
Donation

Animal

PONumber
OrderDate
ReceiveDate
SupplierID
EmployeeID
ShippingCost

MerchandiseOrder

AdoptionID
AdoptionSource
ContactName
ContactPhone

AdoptionGroup

CityID
ZIPCode
City
State
AreaCode
Population1990
Population1980
Country
Latitude
Longitude

City

PONumber
ItemID
Quantity
Cost

OrderItem

ItemID
Description
QuantityOnHand
ListPrice
Category

Merchandise

EmployeeID
LastName
FirstName
Phone
Address
ZIPCode
CityID
TaxPayerID
DateHired
DateReleased
ManagerID
EmployeeLevel
Title

Employee

SaleID
SaleDate
EmployeeID
CustomerID
SalesTax

Sale

SaleID
ItemID
Quantity
SalePrice

SaleItem

CustomerID
Phone
FirstName
LastName
Address
ZIPCode
CityID

Customer

Category
Registration

Category

Category
Breed

Breed



69Chapter  2: Database Design

classes. Then employees simply choose the category and breed from the list in 
these classes. Hence data is pulled from these lookup-tables and entered exactly 
the same way every time.

Both the overview and the detail class diagrams for the Pet Store can be used to 
communicate with users. Through the entities and relationships, the diagram dis-
plays the business rules of the firm. For instance, the separate treatment of animals 
and merchandise is important to the owner. Similarly, capturing only one custom-
er per each sale is an important business rule. This rule should be confirmed by 
Sally. If a family adopts an animal, does she want to keep track of each member of 
the family? If so, you would need to add a Family class that lists the family mem-
bers for each customer. The main point is that you can use the diagrams to display 
the new system, verify assumptions, and get new ideas.

Data Types (Domains)
What are the different data types? As you list the properties within each class, 
you should think about the type of data they will hold. Each attribute holds a 
specific data type or data domain. For example, what is an EmployeeID? Is it nu-
meric? At what value does it start? How should it be incremented? Does it contain 
letters or other alphanumeric characters? You must identify the domain of each 
attribute or column. Figure 2.27 identifies several common domains. The most 
common is text, which holds any characters.
Note that any of the domains can also hold missing data. Users do not always 
know the value of some item, so it may not be entered. Missing data is defined as 
a null value.

Text
Text columns generally have a limited number of characters. SQL Server and Or-
acle both cut the limit in half for Unicode (2-byte) characters. Microsoft Access is 
the most limited at 255 characters. Some database management systems ask you 
to distinguish between fixed-length and variable-length text. Fixed-length strings 
always take up the amount of space you allocate and are most useful to improve 
speed in handling short strings like identification numbers or two-letter state ab-
breviations. Variable-length strings are stored so they take only as much space as 
needed for each row of data.

Memo or long-text columns are also used to hold large variable-length text 
data. The difference from variable-length text is that the database can allocate 
more space for as it is needed. The exact limit depends on the DBMS and the 
computer used, but long text can often include tens of thousands or millions of 
characters in one database column. Long text columns are often used for long 
comments or even short reports. However, some systems limit the operations that 
you can perform with these columns, such as not allowing you to sort the column 
data or apply pattern-matching searches.

Numbers
Numeric data is also common, and computers recognize several variations of nu-
meric data. The most important decision you have to make about numeric data 
columns is choosing between integer and floating-point numbers. Integers cannot 
hold fractions (values to the right of a decimal point). Integers are often used for 
counting and include values such as 1; 2; 100; and 5,000. Floating-point numbers 
can include fractional values and include numbers like 3.14159 and 2.718.



70Chapter  2: Database Design

The first question raised with integers and floating-point numbers is, Why should 
you care? Why not store all numbers as floating-point values? The answer lies in 
the way that computers store the two types of numbers. In particular, most ma-
chines store integers in 2 (or 4) bytes of storage for every value; but they store 
each floating point number in 4 (or 8) bytes. Although a difference of 2 bytes 
might seem trivial, it can make a huge difference when multiplied by several bil-
lion rows of data. Additionally, arithmetic performed on integers is substantially 
faster than computations with floating-point data. Something as simple as add-
ing two numbers together can be 10 to 100 times faster with integers than with 
floating-point numbers. Although machines have become faster and storage costs 
keep declining, performance is still an important issue when you deal with huge 
databases and a large customer base. If you can store a number as an integer, do 
it—you will get a measurable gain in performance.

Most systems also support long integers and double-precision floating-point 
values. In both cases the storage space is doubled compared to single-precision 
data. The main issue for designers involves the size of the numbers and precision 
that users need. For example, if you expect to have 100,000 customers, you cannot 
use an integer to identify and track customers (a key value). Note that only 65,536 
values can be stored as 16-bit integers. To count or measure larger values, you 
need to use a long integer, which can range between +/- 2,000,000,000. Similarly, 

Generic Access SQL Server Oracle
Text
		fixed
  variable
  Unicode
  Long text
  XML

NA
Short Text
Short Text
Long Text
NA

char
varchar
nchar, nvarchar
nvarchar(max)
XML

CHAR
VARCHAR2
NVARCHAR2
LONG
XMLType

Number
  Byte (8 bits)
  Integer (16 bits)
  Long (32 bits)
  (64 bits)
  Fixed precision
  Float
  Double
  Currency
  Yes/No

Byte
Integer
Long
NA
Decimal
Float
Double
Currency
Yes/No

tinyint
smallint
int
bigint
decimal(p,s)
real
float
money
bit

INTEGER
INTEGER
INTEGER
NUMBER(127,0)
NUMBER(p,s)
NUMBER, FLOAT
NUMBER
NUMBER(38,4)
INTEGER

Date/Time

Interval

Date/Time

NA

datetime
smalldatetime
interval year...

DATE

INTERVAL YEAR...
Image OLE	Object varbinary(max) LONG RAW, BLOB
AutoNumber AutoNumber Identity

rowguidcol
SEQUENCES
ROWID

Figure 2.27
Data types (domains). Common data types and their variations in three database 
systems. The text types in SQL Server and Oracle beginning with an “N” hold 
Unicode character sets, particularly useful for non-Latin based languages.



71Chapter  2: Database Design

floating point numbers can support about six significant digits. Although the mag-
nitude (exponent) can be larger, no more than six or seven digits are maintained. 
If users need greater precision, use double-precision values, which maintain 14 or 
more significant digits. Figure 2.28 lists the maximum sizes of the common data 
types.

Many business databases encounter a different problem. Monetary values often 
require a large number of digits, and users cannot tolerate round-off errors. Even 
if you use long integers, you would be restricted to values under 2,000,000,000 
(20,000,000 if you need two decimal point values). Double-precision floating-
point numbers would enable you to store numbers in the billions even with two 
decimal values. However, floating-point numbers are often stored with round-off 
errors, which might upset the accountants whose computations must be accurate 
to the penny. To compensate for these problems, database systems offer a cur-
rency data type, which is stored and computed as integer values (with an imputed 
decimal point). The arithmetic is fast, large values in the trillions can be stored, 
and round-off error is minimized. Most systems also offer a generic fixed-pre-
cision data type. For example, you could specify that you need 4 decimal digits 
of precision, and the database will store the data and perform computations with 
exactly 4 decimal digits.

Data Types
Size

Access SQL Server Oracle
Text (characters)
		fixed
  variable
  long text
  XML

255
64 KB

8K, 4K
8K, 4K
2 G, 1G
2 G

2 K
4 K
2 G

Numeric
  Byte (8 bits)
  Integer (16 bits)
  Long (32 bits)
  (64 bits)
  Fixed precision
  Float
  Double
  Currency
  Yes/No

255
+/- 32767
+/- 2 B
NA
p: 1-28
+/- 1 E 38
+/- 1 E 308
+/- 900.0000 tril.
0/1

255
+/- 32767
+/- 2 B
18 digits
p: 1-38
+/- 1 E 38
+/- 1 E 308
+/- 900.0000 tril.
0/1

38 digits
38 digits
38 digits
p: 38 digits
s: -84-127, p: 1-38
38 digits
38 digits
38 digits

Date/Time 1/1/100 - 12/31/9999 
(1 sec)

1/1/1753 - 12/31/9999 
(3 ms)
1/1/1900 - 6/6/2079 
(1 min)

1/1/-4712 - 
1/31/9999 (sec)

Image 1 GB 2 GB 2 GB, 4 GB

AutoNumber Long (4 B) 4 B or 18 digits with 
bigint

38 digits max.

Figure 2.28
Data sizes. Make sure that you choose a data type that can hold the largest value 
you will encounter. Choosing a size too large can waste space and cause slow 
calculations, but if in doubt, choose a larger size.



72Chapter  2: Database Design

Dates and Times
All databases need a special data type for dates and times. Most systems com-
bine the two into one domain; some provide two separate definitions. Many be-
ginners try to store dates as string or numeric values. Avoid this temptation. Date 
types have important properties. Dates (and times) are actually stored as single 
numbers. Dates are typically stored as integers that count the number of days or 
seconds from some base date. This base date may vary between systems, but it 
is only used internally. The value of storing dates by a count is that the system 
can automatically perform date arithmetic. You can easily ask for the number of 
days between two dates, or you can ask the system to find the date that is 30 days 
from today. Even if that day is in a different month or a different year, the proper 
date is automatically computed. Although most systems need 8 bytes to store date/
time columns, doing so removes the need to worry about any year conversion 
problems.

A second important reason to use internal date and time representations is that 
the database system can convert the internal format to and from any common 
format. For example, in European nations, dates are generally displayed in day/
month/year format, not the month/day/year format commonly used in the United 
States. With a common internal representation, users can choose their preferred 
method of entering or viewing dates. The DBMS automatically converts to the 
internal format, so internal dates are always consistent.

Databases also need the ability to store time intervals. Common examples in-
clude a column to hold years, months, days, minutes, or even seconds. For in-
stance, you might want to store the length of time it takes an employee to per-
form a task. Without a specific interval data type, you could store it as a number. 
However, you would have to document the meaning of the number—it might be 
hours, minutes, or seconds. With a specified interval type, there is less chance for 
confusion.

Binary Objects
A different type of domain is a category for objects or binary large object 
(BLOB). It enables you to store any type of object created by the computer. A use-
ful example is to use a BLOB to hold images and files from other software pack-
ages. For example, each row in the database could hold a different spreadsheet, 
picture, or graph. An engineering database might hold drawings and specifications 
for various components. The advantage is that all of the data is stored together, 
making it easier for users to find the information they need and simplifying back-
ups. Similarly, a database could hold several different revisions of a spreadsheet 
to show how it changed over time or to record changes by many different users.

On the other hand, BLOBs can quickly eat up space in the database. The free 
versions of commercial software all place limits on the size of the database files. 
This limit tends to be around 2 gigabytes. If your application loads thousands of 
BLOBs into the database, it will quickly reach this upper limit; requiring you to 
move up to a paid version of the DBMS. Increasing the size of the data files also 
complicates the backup process and might slow down other operations. So, many 
developers store binary files as regular operating system files and store the file-
name within the DBMS—which requires only a few dozen text characters for 
each file.



73Chapter  2: Database Design

Computed Values
Some business attributes can be computed. For instance,  a sales form typically 
computes SalePrice times Quantity. Or an employee’s age can be computed as 
the difference between today’s date and the DateOfBirth. At the design stage, you 
should indicate which data attributes could be computed. The UML notation is to 
precede the name with a slash (/) and then describe the computation in a note. For 
example, the computation for a person’s age is shown in Figure 2.29. The note is 
displayed as a box with folded corner. It is connected to the appropriate property 
with a dashed line.

User-Defined Types (Domains/Objects)
A relatively recent object-relational feature is supported by a few of the larger 
database systems. You can build your own domain as a combination of existing 
types. This domain essentially becomes a new object type. The example of a geo-
code is one of the easiest to understand. You can define a geographic location in 
terms of its latitude and longitude. You also might include altitude if the data is 
available. In a simple relational DBMS, this data is stored in separate columns. 
Anytime you want to use the data, you would need to look up and pass all values 
to your code. With a user-defined data type, you can create a new data type called 
geolocation that includes the desired components. Your column definition then 
has only the single data type (geolocation), but actually holds two or three pieces 
of data. These elements are treated by the DBMS as a single entry. Note that when 
you create a new domain, you also have to create functions to compare values so 
that you can sort and search using the new data type.

Events
What are events, and how are they described in a database design? Events are 
another important component of modern database systems that you need to under-
stand and document. Many database systems enable you to write programming 
code within the database to take action when some event occurs. In general, three 
different types of events can occur in a database environment:

1. Business events that trigger some function, such as a sale triggering a 
reduction in inventory.

2. Data changes that signal some alert, such as an inventory that drops 
below a preset level, which triggers a new purchase order.

3. User interface events that trigger some action, such as a user clicking on 
an icon to send a purchase order to a supplier.

Employee
Name
DateOfBirth
/Age
Phone
…

{Age = Today - DateOfBirth}{Age = Today - DateOfBirth}

Figure 2.29
Derived values. The Age attribute does not have to be stored, since it can be 
computed from the date of birth. Hence, it should be noted on the class diagram. 
Computed  attribute names are preceded with a slash.



74Chapter  2: Database Design

Events are actions that are dependent on time. UML provides several diagrams 
to illustrate events. The collaboration diagram is the most useful for recording 
events that happen within the database. Complex user interface events can be dis-
played on sequence diagrams or statechart diagrams. These latter diagrams are 
beyond the scope of this book. You can consult an OO design text for more details 
on how to draw them.

Database events need to be documented because (1) the code can be hard to 
find within the database itself, and (2) one event can trigger a chain that affects 
many tables and developers often need to understand the entire chain. Handling 
business inventory presents a useful example of the issues. Figure 2.30 is a small 
collaboration diagram that shows how three classes interact by exchanging mes-
sages and calling functions from other classes. Note that because the order is im-
portant, the three major trigger activities are numbered sequentially. First, when a 
customer places an order, this business event causes the Order class to be called 
to ship an order. The shipping function triggers a message to the Inventory class 
to subtract the appropriate quantity. When an inventory quantity changes, an au-
tomatic trigger calls a routine to analyze the current inventory levels. If the appro-
priate criteria are met, a purchase order is generated and the product is reordered.

The example represents a linear chain of events, which is relatively easy to 
understand and to test. More complex chains can be built that fork to alternatives 
based on various conditions and involve more complex alternatives. The UML se-
quence diagram can be used to show more detail on how individual messages are 
handled in the proper order. The UML statechart diagrams highlight how a class/
object status varies over time. Details of the UML diagramming techniques are 
covered in other books and online tutorials. For now you should be able to draw 
simple collaboration diagrams that indicate the primary message events.

low

Order
OrderID
OrderDate
…
ShipOrder
…

Inventory
ItemID
QtyOnHand
…
Subtract
Analyze
…

Purchase
PurchaseID
…
Reorder
…

1. Subtract(Prod, 
Qty sold)

1.1.1 Reorder(ItemID, Qty)

1.1 CheckReorder(ItemID)

Figure 2.30
Collaboration diagram shows inventory system events. An Order shipment triggers 
a reduction of inventory quantity on hand which triggers an reorder-point analysis 
routine. If necessary, the analysis routine triggers a new purchase order for the 
specified item. 



75Chapter  2: Database Design

In simpler situations you can keep a list of important events. You can write 
events as triggers, which describe the event cause and the corresponding action to 
be taken. For example, a business event based on inventory data could be written 
as shown in Figure 2.31. Large database systems such as Oracle and SQL Server 
support triggers directly. Microsoft Access added a few data triggers with the in-
troduction of the 2010 version. You define the event and attach the code that will 
be executed when the condition arises. These triggers can be written in any basic 
format (e.g., pseudocode) at the design stage, and later converted to database trig-
gers or program code. UML also provides an Object Constraint Language (OCL) 
that you can use to write triggers and other code fragments. It is generic and will 
be useful if you are using a tool that can convert the OCL code into the database 
you are using.

Large Projects
 How are teams organized on large projects? If you build a small database sys-
tem for yourself or for a single user, you will probably not take the time to draw 
diagrams of the entire system. However, you really should provide some docu-
mentation so the next designer who has to modify your work will know what you 
did. On the other hand, if you are working on large projects involving many de-
velopers and users, everyone must follow a common design methodology. What is 
a large project and what is a small project? There are no fixed rules, but you start 
to encounter problems like those listed in Figure 2.32 when several developers 
and many users are involved in the project.

Design	is	harder	on	large	projects.
 Communication with multiple users.
 Communication between IT workers.
	 Need	to	divide	project	into	pieces	for	teams.
 Finding data/components.
	 Staff	turnover-retraining.
Need to monitor design process.
 Scheduling.
 Evaluation.
Build	systems	that	can	be	modified	later.
 Documentation.
 Communication/underlying assumptions and model.

Figure 2.32
Development issues on large projects. Large projects require more communication, 
adherence to standards, and project monitoring.

ON (QuantityOnHand < 100)
THEN	Notify_Purchasing_Manager

Figure 2.31
Sample trigger. List the condition and the action.



76Chapter  2: Database Design

Methodologies for large projects begin with diagrams such as the class and col-
laboration diagrams described in this chapter. Then each company or team adds 
details. For example, standards are chosen to specify naming conventions, type of 
documentation required, and review procedures.

The challenge of large projects is to split the project into smaller pieces that can 
be handled by individual developers. Yet the pieces must fit together at the end. 
Project managers also need to plan the project in terms of timing and expenses. 
As the project develops, managers can evaluate team members in terms of the 
schedule.

Several types of tools can help you design database systems, and they are par-
ticularly useful for large projects. To assist in planning and scheduling, managers 
can use project-planning tools (e.g., Microsoft Project) that help create Gantt and 
PERT charts to break projects into smaller pieces and highlight the relationships 
among the components. Computer-assisted software engineering (CASE) tools 
(like IBM’s Rational set) can help teams draw diagrams, enforce standards, and 
store all project documentation. Additionally, groupware tools (like SharePoint 
or Lotus Notes/Domino) help team members share their work on documents, de-
signs, and programs. These tools annotate changes, record who made the changes 
and their comments, and track versions.

As summarized in Figure 2.33, CASE tools perform several useful functions 
for developers. In addition to assisting with graphical design, one of the most im-
portant functions of CASE tools is to maintain the data repository for the project. 
Every element defined by a developer is stored in the data repository, where it is 
shared with other developers. In other words, the data repository is a specialized 
database that holds all of the information related to the project’s design. Some 
CASE tools can generate databases and applications based on the information 
you enter into the CASE project. In addition, reverse-engineering tools can read 
files from existing applications and generate the matching design elements. These 
CASE tools are available from many companies, including Rational Software, 
IBM, Oracle, and Sterling Software. CASE tools can speed the design and de-
velopment process by improving communication among developers and through 
generating code. They offer the potential to reduce maintenance time by providing 
complete documentation of the system.

Computer-Aided	Software	Engineering
 Diagrams (linked)
 Data dictionary
 Teamwork
 Prototyping
  Forms
  Reports
  Sample data
 Code generation
 Reverse engineering

Figure 2.33
CASE tool features. CASE tools help create and maintain diagrams. They also 
support teamwork and document control. Some can generate code from the designs 
or perform reverse engineering.



77Chapter  2: Database Design

Good CASE tools have existed for several years, yet many firms do not use 
them, and some that have tried them have failed to realize their potential advan-
tages. Two drawbacks to CASE tools are their complexity and their cost. The cost 
issue can be mitigated if the tools can reduce the number of developers needed 
on a given project. But their complexity presents a larger hurdle. It can take a de-
veloper several months to learn to use a CASE tool effectively. Fortunately, some 
CASE vendors provide discounts to universities to help train students in using 
their tools. If you have access to a CASE tool, use it for as many assignments as 
possible.

Rolling Thunder Bicycles
How does UML split a big project into packages? The Rolling Thunder Bicycle 
case illustrates some of the common associations that arise in business settings. 
Because the application was designed for classroom use, many of the business 
assumptions were deliberately simplified. The top-level view is shown in Figure 
2.34. Loosely based on the activities of the firm, the elements are grouped into 
six packages: Sales, Bicycles, Assembly, Employees, Purchasing, and Location. 
The packages will not be equal: some contain far more detail than the others. In 
particular, the Location and Employee packages currently contain only one or two 
classes. They are treated as separate packages because they both interact with sev-
eral classes in multiple packages. Because they deal with independent, self-con-
tained issues, it makes sense to separate them. 

Each package contains a set of classes and associations. The Sales package is 
described in more detail in Figure 2.35. To minimize complexity, the associations 
with other packages are not displayed in this figure. For example, the Customer 
and RetailStore classes have an association with the Location::City class. These 
relationships will be shown in the Location package. Consequently, the Sales 
package is straightforward. Customers place orders for Bicycles. They might use a 
RetailStore to help them place the order, but they are not required to do so. Hence 
the association from the RetailStore has a (0…1) multiplicity. 

Sales Assembly

PurchasingLocation

Bicycle

Employee

Figure 2.34
Rolling Thunder Bicycles—top-level view. The packages are loosely based on 
the activities of the firm. The goal is for each package to describe a self-contained 
collection of objects that interacts with the other packages.



78Chapter  2: Database Design

Bicycle
SerialNumber
CustomerID
ModelType
PaintID
FrameSize
OrderDate
StartDate
ShipDate
ShipEmployee
FrameAssembler
Painter
Construction
WaterBottleBrazeOn
CustomName
LetterStyleID
StoreID
EmployeeID
TopTube
ChainStay
…

1…1ModelType
ModelType
Description

Paint
PaintID
ColorName
ColorStyle
ColorList
DateIntroduced
DateDiscontinued

LetterStyle
LetterStyleID
Description

BicycleTubeUsed
SerialNumber
TubeID
Quantity

BikeParts
SerialNumber
ComponentID
SubstituteID
Location
Quantity
DateInstalled
EmployeeID

1…*

0…*

1…1

1…1

0…*

0…*

0…*

1…1

1…1

Figure 2.36
Rolling Thunder Bicycles—Bicycle package. Note the composition associations into 
the Bicycle class from the BikeTubes and BikeParts classes. To save space, only 
some of the Bicycle properties are displayed.

Figure 2.35
Rolling Thunder Bicycles—Sales package. Some associations with other packages 
are not shown here. (See the other packages.)

Customer
CustomerID
Phone
FirstName
LastName
Address
ZipCode
CityID
BalanceDue

Customer
Transaction

CustomerID
TransactionDate
EmployeeID
Amount
Description
Reference

Retail Store
StoreID
StoreName
Phone
ContactFirstName
ContactLastName
Address
ZipCode
CityID

Bicycle::Bicycle

BicycleID
…
CustomerID
StoreID
…

1…1

0…*
1…1

0…*

0…*

0…1



79Chapter  2: Database Design

The Bicycle package contains many of the details that make this company 
unique. To save space, only a few of the properties of the Bicycle class are shown 
in Figure 2.36. Notice that a bicycle is composed of a set of tubes and a set of 
components. Customers can choose the type of material used to create the bicycle 
(aluminum, steel, carbon fiber, etc.). They can also select the components (wheels, 
crank, pedals, etc.) that make up the bicycle. Both of these classes have a com-
position association with the Bicycle class. The Bicycle class is one of the most 
important classes for this firm. In conjunction with the BicycleTubeUsed and 
BikeParts classes, it completely defines each bicycle. It also contains information 
about which employees worked on the bicycle. This latter decision was a design 
simplification choice. Another alternative would be to move the ShipEmployee, 
FrameAssembler, and other employee properties to a new class within the Assem-
bly package.

As shown in Figure 2.37, the Assembly package contains more information 
about the various components and tube materials that make up a bicycle. In prac-
tice, the Assembly package also contains several important events. As the bicycle 
is assembled, data is entered that specifies who did the work and when it was 
finished. This data is currently stored in the Bicycle class within the Bicycle pack-
age. A collaboration diagram or a sequence diagram would have to be created to 
show the details of the various events within the Assembly package. For now, 
the classes and associations are more important, so these other diagrams are not 
shown here.

All component parts are purchased from other manufacturers (suppliers). The 
Purchase package in Figure 2.38 is a fairly traditional representation of this activ-
ity. Note that each purchase requires the use of two classes: PurchaseOrder and 
PurchaseItem. The PurchaseOrder is the main class that contains data about the 

Bicycle::BikeParts
SerialNumber
ComponentID
...

1…1

Component
ComponentID
ManufacturerID
ProductNumber
Road
Category
Length
Height
Width
Description
ListPrice
EstimatedCost
QuantityOnHand

ComponentName
ComponentName
AssemblyOrder
Description

GroupComponents
GroupID
ComponentID

Groupo
GroupID
GroupName
BikeType

Bicycle::
BicycleTubeUsed
SerialNumber
TubeID
Quantity

TubeMaterial
TubeID
Material
Description
Diameter
…

0…*

1…1

0…*

1…1

0…*

1…1

0…*

0…*

1…1

Figure 2.37
Rolling Thunder Bicycles—Assembly package. Several events occur during 
assembly, but they cannot be shown on this diagram. As the bicycle is assembled, 
additional data is entered into the Bicycle table within the Bicycle package.



80Chapter  2: Database Design

order itself, including the date, the manufacturer, and the employee who placed 
the order. The PurchaseItem class contains the detail list of items that are being 
ordered. This class is specifically included to avoid a many-to-many association 
between the PurchaseOrder and Component classes.

Observe from the business rules that a ManufacturerID must be included on 
the PurchaseOrder. It is dangerous to issue a purchase order without knowing the 
identity of the manufacturer. Chapter 10 explains how security controls can be im-
posed to provide even more safety for this crucial aspect of the business.

An additional class (ManufacturerTransactions) is used as a transaction log to 
record each purchase. It is also used to record payments to the manufacturers. 
On the purchase side, it represents a slight duplication of data (AmountDue is in 
both the PurchaseOrder and Transaction classes). However, it is a relatively com-
mon approach to building an accounting system. Traditional accounting methods 
rely on having all related transaction data in one location. In any case the class is 
needed to record payments to the manufacturers, so the amount of duplicated data 
is relatively minor. 

The Location package in Figure 2.39 was created to centralize the data related 
to addresses and cities. Several classes have address properties. In older systems 
it was often easier to simply duplicate the data and store the city, state, and ZIP 
code in every class that referred to locations. Today, however, it is relatively easy 
to obtain useful information about cities and store it in a centralized table. This 
approach improves data entry, both in speed and data integrity. Clerks can simply 
choose a location from a list. Data is always entered consistently. For example, 
you do not have to worry about abbreviations for cities. If telephone area codes 
or ZIP codes are changed, you need to change them in only one table. You can 
also store additional information that will be useful to managers. For example, the 

PurchaseOrder
PurchaseID
EmployeeID
ManufacturerID
TotalList
ShippingCost
Discount
OrderDate
ReceiveDate
AmountDue

1…1

PurchaseItem
PurchaseID
ComponentID
PricePaid
Quantity
QuantityReceived

Manufacturer
ManufacturerID
ManufacturerName
ContactName
Phone
Address
ZipCode
CityID
BalanceDue

ManufacturerTrans
ManufacturerID
TransactionDate
Reference
EmployeeID
Amount
Description

Assembly::
Component

ComponentID
ManufacturerID
ProductNumber

0…*

1…1

1…1

1…1

0…*

1…1

1…*

0…*

0…*

Figure 2.38
Rolling Thunder Bicycles—Purchasing package. Note the use of the Transaction 
class to store all related financial data for the manufacturers in one location.



81Chapter  2: Database Design

population and geographical locations can be used to analyze sales data and direct 
marketing campaigns.

 The Employee package is treated separately because it interacts with so many 
of the other packages. The Employee properties shown in Figure 2.40 are straight-
forward. Notice the reflexive association that denotes the management relation-
ship. For the moment there is only one class within the Employee package. In 
actual practice this is where you would place the typical human resources data and 
associations. For instance, you would want to track employee evaluations, assign-
ments, and promotions over time. Additional classes would generally be related to 
benefits such as vacation time, personal days, and insurance choices.

A detailed, combined class diagram for Rolling Thunder Bicycles is shown in 
Figure 2.41. Some associations are not included—partly to save space. A more 
important reason is that all of the drawn associations are enforced by Microsoft 
Access. For example, once you define the association from Employee to Bicycle, 
Access will only allow you to enter an EmployeeID into the Bicycle class that al-
ready exists within the Employee class. This enforcement makes sense for the per-
son taking the order. Indeed, financial associations should be defined this strongly. 
On the other hand, the company may hire temporary workers for painting and 
frame assembly. In these cases the managers may not want to record the exact 
person who painted a frame, so the association from Employee to Painter in the 
Bicycle table is relaxed.

Application Design
What is an application? The concept of classes and attributes seems simple at 
first, but can quickly become complicated. Practice and experience make the pro-
cess easier. For now, learn to focus on the most important objects in a given proj-
ect. It is often easiest to start with one section of the problem, define the basic 

City
CityID
ZipCode
City
State
AreaCode
Population1990
Population1980
Country
Latitude
Longitude

Sales::
Customer

CustomerID
…
CityID

Sales::
RetailStore

StoreID
…
CityID

Employee::
Employee

EmployeeID
…
CityID

Purchasing::
Manufacturer

ManufacturerID
…
CityID

0…*

1…1

1…1

1…1

1…1

0…*
0…*

StateTaxRate
State
TaxRate

1…1

0…1

Figure 2.39
Rolling Thunder Bicycles—Location package. By centralizing the data related to 
cities, you speed clerical tasks and improve the quality of the data. You can also store 
additional information about the location that might be useful to managers.



82Chapter  2: Database Design

elements, add detail, then expand into other sections. As you are designing the 
project, remember that each class becomes a table in the database, where each at-
tribute is a column, and each row represents one specific object. 

You should also begin thinking about application design in terms of the forms 
or screens that users will see. Consider the simple form in Figure 2.42. On paper, 
this form would simply have blanks for each of the items to be entered. Eventu-
ally, you could build the same form with blanks as a database form. In this case, 
you might think only one table is associated with this form; however, you need to 
think about the potential problems. With blank spaces on the form, people can en-
ter any data they want. For example, do users really know all of the breed types? 
Or will they sometimes leave it blank, fill in abbreviations, or misspell words? 
All of these choices would cause problems with your database. Instead, it will be 
better to give them a selection box, where users simply pick the appropriate item 
from a list. But that means you will need another table that contains a list of pos-
sible breeds. It also means that you will have to establish a relationship between 
the Breed table and the Animal table. In turn, this relationship affects the way the 
application will be used. For example, someone must enter all of the predefined 
names into the Breed table before the Animal table can even be used.

At this point in the development, you should have talked with the users and 
collected any forms and reports they want. You should be able to sketch an initial 
class diagram that shows the main business objects and how they relate to each 
other, including the multiplicity of the association. You should also have a good 
idea about what attributes will be primary keys, or keys that you will need to cre-
ate for some tables. You also need to specify the data domains of each property.

Corner Med
What process is followed when starting a project? Before you can design tables 
and relationships, you need to talk with the users and determine what data needs 
to be collected. It is easier to understand the users if you have some knowledge of 

Employee
EmployeeID
TaxpayerID
LastName
FirstName
HomePhone
Address
ZipCode
CityID
DateHired
DateReleased
CurrentManager
SalaryGrade
Salary
Title
WorkArea

Bicycle::
Bicycle

SerialNumber
…
EmployeeID
ShipEmployee
FrameAssembler
Painter

Bicycle::
BikeParts

SerialNumber
ComponentID
…
EmployeeID

Purchasing::
PurchaseOrder
PurchaseID
…
EmployeeID

1…1

0…*
0…*
0…*
0…*

0…*

1…1 1…1

0…*

manager

m
an

ag
es


worker0…*

0…1

Figure 2.40
Rolling Thunder Bicycles—Employee package. Note the reflexive association to 
indicate managers.



83Chapter  2: Database Design

Figure 2.41
Rolling Thunder detailed class diagram. The detail class diagram is a nice reference tool for 
understanding the organization, but for many organizations this diagram will be too large to 
display at this level of detail.

Cu
st

om
er

ID
Ph

on
e

Fi
rs

tN
am

e
La

st
N

am
e

Ge
nd

er
Ad

dr
es

s
ZI

PC
od

e
Ci

ty
ID

Ba
la

nc
eD

ue

Cu
st

om
er

Se
ria

lN
um

be
r

Cu
st

om
er

ID
M

od
el

Ty
pe

Pa
in

tID
Fr

am
eS

ize
O

rd
er

Da
te

St
ar

tD
at

e
Sh

ip
Da

te
Sh

ip
Em

pl
oy

ee
Fr

am
eA

ss
em

bl
er

Pa
in

te
r

Co
ns

tr
uc

tio
n

W
at

er
Bo

tt
le

Br
az

eO
n

Cu
st

om
er

N
am

e
Le

tt
er

St
yl

eI
D

St
or

eI
D

Em
pl

oy
ee

ID
To

pT
ub

e
Ch

ai
nS

ta
y

He
ad

Tu
be

An
gl

e
Se

at
Tu

be
An

gl
e

Li
st

Pr
ic

e
Sa

le
Pr

ic
e

Sa
le

sT
ax

Sa
le

St
at

e
Sh

ip
Pr

ic
e

Fr
am

eP
ric

e
Co

m
po

ne
nt

Li
st

Bi
cy

cl
e

Cu
st

om
er

ID
Tr

an
sa

ct
io

nD
at

e
Em

pl
oy

ee
ID

Am
ou

nt
De

sc
rip

tio
n

Re
fe

re
nc

e

Cu
st

om
er

Tr
an

s

St
or

eI
D

St
or

eN
am

e
Ph

on
e

Co
nt

ac
tF

irs
tN

am
e

Co
nt

ac
tL

as
tN

am
e

Ad
dr

es
s

ZI
PC

od
e

Ci
ty

IDRe
ta

ilS
to

re

St
at

e
Ta

xR
at

e

St
at

eT
ax

Ra
te

M
od

el
Ty

pe
De

sc
rip

tio
n

Co
m

po
ne

nt
ID

M
od

el
Ty

pe

Pa
in

tID
Co

lo
rN

am
e

Co
lo

rS
ty

le
Co

lo
rL

ist
Da

te
In

tr
od

uc
ed

Da
te

Di
sc

on
tin

ue
d

Pa
in

t

Em
pl

oy
ee

ID
Ta

xp
ay

er
ID

La
st

N
am

e
Fi

rs
tN

am
e

Ho
m

eP
ho

ne
Ad

dr
es

s
ZI

PC
od

e
Ci

ty
ID

Da
te

Hi
re

d
Da

te
Re

le
as

ed
Cu

rr
en

tM
an

ag
er

Sa
la

ry
Gr

ad
e

Sa
la

ry
Ti

tle
W

or
kA

re
a

Em
pl

oy
ee

W
or

kA
re

a
De

sc
rip

tio
n

W
or

kA
re

a

Ci
ty

ID
ZI

PC
od

e
Ci

ty
St

at
e

Ar
ea

Co
de

Po
pu

la
tio

n2
00

0
Po

pu
la

tio
n1

99
0

Po
pu

la
tio

n1
98

0
Co

un
tr

y
La

tit
ud

e
Lo

ng
itu

de
Se

le
ct

io
nC

DF
FI

PS
In

co
m

e2
00

4
Di

vi
sio

n
St

at
eC

od
e

M
SA

CM
SA

M
AS

C
CM

SA
<m

or
e>

Ci
ty

Se
ria

lN
um

be
r

Tu
be

ID
Q

ua
nt

ity

Bi
cy

cl
eT

ub
eU

sa
e

M
od

el
Ty

pe
M

si
ze

To
pT

ub
e

Ch
ai

nS
ta

y
To

ta
lL

en
gt

h
Gr

ou
nd

Cl
ea

ra
nc

e
He

ad
Tu

be
An

gl
e

Se
at

Tu
be

An
gl

e

M
od

el
Ty

pe

Le
tt

er
St

yl
eI

D
De

sc
rip

tio
n

Le
tt

er
St

yl
e

Pu
rc

ha
se

ID
Em

pl
oy

ee
ID

M
an

uf
ac

tu
re

rID
To

ta
lL

ist
Sh

ip
pi

ng
Co

st
Di

sc
ou

nt
O

rd
er

Da
te

Re
ce

iv
eD

at
e

Am
ou

nt
Du

e

Pu
rc

ha
se

O
rd

er

M
an

uf
ac

tu
re

rID
M

an
uf

ac
tu

re
rN

am
e

Co
nt

ac
tN

am
e

Ph
on

e
Ad

dr
es

s
ZI

PC
od

e
Ci

ty
ID

Ba
la

nc
eD

ue

M
an

uf
ac

tu
re

r

M
an

uf
ac

tu
re

rID
Tr

an
sa

ct
io

nD
at

e
Em

pl
oy

ee
ID

Am
ou

nt
De

sc
rip

tio
n

Re
fe

re
nc

e

M
an

uf
ac

tu
re

rT
ra

ns

Pu
rc

ha
se

ID
Co

m
po

ne
nt

ID
Pr

ic
eP

ai
d

Q
ua

nt
ity

Q
ua

nt
ity

Re
ce

iv
ed

Pu
rc

ha
se

Ite
m

Se
ria

lN
um

be
r

Co
m

po
ne

nt
ID

Su
bs

tit
ut

eI
D

Lo
ca

tio
n

Q
ua

nt
ity

Da
te

In
st

al
le

d
Em

pl
oy

ee
ID

Bi
ke

Pa
rt

s

Se
ria

lN
um

be
r

Tu
be

N
am

e
Tu

be
ID

Le
ng

th

Bi
ke

Tu
be

s

Co
m

po
ne

nt
G

ro
up

ID
Gr

ou
pN

am
e

Bi
ke

Ty
pe

Ye
ar

En
dY

ea
r

W
ei

gh
tGr

ou
po

Co
m

po
ne

nt
ID

M
an

uf
ac

tu
re

rID
Pr

od
uc

tN
um

be
r

Ro
ad

Ca
te

go
ry

Le
ng

th
He

ig
ht

W
id

th
W

ei
gh

t
Ye

ar
En

dY
ea

r
De

sc
rip

tio
n

Li
st

Pr
ic

e
Es

tim
at

ed
Co

st
Q

ua
nt

ity
O

nH
an

d

Co
m

po
ne

nt

Tu
be

ID
M

at
er

ia
l

De
sc

rip
tio

n
Di

am
et

er
Th

ic
kn

es
s

Ro
un

dn
es

s
W

ei
gh

t
St

iff
ne

ss
Li

st
Pr

ic
e

Co
ns

tr
uc

tio
n

Is
Ac

tiv
e

Tu
be

M
at

er
ia

l

G
ro

up
ID

Co
m

po
ne

nt
ID

Gr
ou

pC
om

po
ne

nt

Co
m

po
ne

nt
N

am
e

As
se

m
bl

yO
rd

er
De

sc
rip

tio
n

Co
m

po
ne

nt
N

am
e



84Chapter  2: Database Design

their field. You probably do not need a medical degree to build a business system 
for physicians; however, you will have to learn some of the basic terminology to 
understand the various data relationships. This is a good place to point out that 
the sample Corner Med database is merely a start of an application. None of the 
components should be used in an actual medical situation. It is designed purely as 
a demonstration project to highlight some of the issues in database design.

In a family-practice physician office, the patient visit is going to be a key ele-
ment in any business administration system. Figure 2.43 shows a simple version 
of a form to record data about a patient visit. The first thing to note is that the main 
form contains two subforms. Note that each subform represents repeating data or 
a one-to-many relationship. A useful question to ask the managers at this point 
would be to confirm the insurance data. In particular, can patients have more than 
one insurance plan? If this data is important, the form would have to be modified 
to add a repeating section for insurance data. It might be tempting to argue that 
almost all data could potentially be repeating, so perhaps there should be dozens 
of repeating sections on the form. Given the state of health insurance in the U.S., 
it is possible that you will need to add this repeating section. However, be cautious 
with other items. One-to-many relationships add flexibility to collecting and stor-
ing data, but they make the data form considerably more complex. If patients rare-
ly have more than one insurance provider, it will be cumbersome for the clerks to 
deal with the extra repeating section when it is rarely used. On the other hand, the 
patient diagnoses and treatments sections are required because most patient visits 
will require multiple entries. The patient visit form also illustrates one of the key 
steps in starting a database project: Collect input forms and reports from users so 
you can identify the data that needs to be stored.

Figure 2.42
Basic Animal form. Initially this form seems to require one table (Animal). But 
to minimize data-entry errors, it really needs a table to hold data for Category and 
Breed, which can be entered via a selection box.



85Chapter  2: Database Design

When you look at the patient visit form, you should start thinking about the 
tables that will be needed to hold the data. At the start, you should quickly identify 
three starting tables: (1) PatientVisit,  a table that represents the form itself, (2) 
PatientDiagnoses, a table that arises because of the first repeating section, and (3) 
PatientProcedures, a table representing the second repeating section.

When you identify a new table, you should also think about the possible key 
columns. The PatientVisit table will most likely need a generated key—a value 
that the DBMS will create whenever a new visit is added to the database. Call the 
column VisitID. It is the best way to guarantee a unique value for every visit. A 
generated VisitID value also makes it easier to identify the keys for the repeating 
sections. Each of these tables will need two key columns. For instance, VisitID, 
ICD10Diagnosis will be the two key columns for the PatientDiagnoses table. It is 
easy to verify that both columns need to be keyed because on a specific visit, a pa-
tient could be diagnosed with many different problems, requiring ICD10Diagno-
sis to be part of the key. In reverse, a specific diagnosis could be applied to many 
different visits (either for one patient or different patients), requiring VisitID to be 
keyed. The same analysis reveals the two keys required for the PatientProcedures 
table. 

Figure 2.43
Patient Visit form. This form has two repeating sections: One for diagnoses and one 
for treatment. Many more details can be added but it is possible to start with these 
key data elements.



86Chapter  2: Database Design

The next step is to ask where the ICD10Diagnosis and ICD10Procedure col-
umns will be defined. These are slightly trickier in the context of the medical 
world. Ideally, you would create a table of standard codes for each of these values. 
The best approach would be to purchase a complete list of codes. For example, 
you could buy the current ICD10 codes from the United Nation’s World Health 
Organization. Enabling physicians to pull the codes from a standard list will re-
duce errors. However, it would also require physicians to become familiar with 
the codes and to take the time to read through the list to find the specific code 
for every diagnosis and procedure. In practice, large healthcare institutions find it 
more efficient to have physicians enter written descriptions of diagnoses and pro-
cedures and hire medical coders to identify the specific codes later. This decision 
is an example of a complex business problem that you will have to solve early in 
the design process. In many cases, you will have to outline the options and present 
them to senior management for the final decision.

Figure 2.44 shows the basic tables used for the Corner Med case. In a real case, 
all of these tables will contain more data columns. However, the strength of the re-
lational data model is that the basic structure will remain the same. It is relatively 
easy to add more columns to each table later. Notice that data for all employees is 
handled in a single class. That is, physician, nurse, and clerical data are all stored 
in the same table. The employees are identified by EmployeeCategory which is 
stored in a lookup list. However, you might want to think about this decision. The 
company might want to keep considerably more data for physicians. This data 
could be highly specialized, such as license number and date. If the amount of 
data gets large, it will be more efficient to store data for physicians in a table sepa-
rate from the other employees. Otherwise, you will waste space and complicate 
the data-entry form for employees where you do not need this extra data.

Figure 2.44
Corner Med basic tables. Ultimately, all of these tables will contain more data 
columns. 

PatientID
LastName
FirstName
DateOfBirth
Gender
Telephone
Address
City
State
ZIPCode
Race
TobaccoUse

Patient

SeqNo
LabelCode
ProdCode
Strength
Units
Rx_OTC
TradeName

DrugListings

VisitID
PatientID
VisitDate
InsuranceCompany
InsuranceGroupCode
InsuranceMemberCode
PatientAmountPaid
DateBillsubmitted
DateInsurancePaid
AmountInsurancePaid
Diastolic
Systolic

Visit VisitID
ICD10CM
ICD9Diagnosis
Comments

VisitDiagnoses

VisitProcedureID
VisitID
ICD10PCS
Comment
EmployeeID
AmountCharged
ICD9Procedure

VisitProcedures

VisitID
DrugSeqNo
DrugCode
Comments

VisitMedications

ICD10CM
Description

ICD10DiagnosisCodes

ICD10PCS
Description
BaseCost
PhysicianRole
TechnicianRole
PhysicianAssistant

ICD10ProcedureCodes

EmployeeID
LastName
FirstName
EmployeeCategory
DateHired
DateLeft
EmergencyPhone

Employee EmployeeID
VacationStart
VacationEnd

EmployeeVacation

EmployeeCategory

EmployeeCategory

1
*

1

*

*

*

1

1

1

1

*

*

*

*

*

1

*

1



87Chapter  2: Database Design

By now, you should be able to make a first pass at creating a class diagram for 
a specific problem. You should also recognize that the final structure of the dia-
gram depends on the business rules and assumptions. You can often resolve these 
questions by talking with users, but some decisions have to be passed up to senior 
management.

Summary
Managing projects to build useful applications and control costs is an important 
task. The primary steps in project management are the feasibility study, systems 
analysis, systems design, and implementation. Although these steps can be com-
pressed, they cannot be skipped.

The primary objective is to design an application that provides the benefits 
needed by the users. System models are created to illustrate the system. These 
models are used to communicate with users, communicate with other developers, 
and help us remember the details of the system. Because defining data is a crucial 
step in developing a database application, the class diagram is a popular model.

The class diagram is created by identifying the primary entities in the system. 
Entities are defined by classes, which are identified by name and defined by the 
properties of each entity. Classes can also have functions that they perform.

Associations among classes are important elements of the business design be-
cause they identify the business rules. Associations are displayed as connecting 
lines on the class diagram. You should document the associations by providing 
names where appropriate, and by identifying the multiplicity of the relationship. 
You should be careful to identify special associations, such as aggregation, com-
position, generalization, and reflexive relationships.

Designers also need to identify the primary events or triggers that the appli-
cation will need. There are three types of events: business events, data change 
events, and user events. Events can be described in terms of triggers that contain a 
condition and an action. Complex event chains can be shown on sequence or col-
laboration diagrams. 

Designs generally go through several stages of revision, with each stage be-
coming more detailed and more accurate. A useful approach is to start with the big 
picture and make sure that your design identifies the primary components that will 
be needed in the system. Packages can be defined to group elements together to 
hide details. Detail items are then added in supporting diagrams for each package 
in the main system diagram. 

Models and designs are particularly useful on large projects. The models pro-
vide a communication mechanism for the designers, programmers, and users. 
CASE tools are helpful in creating, modifying, and sharing the design models. In 
addition to the diagrams, the CASE repository will maintain all of the definitions, 
descriptions, and comments needed to build the final application.

A Developer’s View
Like any developer, Miranda needs a method to write down the system goals and 
details. The feasibility study documents the goals and provides a rough estimate 
of the costs and benefits. The class diagram identifies the main entities and shows 
how they are related. The class diagram, along with notes in the data dictionary, 
records the business rules.  For your class project, you should study the case. 
Then create a feasibility study and an initial class diagram.



88Chapter  2: Database Design

Key Terms

Review Questions
1. How do you identify user requirements?
2. What is the purpose of a class diagram (or entity-relationship diagram)?
3. What is a reflexive association and how is it shown on a class diagram?
4. What is multiplicity and how is it shown on a class diagram?
5. What are the primary data types used in business applications?
6. How is inheritance shown in a class diagram?
7. How do events and triggers relate to objects or entities?
8. What problems are complicated with large projects?
9. How can computer-aided software engineering tools help on large projects?
10. What is an application?

aggregation
association
association role
attribute
binary large object (BLOB)
class
class diagram
class hierarchy
collaboration diagram
composition
data normalization
data type
derived class
encapsulation
entity

generalization
inheritance
method
multiplicity
n-ary association
null
polymorphism
primary key
property
rapid application development (RAD)
reflexive association
relational database
relationship
table
Unified Modeling Language (UML)



89Chapter  2: Database Design

Exercises
1.  Most medical practices use turn-key systems to handle billing data and basic 

electronic medical records. But a local physician wants a system to help him 
perform deeper statistical analyses on basic patient data. Specifically, he 
wants to track basic test results for patients and wants to compare them by 
families. For example, he wants to see if families where parents have high 
blood pressure also affect the blood pressure of the children and at what age 
those values change. Initially, he just wants to track basic medical values 
including heart rate, pressure, and basic blood test. Notes:

Patient Last name, First Name
Date	of	Birth
Gender
Race
Tobacco y/n  Alcohol y/n
Marital Status
Phone, e-mail
Address, City, State, ZIP

Father:

Mother: 

Family history notes, 
particularly	if	data	is	not	
available.

Test date: 
Last meal time: 
Test Meas. Value Low High Comments
Albumin g/dL 3.9 5.0
Alkaline phosphatase IU/L 44 147
ALT IU/L 8 37
AST IU/L 10 34
BUN mg/dL 7 20
Calcium mg/dL 8.5 10.9
Chloride mmol/L 96 106
CO2 mmol/L 20 29
Creatinine mg/dL 0.8 1.4
Glucose mg/dL 100
Potassium mEq/L 3.7 5.2
Sodium mEg/L 136 144
Total bilirubin mg/dL 0.2 1.9
Total protein g/dL 6.3 7.9
Blood Pressure-systolic mm Hg 90 140
Pressure-diastolic mm Hg 60 90
Heart rate bpm 50 90



90Chapter  2: Database Design

2.  A local store that sells household appliances wants a database to track special 
orders. Most of the items ordered are large and from high-end vendors so 
they are too expensive to stock in the display room. Also, customers tend 
to order them when they are remodeling their houses so they do not want 
the items immediately. Instead, they need to be ordered and scheduled for 
delivery on a specified date. Of course, construction delays are common 
so the managers also need the ability to delay delivery by a few days or 
weeks when necessary. Most of the items are ordered directly from the 
manufacturers and they are good at scheduling deliveries, but sometimes 
highly-customized items need to be tracked down at other stores across the 
nation.

Customer Name
Address (delivery location)
City, State, ZIP

Salesperson  Deposit Amount: $

Order Date
Desired Delivery Date
Comments

Item Manufac/Loc. ModelID Color Descrip/Size Price Actual Deliv.

Delivery comments and changes:
Contact Date Item (or All) Employee Comments New Deliv. Date

 If the item is not available from the manufacturer, the location is specified 
in terms of the store and contact information. Typically, it is ordered 
immediately and held in storage until needed; because it is too hard to find a 
new version so safer to buy it now.



91Chapter  2: Database Design

3. A friend of yours lives in a town with many older houses and he repairs 
antique lights for homeowners.  Many of the lights use crystals and colored 
panels that were designed by artists. Fortunately, most of the electrical 
components are relatively standard and compatible with today’s parts. The 
most common problems involve the wiring, because old wires used paper 
and plastic insulation that tends to crack and disintegrate over time. He often 
has to rewire the entire light and he usually replaces the bulb sockets at 
the same time. When possible, he takes down the lights and brings them to 
his shop, other times he has to set up appointments to do the work in place 
because the light cannot be removed easily. He needs an application to track 
appointments, the work done, and a basic billing system that includes his 
time and the parts used.

Contact Last Name, First Name
Phone
Address
City, State, ZIP

Contact Date
Referred	by:

Date Paid:

Description	of	problem
Description	of	light,	style,	est.	year
In-place or shop

Date Work	Performed Hours

Part No. Description Quantity Cost Source

Total	Hours:			______
Total	Parts:				______
Amount	Due:	______

Rate:			_______
Value:		_______



92Chapter  2: Database Design

4. A local day spa wants you to build an application that can be used to track 
services provided by the various employees. You do not need to handle 
reservations and scheduling—which are currently handled by an online 
provider based primarily on number of slots available during the day. 
Instead, you want to focus on billing and payments for an application that 
will be used when clients arrive. In the past, a paper card would be created 
for guests and services listed on the cards. Payment methods often include 
gift cards. Staff members often write up comments regarding treatments of 
clients so they can refer to them when the client returns in the future. Most 
treatments have a set amount of time, such as 50 minutes for a massage. At 
the end of the visit, clients are asked to evaluate the staff members in terms 
of the service quality, knowledge, and friendliness. For most people, the 
owner simply talks to the guests and then fills out a form later. In a modern 
twist, the staff members are also asked to rate the clients—largely in terms of 
dealing with special requests; which might lead to changes in the treatment 
offerings.

Guest Name
Cell phone, Address, City, State, ZIP
 
Health issues or concerns

Date

Payment method

Room & Time Treatment Staff
Specialty, Phone

Staff	
comments

Amount & 
Tip

Subtotal
Tax
Total 

Guest, Gender, Approx. Age    Comments
Facility comments/overall

Staff	member Treatment Quality Knowledge Friendliness Staff	rate	Guest

Suggested changes in treatments

Treatment Change Est. Time



93Chapter  2: Database Design

5. A small company makes winter gloves for men and women. Originally, the 
gloves were woven wool, but recently the company has also added leather 
gloves and might consider synthetic materials in the future. The woolen 
gloves come in a variety of colors. Sizes are typically small, medium, and 
large which are slightly different for men and women (largely in terms 
of finger length). The factory also produces different styles which tend to 
be variations in length of the glove, cuffs, or designs in the stitching or 
emblems. The company needs a database to track production and shipments.

 Production runs emphasize a single style, material, and size. Changes in 
yarn or material color do not require reconfiguring the machine so colors are 
tracked within the same production run. The IDs from the input material are 
tracked and an employee inspects the output batch and adds any comments.

Production Run ID
Machine ID
Material
Glove Style
Men/Women
Size

Date
Start Time
Employee Last/First Name
Job Title

InspectorID

Color Quantity Made Material Batch Qty	Rejected Comments

Order ID
Customer/Store
Contact Person
Address
City, State, ZIP

Order Date
Ship Date

ItemID Description Size Color Style Gender Quantity Sale Price



94Chapter  2: Database Design

6. A start-up company is assembling customized stereo ear-buds. Instead of 
shipping dozens of different sizes and shapes of in-ear pieces, the company 
distributes a clear piece of plastic with various marks. Customers hold the 
piece on their ear and take a photograph. A system at the company reads the 
markings and determines the best ear-piece for each customer. The assembly 
team then builds the custom ear-buds for the customer allowing them to set 
additional specifications including colors, logos, number of “armatures” 
or speaker cones, and control switches for android or Apple devices. The 
company needs a database to track orders, assembly, and shipping.

Customer Last name, First name
Phone, e-mail
Address
City, State, Postal Code
Country

Referrer/Source

Measure Photo
Horizontal Distance
Vertical Distance
Depth

Left	Ear Right Ear

Color
Wire color/type
Logo
Armatures
Apple/Android

Assembly Date
Work station #
Employee Name, Date Hired, Title

Customer 
Order ID

Comments/
Changes

Item ID Quantity Comments Start Time
End Time

Inspector ID, Supervisor

Test Value Pass/Fail
Audio low
Audio high
Stretch

Inspection outcome:



95Chapter  2: Database Design

7. A rich uncle owns about a dozen classic automobiles. He keeps them in 
several garages around town and actually drives them for different events. 
At a recent family holiday get-together, he mentioned that he struggles to 
remember the maintenance schedules for all of the vehicles. He has records 
for all of the service work, including oil changes, tune-ups, and other repairs. 
But currently, they are just paper receipts and he needs a way to track and 
schedule the maintenance so that any of the cars will be available for use 
when he wants it. He also would like to plan his usage so that he doesn’t have 
to get all of the cars serviced at the same time. You suggested that it would be 
a good application for a database. Actually, you are really hoping he will let 
you borrow one of them for a date; but first you have to design the database.

 
Car Make, Model, Year, Color
VIN

Storage Location, Name, Address
Size, Heat/Cool
Monthly Cost

Date Acquired
Exterior Condition
Interior Condition
Amount Paid
Source

Manufacturer	Service	Intervals
Miles Interval
3000

Oil change
Grease frame fittings
Tire pressure

15000 Replace spark plugs,…, Tune-up
Rotate tires
Grease door fittings

Actual Service Records
Miles Date Location Service Comments Cost

Labor Parts



96Chapter  2: Database Design

8. Experience exercise: Talk to a friend, relative, or local manager to identify a 
basic job and create a class diagram for the problem.

9. Identify the typical relationships between the following entities. Write down 
any assumptions or comments that affect your decision. Be sure to include 
minimum and maximum values. Use the Internet to look up terms and 
examples.

a) Company, CEO
b) Restaurant, Cook
c) TV Show, commercial ad
d) E-mail address, computer user
e) Item, List price
f) Car, Car wash
g) House, Painter
h) Dog, Owner
i) Manager, Worker
j) Doctor, Patient

10. For each of the entities in the following list (left side), identify whether each 
of the items on the right should be an attribute of that entity or a separate 
entity.

a) Employee Name, Date Hired, Manager, Spouse, Job
b) Factory Manager, Address, Supplier, Machine, Size
c) Boat Dock, Length, Passenger, Captain, Weight
d) Dentist Patient, Graduate School, Emergency Phone, Drill
e) Library Book, Librarian, Number of Books, Visitor 

Sally’s Pet Store
11. Do some initial research on retail sales and pet stores. Identify the primary 

benefits you expect to gain from a transaction processing system for Sally’s 
Pet Store. Estimate the time and costs required to design and build the 
database application.

12. Extend the class diagram by adding comments about each animal, beginning 
with adoption group remarks and including comments by employees and 
customers.

13. Write classes for the pet store case to track special sales events. Every couple 
of months the store has clearance sales and places specific items on sale. 
Eventually, Sally wants to evaluate the sales data to see how customers 
respond to the reduced prices.



97Chapter  2: Database Design

14. Extend the pet store class diagram to include scheduling of appointments for 
pet grooming.

Rolling Thunder Bicycles
15. The Bicycle table includes entries for several employees who worked on the 

bike. The advantage to this approach is that it leaves all the work in one table 
and identifies the work performed, making it easier to enter the data. The 
drawback is that it is more difficult to query (and would require several links 
to the Employee table). Redesign the table to eliminate these problems. 

16. Rolling Thunder Bicycles is thinking about opening a chain of bicycle stores. 
Explain how the database would have to be altered to accommodate this 
change. Add the proposed components to the class diagram.

17. If Rolling Thunder Bicycles wants to add a Web site to sell bicycles over the 
Internet, what additional data needs to be collected? Extend the class diagram 
to handle this additional data.

Corner Med
18. One of the first things Corner Med needs for the database is the ability to 

enter multiple numbers for the physicians, such as pager and cell phone. Add 
the necessary class.

19. Corner Med needs more information about insurance companies. Each 
company requires claims to be submitted to a specific location. Today, much 
of the data can be submitted electronically, so there will be an electronic 
address as well as a physical address. There will also be an account number 
and password, as well as a phone number and contact person. Add these 
elements to the class diagram.

20.  In theory, prescriptions could be handled as ICD10 procedures. However, 
because of various drug laws, including pharmacy verification and tracking 
needs, it is easier to store the data separately. Add the class(es) to the diagram 
to handle drug prescriptions. Be sure to include the drug name, the dosage, 
instructions for taking the drug, and the time period. Note that you do not 
need to add a Drug table because it would be too large and change too often; 
although the physicians might want to add the Physician’s Desk Reference 
(PDR) on CD later.

Corner
Med

Corner
Med



98Chapter  2: Database Design

Web Site References

http://www.rational.com/uml/ The	primary	site	for	UML	documentation	
and examples.

http://www.iconixsw.com UML documentation and comments.
http://docs.oracle.com/cd/B28359_01/server.111/
b28318/datatype.htm  

Oracle data type description.

http://msdn.microsoft.com/en-us/library/
ms187752(SQL.90).aspx 

SQL Server data types.

http://msdn.microsoft.com/en-us/library/ms130214.
aspx

SQL Server Books Online documentation.

http://JerryPost.com/DBDesign Database design system.

Additional Reading
Codd, E. F., “A Relational Model of Data for Large Shared Data Banks,” 

Communications of the ACM, 13 no. 6, (1970), pp. 377-387. [The paper that 
initially described the relational model.]

Constantine, L., “Under Pressure,” Software Development, October 1995, pp. 
111-112. [The importance of design.]

Constantine, L., “Re: Architecture,” Software Development, January 1996, pp. 
87-88. [Update on a design competition.]

McConnell, S., Rapid Development: Taming Wild Software Schedules, 
Redmond: Microsoft Press, 1996. [An excellent introduction to building 
systems, with lots of details and examples.]

Penker, M. and H. Eriksson, Business Modeling with UML: Business Patterns at 
Work, New York: John Wiley & Sons, 2000. [Detailed application of UML to 
business applications.] 

Silverston, Len, The Data Model Resource Book, Vol 1 and 2, 2001, New 
York: John Wiley & Sons. [A collection of sample models for a variety of 
businesses.]

http://www.rational.com/uml/
http://www.iconixsw.com
http://JerryPost.com/DBDesign


99Chapter  2: Database Design

  Appendix: Database Design System
Many students find database design to be challenging to learn. The basic concept 
seems straightforward: define a table that represents one basic entity with columns 
that describe the properties to hold the necessary data. For example, a Customer 
table will have columns for CustomerID, LastName, FirstName, and so on. But it 
is often difficult to decide exactly which columns belong in a table. It is also dif-
ficult to identify the key columns, which are used to establish relationships among 
tables. The design is complicated by the fact that the tables reflect the underlying 
business rules, so students must also understand the business operations and con-
straints in order to create a design that provides the functionality needed by the 
business.

In addition to reading Chapters 2 and 3 closely, one of the most important steps 
in learning database design is to work as many problems as possible. The catch is 
that students also need feedback to identify problems and improve the design. An 
online expert system is available to instructors and students to provide this im-
mediate feedback. This online system is available at: http://JerryPost.com/DBDe-
sign. This appendix uses the DB Design system to highlight a graphical approach 
to designing a database. However, even if you do not use the DB Design system, 
this appendix provides a useful summary of how to approach database design. 

The design process in this appendix is illustrated with a generic sales order 
form. If you are unfamiliar with order forms and the entire ordering process, 
check out the Universal Business Language on the Oasis Web site at http://docs.
oasis-open.org/ubl/cd-UBL-1.0. This organization has defined a generic purchas-
ing process that applies to any organization. The goal is to create a standard means 
of transferring data among businesses. The specification includes several XML 
schema definitions. Because the goal is to create a generic format, the specifica-
tion is considerably more complex than the example presented here, but the docu-
ment also defines the common terms, processes, and business rules.

Sample Problem: Customer Orders
It is easiest to understand database design and the DB Design system by following 
an example. Customer orders are a common situation in business databases, so 

Order Form
Order #                                                     Date
  Customer
  First Name, Last Name
  Address
  City, State  ZIP

Item Description List Price Quantity QOH Value

Order total:

Figure 2.1A
Typical order form. Each order can be placed by one customer but can contain 
multiple items ordered as shown by the repeating section.



100Chapter  2: Database Design

consider the simple sales order form displayed in Figure 2.1A. The layout of the 
form generally provides information about the business rules and practices. For 
example, there is space for only one customer on the order, so it seems reasonable 
that no more than one customer can participate in an order. Conversely, the repeat-
ing section shows multiple rows to allow several items to be ordered at one time. 
These one-to-many relationships are important factors in the database design. 

Getting Started: Identifying Columns
One of the first steps in creating the database design is to identify all of the prop-
erties or items for which you need to collect data. In the example, you will need 
to store customer first name, last name, address, and so on. You will also need 
to store an order number, order date, item description, and more. Basically, you 
identify each item on the form and give it a unique name. Note that some items 
can be easily computed and will not need to be stored. For instance, value is list 
price times quantity, and the order total is the sum of the value items. In a business 
environment, you will have to identify these items yourself and write them down. 
The DBDesign system handles this step for you and displays all of the columns in 
a list. 

As shown in Figure 2.2A, after you have opened a problem, the DB Design 
system provides you with a list of items from the form. This list is presented in the 

Menu

Drawing area
• Right-click to add tables

Title box 
• Drag to move
• Double-click to set title

Feedback	window	(Double-click	errors	for	details.)

Scroll bars to 
display	more	of	
the drawing area

Column list

Status line

Drag borders
to resize

Figure 2.2A
DB Design screen. Once you log in, use the menu option File/Open to choose the 
Order Problem. The Help menu has an option to View the Problem. The right-hand 
window contains a list of the available columns that will be placed into tables. 
Selecting the Grade menu option generates comments in the feedback window.



101Chapter  2: Database Design

right-hand column. The list of columns is the foundation for the database design. 
Your job is to create tables and then select the columns that belong in each table. 
You can rename the columns by right clicking the column name and selecting 
the Rename option, but be careful to use names that represent the data. Also, key 
columns should have unique names. To get a better grasp of the columns avail-
able, you can sort the list by right clicking the list and selecting the Sort option. 
You can also double-click a column to see more details about it, including a brief 
description. If two columns have the same name (such as LastName), you will 
have to look at the description to see which entity it refers to (such as employee or 
customer). 

Creating a Table and Adding Columns
The main objective is to create tables and specify which columns belong in each 
table. It is fairly clear that the sale order problem will need a table to hold cus-
tomer data, so begin by right-clicking the main drawing window and selecting 
the option to add a table. The system enters a default name for the table, but you 
should change it by typing in a new name. Later, you can change the name by 
right-clicking the name and selecting the rename option. For this demonstration, 
enter “Customer” to provide the new name.

Each table must have a primary key—one or more columns that uniquely iden-
tify each row in the table. Looking at the order form and the column list you will 
not see a column that can be used as a primary key. You might consider using 
the customer phone number, but that presents problems when customers change 
their numbers. Instead, it is best to generate a new column called CustomerID. To 
ensure each customer is given a different ID value, the data for this column will 

1
2

3

4

Figure 2.3A
Adding a table and key. (1) Right click and select Add table. (2) Enter a new name 
(Customer) in the title box. (3) Drag the Generate Key item onto the table. (4) Enter a 
new name (CustomerID) in the edit box and click the OK button.



102Chapter  2: Database Design

be generated by the DBMS whenever a new customer is added. To create a new 
key column that is generated by the DBMS, drag the Generate Key item from the 
column list and drop it on the Customers table. The column-edit form will pop up 
with a temporary name. Type a new name for the column (CustomerID). You can 
enter a description if you want. Click the OK button when you are ready. Notice 
that CustomerID will be displayed in the Customers table and as a new column in 
the column list. Also, notice in Figure 2.3A that the CustomerID is marked with a 
filled red star to indicate that it is part of the primary key in the Customers table. 
You can edit a column name and description later by double-clicking the column 
name.

A star in the DB Design system indicates that a column is part of the primary 
key for a table. But, there are two types of stars: (1) a filled red star, or (2) an open 
blue star. Both indicate that the column is part of the primary key. The filled red 
star additionally notes that the key values are generated in that table whenever 
a row is added. Because generated values must always be unique, any table that 
contains a generated key column can only have that column as the primary key. 
You can change the key attribute by opening the column-edit form or by double-
clicking the space in front of a column name. As you double-click the space, the 
key indicator will rotate through the three choices: blank (no key), blue star (key), 
red star (generated key).

Now that the table and primary key are established, you can add other columns 
to the table. But which columns? The Customers table should contain columns 
that identify attributes specifically about a customer. So, find each column that is 
strictly identified by the new primary key CustomerID and drag it onto the Cus-
tomers table.

Relationships: Connecting Tables
Almost all database problems will need multiple tables. In the sales order prob-
lem, it is fairly clear that the database design will need an Orders table. Add a new 
table, name it “Orders,” and generate a key for OrderID. Once again, you need to 
identify the columns that belong in the Order table. Looking at the Order form, 
you should add the OrderDate column. Notice that the order form also contains 

Figure 2.4A
Two tables. Each table represents a single entity, and all columns are data collected 
for that entity. The Orders table contains the CustomerID, which provides a method 
to obtain the matching data in the Customer table. Build the Customer table first, 
followed by the Orders table and the relationship line will probably be added 
automatically for you. 



103Chapter  2: Database Design

customer information. But it would seem to be a waste of effort to require clerks 
to enter a customer’s name and address for every order. Instead, you need to add 
only the CustomerID in the Order table.

When you add the CustomerID to the Orders table, as shown in Figure 2.4A, 
the system will create a relationship back to the Customers table. It will even try 
to get the multiplicity correct. Actually, your instructor can turn off the automatic 
relationship and the multiplicity options, so there is a small chance that you will 
have to create the relationship by hand. You can delete a relationship by right-
clicking the sloping line and choosing the Delete option. You edit a relationship 
by double-clicking the connecting line. You create a new relationship by dragging 
a column from one table and dropping it onto the matching column in a second 
table.

Remember that CustomerID will not be a primary key in the Order table, be-
cause for each order, there can be only one customer. If it were keyed, you would 
be indicating that more than one customer could take part in an order. 

You often need to edit the multiplicity values when you create a relationship. 
If all key columns are specified correctly, the system does a good job of setting 
the values automatically. But, read that “if” condition again and you quickly real-
ize that you will have to edit multiplicity values for many of your relationships. 
Double-click the connection line to open the relationship edit window. Figure 
2.5A shows how the selections are displayed. Your form might be slightly differ-
ent from the one shown because the form is dynamic. It looks at the diagram and 
displays the left-most table on the left. If your layout is different, the table names 
will change positions to match your diagram. Every relationship has four values: a 
minimum and maximum on each end of the relationship. These values are set with 

Figure 2.5A
Relationships. Drag the CustomerID column from the Customer table and drop 
it onto the CustomerID column in the Orders table. Then set the minimum and 
maximum values for each side of the relationship. An order must have exactly one 
customer, and a customer can place from zero to many orders. 



104Chapter  2: Database Design

the option buttons. In this case, an order can be placed by exactly one customer, 
so the minimum customer value is one and the maximum value is also one. On the 
other side of the relationship, each customer can place from zero to many orders. 
Some might argue that if a customer has not placed any orders, then he or she is 
only a potential customer, but the difference is not critical to the database design.

The relationship-edit form has a couple of other options. The Connect option 
box is useful when two tables are displayed vertically (above and below, instead 
of the left and right used here). It enables you to specify the preferred side for 
the relationship line (left or right). Look at the boxes containing the CustomerID 
values, and you can use the drop-down lists to change the column matches if you 
made a mistake when you dropped a column while building the relationship. You 
can also create a relationship that connects tables on multiple columns by mov-
ing to a new row and choosing the matching columns. For more complex cases, 
you can click the New button to create multiple relationships between two tables. 
For example, you might need to connect a City.CityID column to both an Order.
DeliveryCity and an Order.BillingCity column. These would be two separate, in-
dependent relationships. None of these more complicated options are needed for 
this example, but it is good to know they exist.

Saving and Opening Solutions
Be sure to save your work as you go. If you wait too long, the Internet connec-
tion will time-out and you might lose your changes. In most cases, if you lose 
your session, you can log in and try again. The first time you save your solution, 
you will be asked to give it a name and a brief description. You can use File/Save 
to create copies with different names—enabling you to save multiple versions of 
your work. Generally, you will only need this approach for complex problems.

Even if you save only one version of your solution, you need to understand the 
File/Open box shown in Figure 2.6A. First, note that you can resize the box by 
dragging its lower right-hand corner. This trick is useful when you have a long 
list of problems or solutions. Second, the list is stored and displayed in a tree hi-

Figure 2.6A
Opening solutions. You can save multiple versions or solutions for any problem. To 
open a saved solution, you have to expand the list by clicking the handle icon in front 
of the problem name.



105Chapter  2: Database Design

erarchy that starts by listing each problem available to you. If you double-click a 
problem (or select one and click the Open button), you will get a blank problem 
where you start over. Sometimes this approach is useful if you really messed up 
an earlier solution. In most cases, you will want to click the handle icon in front of 
the problem name to open the list of solutions you saved for that problem. You can 
open any of the solutions you have saved. 

Grading: Detecting and Solving Problems
You will repeat these same steps to create the database design: add a table, set the 
primary key, add the data columns, and link the tables. The DB Design system 
makes the process relatively easy, and you can drag tables around to display them 
conveniently. You can save your work and come back at a later time to retrieve 
it and continue working on the problem. However, you still do not know if your 
design is good or bad.

Consider adding another table to the sample order problem. Add a table for 
Items and generate a new key column called ItemID. Add the columns for Item-
Description, ListPrice, and QuantityOnHand. The problem you face now is that 
you need to link this new table with the Orders table. But, so far, they do not have 
any related columns. So, as an experiment, try placing the OrderID column into 
the Items table and build a relationship from Items to Orders by linking the Orde-
rID columns, as shown in Figure 2.7A.

At any time, you can ask the server to grade the current design to see if there 
are problems. In fact, it is a good idea to check your work several times as you 
create the tables, so you can spot problems early. Use the Grade option on the 
menu to Grade and Mark the diagram. This option generates a list of comments in 
the bottom window. The Grade to HTML option generates the same list organized 
by tables in a separate window. Both options automatically save your work, so 
you do not need to worry about saving your solution as long as you continue to 
grade it.

As shown in Figure 2.8A, when you grade this problem, you get a reasonably 
good score (88.1). However, there are several important comments. When you 
select (click) a comment, the system highlights the error in the diagram whenever 
possible. Notice the first grade comment about the unused column. If you had oth-
ers, they would also be listed in that message. Clicking that message will cause all 
of the column names to be highlighted in the right-hand side list—making them 
easy to find. 

Figure 2.7A
Creating errors. To demonstrate a potential problem, add the OrderID column to the 
Items table and then link it to the Orders table. 



106Chapter  2: Database Design

You use the error messages to help improve the design. In this case, most of the 
comments indicate there is a problem with the Items table. In particular, the Or-
derID column is presenting a problem. The first couple of questions ask whether 
the key values are correct. The question highlighted at the bottom is important 
because it tells you how to solve the problem. It is asking whether an item can be 
sold on more than one order. Currently, since OrderID is not part of the key, any 
item can be sold only one time. This assumption is extremely restrictive and prob-
ably wrong. The system is telling you that you need a table where both ItemID 
and OrderID are key columns.

At this point, you really should stop and think about this entire section of the 
design. But, see what happens if you just look at the one comment and leap ahead. 
Just make OrderID a key along with ItemID. Figure 2.9A shows the result of this 
change. First, notice that the score actually decreased! The DB Design system is 
still pointing out problems with the keys. In particular, note that ItemID was cre-
ated as a generated key, so it is always guaranteed to be unique. If that is true, then 
you would never need a second key column in the same table. As a side note, ob-
serve that you can use the Ctrl+click approach to highlight several error messages 
at once. The basic problem is that you cannot include the OrderID column in the 
Items table.

The solution is to realize that a relational database cannot support a direct 
many-to-many relationship between two tables (Orders and Items). Instead, you 
must insert a new table between the two. In this case, call it an OrderItems table. 
Then be sure to add the key columns from both of the linked tables (OrderID and 
ItemID). As shown in Figure 2.10A, add both relationships as one-to-many links.

As indicated by the score, this four-table solution is the best database design for 
the typical order problem. The Customers table holds data about each customer. 

Figure 2.8A
Grading the exercise. Click a comment to highlight the table and column causing 
problems. In this case, each ItemID can appear in many Orders, but OrderID is not 
part of the key. Double-click an error message to see more information about the 
error.



107Chapter  2: Database Design

The Items table contains rows that describe each item for sale. The Orders table 
provides the order number, date, and a link to the customer placing the order. The 
OrderItems table represents the repeating section of the order form and lists the 
multiple items being purchased on each order. You should verify that all of the 
data items from the initial form appear in at least one of the tables.

Specifying Data Types
You need to perform one additional step before the database design is complete. 
Eventually, this design will be converted into database tables. When you create 
the tables, you will need to know the type of data that will be stored in each col-
umn. For example, names are text data, and key columns are often 32-bit integers. 
Make sure that all dates and times are given the Date data type. Be careful to 
check when you need floating point versus integer values: use single or double 
depending on how large the maximum value will be. Figure 2.11A shows that you 
set the data type by double-clicking to open the column-edit form.

The default value is text since it is commonly used. Consequently, many col-
umns such as customer name will not need changes. Although there are standard 
names for data types, every DBMS uses its own terms. You can control which 
terms are displayed by setting the target DBMS under the Generate menu com-
mand. This choice makes it easier for you to choose the exact data type for a par-
ticular DBMS. Internally, the DB Design system assigns a generic definition. You 
can use the generic definitions, the SQL standard names, or switch to one of the 
common DBMSs to fine-tune the choice. 

Figure 2.9A
Trying to fix the problems. You could try making OrderID part of the key, but notice 
that the score decreased, so the fix actually made the situation worse. The problems 
with the OrderID and the relationship have not been solved. You can use Ctrl+Click 
to highlight several errors at the same time.



108Chapter  2: Database Design

You can also set default values and constraint rules for the form. Default val-
ues are fairly standard, but the syntax of constraint rules depends heavily on the 
specific target DBMS. These options are provided primarily for when you want to 
generate complete table descriptions. Until you gain experience with your target 
DBMS, you should leave them blank.

Generating Tables
Once you are satisfied with your design, you can use the system to help create 
the tables in your DBMS. Almost all DBMSs support the SQL CREATE TABLE 
command. When you ask DB Design to generate tables, it writes a SQL script that 
you can run to generate the tables within your DBMS. Note that DB Design does 
not actually create the tables inside itself. You need to copy the SQL script and run 
it on your database server. 

Use the Generate/Generate Tables menu command to open a new browser win-
dow with the SQL script. As shown in Figure 2.12A, you can scroll to the bottom 
of the window and change some of the options. For example, you might want to 
change the target DBMS. When you are satisfied with the script, click within the 
script window, press Ctrl+A to select all of the lines, and Ctrl+C to copy the text. 
Open a text editor or a script edit window in your DBMS management tool. Paste 
(Ctrl+V) the script and save it or execute it. If necessary, you can edit the script to 
fine-tune some DBMS-specific options.

If you are using Microsoft Access, read the notes at the top of the script file. 
While Access supports the CREATE TABLE command it does not support script 
files (at least through Office 2010). Consequently, you can only run one CREATE 
TABLE command at a time. Also, you need to hand-edit all of the final relation-
ships inside Access because it does not support the cascade options.

Figure 2.10A
A solution. Add the intermediate table OrderItems and include keys from both tables 
(OrderID and ItemID). Use one-to-many relationships to link it to both tables. Notice 
the difference in the key indicators. The solid red star shows where a key value is 
generated.



109Chapter  2: Database Design

The Generate form contains some additional options. The name delimiter is 
straightforward. You are not allowed to use reserved words or characters in table 
and column names. For instance, column names cannot include spaces. However, 
current DBMSs will allow you to violate these rules if you enclose the name in 
special delimiters. The delimiters vary by DBMS. For example, Microsoft Ac-
cess and SQL Server use square brackets, while Oracle uses double quotes. If you 
enter a delimiter in the box (such as [ or “), the generator will apply it to all table 
and column names. Why does the generator not apply delimiters by default? The 
answer is because delimiters sometimes have other consequences. In particular, 
if you use the double-quote delimiter (“) in Oracle, the table and column names 
become case-sensitive. From that point, every time you reference a table or col-
umn name, you are required to enclose it in quotation marks. When you type SQL 
statements by hand, it is annoying to type all of those quotation marks, so it is 
easier to use well-formed names and avoid the delimiter completely.

Although it is not shown here, a checkbox option has been added to exclude 
the descriptive comments. Most of the time, you should keep the comments as 
documentation of the database design. However, if the comments are excessive or 
intrusive, you can tell the generator to leave them out.

The prefix option needs more explanation than the others. It is included be-
cause of the way DB Design works. In particular, since DB Design displays all 
of the columns in one list, it is helpful to ensure that the names are unique. For 
instance, if you see several columns called LastName, it is not immediately clear 
which entity or table is referenced. Consequently, it is helpful to add a prefix to 
the names to make them unique. For instance, you could have Emp_LastName 
and Cust_LastName. However, when you generate the tables in the DBMS, the 

Figure 2.11A
Data types. Double-click a column name to open the edit window. Set the data type. The 
default is Text, so you do not have to change common columns like the customer name. You 
can also add a description and a default value setting. The Constraint setting has to match the 
format of the target DBMS.



110Chapter  2: Database Design

column will gain the context of the table and the prefix is superfluous and just 
something extra to type (such as Employee.Emp_LastName). If you adopt a con-
sistent naming convention, the generator can automatically remove the prefix. The 
easiest approach is to use an abbreviation of the entity followed by an underscore 
(e.g., Emp_Address, Cust_Address). When you enter the underscore character (_) 
into the prefix box and generate the SQL script, the generator will examine every 
column name and remove all characters that appear before the first underscore 
(and the underscore).

Figure 2.12A
Generate Tables. Choose the Generate/Generate Tables menu option to create a set of SQL 
commands that can be run on your DBMS to build the tables created in the diagram. You can 
choose the target DBMS before running the command or select it on the generated page. Use 
Ctrl+A to select the entire text in the window, then open a text editor or a SQL editor and paste 
the commands with Ctrl+V. 



111

What You Will Learn in This Chapter
•	 Why is database design important?
•	 What is a table and how do you choose keys?
•	 What	are	the	fundamental	rules	of	database	normalization?
•	 How	do	you	begin	analyzing	a	form	to	create	normalized	tables?
•	 How	do	you	create	a	design	in	first	normal	form?
•	 What	is	second	normal	form?
•	 What	is	third	normal	form?
•	 What	problems	exist	beyond	third	normal	form?
•	 How does a database record constraints?
•	 How do business rules change the database design?
•	 What problems arise when converting a class diagram to normalized tables?
•	 What	tables	are	needed	for	the	Sally’s	Pet	Store?
•	 How	do	you	combine	tables	from	multiple	forms	and	many	developers?
•	 How	do	you	record	the	details	for	all	of	the	columns	and	tables?

Introduction, 112
Two-Minute Chapter, 113
Tables, Classes, and Keys, 113

Composite Keys 114
Surrogate Keys 115
Notation 116

Database Normalization: Atomic Values 
and Dependency, 117

Atomic Data Values 117
Dependency 119

Sample	Database	for	Typical	Sales,	121
Initial Objects 122
Initial Form Evaluation 123
Problems with Repeating Sections 
125

First Normal Form, 125
Repeating Groups 125
Multiple Repeating Groups 127
Nested Repeating Groups 127

Second Normal Form, 128
Problems with First Normal Form 128
Second Normal Form Definition 129

Third Normal Form, 132
Problems with Second Normal Form 
132
Third Normal Form Definition 132
Checking Your Work 135

Beyond Third Normal Form, 135
Boyce-Codd Normal Form 136

Fourth Normal Form 137
Domain-Key Normal Form 137
Summary 139

Data Rules and Integrity, 139
The	Effects	of	Business	Rules,	141
Converting a Class Diagram to Normalized 
Tables, 143

One-to-Many Relationships 144
Many-to-Many Relationships 146
N-ary Associations 147
Generalization or Subtypes 149
Composition 150
Recursive (Reflexive) Associations 
151

The Pet Store Example, 151
View Integration, 153

The Pet Store Example 154
Rolling Thunder Sample Integration 
Problem 156

Data Dictionary, 162
DBMS Table Definition 163
Data Volume and Usage 166

 Summary, 168
Key Terms, 170
Review Questions, 170
Exercises, 171
Web	Site	References,	179
Additional Reading, 179
Appendix: Normalization, 180

Chapter Outline

Data Normalization
3Chapter



112Chapter  3:  Data Normalization

A Developer’s View
 Miranda: That was actually fun. I learned a 

lot about the company’s procedures 
and rules. I think I have everything 
recorded properly on the class 
diagram; along with some notes in 
the data dictionary.

 Ariel: Great! We should go to the concert 
tonight and celebrate.

 Miranda: I could use a night off. Maybe 
giving my brain cells a rest will 
help me figure out what to do next.

 Ariel: What do you mean? How much 
longer do you think the project will 
take?

 Miranda: That’s the problem. I put all this 
time in, and I don’t really have a 
start on the application at all.

 Ariel: Well, isn’t the data the most 
important aspect to building a 
database application? I heard that 
database systems are touchy. You 
have to define the data correctly the 
first time; otherwise, you will have 
to start over.

 Miranda: Maybe you’re right. I’ll take the 
night off; then I’ll study these rules 
to see how I can turn the class 
diagram into a set of database 
tables.

Introduction
Why is database design important? A database management system is a power-
ful tool. It provides many advantages over traditional programming and hierarchi-
cal files. However, you get these advantages only if you design the database cor-
rectly. Recall that a database is a collection of tables. The goal of this chapter is to 
show you how to design the tables for your database.

The essence of data normalization is to split your data into several tables that 
will be connected to each other based on the data within them. Mechanically, this 
process is not very difficult. There are perhaps four rules that you need to learn. 
On the other hand, the tables have to be created specifically for the business or 
application that you are dealing with. Therefore, you must first understand the 
business, and your tables must match the rules of the business. So the challenge 
in designing a database is to first understand how the business operates and what 
its rules are. Some of these rules were hinted at in Chapter 2 with the focus on 
relationships. Business relationships (one-to-one and one-to-many) form the 
foundation of data normalization. These relationships are crucial to determining 
how to set up your database. These rules vary from firm to firm and sometimes 
even depend on which person you talk to in the organization. So when you create 
your database, you have to build a picture of how the company works. You talk to 
many people to understand the relationships among the data. The goal of data nor-
malization is to identify the business rules so that you can design good database 
tables.

Getting Started
Refine your table definitions by double-checking the primary keys. 
Then examine each non-key column to ensure that it depends on the 
whole key and nothing but the key. Each table should represent a single 
concept and all business rules should be explicit. There can be no hid-
den dependencies.



113Chapter  3:  Data Normalization

By designing database tables carefully, you (1) save space, (2) minimize dupli-
cation, (3) protect the data to ensure its consistency, and (4) provide faster transac-
tions by sending less data. One method for defining database tables is to use the 
graphical approach presented in Chapter 2 and build a class diagram. A related 
method is to collect the basic paperwork, starting with every form and every re-
port you might use. Then take apart each collection of data and break it down into 
respective tables. Most people find that a combination of both approaches helps 
them find the answer. However, the discussion will begin by describing the two 
methods separately.

Two-Minute Chapter
Database design takes practice and experience. In the end, the design encapsulates 
the rules and relationships in the underlying business problem. Chapter 2 empha-
sized that tables represent business objects and each table must have a primary 
key. Composite keys (multiple columns) in a table indicate many-to-many rela-
tionships. Tables are linked together by the data in keys. For example, The Sale 
table has a primary key of SaleID but CustomerID is a foreign key column in the 
Sale table. This approach saves space and prevents other problems because only 
the CustomerID number is stored for each Sale. Instead of repeating all Customer 
data for every Sale, the number refers back to the detailed information in the Cus-
tomer table. 

When deciding which columns belong in each table, the three primary rules of 
normalization are: (1) each entry must be atomic or single-valued not repeating, 
(2) each non-key column must depend on the whole key, and (3) each non-key 
column must depend on nothing but the key. Another general way to look at the 
problem is to note that there can be no hidden dependencies. If some business 
relationship or rule exists, it needs to be defined as its own table. The hard part is 
identifying these business rules. Some of them can be determined from existing 
forms and data. Others have to be elicited through interviews and discussions with 
managers.

This approach leads to tables that can efficiently store data with minimal prob-
lems. However, you have to carefully evaluate every table, every key, and every 
column. Watch for many-to-many relationships, and understand the concept of 
dependence. 

Tables, Classes, and Keys
What is a table and how do you choose keys? Chapter 2 focuses on identifying 
the business classes and associations. Now, these classes need to be more careful-
ly defined so they can be converted into database tables. Of course, as you modify 
the tables, you will also update the class diagram. The relationships among the 
classes are critical to determining the final form of the tables. These relationships 
are also expressed in terms of the primary keys of the tables. Remember that a 
primary key consists of a collection of columns that uniquely identify each row. 
Since the key must be guaranteed to always be unique, it is common to create a 
new key column that holds generated keys. But, in many cases, you will use mul-
tiple columns to make up the primary key. These situations are important enough 
to require a detailed explanation.



114Chapter  3:  Data Normalization

Composite Keys
In many cases, as you design a database, you will have tables that will use more 
than one column as part of the primary key. These are called composite keys. You 
need composite keys when the table contains a one-to-many or many-to-many 
relationship with another table.

As an example of composite keys, look at the OrderItems table in Figure 3.1. 
These two tables are common in business and they form a master-detail or par-
ent-child relationship. The Orders table is straightforward. It has one column as a 
primary key, where you created the OrderID. This table contains the basic infor-
mation about an order, including the date and the customer. The OrderItems table 
has two columns as keys: OrderID and Item. The purpose of the OrderItems table 
is to show which products the customers chose to buy. In terms of keys the im-
portant point is that each order can contain many different items. In the example 
OrderID 8367 has three items. Because each order can have many different items, 
Item must be part of the key. Reading the table description from left to right you 
can say that each OrderID may have many Items. The “many” says that Item must 
be keyed. What about the other direction in the OrderItems table? Do you really 
need to key OrderID? The answer is yes because the firm can sell the same item to 
many different people (or to the same customer at different times). For example, 
Item 229 appears on OrderIDs 8367 and 8368. Because each item can appear on 
many different orders, the OrderID must be part of the primary key. For compari-
son, reconsider the Orders table in Figure 3.1. Each OrderID can have only one 
Customer, so Customer is not keyed.

To be sure you understand how keys and relationships interact, look again at 
the OrderItems table. Looking at the ItemID column, ask yourself: For each Orde-
rID, can there be one or many ItemIDs? If the answer is many, then ItemID must 
be keyed (underlined). Now, look at OrderID and ask yourself, Can an ItemID 
appear on one or many orders? Again, the answer is many, so OrderID must also 
be keyed. 

Look at the CustomerID column in the Order table and ask, For each order, can 
there be one or many customers? The common business rule says there is only 

Orders

OrderItems

OrderID Date Customer
8367 5-5-04 6794
8368 5-6-04 9263

OrderID Item Quantity
8367 229 2
8367 253 4
8367 876 1
8368 555 4
8368 229 1

Figure 3.1
Composite keys. OrderItems uses a composite key (OrderID + Item) because there is 
a many-to-many relationship. Each order can contain many items (shown by the solid 
arrows). Each item can show up on many different orders (dotted arrows).



115Chapter  3:  Data Normalization

one customer per order, so CustomerID is not part of the primary key. On the 
other hand, because CustomerID is a primary key within the Customer table, it is 
known as a foreign key in the Order table. Think of it as a foreign dignitary visit-
ing a different country (table). It is required in the Order table because it serves as 
a link to the rest of the customer data in the Customer table; but it does not have to 
be a key (king) in that table.

To properly normalize the data and store the data as efficiently as possible, you 
must identify keys properly. Your choice of the key depends on the business rela-
tionships, the terminology in the organization, and the one-to-many and many-to-
many relationships within the company.

Surrogate Keys
It can be difficult to ensure that any real-world data will always generate a unique 
key. Consequently, you will often ask the database system to generate its own 
key values. These surrogate keys are used only within the database and are often 
hidden so users do not even know they exist. For example, the database system 
could assign a unique key to each customer, but clerks would look up customers 
by conventional data such as name and address. Surrogate keys are especially use-
ful when there is some uncertainty with the business key. Think about SalesID or 
PurchaseOrderID which need to be assigned at the time of each sale or purchase. 
How can a person create these to guarantee they are unique? Numbers such as 

Customer

SalesOrder

Salesperson

Item

OrderItem

1
* 1

*
1

1
*

*

Figure 3.2
A small class diagram for a basic order system. The numbers indicate relationships. 
For instance, each customer can place many orders, but a given order can come from 
only one customer.

Customer(CustomerID, Name, Address, City, Phone)
Salesperson(EmployeeID, Name, Commission, Datehired)
SaleOrder(OrderID, OrderDate, CustomerID, EmployeeID)
OrderItem(OrderID, ItemID, Quantity, SalePrice)
Item(ItemID, Description, ListPrice)

Figure 3.3
Table notation. Column details are easier to see in a simple listing of the tables. This 
list is also useful when the tables are entered into the database.



116Chapter  3:  Data Normalization

CustomerID and EmployeeID could be defined by the marketing or HRM depart-
ments, but it is simpler to just let the DBMS create unique values when they are 
needed.

The use of surrogate keys can be tricky when the database becomes large. With 
many simultaneous users, creating unique numbers becomes more challenging. 
Additionally, several performance questions arise involving surrogate keys in 
large databases. For example, a common method of generating a surrogate key is 
to find the largest existing key value and increment it. But what happens if two us-
ers attempt to generate a new key at the same time? A good DBMS handles these 
problems automatically.

Microsoft Access uses the autonumber data type to generate unique numbers 
for key columns. Similarly, SQL Server uses the Identity data type. Oracle has a 
SEQUENCES command to generate unique numbers, but it operates differently 
than the Microsoft approaches. As a programmer, you generate and use the new 
values when a new row is inserted—the process is not automatic (but you can 
automate it with a couple lines of code). There are advantages and drawbacks 
to both approaches. The biggest difficulty with the Microsoft approach is that it 
is sometimes difficult to obtain the new value that was generated when a row is 
inserted. The drawback to the Oracle approach is that you must ensure that all us-
ers and developers use the proper number generation commands throughout the 
application. Additionally, both approaches can cause problems when transferring 
data—particularly to other database systems. 

Generated numbers are even trickier in distributed databases—where new 
numbers must be generated in multiple locations. One approach is to assign differ-
ent ranges to each location so each location generates a different type of number. 
A second approach is the globally-unique identifier (GUID) which is essentially 
a very large random number. Microsoft software has tools for generating 128-
bit GUIDs. Oracle also has functions for generating GUIDs. GUIDs are rarely 
sequential and they are large numbers. The point is that although they are useful 
for creating key values, think of generated keys as random values, and you almost 
always want to hide these numbers from the users.

Notation
A detailed class diagram can describe each table and include all properties within 
each class and marked key columns. The advantage to using class diagrams is that 
they highlight the associations among the classes. Additionally, some people un-
derstand the system better with a visual representation. Figure 3.2 shows a simple 
example class diagram, but it leaves out the properties.

1. Each cell in a table contains atomic (single-valued) data.
2. Each	non-key	column	depends	on	all	of	the	primary	key	

columns	(not	just	some	of	the	columns).
3. Each	non-key	column	depends	on	nothing	outside	of	the	

key columns.

Figure 3.4
The three main rules for data normalization. Essentially, each table has to accurately 
represent the business definitions. Each table represents a single entity and the keys 
accurately identify the entity and represent the one-to-many relationships among the 
attributes.



117Chapter  3:  Data Normalization

The drawback to class diagrams is that they can become very large. By the time 
you get to 30 classes, it is hard to fit all the information on one page. Also, many 
of the association lines will cross, making the diagram harder to read. CASE tools 
help resolve some of these problems by enabling you to examine a smaller section 
of the diagram.

However, you can also use a shorter notation, as shown in Figure 3.3. The nota-
tion consists of a straight listing of the tables. Each column is listed with the table 
name. The primary keys are underlined and generally listed first. This notation 
is easy to write by hand or to type, and it can display many tables in a compact 
space. However, it is hard to show the relationships between the tables. You can 
draw arrows between the tables, but your page can become messy.

Designers frequently create both the class diagram and the list of tables. The 
list identifies all of the columns and the keys. The class diagram shows the rela-
tionships between the tables. The class diagram can also contain additional de-
tails, such as existence constraints and minimum requirements.

Database Normalization: Atomic Values and Dependency
What are the fundamental rules of database normalization? Database re-
searchers have shown that if tables are not designed carefully, several serious 
problems can arise. These problems can be avoided by following some basic 
rules. The primary rules are written as the first three normal forms. Figure 3.4 lists 
the most important rules. These rules are explained in detail in the following sec-
tions. You need to understand each rule in detail because you use them to improve 
your designs and ensure that the tables you create accurately reflect the business 
rules. One way to think about the rules is that every database table represents the 
business rules so that there are no hidden relationships. Everything is spelled out 
correctly in the tables. 

When you first read the rules, they seem slightly confusing because they rely 
on some special terms. In fact, understanding the rules basically comes down to 
understanding two specific concepts: atomicity and dependency. These terms are 
described in this section and the following sections describe how to apply them to 
real-world problems.

Atomic Data Values
The first rule is the easiest to understand and one of the most important. However, 
sometimes it can be tricky to apply. A table cell contains an atomic value if there 
is only a single non-repeating item. Consider a Customer table that shows up in 
most business databases. A Name column in a Customer table can contain only 
one name on each row. That example certainly seems simple. Why would anyone 
ever try to store multiple names in one cell? People have only one name anyway? 
Wait a second. What about first name and last (family) name? If you enter “John 
Doe” into a Name column, is that one name or two? The answer is that it depends 
on how the data will be used. If you want to sort the rows based on last name and 
then first name, you really need to create two columns: LastName and FirstName 
instead of just the Name column. Yes, you could write a special function that 
would split a single name into its two components. But, needing to write special 
functions to extract data from a cell is a major sign that your database is violating 
the rule of atomic data. Now, if the users always look at the entire name as a single 
thing, it is fine to store the entire name in one column. This example highlights 
one of the most important things you need to learn: the database design depends 



118Chapter  3:  Data Normalization

heavily on the business rules and assumptions. In fact, the design is a model of the 
business because the tables, columns, and keys reflect the business rules. 

The Name column is relatively easy. In practice, most designers do split Name 
into LastName and FirstName columns. Now, look at some other columns in the 
potential Customer table. Many companies want to store the customer’s phone 
number, so you can add a Phone column to the table. But once again, you have to 
ask: Can a customer have more than one phone number? Twenty years ago, this 
question was easy to answer as “no,” customers have only one phone number. 
Today, you might want to add a cell phone number or business number. Figure 3.5 
shows how you might add three types of phone numbers to a table. It certainly ap-
pears that each cell contains a single value. However, notice that customers might 
not have all three numbers. Also, what will you do if a customer has a fourth or 
fifth phone number?

CustomerID LastName FirstName Phone Fax CellPhone
15023 Jones Mary 222-3034 222-4094 223-0984
63478 Sanchez Miguel 030-9693 403-4094
94552 O’Reilly Madelline 849-4948 292-3332 139-3831
45791 Stein Marta 294-4421
49004 Brise Mer 764-5103

Figure 3.5
Atomic values for phone numbers. Is phone number atomic (single-valued) or 
repeating? You might add a column for each possible type of phone number. But how 
many customers have each type of phone and what if more types are needed in the 
future?

CustomerID LastName FirstName Phone
15023 Jones Mary 222-3034

222-4094
223-0984

63478 Sanchez Miguel 030-9693
403-4094

94552 O’Reilly Madeline 849-4948
292-3332
139-3831
339-4040

45791 Stein Marta 294-4421
49004 Brise Mer 764-5103

Figure 3.6
Repeating values for phone numbers. Each customer can have from one to many 
phone numbers. This table would be a bad design because it would cause problems 
with retrieving or editing an individual phone number.



119Chapter  3:  Data Normalization

Today, it is possible that phone number is a repeating (or multi-valued) entity. 
Figure 3.6 shows another possible way of looking at the phone number data. At 
least with this approach, you would not have to guess at the number of phone 
number columns. However, it would be difficult to find or edit individual phone 
numbers, so you would never actually store the data this way. You could make do 
with the multiple columns shown in Figure 3.5, but it will waste space when you 
get beyond two or three types of numbers.

So what is a better answer? The solution to each of the normalization steps is 
always the same: Split the table into two tables. In this case, the phone number is 
causing the problem, so you need to put the phone numbers into a separate table. 
The one catch is that you must bring along the key column (CustomerID) so you 
will be able to join the phone numbers back to the customers.

Figure 3.7 shows the resulting two tables. Look at the sample data to see how 
the problems have been solved. Each phone number is listed in a separate row in 
the CustomerPhones table. A customer with a single phone number takes only one 
row of space. Yet, the table can hold data for as many phone numbers per person 
as you will need—even if new phone types are added later. 

The example of phone numbers as repeating data is tricky. Most designers 
would probably choose to go with the method in Figure 3.5 by using multiple 
columns. However, as the number of phone types proliferates, you might need to 
switch to the version in Figure 3.7 to reduce the wasted space. In every case, the 
overtly repeating version in Figure 3.6 would be wrong. Fortunately, most situa-
tions of repeating data are considerably more obvious. Usually, you can identify 
repeating sections of data on a form because multiple lines are provided for enter-
ing data.

Dependency
Although researchers have defined dependency in mathematical terms, the con-
cept is truly an issue of business rules. You can read the formal definitions in 

CustomerID LastName FirstName
15023 Jones Mary
63478 Sanchez Miguel
94552 O’Reilly Madeline
45791 Stein Marta
49004 Brise Mer

CustID PhoneType Phone
15023 Land 222-3034
15023 Fax 222-4094
15023 Cell 223-0984
63478 Land 030-9693
63478 Fax 403-4094
94552 Land 849-4948
94552 Fax 292-3332
94552 Cell 139-3831
94552 Laptop 339-4040
45791 Land 294-4421
49004 Land 764-5103

Figure 3.7
Repeating values for phone numbers. Split the phone numbers into a separate table. 
Include the key (CustomerID) to link back to the original Customer table. 



120Chapter  3:  Data Normalization

the appendix, but the discussion in the chapter focuses on the business rules and 
uses language to explain dependency. If one attribute always identifies a specific 
value for another attribute, the second attribute is said to depend on the first. For 
instance, if someone gives you the CustomerID of 15023, you know that the Last-
Name will always be Jones. It can never be anything else. Hence, LastName de-
pends on CustomerID. Which would mean that CustomerID is a good candidate 
for becoming the primary key. On the other hand, if you were given the LastName 
of Jones, you probably would not be able to identify just one phone number. Jones 
is a fairly common name and the company probably has many customers with that 
name, so many phone numbers would show up for that name. Consequently, it is 
wrong to say that Phone depends on LastName. LastName would be a bad choice 
for a key column.

How do you know when one column depends on another? This question is the 
most difficult problem you face when designing a database. In fact, if someone 
were to tell you every single dependency in a case, it is easy to create the appro-
priate database design. In fact, you could create a program to build the design au-
tomatically (it has been done already). In other words, when you build a database 
design, you are really just identifying the business rules that specify how attributes 
(columns) depend on each other. Did you notice that the original question has not 
been answered? The answer is that you must talk with the users, study the forms 
and reports, and identify the dependency rules specifically for each situation.

To create an example, you need to know the basic business rules. Writing the 
business rules out would give away the answers, so usually you will be asked to 
study forms and reports to identify dependencies. However, you still need to use 
your business judgment. (It truly is important to take all of those other business 
courses—they will help you identify common business rules.) Consider a firm that 
sells products to other companies. Figure 3.8 shows a portion of an order form. 
You need to use your knowledge of common business rules to determine the de-
pendencies among the attributes.

As a first attempt, you might try putting all of the attributes together into a 
single table. The CustomerID looks like it would make a good primary key. But, 
now you have to look at each potential column and ask yourself a basic question: 
(1) For a given value of the CustomerID, can there be more than one value of this 
attribute? If the answer is “yes,” you must move the questioned attribute into a 
new table.

In the customer example, it is clear that the CompanyName depends on the 
CustomerID. The City attribute might be trickier. A customer could have offices in 
several cities. And, it might be critically important to your application to store the 
data this way. However, in many situations you can simply assume that City refers 

CustomerID   Company Name
City
Contact Last Name, First Name
Phone

Figure 3.8
A portion of a form for a firm that sells products to other companies. The 
dependencies among the attributes have to be identified based on common business 
practices.



121Chapter  3:  Data Normalization

to the corporate headquarters in a single city. You should record this assumption 
in your design notes so others can understand your design decisions. The Contact 
last and first names are more important. Although you might currently have only 
one contact at a customer firm, it is more reasonable to assume that in the future 
you will have multiple contacts at a company. From the repeating rule, you need 
to create a new table for the contacts. Figure 3.9 shows the initial tables. Notice 
that CustomerID is not part of the key in the Contact table because each contact 
person works for only one customer.

Now, where do you put the phone number column? This question illustrates 
the concept of dependency. Does the phone depend on (refer to) the customer or a 
contact? Technically, it could refer to either one. Most companies have a primary 
switchboard number that you could call. However, it is a generic number and re-
quires you to go through several steps to find the person you want. It is more 
likely that the users of the system want the phone number of the specific contact 
person so that person can be reached directly. Consequently, Phone depends on 
ContactID and belongs in the Contact table instead of the Customer table. Figure 
3.10 shows the resulting database design section.

Sample Database for Typical Sales
How do you begin analyzing a form to create normalized tables? The best way 
to illustrate data normalization is to examine a sample problem. Remember that 
the results you get (the tables you create) depend heavily on the specific example 
and the assumptions you make. The following example uses a basic Sales Order 
form. The sample data are from fictional sales at a SCUBA dive shop, but the ac-
tual items could be anything and the principles will remain the same.

Customer(CustomerID, CompanyName, City)
Contact(ContactID, CustomerID, LastName, FirstName)

Figure 3.10
The final design with the Customer and Contact tables. The most reasonable 
assumption is to decide that users will want to call contacts directly, so Phone 
depends on ContactID instead of CustomerID.

Figure 3.9
The two main tables for the customer case. The key columns in the Contact table 
reveal that there can be many ContactIDs at each customer, but each contact works 
for only one customer. Where does the phone number belong?



122Chapter  3:  Data Normalization

Figure 3.11 shows a basic sales order form. The main components of the sample 
form are the customer and the items being sold. When the form is built in the 
database, it will automatically keep track of the total amount due. It should also 
automatically assign a SaleID that is unique. The database form will also have 
buttons and drop-down lists to help the user enter data with a minimum of effort. 
For now, as you talk with the manager, you should sketch the desired features of 
the form. Values that can be computed (e.g., subtotals) should be marked, and the 
appropriate equations provided if needed. For the most part you do not want to 
store computed values in the data tables.

Initial Objects
One way to begin the design process is to identify the primary objects on a form. 
This step helps you think about the overall design and provides a start at identify-
ing the tables. A form generally has several obvious entities. In this case, the ob-
vious ones are customers and items. In real life you would also have employees. 
Managers also need to keep track of who purchased specific items. For example, 
if a manufacturer finds a problem with a piece of diving gear, the manager wants 
to send a notice to any customer who purchased that item. Hence you need two 
additional objects. The first is a transaction that records the date and the customer. 
It represents the overall form itself. The second is a list of the items purchased by 
that customer at that time. It represents the repeating section of the form.

Examine the initial objects in Figure 3.12. You need a primary key for custom-
ers (and items). Clearly, Name will not work, but you might consider using the 
Phone number. This approach would probably work, but it might cause some mi-
nor difficulties down the road. For example, if a customer gets a new phone num-
ber, you would have to change the corresponding phone number in every table 
that referred to it. As a primary key, it could appear in several different tables. A 
bigger problem would arise if a customer (Adams) moves, freeing up the phone 
number, which the phone company reassigns to another person (Brown) several 
months later. If Brown opens an account at your store, your database might mis-

SaleID                                                                    Date
Customer
First Name
Last Name
Address
City, State  ZIPCode

ItemID Description List Price Quantity QOH Value

Total

Figure 3.11
Sample sales form. First look for possible keys, keeping in mind that repeating 
sections (one-to-many relationships) will eventually need composite keys.



123Chapter  3:  Data Normalization

takenly identify customer Brown as the customer Adams. The safest approach is 
to have the database create a new number for every customer.

The Item object also needs a key. In practice you might be able to use the prod-
uct identifiers created by the manufacturer. For now, it is easiest to assign a sepa-
rate number. Basic properties include the item description, list price and quantity 
on hand (QOH). More attributes (such as size) can be added later if necessary.

Every transaction must be recorded. The transaction in this case is the entire 
sale. This object refers to the overall sale form and is also assigned a unique key 
value. Remember this approach. Almost all of the problems you encounter will 
end up with a table to hold data for the base form or report.

An important issue in many situations is the presence of a repeating section, 
which can cause problems for storing data. Hence, the section is split from the 
main transaction and stored in its own table. Keys here include the SaleID from 
the Sale table and the ItemID. Note that the key is composite because a many-to-
many relationship exists. A customer can buy many products at one time and a 
product can be purchased (at different times) by more than one customer.

Initial Form Evaluation
Practice is required to identify all of the tables needed for a form or report. In the 
Sales Order example, most people should be able to identify the Customer and 
Item tables. Some will recognize the need for a Sale table. However, the purpose 
of the SaleItems table is not as clear. Fortunately, there is a method to derive the 
individual tables by starting with the entire form and breaking it into pieces. This 
method is the data normalization approach, and it is a mechanical process that fol-
lows from the business assumptions.

Figure 3.13 shows the first step in the evaluation. As you learn normalization, 
you should be careful to write out this first step. As you gain experience, you 
might choose to skip this step. The procedure is to look through the form or report 
and write down everything that you want to store. The objective is to write it in a 
structured format. Give the form a name and list the items as column names. You 
can generally start at the top left of the form and write a column name for each 
data element. Try to list items together that fall into natural groupings—such as all 
customer data. The SaleForm begins with the SaleID, which looks like it would 
make a good key. The SaleDate and CustomerID are listed next, followed by the 

Initial Object Key Sample Properties
Customer Assign CustomerID Name

Address
Phone

Item Assign ItemID Description
List Price
Quantity On Hand

Sale Assign SaleID Sale Date
SaleItems SaleID + ItemID Quantity

Figure 3.12
Initial objects for the sale form. Note that the transaction has two parts, Sale and 
SaleItems because many items can be sold at many different times.



124Chapter  3:  Data Normalization

basic customer data. The next step is slightly more complicated because you have 
to signify that the section with the items contains repeating data. That is, it has 
multiple lines of data or the potential for several similar entries. Repeating data 
represents a one-to-many relationship that must be handled carefully. An easy way 
to signify the repeating section is to put it inside another set of parentheses. Some 
people also list it on a new line.

Observe that the computed total was not included, since it can be recalculated 
as needed. However, in some cases you might want to store computed data. For 
instance, if you compute a sales tax with each order, it is convenient to store the 
computed value. Even though the tax could be recomputed later, changing tax 
rates and round-off differences might lead to errors in the later calculations. The 
reduction in risk is worth the small extra storage of data. However, you should 
mark the items or add a description so you remember they are computed values.

 While you are working on the first step, be sure to write down every item 
that you want to store in the database. In addition, make sure to identify every 
repeating section. Here you have to be careful. Sometimes repeating sections are 
obvious: They might be in a separate section, highlighted by a different color, or 
contain sample data so you can see the repetition. Other times, repeating sections 
are less obvious. For example, on large forms repeating sections might appear on 
separate pages. Other times, some entries might not seem to be repeating. You 
should also try to mark potential keys at this point, both to indicate repeating sec-
tions and to highlight columns that you know will contain unique data. On some 
DBMSs, you can create a pseudo column to define a computed value. This value 
is not actually stored, but recomputed as needed. For instance, the Value column 
could be computed as price times quantity. Finally, when you write down a col-
umn name, you should add it to a data dictionary and record attributes such as the 
data type and which person is responsible for the item.

Total

ValueQOHQuantityList PriceDescriptionItemID

Customer
First Name
Last Name
Address
City, State  ZIPCode

DateSale ID

Total

ValueQOHQuantityList PriceDescriptionItemID

Customer
First Name
Last Name
Address
City, State  ZIPCode

DateSale ID

SaleForm(SaleID, SaleDate, CustomerID, FirstName, LastName, Address, City, State, ZIPCode,
(ItemID, Description, ListPrice, Quantity, QuantityOnHand) )

Identify	potential	keys.
Identify	repeating	groups.

Figure 3.13
Initial form evaluation. Once you have collected basic user forms, you can convert them into 
a more compact notation. The notation makes the normalization steps easier by highlighting 
potential issues.



125Chapter  3:  Data Normalization

Problems with Repeating Sections
The reason you have to be so careful in identifying repeated sections or one-to-
many relationships is that they can cause problems in the database. The situation 
in Figure 3.14 shows what happens when you try to store the data from the form 
exactly the way it is written now. In particular, the repeating section causes prob-
lems. As it is displayed, it results in non-atomic data in the cells because of the 
need to store multiple items for each order. You might try to avoid the problem by 
storing each item in a separate row, but then you would have to duplicate the sale 
and customer data for each item being sold. The other problems with this attempt 
are explained in the next sections, but you might as well solve the problem now. 

Several other problems arise because of this weak design. What do you know 
about products that have not been sold yet? Conversely, what if you delete old 
data, such as all of last year’s sales? As you delete sales, you also delete item and 
customer data. Suddenly, you notice that you deleted half of the customer base. 
Technically, these problems are known as an insertion anomaly and a deletion 
anomaly; that is, when the data is not stored in a proper format, you encounter 
difficulties as you try to add or delete data. These problems arise because you tried 
to store all the data in one table.

First Normal Form
How do you create a design in first normal form? The answer to the problem 
with repeating sections is to put them into a separate table. When all cells contain 
atomic data, (for example, a table has no repeating groups), it is said to be in first 
normal form (1NF). That is, for each cell in a table (one row and one column), 
there can be only one value. This value is atomic in the sense that it cannot be de-
composed into smaller pieces.

Repeating Groups
As shown in some of the prior examples, some repeating groups are obvious. 
Others are more subtle and deciding whether to split them into a separate table 
is more difficult. The first normalization rule is clear: If a group of items repeats, 

SaleForm(SaleID, SaleDate, CustomerID, FirstName, LastName, Address, City, State, ZIPCode,
(ItemID, Description, ListPrice, Quantity, QuantityOnHand) )

3
6

17

2
1
1

215.00
65.00
83.00

Wet suit-S
Mask 1557
Snorkel 95

75
32
57

Dublin333 TamO’ReillyMadeline945527/1711854

15
3

2
1

44.00
215.00

Snorkel 71
Wet suit-S

41
75

60601ILChicago111 ElmJonesMary150237/1611853

15
3

4
1

192.00
91.00

Air Tank
Mask 2020

15
33

Madrid222 OroSanchezMiguel634787/1511852

15
5
6

2
1
1

192.00
251.00
65.00

Air Tank
Regulator
Mask 1557

15
27
32

60601ILChicago111 ElmJonesMary150237/1511851

QOHQuantityListPriceDescriptionItemIDZIPStateCityAddressLastNameFirstNameCIDDateSaleID

3
6

17

2
1
1

215.00
65.00
83.00

Wet suit-S
Mask 1557
Snorkel 95

75
32
57

Dublin333 TamO’ReillyMadeline945527/1711854

15
3

2
1

44.00
215.00

Snorkel 71
Wet suit-S

41
75

60601ILChicago111 ElmJonesMary150237/1611853

15
3

4
1

192.00
91.00

Air Tank
Mask 2020

15
33

Madrid222 OroSanchezMiguel634787/1511852

15
5
6

2
1
1

192.00
251.00
65.00

Air Tank
Regulator
Mask 1557

15
27
32

60601ILChicago111 ElmJonesMary150237/1511851

QOHQuantityListPriceDescriptionItemIDZIPStateCityAddressLastNameFirstNameCIDDateSaleID

Repeating section
Not atomicDuplication

Figure 3.14
Problems with repeating data. Storing repeating data with the main form results in either non-
atomic cells or substantial duplication of data.



126Chapter  3:  Data Normalization

it should be split into a new table. The solution in all cases is the same: Split the 
design into two tables. If repeating groups remain, split the design again.

Return to the scuba store example, as shown in Figure 3.15, and notice the re-
peating section that is highlighted by the parentheses. To split this form, first sepa-
rate everything that is not in the repeating group. These columns might need other 
changes later, but the section contains no repeating groups. Second, put all the 
columns from the repeating item sales section into a new table. However, be care-
ful. When you pull out a repeating section, you must bring down the key from the 
original table. The SaleForm table has SaleID as a primary key. This key, along 
with the ItemID key, must become part of the new table SaleLine. You need the 
Sale key so that the data from the two tables can be recombined later. Note that 
the new table (SaleLine) will always have a composite key—signifying the many-
to-many relationship between sales and items.

Figure 3.16 shows the current design in the database design system. Keep in 
mind that this design is merely the first step. Just glancing at the figure should 
tell you there is a serious problem—because the SaleLine table contains both a 
generated key and a non-generated key column. Remember, because there is a 
many-to-many relationship between Sale and Item, you eventually need a table 

SaleForm(SaleID, SaleDate, CustomerID, FirstName, LastName, Address, City, State, ZIPCode,
(ItemID, Description, ListPrice, Quantity, QuantityOnHand) )

SaleForm2(SaleID, SaleDate, CustomerID, FirstName, LastName, Address, City, State, ZIPCode)

SaleLine(SaleID, ItemID, Description, ListPrice, Quantity, QuantityOnHand)

Figure 3.15
First normal form. All repeating (non-atomic) groups must be split into new tables. Be sure 
that the new table includes a copy of the key from the original table. The table holding the 
repeating group must have a composite key so that the data can be recombined in queries.

Figure 3.16
Current design. Splitting the repeating items into the SaleLine table helps but it does 
not solve all of the problems.



127Chapter  3:  Data Normalization

that contains both SaleID and ItemID as keys. The point to remember is that this 
design is in 1NF, which means it is better than putting everything into a single 
table—but not much better.

Splitting off the repeating groups solves several basic problems. First, it reduc-
es the duplication: You no longer have to enter customer data for every item that 
is sold. In addition, you do not have to worry about allocating storage space: Each 
item sold will be allocated to a new row.

Multiple Repeating Groups
Before looking at the next step in normalization, you should realize that repeating 
sections can be considerably more complicated. Remember that you pick up the 
initial design from forms and reports, and you will be amazed at the complexity 
that can arise on business forms. Two common situations are: (1) independently 
repeating groups, and (2) nested repeating groups.

Many forms will have several different groups that repeat. As shown in Fig-
ure 3.17, if they repeat independently of each other, the split is straightforward; 
each group becomes a new table. Just be careful to include the original key in 
every new table so the tables can be linked together later. Using the base notation, 
groups are independent if the parentheses do not overlap. For example, a more 
complex sales case could have a second repeating group of items that are being 
leased. The leased items would often be stored separately because additional lease 
data is needed for each item.

Nested Repeating Groups
More complicated situations arise when several different repeating groups occur 
within a table—particularly when one repeating group is nested inside another 
group. The greatest difficulty lies in identifying the nested nature of the groups. 
As illustrated in Figure 3.18, after you identify the relationships, splitting the ta-
bles is straightforward. Just go one step at a time, pulling the outermost groups 
first. Always remember to bring along the prior key each time you split the tables. 
So when you pull the second group (Key2 … (Key3 …) ) from the first group 
(Key1 …), the new TableA must include Key1 and Key2. When you pull Table3 
from TableA, you must bring along all the prior keys (Key1 and Key2) and then 
add the third key (Key3).

A more sophisticated sale problem could encounter nested repeating groups. 
For example, the store might sell (and ship) items to several departments for the 

FormA(Key1, Simple Columns, (Group1, A, B, C), (Group2, X, Y) )

MainTable(Key1, Simple Columns)

Group1(Key1, Group1, A, B, C) Group2(Key1, Group2, X, Y)

Figure 3.17
Independent groups. In this example, two groups are repeating independently of each 
other. They are split separately into new tables. Remember to include the original key 
(Key1) in every new table.



128Chapter  3:  Data Normalization

customer. The Sale would be the top level, departments would be next, and in-
dividual sale items would be nested within the departments. The table resulting 
from the innermost nesting would have a primary key consisting of the SaleID, 
Department, and ItemID columns.

Second Normal Form
What is second normal form? It was straightforward to reach first normal form: 
Just identify the repeating groups and put them into their own table that is linked 
to the main table through the initial key. The next step is a little more complicated 
because you have to look at relationships between the key value and the other 
(nonkey) columns in the table. Correct specification of the keys is crucial. At this 
point it would be wise to double-check all the keys to make sure they are unique 
and that they correctly identify many-to-many relationships. In particular, focus 
on tables where the primary key consists of more than one column. Second nor-
mal form is concerned with the situation where a nonkey column depends on only 
part of the key. 

Problems with First Normal Form
It is fairly clear that 1NF is not the final answer. You still face a couple of major 
design issues. The DB Design system highlights some of the issues with the keys 
in the SaleLine group. A generated key must always be the only key column in a 
table, but the SaleLine table needs both SaleID and ItemID as keys. One solution 
might be to just remove the generator from ItemID so it is a simple key column. 
But, if you make that change, where would you get values for the ItemID? The 
problem is that the SaleLine table is trying to do two things: show which items 
were sold and describe individual items. 

You can guess by the temporary names of the tables in Figure 3.15 that first 
normal form might still have problems storing data efficiently. Consider the situa-
tion in Figure 3.19 that illustrates the current Sale Item table. Every time someone 
buys item 15, the database stores the Air Tank description. The problem is that the 
description depends on only part of the key (ItemID). If you know the ItemID, 
you always know the corresponding description. The description does not change 
with every transaction. Beyond the waste of space and clerical time, there is an 

Table (Key1, …,  (Key2, …, (Key3, … ) ) )

Table1(Key1, …) TableA (Key1, Key2, …, (Key3, …) )

Table2(Key1, Key2, …) Table3(Key1, Key2, Key3,  …)

Figure 3.18
Nested repeating groups. Groups are nested when they repeat within another group 
(key3 inside key2 inside key1). Split them in steps: Pull all of group2 from group1, 
then pull group3 from group2. Note that every table will contain the original key 
(key1). With three levels, the final table (Table3) must contain three columns in the 
key.



129Chapter  3:  Data Normalization

additional problem: If an item has not yet been sold, what is its description (and 
price)? Because items are only entered into the database with a transaction, this 
data will not be stored in the database. Similarly, if all the rows for item 15 are 
deleted, you will lose all the associated information about that product.

Second Normal Form Definition
The problem with the preceding example is that once you know the ItemID, you 
always know the description. A one-to-one relationship exists between the ItemID 
and the Description (perhaps many-to-one). As shown in Figure 3.20, the impor-
tant point is that the sale transaction does not matter. If someone buys item 15 in 
June, the description is Air Tank. If someone buys item 15 in December, the de-
scription is still Air Tank. Hence, the description depends on only part of the key 
(the ItemID and not the SaleID). A table is in second normal form (2NF) if every 
nonkey column depends on the entire key (not just part of it). Note that this issue 
arises only for composite keys (with multiple columns). 

The solution is to split the table. Pull out the columns that depend on part of 
the key. Remember to include that part of the key in the new table. The new tables 
(SaleItems and Item) are shown in Figure 3.21. Note that ItemID must be in both 
tables. It stays in the SaleItems table to indicate which items have been purchased 
at each time. It is the primary key in the Item table because it is the unique identi-
fier. Including the column in both tables enables you to link the data together later.

In creating the new Item table, you are faced with the interesting question of 
where to put the price. There are two choices: in the SaleItems table or in the 
Item table. The answer depends on the operations and rules used in the business. 
From a technical standpoint you can choose either table. However, from a busi-
ness standpoint there is a big difference. Consider the case where the price is in 

SaleLine(SaleID, ItemID, Description, ListPrice, Quantity, QuantityOnHand)

17183.00Snorkel 955711854

6165.00Mask 15573211854

32215.00Wet suit-S7511854

31215.00West suit-S7511853

15244.00Snorkel 714111853

3191.00Mask 20203311852

154192.00Air Tank1511852

6165.00Mask 15573211851

51251.00Regulator2711851

152192.00Air Tank1511851

QOHQuantityListPriceDescriptionItemIDSaleID

17183.00Snorkel 955711854

6165.00Mask 15573211854

32215.00Wet suit-S7511854

31215.00West suit-S7511853

15244.00Snorkel 714111853

3191.00Mask 20203311852

154192.00Air Tank1511852

6165.00Mask 15573211851

51251.00Regulator2711851

152192.00Air Tank1511851

QOHQuantityListPriceDescriptionItemIDSaleID

Duplication	for	columns	that	depend	only	on	ItemID

Figure 3.19
Problems with first normal form. This design is in 1NF but it still contains duplicated 
data. Every time an item is sold, the clerk has to reenter its description, list price, and 
quantity on hand. Also, if an item has not yet been sold, what is its ListPrice? The 
problems arise because these columns depend only on the ItemID, not on the SaleID.



130Chapter  3:  Data Normalization

the Item table. This model of the firm says that if you know the ItemID, you al-
ways know the price. In other words, the price is fixed for each item and does 
not change over time. Now consider the interpretation when the price is stored in 
the Item table. Here you are explicitly saying that the price depends on both the 
ItemID and on the specific sale. In other words, for one customer the price for Air 
Tank might be $192, whereas another customer might pay only $175. The price 
difference might arise because you give end-of-season discounts, or if someone 
purchases several items at one time. Most business database designers quickly 
encounter the problem of where to store prices. One solution is to store prices in 
both tables. That is, the price in the Items table (ListPrice) would be the list price 
that the business intends to charge. The price in the SaleItems table would be the 
actual price paid that incorporates various discounts (SalePrice). The key point is 
that the final list of tables depends not just on mechanical rules but is also deter-
mined by the operations of the business. The assumptions you make about how a 
particular business operates determine the tables you get. For now, you will stick 
with the simpler assumption that assigns a fixed ListPrice to each item.

Figure 3.22 gives sample data for the new tables. Notice that 2NF resolves the 
problem of repeating the description each time an item is sold. The base product 
data is stored one time in the Item table. It is referenced in the SaleItem table 
by the ItemID. Looking through the SaleItem table, you can easily get the cor-
responding description by finding the matching ID in the Item table. Chapter 4 
explains how the database query system handles this link automatically. 

SaleLine(SaleID, ItemID, Description, ListPrice, Quantity, QuantityOnHand)

Depends on both SaleID and ItemID

Depend only on ItemID

Figure 3.20
Second normal form definition. Each nonkey column must depend on the entire key. 
It is only an issue with composite keys. The solution is to split off the parts that only 
depend on part of the key.

SaleLine(SaleID, ItemID, Description, ListPrice, Quantity, QuantityOnHand)

SaleItems(SaleID, ItemID, Quantity)

Item(ItemID, Description, ListPrice, QuantityOnHand)

Figure 3.21
Creating second normal form. Split the original table so that the items that depend on only part 
of the key are moved to a separate table. Note that both tables must contain the ItemID key.



131Chapter  3:  Data Normalization

Figure 3.23 shows the current status of the tables in DB Design. The problem 
with the ItemID key has been solved. The ItemID key values are generated in the 
Item table whenever a new product is added to inventory. Every column in the 
Item table depends only on the ItemID key. The ItemID values are used along 
with the SaleID values in the SaleItems table to show exactly which items are 
purchased on each sale. Almost any time you have a many-to-many relationship, 
you will see a similar pattern. One table will be used to generate each key column, 
and the intermediate or junction table will use the two keys to handle the many-to-
many relationship. The challenge is to identify exactly which columns depend on 
both key columns and belong in the intermediate table.

SaleID ItemID Quantity
11851 15 2
11851 27 1
11851 32 1
11852 15 4
11852 33 1
11853 41 2
11853 75 1
11854 75 2
11854 32 1
11854 57 1

SaleItems(SaleID, ItemID, Quantity)

ItemID Description ListPrice QOH
15 Air Tank 192.00 15
27 Regulator 251.00 5
32 Mask 1557 65.00 6
33 Mask 2020 91.00 3
41 Snorkel 71 44.00 15
57 Snorkel 95 83.00 17
75 Wet suit-S 215.00 3
77 Wet suit-M 215.00 7

Item(ItemID, Description, ListPrice, 
QuantityOnHand)

Figure 3.22
Second normal form data. Product items are now stored only one time. Other tables 
(SaleItems) can refer to an item just by its key (ItemID), which provides a link back 
to the Item table. 

Figure 3.23
Second normal form in DB Design. ItemID is generated in a table that only refers to 
items. This value is used along with SaleID in a table that shows which items were 
purchased on each sale. 



132Chapter  3:  Data Normalization

Third Normal Form
What is third normal form? The logic, analysis, and elements of designing for 
third normal form (3NF) are similar to those used in deriving 2NF. In particular, 
you still concentrate on the issue of dependence. With experience, most designers 
combine the derivation of 2NF and 3NF into a single step. Technically, a table in 
3NF must also be in 2NF.

Problems with Second Normal Form
At this point, you need to examine the SaleForm2 table that was ignored in the 
earlier analysis. It is displayed in Figure 3.24. In particular, notice that SaleID is 
the key. The problem can be seen in the sample data. Every time a customer par-
ticipates in a sale, the database stores his or her name, address, and phone number 
again. This unnecessary duplication is a waste of space and probably a waste of 
the clerk’s data entry time. Consider what happens when a customer moves. You 
would have to find the address and change it for every transaction the customer 
had with the store. Likewise, if the customer has not yet purchased any items, 
you do not have a place to store the customer data. Similarly, if you delete old 
transactions from the database, you risk losing customer data. The problem arises 
because you have a hidden dependency. The solution is to make the dependency 
explicit.

Third Normal Form Definition
The problems in the previous section are fairly clear. The customer name, address, 
phone, and so on depend on the CustomerID. Given a specific value for Custom-
erID, you immediately know the rest of the customer data. The problem with the 
design at this point is that CustomerID is not part of the key for the table. In other 
words, some nonkey columns do not depend on the key. So why are they in this 
table? The question also provides the solution. If columns do not depend on the 
primary key, they should be placed in a separate table.

To be in 3NF a table must already be in 2NF, and every nonkey column must 
depend on nothing but the key. In the video example in Figure 3.25, the problem 

Dublin333 TamO’ReillyMadeline945527/1711854

60601ILChicago111 ElmJonesMary150237/1611853

Madrid222 OroSanchezMiguel634787/1511852

60601ILChicago111 ElmJonesMary150237/1511851

ZIPStateCityAddressLastNameFirstNameCustomerIDDateSaleID

Dublin333 TamO’ReillyMadeline945527/1711854

60601ILChicago111 ElmJonesMary150237/1611853

Madrid222 OroSanchezMiguel634787/1511852

60601ILChicago111 ElmJonesMary150237/1511851

ZIPStateCityAddressLastNameFirstNameCustomerIDDateSaleID

SaleForm2(SaleID, SaleDate, CustomerID, FirstName, LastName, Address, City, State, ZIPCode)

Duplication

Figure 3.24
Problems with second normal form. The hidden dependency in the customer data 
leads to duplicating the customer address each time a customer rents videos from the 
store. Similarly, if old transaction rows are deleted, the firm might lose all of the data 
for some customers.



133Chapter  3:  Data Normalization

is that basic customer data columns depend on the CustomerID, which is not part 
of the key.

At first glance, two solutions seem possible: (1) make CustomerID part of the 
key or (2) split the table. If the table is already in 2NF, option (2) is the only 
choice that will work. The problem with the first option is that making Custom-
erID part of the key is equivalent to stating that each transaction can involve many 
customers. This assumption is not likely to be true. However, even if it is, your 
table would no longer be in 2NF, since the customer data would then depend on 

SaleForm2(SaleID, SaleDate, CustomerID, FirstName, LastName, Address, City, State, ZIPCode)

Depend on SaleID

Depend on CustomerID

Figure 3.25
Third normal form definition. This table is not in 3NF since some of the columns 
depend on CustomerID, which is not part of the key.

SaleForm2(SaleID, SaleDate, CustomerID, FirstName, LastName, Address, City, State, ZIPCode)

945527/1711854

150237/1611853

634787/1511852

150237/1511851

CustomerIDDateSaleID

945527/1711854

150237/1611853

634787/1511852

150237/1511851

CustomerIDDateSaleID

Dublin333 TamO’ReillyMadeline94552

Madrid222 OroSanchezMiguel63478

60601ILChicago111 ElmJonesMary15023

ZIPStateCityAddressLastNameFirstNameCustomerID

Dublin333 TamO’ReillyMadeline94552

Madrid222 OroSanchezMiguel63478

60601ILChicago111 ElmJonesMary15023

ZIPStateCityAddressLastNameFirstNameCustomerID

Sale(SaleID, SaleDate, CustomerID)

Customer(CustomerID, FirstName, LastName, Address, City, State, ZIPCode)

Figure 3.26
Third normal form. Putting customer data into a separate table eliminates the hidden 
dependency and resolves the problems with duplicate data. Note that CustomerID remains in 
both tables, but it is still not a key in the Sale table because only one customer participates in a 
given sale.



134Chapter  3:  Data Normalization

only part of the key (CustomerID and not TransID). Hence the correct solution is 
to split the table into two parts: the columns that depend on the whole key and the 
columns that depend on something else (CustomerID).

The solution in the sale example is to pull out the columns that are determined 
by the CustomerID. Remember to include the CustomerID column in both tables 
so they can be relinked later. The resulting tables are displayed in Figure 3.26. 
Notice that CustomerID is not a key in the Sale table because only one customer 
participates in any given sale. Figure 3.26 also illustrates how splitting the tables 
resolves the problems from the hidden dependency.

The final collection of tables is presented in Figure 3.27. This list is in 3NF: 
Each cell is atomic and there are no repeating groups within a table (1NF), and 
each nonkey column depends on the whole key (2NF) and nothing but the key 
(3NF). You can change the layout of the tables, but the relationships remain the 
same. As shown in Figure 3.28, you can also write the list of tables and their 
column names. This approach makes it easy to fit dozens of tables on one page; 
however, the relationships are more difficult to see.

The astute reader should raise a question about the address data. That is, City, 
State, and ZipCode have some type of dependent relationship. Perhaps the Cus-
tomer table is not really in 3NF? In theory, it is true: ZIP codes were created as a 
means to identify locations. The catch is that at a five-digit level, the relationship 
is relatively weak. A ZIP code identifies an individual post office. Each city can 
have many ZIP codes, and a ZIP code can be used for more than one city. At the 
moment, it is true that a ZIP code always identifies one state. However, can you 
be certain that this relationship will always hold—even in an international setting? 
Hence it is generally acceptable to include all three items in the same table. On the 
other hand, as pointed out in the pet store discussion in Chapter 2, there are some 
advantages to creating a separate City table. The most important advantage is that 
you can reduce data entry time and errors by selecting a city from a predefined 
list.

Figure 3.27
Third normal form tables. Each cell is atomic, with no no repeating groups within a 
table, and each nonkey column depends on the whole key and nothing but the key.



135Chapter  3:  Data Normalization

Checking Your Work
At this critical point, you must double-check your work. In large projects it is 
beneficial to have several team members participate in the review to make sure the 
assumptions used in defining the data tables match the business operations.

The essence of data normalization is to collect all the forms and reports and 
then to inspect each form to identify the data that will be stored. Writing the col-
umns in a standard notation makes the normalization process more mechanical, 
minimizing the potential for mistakes. In particular, look for keys and highlight 
one-to-one and one-to-many relationships. To check your work, you need to ex-
amine each table to make sure it demonstrates the assumptions and operations of 
the firm.

To check your tables, you essentially repeat the steps in normalization. First, 
make sure that you have pulled out every repeating group. While you are at it, 
double-check your keys. Be sure you know exactly where each key value is gener-
ated. To verify the key columns, start with the first key column in a table and ask 
yourself if there is a one-to-one or a one-to-many relationship with each of the 
other columns. If it is a one-to-many relationship (or many-to-many), you need 
to underline the column title. If it is one-to-one (or many-to-one), the column in 
question should not be underlined. The second step is to look at each nonkey col-
umn and ask yourself if it depends on the whole key and nothing but the key. 
Third, verify that the tables can be reconnected. Try drawing lines between each 
table. Tables that do not connect with the others are probably wrong. Fourth, ask 
yourself if each table represents a single object. Try giving it a name. If you can-
not find a good single name for the table, it probably represents more than one ob-
ject and needs to be split. Finally, enter sample data for each table and make sure 
that you are not entering duplicate rows. Some underlying problems may become 
obvious when you begin to enter data. It is best to enter test data during the design 
stage, instead of waiting until the final implementation.

Beyond Third Normal Form
What problems exist beyond third normal form? In designing relational data-
base theory, E. F. Codd first proposed the three normalization rules. On examining 
real-world situations, he and other writers realized that additional problems could 
occur in some situations. In particular, Codd’s initial formal definition of 3NF was 
probably too narrow. Hence he and Boyce defined a new version, which is called 
Boyce-Codd normal form (BCNF).

Other writers eventually identified additional problems that could arise and cre-
ated further “normal forms.” If you are careful in designing your database—par-
ticularly in creating keys—you should not have too many problems with these 

Customer(CustomerID, FirstName, LastName, Address, City, State, ZIPCode)
Sale(SaleID, SaleDate, CustomerID)
SaleItems(SaleID, ItemID, Quantity)
Item(ItemID, Description, ListPrice, QuantityOnHand)

Figure 3.28
Third normal form table list. The list is an easy way to fit dozens of tables on a page 
but does not show the relationships.



136Chapter  3:  Data Normalization

issues. However, occasionally problems arise, so a good database designer will 
check for the problems described in the following sections. In particular, in large 
projects with many designers, one member of the team should check the final list 
of tables.

Boyce-Codd Normal Form
You have already seen how problems can arise when hidden dependencies oc-
cur within a table. A secondary relationship between columns within a table can 
cause problems with duplication and lost data. Consider the example in Figure 
3.29, which contains data about employees. From the business rules, it is clear 
that the table is in 3NF. The keys are correct, and from rule (c) the nonkey column 
(Manager) depends on the entire key. That is, each employee can have a different 
manager for each specialty. The problem arises because of business rule (d): Each 
manager has only one specialty. The manager determines the specialty, but since 
Manager can never be a key for the entire table, you have a hidden dependency 
(Manager → Specialty) in the table. A hidden dependency arises when there is a 
functional rule that is not part of the primary key. What if you delete old data rows 
and delete all references to one manager? Then you lose the data that revealed that 
manager’s specialty. BCNF prevents this problem by stating that any dependency 
must be explicitly shown in the keys.

The solution is to add a table to make the dependency explicit. Because 
each specialty can have many managers, the best solution is to add the table 
Manager(Manager, Specialty). Note that technically, you can now remove the 
Specialty column from the original table (and key Manager). Because a manager 
can have only one specialty, as soon as you know the manager, you can use a link 
to obtain the specialty. However, as a designer, you have to question to rules. This 
situation requires some unusual rules. If the manager-specialty rule is relaxed in 
the future, allowing managers to have multiple specialties, you would have to re-
design the tables (and forms and reports). In the example it is not very realistic to 
believe the firm will always have managers with only one specialty. It is better to 
leave the original table and add the new Manager table. Then if the assumptions 
change, you simply need to make Specialty a key in the Manager table. The main 
point is that you have solved the BCNF problem by explicitly recording the hid-
den relationship—so you no longer need to worry about losing important relation-
ships when you delete rows.

Employee-Specialty(EID, Specialty, Manager)

c

d
ab

Figure 3.29
Boyce-Codd normal form. There is a hidden dependency (d) between manager and 
specialty. If we delete rows from the original table, we risk losing data about our 
managers. The solution is to add a table to make the dependency explicit. 

a. Each employee has many specialties
b. Each specialty has many managers
c. Employee + manager is one specialty
d. Each manager has one specialty



137Chapter  3:  Data Normalization

Fourth Normal Form
Fourth normal form (4NF) problems arise when there are two binary relation-
ships, but the modeler attempts to show them as one combined relationship. An 
example should clarify the situation.

In Figure 3.30, employees can have many specialties, and they perform many 
tasks for each specialty. Because all three columns are keyed, the table must be in 
3NF. From the business rules, you can see that the keys are legitimate. However, 
there are really two binary relationships instead of one ternary relationship:  Em-
ployee → Specialty and Employee → Tool.

Since the third business rule specifies that Specialty and ToolID are not directly 
dependent on each other, you need to break up the original table into two tables 
to remove the hidden dependency. The problem you would face with the original 
is that there could be considerable duplication of data if for every employee you 
have to list each tool for every specialty. It is more efficient to list specialties and 
tools separately.

Fourth normal form problems can occur and they can cause problems, so you 
should be able to spot them. The main trick is to watch for hidden dependencies, 
and make sure they are made explicit. 

Domain-Key Normal Form
In 1981 Fagin described a different approach to normalized tables when he pro-
posed the domain-key normal form (DKNF). DKNF describes the ultimate goal 
in designing a database. If a table is in DKNF, Fagin proved that it must also be in 
4NF, 3NF, and all of the other normal forms. The catch is that there is no defined 
method to get a table into DKNF. In fact, it is possible that some tables can never 
be converted to DKNF.

Despite these difficulties, DKNF is important for application developers be-
cause it is a goal to work toward when designing applications. Think of it as driv-
ing to the mall when you do not have exact directions. You can still get there as 
long as you know how to start (1NF, 2NF, and 3NF are well-defined) and can 
recognize the mall when you arrive (DKNF).

The goal of DKNF is to have each table represent one topic and for all the busi-
ness rules to be expressed in terms of domain constraints and key relationships. 

Business rules.
(a) Each employee has many specialties.
(b) Each employee has many tools.
(c) Tools and specialties are unrelated.

EmployeeTasks(EID, Specialty, ToolID)

EmployeeSpecialty(EID, Specialty)
EmployeeTools(EID, ToolID)

Figure 3.30
Fourth normal form. The original table is 3NF because there are no nonkey columns. 
The keys are legitimate, but there is a hidden (multivalued) dependency because 
Specialty and ToolID are unrelated. The solution is to create two tables—one to show 
each of the two dependencies.



138Chapter  3:  Data Normalization

That is, all business rules are explicitly described by the table rules. Domain con-
straints are straightforward—they represent limitations placed on the data held in 
a column. For example, prices cannot be negative.

All other business rules must be expressed in terms of relationships with keys. 
In particular, there can be no hidden relationships. Consider the example in Figure 
3.31, which shows a table that records the tasks performed by employees and the 
tools they used. The primary business rule you were given states that each em-
ployee performs many tasks with many tools, so all three columns need to be part 
of the primary key. The key columns are legitimate and the table is in 3NF. Since 
only one rule (dependency) has been specified, the table is also in BCNF. How-
ever, if you think about the business problem for a few minutes, you can see that 
the table might be used to cover two topics: (1) The tools that employees actually 
used, and (2) The tools that are commonly used for a specific task. Think about 
the problem from the perspective of a novice employee who needs to know which 
tools to pick up for a specific task. You could query the database to see what tools 
other employees used in the past, but there could be considerable variation. Per-
haps there needs to be a second dependency that lists the minimum set of tools 
required for each task. If you know about this rule at the start, you can see that the 
single EmployeeTask table violates BCNF because it ignores a hidden rule. But, 
since the rule was not explicitly stated, you used the DKNF approach to realize 
the initial table was trying to cover two different facts. With this insight, you can 
look harder to identify formal rules. 

This example also shows you the challenge of DKNF. There is no formal meth-
od to arrive at DKNF. To define a set of tables in DKNF, you can start by work-
ing through the 3NF rules. Then look carefully for hidden dependencies and add 
tables to reach BCNF. Then, verify keys and ensure that each table describes a 
single fact, and that facts are stored in only one location. Domain-key normal 
form returns to the beginning of Chapter 2. The goal in designing the database is 
to build a model of the organization, and DKNF clarifies this goal by stating that 
the best database design is one that explicitly states all business rules as database 
rules. 

EmployeeTask(EmployeeID, TaskID, ToolID)

Defined	business	rules
(a)	Each	employee	performs	many	tasks	with	many	tools.

But, maybe you need a second rule.
(b) Each task has commonly used tools.
RequiredTools(TaskID, ToolID)

Figure 3.31
DKNF example. With the stated rule, the tables are in BCNF but might not be in 
DKNF. The initial table combines information about tasks and tools. Maybe there 
is an additional undefined dependency between task and tool, where employees 
commonly use the same tools for each task. 



139Chapter  3:  Data Normalization

In theory, there can be no normal forms beyond DKNF. That is a nice theory, 
but since there is no well-defined way to put a set of tables in DKNF, it is not al-
ways helpful. Several authors have identified other potential problems and derived 
additional versions of normal forms, such as fifth normal form. For the most part 
these definitions are not very useful in practice; they will not be described here. 
You can consult C. J. Date’s textbooks for details and examples of more theoreti-
cal concepts.

Summary
You can review the technical definitions in the appendix for a formal statement of 
the normalization conditions. However, the most important thing to remember is 
that normalization ultimately comes down to properly understanding the business 
rules (dependencies). The first rule is straightforward: Each cell contains atomic, 
non-repeating data. The second and third rule can be summarized by remember-
ing that: Each nonkey column depends on the whole key and nothing but the key. 
(So help me Codd.) BCNF seems slightly trickier, but a simple rule can be used 
to represent the entire process: There must be no hidden dependencies. All depen-
dencies should be explicitly stated within the primary keys.

Data Rules and Integrity
How does a database record constraints? As you talk to users and managers to 
design reports and tables, you also need to think about what business rules need 
to be enforced. One of the goals of a database designer is to ensure that the data 
remains accurate. Many cases have straightforward business rules. For example, 
you typically want to make sure that price is greater than zero. Similarly, you may 
have a constraint that salaries should not exceed some number like $100,000 or 
that the date hired has to be greater than the date the company was founded. These 
data integrity constraints are easy to assign in most databases. Typically, you can 
go to the table definitions and add the simple constraints along with a message. 
The advantage of storing these constraints with the tables is that the DBMS en-
forces the conditions for every operation on the table, regardless of the source or 
method of data entry. No programming is necessary, and the constraint is stored 
in one location. If you need to change the condition, it is readily accessible (to 
authorized users).

A second type of constraint is to choose data from a set of predefined options. 
For example, gender may be listed as male, female, or unavailable. Providing a 
list helps clerks enter data, and it forces them to enter only the choices provided. 
For instance, you do not have to worry whether someone might enter f, F, or fem. 
The data is more consistent.

A third type of data integrity is a bit more complicated but crucial in a relation-
al database. The tables are nicely organized with properties that ensure efficient 
storage of the data. Yet you need to be able to reconnect the data in the tables to 
get the reports and forms the users need. Consider the sale example in Figure 3.32 
when a clerk enters a customer number in the Sale table. What happens if the clerk 
enters a customer number that does not exist in the Customer table? If you want 
to check later on customer purchases, you will be unable to find matching data for 
that customer. Hence you need a constraint to ensure that when a customer num-
ber is entered into the Sale table that number must already exist in the Customer 
table. The CustomerID in the Sale table is a foreign key in that table, and the 
constraint you need is known as referential integrity. Referential integrity exists 



140Chapter  3:  Data Normalization

when a value for a foreign key can be entered only if the corresponding value al-
ready exists in the originating table.

Essentially, once you define the relationship between tables, you can tell the 
DBMS to enforce referential integrity. The method for defining referential integ-
rity depends on the specific DBMS. Generally, the constraint is specified in the 
CREATE TABLE command. Most relational databases also support cascading 
delete, which uses the same concepts. If a user deletes a row in the Customer 
table, you also need to delete the related entries in the Sale table. Then you need to 
delete the corresponding rows in the SaleItems table. If you build the relationships 
and specify cascade on delete, the database will automatically delete the related 

SaleID SaleDate CID …
1173 1/4 321
1174 1/5 938
1185 1/8 337
1190 1/9 321
1192 1/9 776

Sale

CID Name Phone …
321 Jones 998-
337 Sanchez 773-
938 Carson 873-

Customer

No	data	for	this
customer yet!

Simple business rules
 Limits on data ranges
  Price > 0
  Salary < 100,000
  DateHired > 1/12/1995
	 Choosing	from	a	set
  Gender = M, F, Unknown
  Jurisdiction=City, County, State, Federal

Referential	Integrity
Foreign key values in one table must exist 
in the master table.

 Sale(SaleID, SaleDate, CID,…)
 CID must exist in the customer table.

Figure 3.32
Data integrity. Integrity can be maintained by simple rules. Relational databases 
rely on referential integrity constraints to ensure that customer data exists before the 
customer number can be entered in the Rental table.

CREATE TABLE Sale
(  SaleID           Integer NOT NULL,
   SaleDate       Date,
   CustomerID   Integer,
					CONSTRAINT	pk_Sale	PRIMARY	KEY	(SaleID),
					CONSTRAINT	fk_SaleCustomer	FOREIGN	KEY	(CustomerID)
       REFERENCES Customer (CustomerID)
       ON DELETE CASCADE
)

Figure 3.33
SQL referential integrity definition. In the Sale table, declaring a column as a foreign 
key tells the DBMS to check each value in this table to find a matching value in the 
referenced (e.g., Customer) table.



141Chapter  3:  Data Normalization

rows when a user deletes an entry in the Customer table. These actions maintain 
the consistency of the database by ensuring that links between the tables always 
refer to legitimate rows.

Oracle and SQL Server support referential integrity by declaring a foreign key 
when you create a table. Figure 3.33 shows the command that can be used to cre-
ate a Sale table with three columns. The company wants to make sure that all or-
ders are sent to legitimate customers, so the customer number (CustomerID) in the 
Sale table must exist in the Customer table. The foreign key constraint enforces 
this relationship. The constraint also specifies that the relationship should handle 
cascading deletes. Oracle and SQL Server use the standard SQL language to cre-
ate tables. 

When you start to enter data into a DBMS, you will quickly see the role played 
by referential integrity. Consider two tables: Sale(SaleID, SaleDate, CustomerID) 
and Customer(CustomerID, Name, Address, etc.). You have a referential integrity 
constraint that links the CustomerID column in the Sale table to the CustomerID 
column in the Customer table. As you enter sample data, begin with the Sale table. 
The DBMS will not accept any data—because the corresponding CustomerID 
must already exist in the Customer table. That is, the referential integrity rules 
force you to enter data in a certain order. Clearly, these rules would present prob-
lems to users, so you cannot expect users to enter data directly into tables. Chap-
ters 6, 7, and 8 explain how forms and applications will automatically ensure that 
the user enters data in the proper sequence.

The Effects of Business Rules
How do business rules change the database design? It is important to under-
stand how different business rules affect the database design and the normalization 
process. As a database designer, you must identify the basic rules and build the da-
tabase to match them. However, be careful because business rules can change. If 
you think a current business rule is too restrictive, you should design the database 
with a more flexible structure.

Location
Date Played

Referee	Name
Phone Number, Address

Team 1
Name
Sponsor

Score Team 2
Name
Sponsor

Score

Player 
Name

Phone Age Points Penal. Player 
Name

Phone Age Points Penal.

Figure 3.34
Database design for a soccer league. The design and normalized tables depend on the 
business rules. Some of the rules are shown on the form.



142Chapter  3:  Data Normalization

Consider the example shown in Figure 3.34. The local parks and recreation 
department runs a soccer league and collects basic statistics at the end of every 
match. You need to design the data tables for this problem.

To illustrate the effect of different rules, consider the two main rules and the 
resulting tables displayed in Figure 3.35. The first rule states that there can be only 
one referee per match. Hence the RefID can be placed in the Match table. Note 
that it is not part of the primary key. The second rule states that a player can play 
on only one team; therefore, the appropriate TeamID can be placed in the Player 
table.

Now consider what happens if these two rules are relaxed as shown in Figure 
3.36. The department manager believes that some day there might be several ref-
erees per match. Also, the issue of substitute players presents a problem. A sub-
stitute might play on several different teams in a season—but only for one team 
during a match. To handle these new rules, the key values must change. You might 
be tempted to make the simple changes indicated in Figure 3.36; that is, make Re-
fID part of the key in the Match table and make TeamID part of the primary key in 
the Player table. Now each Match can have many Referees, and each Player can 
play on many teams. The problem with this approach is that the Match and Player 

There	is	one	referee	per	match.
A player can play on only one team.

Match(MatchID,	DatePlayed,	Location,	RefID)
Score(MatchID, TeamID, Score)
Referee(RefID, Phone, Address)
Team(TeamID, Name, Sponsor)
Player(PlayerID, Name, Phone, DoB, TeamID)
PlayerStats(MatchID, PlayerID, Points, Penalties)

Figure 3.35
Restrictive rules. With only one referee per match, the referee key is added to the 
Match table. Similarly, the TeamID column is placed in the Player table.

There	can	be	several	referees	per	match.
A player can play on several teams (substitute), but only one team per match.

Match(MatchID, DatePlayed, Location, RefID)
Score(MatchID, TeamID, Score)
Referee(RefID, Phone, Address)
Team(TeamID, Name, Sponsor)
Player(PlayerID, Name, Phone, DoB, TeamID)
PlayerStats(MatchID, PlayerID, Points, Penalties)

Figure 3.36
Relaxing the rules to allow many-to-many relationships. You might try to make the 
RefID and TeamID columns part of the primary key, but the resulting tables are not 
in 3NF. Location does not depend on RefID, and Player Name does not depend on 
TeamID.



143Chapter  3:  Data Normalization

tables are no longer in 3NF. For example, DatePlayed does not depend on RefID. 
Likewise, Name in the Player table does not depend on the TeamID. For example, 
Paul Ruiz does not change his name every time he plays on a different team.

The solution is displayed in Figure 3.37. A new table is added to handle the 
many-to-many relationship between referees and matches. Similarly, the player’s 
TeamID is moved to the PlayerStats table, but it is not part of the primary key. In 
this solution, each match has many players, and players can participate in many 
matches. Yet, for each match, each player plays for only one team. This new da-
tabase design is different from the initial design. More importantly it is less re-
strictive. As a designer, you must look ahead and build the database so that it can 
handle future needs of the department.

Which of these database designs is correct? The answer depends on the needs 
of the department. In practice, it would be wiser to choose the more flexible de-
sign that can assign several referees to a match and allows players to substitute 
for different teams throughout the season. However, in practice you should make 
one minor change to this database design. If no matches have been played, how do 
you know which players are on each team? As it stands, the database cannot an-
swer this question. The solution is to add a BaseTeamID to the Player table. At the 
start of the season, each team will submit a roster that lists the initial team mem-
bers. Players can be listed on only one initial team roster. If someone substitutes 
or changes teams, the data can be recorded in the PlayerStats table.

Converting a Class Diagram to Normalized Tables
What problems arise when converting a class diagram to normalized tables? 
Each normalized table represents a business entity or class. Hence a class diagram 
can be converted into a list of normalized tables. Likewise, a list of normalized 
tables can be drawn as a class diagram. Technically, the entities in a class diagram 
do not have to be in 3NF (or higher). Some designers use a class diagram as an 
overview, or big picture, of the business, and they leave out some of the normal-
ized details. In this situation you will have to convert the classes into a list of nor-
malized tables. As noted in Chapter 2, some features commonly arise on a class 
diagram, so you should learn how to handle these basic conversions.

There	can	be	several	referees	per	match.
A player can play on several teams (substitute), but only one team per match.

Match(MatchID, DatePlayed, Location)
RefereeMatch(MatchID, RefID)
Score(MatchID, TeamID, Score)
Referee(RefID, Phone, Address)
Team(TeamID, Name, Sponsor)
Player(PlayerID, Name, Phone, DoB)
PlayerStats(MatchID, PlayerID, TeamID, Points, Penalties)

Figure 3.37
Relaxing the rules and normalizing the tables. The RefereeMatch table enables the 
department to have more than one referee per match. Moving the TeamID to the 
PlayerStats table indicates that someone can play for more than one team—but for 
only one team during a given match.



144Chapter  3:  Data Normalization

The most challenging problems you will encounter are from class diagrams 
that utilize object-oriented features, such as subclasses and composition. Some 
relational database systems have added object-oriented features to make it easier 
to handle these issues. For example, you can store object data in a cell. How-
ever, storing object data (including XML) in a cell often violates the first rule of 
normalization. From the database perspective, the data is no longer atomic, but 
requires special routines to examine and compare the data within a cell. Some-
times it makes sense to use these extensions, but you will have to weigh the trad-
eoffs. For example, most systems enable you to define customized data types. A 
common use is for spatial data where a location is stored as a single GPS (lati-
tude, longitude, and altitude) coordinate instead of three separate columns. For the 
approach to be successful, you (or the DBMS vendor) need to write customized 
functions to use this new object type. Some objects, such as location, are com-
monly used by many organizations, so it does make sense. Other, highly custom-
ized objects, could require considerable additional effort, and you need to evaluate 
the tradeoffs before creating the custom objects.

Figure 3.38 illustrates a typical class diagram for a purchase order with four 
basic types of relationships: (1) a one-to-many relationship between supplier and 
the purchase order, (2) a many-to-many relationship between the purchase order 
and the items, (3) a subtype relationship that contains different attributes, and (4) 
a recursive relationship within the Employee entity to indicate that some employ-
ees are managers of others.

One-to-Many Relationships
The most important rule in converting class diagrams to normalized tables is that 
relationships are handled by placing a common column in each of the related ta-
bles. This column is usually a key column in one of the tables. This process is 
easy to see with one-to-many relationships.

The purchase order example has two one-to-many relationships. (1) Many dif-
ferent purchase orders can be sent to each supplier, but only one supplier appears 
on a purchase order. (2) Each purchase order is created by only one employee, but 

Supplier Purchase
Order

Item

Raw
Materials

Assembled
Components

Office
Supplies

Employee

Manager

1 * 1*

*

*

1*

Figure 3.38
Converting a class diagram to normalized tables. Note the four types of relationships: 
(1) one-to-many,  (2) many-to-many,  (3) subtype, and (4) recursive.



145Chapter  3:  Data Normalization

Supplier Purchase
Order

1 *

Supplier(SID, Name, Address, City, State, Zip, Phone)
Employee(EID, Name, Salary, Address, …)

PurchaseOrder(POID, Date, SID, EID)

Employee
1*

Figure 3.39
Converting one-to-many relationships. Add the primary key from the one-side into 
the many-side table. In the example SID and EID are added to the PurchaseOrder 
table. Note that they are not primary keys in the PurchaseOrder table.

33588729/1122237
22178319/1022236
55456769/1022235
22156769/922234
EIDSIDDatePOID

33588729/1122237
22178319/1022236
55456769/1022235
22156769/922234
EIDSIDDatePOID

316-999-331267209KSWichita773 PoplarSwensen8872
601-333-993239205MSJackson873 HickoryPaniche7831
617-222-999902109MABoston938 OakMarkle6731
515-777-898850010IAAmes123 ElmJones5676
PhoneZipStateCityAddressNameID

316-999-331267209KSWichita773 PoplarSwensen8872
601-333-993239205MSJackson873 HickoryPaniche7831
617-222-999902109MABoston938 OakMarkle6731
515-777-898850010IAAmes123 ElmJones5676
PhoneZipStateCityAddressNameID

Supplier

Employee

Purchase Order

440 E. 520035,000Johnson554
37 W. 720082,000Sanchez335
223 W. 230067,000Smith221
AddressSalaryNameEID

440 E. 520035,000Johnson554
37 W. 720082,000Sanchez335
223 W. 230067,000Smith221
AddressSalaryNameEID

Figure 3.40
Sample data for one-to-many relationships. The Supplier and PurchaseOrder tables 
are linked through the SID column. Similarly, the Employee table is linked through 
the data in the EID column. Both the SID and EID columns are foreign keys in the 
PurchaseOrder table, but they are not primary keys in that table.



146Chapter  3:  Data Normalization

an employee can create many purchase orders. To create the normalized tables, 
first create a primary key for each entity (Supplier, Employee, and PurchaseOr-
der). As shown in Figure 3.39, the normalized tables can be linked by placing 
the Supplier key (SID) and Employee key (EID) into the PurchaseOrder table. 
Note carefully that all class diagram associations are expressed as relationships 
between keys.  

 Note also that SID and EID are not key columns in the PurchaseOrder table. 
You can verify which columns should be keyed. Start with the POID column. 
For each PurchaseOrder (POID), how many suppliers are there? The business rule 
says only one supplier for a purchase order; therefore, SID should not be keyed, 
so do not underline SID. Now start with SID and work in the other direction. For 
each supplier, how many purchase orders are there? The business rule says many 
purchase orders can be sent to a given supplier, so the PID column needs to be a 
key. The same process indicates that EID should not be a key; it belongs in the 
PurchaseOrder table, since each Employee can place many orders. Figure 3.40 
uses sample data to show how the tables are linked through the key columns.

Many-to-Many Relationships
Overview class diagrams often contain many-to-many relationships. However, in 
a relational database many-to-many relationships must be split into two one-to-
many relationships to get to BCNF. Figure 3.41 illustrates the process with the 
PurchaseOrder and Item tables.

Each of the two initial entities becomes a table (PurchaseOrder and Item). The 
next step is to create a new intermediate table (POItem) that contains the primary 
keys from both of the other tables (POID and ItemID). This table represents the 
many-to-many relationship. Each purchase order (POID) can contain many items, 
so ItemID must be a key. Similarly, each item can be ordered on many purchase 
orders, so POID must be a key. Think of the PurchaseOrder and Item tables as the 
base tables that generate the purchase order and item data respectively. If you use 
generated key columns, new key values will be generated within those two tables 
when rows are added. The POItem table links the other two by using the existing 
key values. It indicates the individual items being purchased on a specific order.

 You must have a table that contains both POID and ItemID as keys. Can you 
create this relationship without creating a third table? In most cases the answer is 

Purchase
Order

Item

*

*

PurchaseOrder(POID, Date, SID, EID)

POItem(POID, ItemID, Quantity, PricePaid)

Item(ItemID, Description, ListPrice)

*

*
1

1

Purchase
Order

Item

*

*

POItem

1

1

Figure 3.41
Converting a many-to-many relationship. Many-to-many relationships use a new, 
intermediate table to link the two tables. The new POItem table contains the primary 
keys from both the PurchaseOrder and Item tables.



147Chapter  3:  Data Normalization

no. Consider what happens if you try to put the ItemID column into the Purchase-
Order table and make it part of the primary key. The resulting entity would not be 
a 3NF table, because Date, SID, and EID do not depend on the ItemID. A similar 
problem arises if you try to place the POID key into the Item table. Hence the in-
termediate table is required. Figure 3.42 uses sample data to show how the three 
tables are linked through the keys.

N-ary Associations
As noted in Chapter 2, n-ary associations are denoted with a diamond. This dia-
mond association also becomes a class. In a sense, an n-ary association is simply 
a set of several binary associations. As shown in Figure 3.43, the new association 
class holds the primary key from each of the other classes. As long as the binary 
associations are one-to-many, each column in the Assembly class will be part of 
the primary key. If for some reason a binary association is one-to-one, then the 
corresponding column would not be keyed.

33588729/1122237

22178319/1022236

55456769/1022235
22156769/922234

EIDSIDDatePOID

33588729/1122237

22178319/1022236

55456769/1022235
22156769/922234

EIDSIDDatePOID

5800.00155598222236

150.001055582822236

24.00444418522235

25.00144418522234
2.00344409822234

PriceQuantityItemIDPOID

5800.00155598222236

150.001055582822236

24.00444418522235

25.00144418522234
2.00344409822234

PriceQuantityItemIDPOID

Purchase Order

Item

POItem

152.00Brake assembly888371

5928.00Sheet steel555982

158.00Wire555828

28.00Paper444185
2.00Staples444098

ListPriceDescriptionItemID

152.00Brake assembly888371

5928.00Sheet steel555982

158.00Wire555828

28.00Paper444185
2.00Staples444098

ListPriceDescriptionItemID

Figure 3.42
Sample data for the many-to-many relationship. Note that the intermediate POItem 
table links the other two tables. Verify that the three tables are in 3NF, where each 
nonkey column depends on the whole key and nothing but the key.



148Chapter  3:  Data Normalization

Employee
*EmployeeID
Name
...

Component
*CompID
Type
Name

Product
*ProductID
Type
Name

*
* *

Assembly

Assembly
*EmployeeID
*CompID
*ProductID

1

1

1

…Maria Rio12

…Joe Jones11

…NameEmployeeID

…Maria Rio12

…Joe Jones11

…NameEmployeeID

CamaroB17A5411

CorvetteX32A3222

NameTypeProductID

CamaroB17A5411

CorvetteX32A3222

NameTypeProductID

Trunk handleT54888

Trunk hingeH33883

Door hingeH32882

MirrorM15872

WheelW32563

NameTypeCompID

Trunk handleT54888

Trunk hingeH33883

Door hingeH32882

MirrorM15872

WheelW32563

NameTypeCompID

A541188312

A322288212

A322256312

A541156311

A322287211

A322256311

ProductIDCompIDEmployeeID

A541188312

A322288212

A322256312

A541156311

A322287211

A322256311

ProductIDCompIDEmployeeID

Figure 3.43
N-ary association. The Assembly association is also a class. It can be modeled as 
a set of binary (one-to-many) associations. The primary key from each of the main 
classes is included in the new Assembly class.

Item

Raw
Materials

Assembled
Components

Office
Supplies

Item(ItemID, Description, ListPrice)
RawMaterials(ItemID, Weight, StrengthRating)
AssembledComponents(ItemID, Width, Height, Depth)
OfficeSupplies(ItemID, BulkQuantity, Discount)

Figure 3.44
Converting subtypes. Every item purchased has basic attributes, which are recorded 
in the Item table. Each item can be placed in one of three categories, which have 
different attributes. To convert these relationships to 3NF, create new tables for each 
subtype. Use the same key in the new tables and in the generic table. Add attributes 
specific to each of the subtypes.



149Chapter  3:  Data Normalization

Generalization or Subtypes
Some business entities are created as subtypes. Figure 3.44 illustrates this rela-
tionship with the Item entity. An item is a generic description of something that is 
purchased. Every item has a description and a list price. However, the company 
deals with three types of items: raw materials, assembled components, and office 
supplies. Each of these subtypes has some additional properties that you wish to 
track. For example, the company tracks the weight of raw materials, the dimen-
sion of assembled components, and quantity discounts for office supplies.

Two basic approaches exist for converting this design to a relational database. 
(1) If subtypes are similar, you could ignore the subclasses and compress all the 
subclasses into the main class that would contain every property for all of the sub-
classes. In this case each item entry would have several null values. (2) In most 
cases a better approach is to create separate tables for each subclass. Each table 
will contain the primary key from the main Item class.

As shown in Figure 3.45, each item has an entry in the Item table. The Item ta-
ble contains attributes that apply to all of the subtypes (Description and ListPrice). 
Each item also has an entry in one of the three subtype tables, depending on the 
specific type of item. For example, item 444098 is described in the Item table and 

152.00Brake assembly888371

5928.00Sheet steel555982

158.00Wire555828

28.00Paper444185
2.00Staples444098

ListPriceDescriptionItemID

152.00Brake assembly888371

5928.00Sheet steel555982

158.00Wire555828

28.00Paper444185
2.00Staples444098

ListPriceDescriptionItemID

83212578555982
200057555828

StrengthRatingWeightItemID

83212578555982
200057555828

StrengthRatingWeightItemID

1.531888371

DepthHeightWidthItemID

1.531888371

DepthHeightWidthItemID

Item

RawMaterials

AssembledComponents

OfficeSupplies

15%10444185
10%20444098

DiscountBulkQuantityItemID

15%10444185
10%20444098

DiscountBulkQuantityItemID

Figure 3.45
Sample data for the subtype relationships. Notice how each Item has an entry in the 
Item table and a row in one of the three subtype tables.



150Chapter  3:  Data Normalization

has additional data in the OfficeSupplies table. If the subclass relationships are not 
mutually exclusive, then each main item can have a matching row in more than 
one of the subclass tables.

In most cases, it is simpler to ignore the subtypes and put all of the columns 
into the single Item table. However, lumping the subtypes together could result in 
a large number of null values. If the amount of wasted space becomes a significant 
issue, or if you need to assign control of each subtype to a different department, 
you will need to create the separate tables. The major DBMSs have the ability 
to define subtables and can process queries with this structure automatically. If 
subtables are not available, or you choose not to use them, you will have to write 
queries to join the subtype tables back to the Item table.

Composition
In some ways composition is a combination of an n-ary association and sub-
types. Consider the bicycle example in Figure 3.46, in which a bicycle is built 
from various components. The first decision to make is how to handle the many 
components. It is a question of subtypes. In this situation the business keeps al-
most identical data for each component (ID number, description, weight, cost, 
list price, and so on). Hence a good solution is to compress each subtype into a 
generic Component class. However, it would also make sense to handle wheels 
separately because they are a more complex component that is often built from 
other components.

You can solve the main composition problem by creating properties in the main 
Bicycle table for each of the component items (WheelID, CrankID, StemID, and 
so on). These columns are foreign keys in the Bicycle table (but not primary keys). 
When a bicycle is built, the ID values for the installed components are stored in 
the appropriate column in the Bicycle table. You can find more details by examin-
ing the actual Rolling Thunder database.

Bicycle

Size
Model Type
…

Wheels

Crank

Stem

Bicycle
SerialNumber

ModelType

WheelID

CrankID

StemID

…

Components
ComponentID

Category

Description

Weight

Cost

Figure 3.46
Normalizing a composition association. First decide how to handle the subclasses. 
In this case they are combined into one Components table. Second, handle the 
composition by storing the ComponentID and the SerialNumber as keys in a new 
junction table.



151Chapter  3:  Data Normalization

Recursive (Reflexive) Associations
Occasionally, an entity may be linked to itself. A common example is shown in 
Figure 3.47, where employees have managers. Because managers are also em-
ployees, the entity is linked to itself. This relationship is easy to see when you 
create the corresponding table. Simply add a Manager column to the Employee 
table. The data in this column consists of an EID. For example, the first employee 
(Smith, EID 221) reports to manager 335 (Sanchez). Is the Manager column part 
of the primary key? No, because the business rule states that each employee can 
have only one manager.

How would you handle a situation in which an employee can have more than 
one manager? Key the Manager column? That would cause other problems, be-
cause the Employee table would not be in BCNF (an employee’s address would 
not depend on the manager). The solution is to create a new table that lists Em-
ployeeID and ManagerID—both part of the primary key. The new table would 
probably have additional data to describe the relationship between the employee 
and the manager, such as a project or task.

The Pet Store Example
What tables are needed for the Sally’s Pet Store? To design the Sally’s Pet 
Store database, you talk to the owner and investigate the way that other stores op-
erate. In the process you collect ideas for various forms so you can learn the busi-
ness rules. To expedite the development and hold down costs, you and Sally agree 
to begin with a simplified model and add features later. The sales form sketched 
in Figure 3.48 contains the primary data that will be needed when sales are made.

Sally wants you to create separate purchase orders for animals and products. 
She has repeatedly emphasized the importance of collecting detailed animal data. 
Eventually, Sally would also like to get medical records for the animals adopted 
through the store. Common data would include their shots, any illnesses, and any 

Employee

Employee(EID, Name, Salary, Address, Manager)

335440 E. 520035,000Johnson554
37 W. 720082,000Sanchez335

335223 W. 230067,000Smith221
ManagerAddressSalaryNameEID

335440 E. 520035,000Johnson554
37 W. 720082,000Sanchez335

335223 W. 230067,000Smith221
ManagerAddressSalaryNameEID

Employee worker
1…*

manager 0…1

managed by

Figure 3.47
Converting recursive relationships. An employee can have only one manager, so 
add a Manager column to the Employee table which contains the EID to point to the 
manager. In the example, Smith reports to Manager 335 (Sanchez).



152Chapter  3:  Data Normalization

medications or treatments they have received. For now, she is relying on the adop-
tion groups to keep this information. However, once the sales and basic financial 
applications have been created, she wants to add these features to the database.

For the moment the most important job is to collect the transaction data. The 
design should make it easy to add new attributes for all of the major entities. It 
should also be easy to add new tables (such as health records) without making ma-
jor alterations to the initial structure. In addition to sales, purchasing merchandise 
from suppliers is the other big transaction event.

A sample purchase order form is shown in Figure 3.49. Again, remember that 
Sally wants to start with a small database. Later you will have to collect additional 
data. For example, what happens if an order arrives and some items are missing? 
The current form can only record the arrival of the entire shipment. Similarly, 
each supplier probably uses a unique set of Item numbers. For example, a case of 
cat food from one supplier might be ordered with ItemID 3325, but the same case 
from a different supplier would be ordered with ItemID A9973. Eventually, Sally 
will probably want to track the numbers used by her major suppliers. That way, 
when invoices arrive bearing their numbers, matching the products to what she 
ordered will be easier.

The next step in designing the Pet Store database is to take each form and cre-
ate a list of normalized tables that will be used to hold data for that form. Figure 
3.50 shows the tables that were generated from the Sales form. Before examin-
ing the results in detail, you should attempt to normalize the data yourself. Then 
see whether you derived the same answer. You should also derive the normalized 
tables for the other two forms. Remember to double-check your work. First make 
sure the primary keys are correct, then check to see that each nonkey column de-
pends on the whole key and nothing but the key. 

Figure 3.48
Pet Store sample sales form. Separate sections for selling animals and merchandise 
reflect a business rule to treat them differently.

    Sales
SaleID        Date
Customer
Name
Address
City, State, ZIP

EmployeeID
Name

    Animal Adoption
ID Name Category Breed DoB Gender Reg Color Donation Group

   Merchandise Sale
Item Description Category ListPrice SalePrice Quantity Value

Merchandise Subtotal
Tax
Total



153Chapter  3:  Data Normalization

Note that because each animal is unique, there is no SaleAnimal table—unlike 
the SaleItem table for merchandise. Because an animal can be adopted only one 
time, it is possible to put the Donation amount and the SaleID into the Animal 
table. Think about the keys for a minute. Each AnimalID can be adopted only 
one time, so SaleID is not a key column. But, multiple animals could be adopted 
at the same time, so SaleID needs to be in the Animal table where AnimalID is a 
primary key.

Merchandise is different because an ItemID refers to a relatively generic item—
such as a bag of dog food. A bag of dog food with that ItemID can be purchased 
many times. Physically, it is a different bag, but a specific brand/type/size of 
dog food always has the same ItemID. Consequently, you need a table that links 
SaleID and ItemID where each SaleID can have many ItemIDs (key ItemID); and 
each ItemID can appear on many SaleIDs (key SaleID). In the SaleItem table, 
both SaleID and ItemID are part of the primary key.

View Integration
How do you combine tables from multiple forms and many developers? Up to 
this point, database design and normalization have been discussed using individ-
ual reports and forms, which is the basic step in designing a database. However, 
most projects involve many reports and forms. Some projects involve teams of 
designers, where each person collects forms and reports from different users and 
departments. Each designer creates the normalized list of tables for the individual 
forms, and you eventually get several collections of tables related to the same 
topic. At this point you need to integrate all these tables into one complete, consis-
tent set of table definitions.

Figure 3.49
Pet Store sample purchase order for merchandise. Note the similarities and 
differences between the two types of orders. Keep in mind that additional data will 
have to be collected later.

	 	 Purchase	Order	for	Merchandise
Order#      Date Ordered
      Date Received
Supplier
Name
Contact
Phone
Address
City, State, ZIP Code

Employee ID
Name
Home Phone

ItemID Description Category Price Quantity Ext. QOH

Subtotal
Shipping Cost
Total



154Chapter  3:  Data Normalization

When you are finished with this stage, you will be able to enter the table defini-
tions into the DBMS. Although you might end up with a large list of interrelated 
tables, this step is generally easier than the initial derivation of the 3NF tables. At 
this point you collect the tables, make sure everything is named consistently, and 
consolidate data from similar tables. The basic steps involved in consolidating the 
tables are as follows:

1. Collect the multiple views (documents, forms, etc.).
2. Create normalized tables for each document.
3. Combine the views into one complete model.

The Pet Store Example
Figure 3.51 illustrates the view integration process for the Pet Store case. The 
tables generated from the Sale and Purchase forms are listed first. The integration 
occurs by looking at each table to see which ones contain similar data. A good 
starting point is to look at the primary keys. If two tables have exactly the same 
primary keys, the tables should usually be combined. However, be careful. Some-
times the keys are wrong, and sometimes the keys might have slightly different 
names.

Notice that the Employee table shows up twice in the example. By carefully 
checking the data in each listing, you can form one new table that contains all of 
the columns. Hence the Phone and DateHired columns are moved to one table, 
and the two others are deleted. A similar process can be used for the Supplier, Ani-
mal, and Merchandise tables. The goal is to create a complete list of normalized 
tables that will hold the data for all the forms and reports. Be sure to double-check 
your work and to verify that the final list of tables is in 3NF or BCNF. Also, make 
sure that the tables can be joined through related columns of data. 

The finalized tables can also be displayed on a detailed class diagram. The class 
diagram for the Pet Store is shown in Figure 3.52. A strength of the diagram is 
the ability to show how the classes (tables) are connected through relationships. 
Double-check the normalization to make sure that the basic forms can be re-creat-
ed. For example, the sales form will start with the Customer, Employee, and Sale 
tables. The Animal table holds information about adoptions and donations. Sales 
of products requires the SaleItem and Merchandise tables. All of these tables can 
be connected by relationships on their attributes.

Sale(SaleID, Date, CustomerID, EmployeeID)
SaleAnimal(SaleID, AnimalID, SalePrice)
SaleItem(SaleID, ItemID, SalePrice, Quantity)
Customer(CustomerID, Name, Address, City, State, Zip)
Employee(EmployeeID, Name)
Animal(AnimalID,	Name,	Category,	Breed,	DateOfBirth,	
 Gender, Registration, Color, ListPrice)
Merchandise(ItemID, Description, Category, ListPrice)

Figure 3.50
Pet Store normalized tables for the basic sales form. You should do the normalization 
first and see if your results match these tables.



155Chapter  3:  Data Normalization

Most of the relationships are one-to-many relationships, but pay attention to 
the direction. Access denotes the many side with an infinity (∞) sign. Of course, 
you first have to identify the proper relationships from the business rules. For in-
stance, there can be many sales to each customer, but a given sale can list only one 
customer.

This final list shown in the class diagram in Figure 3.52 has three new tables: 
City, Breed, and Category. These validation tables have been added to simplify 
data entry and to ensure consistency of data. Without these tables employees 
would have to repeatedly enter text data for city name, breed, and category. There 
are two problems with asking people to type in these values: (1) it takes time, and 
(2) people might enter different data each time. By placing standardized values 
in these tables, employees can select the proper value from a list. Because the 
standard value is always copied to the new table, the data will always be entered 
exactly the same way each time it is used.

Asking the DBMS to enforce the specified relationships raises an interesting 
issue. The relationships require that data be entered in a specific sequence. The 
foreign key relationship specifies that a value for the customer must exist in the 
Customer table before it can be placed in the Sale table. From a business stand-
point the rule makes sense; you must first meet customers before you can sell 
them something. However, this rule may cause problems for clerks who are enter-
ing sales data. You need some mechanism to help them enter new Customer data 
before attempting to enter the Sales data. Chapters 6 and 7 explain one way to 
resolve this issue.

Sale(SaleID, Date, CustomerID, EmployeeID)
SaleAnimal(SaleID, AnimalID, SalePrice)
SaleItem(SaleID, ItemID, SalePrice, Quantity)
Customer(CustomerID, Name, Address, City, State, Zip)
Employee(EmployeeID, Name, Phone, DateHired)
Animal(AnimalID, Name, Category, Breed, DateOfBirth, Gender, Registration, Color, ListPrice)
Merchandise(ItemID, Description, Category, ListPrice, Cost)

AnimalOrder(OrderID, OrderDate, ReceiveDate, SupplierID, EmpID, ShipCost)
AnimalOrderItem(OrderID, AnimalID, Cost)
Supplier(SupplierID, Name, Contact, Phone, Address, City, State, Zip)
Employee(EmployeeID, Name, Phone, DateHired)
Animal(AnimalID, Name, Category, Breed, Gender, Registration, Cost)

MerchandiseOrder(PONumber, OrderDate, ReceiveDate, SID, EmpID, ShipCost)
MerchandiseOrderItem(PONumber, ItemID, Quantity, Cost)
Supplier(SupplierID, Name, Contact, Phone, Address, City, State, Zip)
Employee(EmployeeID, Name, Phone)
Merchandise(ItemID, Description, Category, QuantityOnHand)

Figure 3.51
Pet Store view integration. Data columns from similar tables can be combined into 
one table. For example, we need only one Employee table. Look for tables that have 
the same keys. The goal is to have one set of normalized tables that can hold the data 
for all the forms and reports.



156Chapter  3:  Data Normalization

Rolling Thunder Sample Integration Problem
The only way to learn database design and understand normalization is to work 
through more problems. To practice the concepts of data normalization and to il-
lustrate the methods involved in combining sets of tables, consider a new prob-
lem involving a database for a small manufacturer: Rolling Thunder Bicycles. The 
company builds custom bicycles. Frames are built and painted in-house. Compo-
nents are purchased from manufacturers and assembled on the bicycles according 
to the customer orders. Components (cranks, pedals, derailleurs, etc.) are typically 
organized into groups so that the customer orders an entire package of components 
without having to specify every single item. Additional details about bicycles and 
the company operations are available in the Rolling Thunder database.

To understand normalization and the process of integrating tables from various 
perspectives, consider four of the input forms: Bicycle Assembly, Manufacturer 
Transactions, Purchase Orders, and Components.

Builders use the Bicycle Assemble form shown in Figure 3.53 to determine the 
basic layout of the frame, the desired paint styles, and the components that need 
to be installed. As the frame is built and the components are installed, the workers 
check off the operations. The employee identification and the date/time are stored 

Figure 3.52
Pet Store class diagram. The tables become entities in the diagram. The relationships verify 
that the tables are interconnected through the data. Some new data has been added for the 
employees. Also, cities have been defined in a single table to simplify data entry. Likewise, 
the new Breed and Category tables ensure consistency of data.

SupplierID
Name
ContactName
Phone
Address
ZIPCode
CityID

Supplier

AnimalID
Name
Category
Breed
DateBorn
Gender
Registered
Color
Photo
ImageFile
Imageheight
ImageWidth
AdoptionID
SaleID
Donation

Animal

PONumber
OrderDate
ReceiveDate
SupplierID
EmployeeID
ShippingCost

MerchandiseOrder

AdoptionID
AdoptionSource
ContactName
ContactPhone

AdoptionGroup

CityID
ZIPCode
City
State
AreaCode
Population1990
Population1980
Country
Latitude
Longitude

City

PONumber
ItemID
Quantity
Cost

OrderItem

ItemID
Description
QuantityOnHand
ListPrice
Category

Merchandise

EmployeeID
LastName
FirstName
Phone
Address
ZIPCode
CityID
TaxPayerID
DateHired
DateReleased
ManagerID
EmployeeLevel
Title

Employee

SaleID
SaleDate
EmployeeID
CustomerID
SalesTax

Sale

SaleID
ItemID
Quantity
SalePrice

SaleItem

CustomerID
Phone
FirstName
LastName
Address
ZIPCode
CityID

Customer

Category
Registration

Category

Category
Breed

Breed



157Chapter  3:  Data Normalization

in the database. As the parts are installed, the inventory count is automatically 
decreased. When the bicycle is shipped, a trigger executes code that records the 
price owed by the customer so a bill can be printed and sent.

Collecting the data columns from the form results in the notation displayed in 
Figure 3.54. Notice that two repeating groups (tubes and components) occur, but 
they repeat independently of each other. They are not nested.

Components and other supplies are purchased from manufacturers. Orders are 
placed as supplies run low and are recorded on a Purchase Order form. Shown in 
Figure 3.55, the Purchase Order contains standard data on the manufacturer, along 
with a list of components (or other supplies) that are ordered.

The notation and the 4NF tables are derived in Figure 3.56. For practice you 
should work through the normalization on your own. Note that the computed col-
umns do not need to be stored. However, be careful to store the shipping cost and 
discount, since those might be negotiated specifically on each order.

Payments to manufacturers are collected with a basic transaction form shown 
in Figure 3.57. Note that the initial balance and balance due are computed by code 
behind the form to display the effects of adding new transactions. Row entries for 
purchases are automatically generated by the Purchase Order form, so this form is 
generally used for payments or for corrections.

The 4NF tables resulting from the manufacturer transactions are shown in Fig-
ure 3.58. Again, work through the normalization yourself. Practice and experience 
are the best ways to learn normalization. Do not be misled: It is always tempting 
to read the “answers” in the book and say that normalization is easy. Normaliza-
tion becomes much more complex when you face a blank page. Investigating and 
determining business rules is challenging when you begin.

The Component form in Figure 3.59 is used to add new components to the list 
and modify the descriptions of the components. It can also be used to make chang-
es to the manufacturer data. Notice the use of two identification numbers: one is 

Figure 3.53
Bicycle Assembly form. The main EmployeeID control is not stored directly, but 
the value is entered in the FrameAssembler column of the Bicycle table when the 
employee clicks the Frame box.



158Chapter  3:  Data Normalization

assigned by Rolling Thunder, and the other is assigned by the manufacturer. As-
signing our own number ensures consistency of the data format and guarantees a 
unique identifier. The manufacturer’s product number is used to help place orders, 
since the manufacturer would have no use for our internal data.

The 4NF tables derived from the Component form are shown in Figure 3.60. 
For the most part they are straightforward. One interesting difference in Rolling 
Thunder is the treatment of addresses and cities. Many business tables for custom-
ers, employees, suppliers, and so on, contain columns for city, state, and ZIP code. 
Technically, there is a hidden dependency in this basic data because the three are 

BicycleAssembly(SerialNumber, Model, Construction, FrameSize, TopTube, 
 ChainStay, HeadTube, SeatTube, PaintID, PaintColor, ColorStyle, ColorList,
  CustomName, LetterStyle, EmpFrame, EmpPaint, BuildDate, ShipDate,
   (Tube, TubeType, TubeMaterial, TubeDescription),
   (CompCategory, ComponentID, SubstID, ProdNumber, EmpInstall, DateInstall,
 Quantity, QOH)

Bicycle(SerialNumber, Model, Construction, FrameSize, TopTube, ChainStay, 
 HeadTube, SeatTube, PaintID, ColorStyle, CustomName, LetterStyle,
 EmpFrame, EmpPaint, BuildDate, ShipDate)
Paint(PaintID, ColorList)
BikeTubes(SerialNumber, TubeID, Quantity)
TubeMaterial(TubeID, Type, Material, Description)
BikeParts(SerialNumber, ComponentID, SubstID, Quantity, DateInstalled, EmpInstalled)
Component(ComponentID, ProdNumber, Category, QOH)

Figure 3.54
Notation for the BicycleAssembly form. There are two repeating groups, but they 
are independent. The 4NF tables from this form are displayed, but you should try to 
derive the tables yourself.

PurchaseOrder(PurchaseID, PODate, EmployeeID, FirstName, LastName,
	 ManufacturerID,	MfgName,	Address,	Phone,	CityID,	CurrentBalance,	
 ShipReceiveDate, 
		(ComponentID,	Category,ManufacturerID,	ProductNumber,	Description,	PricePaid,
 Quantity, ReceiveQuantity, ExtendedValue, QOH, ExtendedReceived),
  ShippingCost, Discount

PurchaseOrder(PurchaseID,	PODate,	EmpoyeeID,	ManufacturerID,	ShipReceiveDate,
 ShippingCost, Discount)
EmployeeID(EmployeeID, FirstName, LastName)
Manufacturer(ManufacturerID, Name, Address, Phone, Address, CityID, CurrentBalance)
City(CityID, Name, ZIPCode)
PurchaseItem(PurchaseID, ComponentID, Quantity, PricePaid ReceivedQuantity)
Component(ComponentID,	Category,	ManufacturerID,	ProductNumber,	Description,	
 QOH)

Figure 3.55
Tables from the Purchase Order form. Note that the computed columns (extension is 
price * quantity) are not stored in the tables.



159Chapter  3:  Data Normalization

Figure 3.56
Purchase Order form. Only the items ordered is a repeating group. The Look for 
Products section is a convenience for users and does not store data. The Date 
Shipment Received box is initially blank and is filled in when the product arrives at 
the loading dock.

Figure 3.57
Manufacturer Transaction form. The balance due is stored in the database, but only 
one time. The Initial Balance and Balance Due boxes are computed by the form to 
display the effect of transactions added by the user.



160Chapter  3:  Data Normalization

related. Hence a database can save space and data entry time by maintaining a 
separate City table. Of course, a City table for the entire United States, much less 
the world, could become large. A more challenging problem is that there is not 
a one-to-one relationship between cities and ZIP codes. Some cities have many 
ZIP codes, and some ZIP codes cover multiple cities. Rolling Thunder resolves 
these two issues by keeping a City table based on a unique CityID. If space is at a 
premium, the table can be reduced to contain only cities used in the database. As 
customers arrive from new cities, the basic city data is added. The ZIP code prob-
lem is handled by storing a base ZIP code for each city. The specific ZIP code re-
lated to each address is stored with the appropriate table (e.g., Manufacturer). This 
specific ZIP code could also be a nine-digit code that more closely identifies the 
location of the customer or manufacturer. Although it is possible to create a table 

ManufacturerTransactions(ManufacturerID,	Name,	Phone,	Contact,	BalanceDue,
   (TransDate, Employee, Amount, Description)

Manufacturer(ManufacturerID, Name, Phone, Contact, BalanceDue)
ManufacturerTransaction(ManufacturerID, TransactionDate, EmployeeID, Amount,
 Description)

Figure 3.58
Tables for Manufacturer Transaction form. This normalization is straightforward. 
Note that the TransactionDate column also holds the time, so it is possible to have 
more than one transaction with a given manufacturer on the same day.

Figure 3.59
Component form. Note that components have an internal ID number that is assigned 
by Rolling Thunder employees. Products usually also have a Product number that is 
assigned by the manufacturer. It is difficult to rely on this number, since it might be 
duplicated across suppliers and the formats vary widely.



161Chapter  3:  Data Normalization

ComponentForm(ComponentID, Product, BikeType, Category, Length, 
 Height, Width, Weight, ListPrice, Description, QOH, 
	 ManufacturerID,	Name,	Phone,	Contact,	Address,	ZIPCode,	CityID,	
 City, State, AreaCode)

Component(ComponentID, ProductNumber, BikeType, Category, 
 Length, Height, Width, Weight, ListPrice, Description, QOH, 
	 ManufacturerID)
Manufacturer(ManufacturerID, Name, Phone, Contact, Address, 
 ZIPCode, CityID)
City(CityID, City, State, ZIPCode, AreaCode)

Figure 3.60
Tables derived from the Component form. The ZipCode in the Manufacturer table is 
specific to that company (probably a nine-digit code). The ZipCode in the City table 
is a base (five-digit) code that can be used for a reference point, but there are often 
many codes per city.

Bicycle(SerialNumber, Model, Construction, FrameSize, TopTube, ChainStay, HeadTube, 
 SeatTube, PaintID, ColorStyle, CustomName, LetterStyle, EmpFrame, 
 EmpPaint, BuildDate, ShipDate)
Paint(PaintID, ColorList)
BikeTubes(SerialNumber, TubeID, Quantity)
TubeMaterial(TubeID, Type, Material, Description)
BikeParts(SerialNumber, ComponentID, SubstID, Quantity, DateInstalled, EmpInstalled)
Component(ComponentID, ProductNumber, BikeType, Category, Length, Height, Width,
	 Weight,	ListPrice,	Description,	QOH,	ManufacturerID)
PurchaseOrder(PurchaseID,	PODate,	EmployeeID,	ManufacturerID,	
 ShipReceiveDate, ShippingCost, Discount)
PurchaseItem(PurchaseID, ComponentID, Quantity, PricePaid, ReceivedQuantity)
Employee(EmployeeID, FirstName, LastName)
Manufacturer(ManufacturerID, Name, Contact, Address, Phone, 
 CityID, ZipCode, CurrentBalance)
ManufacturerTransaction(ManufacturerID, TransactionDate, EmployeeID, Amount, 
	 Description,	Reference)
City(CityID, City, State, ZipCode, AreaCode)

Figure 3.61
Integrated tables. Duplicate tables have been combined, and normalization (4NF) 
has been verified. Also draw a class diagram to be sure the tables link together. Note 
the addition of the Reference column as an audit trail to hold the corresponding 
PurchaseID. Observe that some tables (e.g., Employee) will need additional data.



162Chapter  3:  Data Normalization

of complete nine-digit codes, the size is enormous, and the data tends to change. 
Companies that rely heavily on nine-digit mailings usually purchase verification 
software that contains authenticated databases to check their addresses and codes. 

Look at the tables from Figures 3.54, 3.55, 3.59, and 3.60 again. Notice that 
similar tables are listed in each figure. In particular, look for the Manufacturer 
tables. Observe that the overlapping tables often contain different data from each 
form. In practice, particularly when there is a team of designers, similar columns 
might have different names, so be careful. The objective of this step is to combine 
the similar tables. The best way to start is to look for common keys. Tables that 
have the same key columns should be combined. For example, the Manufacturer 
variations are reproduced in Figure 3.61. The version from the PO table can be 
extended by adding the Contact and ZIPCode columns from the other variations.

After combining duplicate tables, you should have a single list of tables that 
contain all of the data from the forms. This list is shown in Figure 3.62. It is also 
a good idea at this point to double-check your work. In particular, verify that the 
keys are unique and that composite keys represent many-to-many relationships. 
Then verify the 3NF rules: Does each nonkey column depend on the whole key 
and nothing but the key? Also look for hidden dependencies that you might need 
to make explicit. Be sure that the tables can be linked back together through the 
data in the columns. You should be able to draw lines between all the tables. Now 
is a good time to draw a more complete class diagram. Each of the normalized ta-
bles becomes an entity. The relationships show how the tables are linked together. 
(See the Rolling Thunder database for the complete example.)

Finally, examine each table and decide whether you might want to collect addi-
tional data. For example, the Employee table would undoubtedly need more data, 
such as Address and DateHired. Similarly, you saw that the ManufacturerTransac-
tion table could use a Reference column that will contain the PurchaseID when a 
transaction is automatically generated by the Purchase Order form. This column 
functions as an audit trail and makes it easier to trace accounting transactions back 
to the source. Some people might use date/time for the same purpose, but a round-
off to seconds could cause problems.

Data Dictionary
How do you record the details for all of the columns and tables? In the process 
of collecting data and creating normalized tables, be sure to keep a data dictionary 
to record the data domains and various assumptions you make. A data dictionary 
or data repository consists of metadata, which is data that describes the data 
stored in the database. It typically lists all of the tables, columns, data domains, 

PO Manufacturer(ManufD, Name, Address, Phone, CityID, CurrentBalance)
Mfg Manufacturer(ManufID, Name, Phone, Contact, BalanceDue)
Comp Manufacturer(ManufID, Name, Phone, Contact, Address, ZIPCode, CityID)

Figure 3.62
Multiple versions of the Manufacturer table. Tables with the same key should be 
combined and reduced to one table. Moving Contact and ZipCode to the first table 
means the other two tables can be deleted. Do not be misled by the two names 
(CurrentBalance and BalanceDue) for the same column.



163Chapter  3:  Data Normalization

and assumptions. It is possible to store this data in a notebook, but it is easier to 
organize if it is stored on a computer. Some designers create a separate database to 
track the underlying project data. Specialized computer tools known as computer-
aided software engineering (CASE) tools help with software design. One of their 
strengths is the ability to create, store, and search a comprehensive data dictionary.

DBMS Table Definition
When the logical tables are defined and you know the domains for all of the col-
umns, you can enter the tables into a DBMS. Most systems have a graphical in-
terface that makes it easier to enter the table definitions. In some cases, however, 
you might have to use the SQL data definition commands described in Chapter 
4. In both cases, the process is similar. Define the table name, enter the column 
names, select the data type for the column, and then identify the keys. Sometimes 
keys are defined by creating a separate index. Some systems enable you to create a 
description for each column and table. This description might contain instructions 
to users or it might be an extension of your data dictionary to help designers make 
changes in the future.

At this time, you should determine which keys you want to generate with an au-
tonumber function. Similarly, identify any computed columns and specify the cal-
culations needed for them. Some databases enable you to store these calculations 
within the database definition; others require that you write them into queries.

You can also set default values for each column to speed up data entry. In the 
video store example, you might set a default value for the base rental rate.  De-
fault values can be particularly useful for dates. Most systems enable you to set 
a default value for dates that automatically enters the current date. At this point 
you should also set validation rules to enforce data integrity. As soon as the tables 
are defined, you can set relationships. In Microsoft Access, go to the relationships 

Figure 3.63
Table definition in Microsoft Access. Note the primary key indicator. Also note that 
text size limits and numeric subtypes are defined in the list at the bottom of the form. 



164Chapter  3:  Data Normalization

screen, add all of the tables, then draw lines to show the connections (much like 
the class diagram). Be sure to check the boxes that specify “Enforce referential 
integrity,” “Cascade on delete,” and “Cascade on update.” With SQL Server and 
Oracle, you specify referential integrity as constraints when you define the tables.

Figure 3.63 shows the form that Microsoft Access uses to define tables. Pri-
mary keys are set by selecting the appropriate rows and clicking an icon. Data 
type details such as character length and numeric subtype are set in the list at the 
bottom of the form. Changes to the table can be made at any time, but if data al-
ready exists in the table, you might lose some information if you select a smaller 
data type.

Figure 3.64 shows the form that can be used within Oracle to create tables—it 
is the Schema Manager. Primary and foreign keys can be set using the Constraints 
tab. Keep in mind that once you create a table in Oracle (and SQL Server), it can 
be difficult to change later. It is always possible to add new columns, but you 
might not be permitted to change the data type of an existing column or to delete 
columns.

If you are using Oracle version 8 or above, perform one additional step once 
the tables have been created by telling it to analyze the tables. For example, use 
the SQL Plus tool to issue commands for each table similar to: Analyze table Ani-
mal compute statistics. These commands tell Oracle to generate statistics for each 
table (notice the Statistics tab in the Schema Manager). Oracle uses these statistics 
to dramatically improve performance of queries.

Figure 3.64
Oracle Schema Manager for creating tables. Primary keys and foreign keys are set in 
the Constraints tab. For primary key columns, be sure to also check that the values 
cannot be null.



165Chapter  3:  Data Normalization

Figure 3.65 shows the forms that SQL Server uses to create and edit tables. You 
can right-click the design to set relationships and constraints. Relationships are 
defined as constraints and all constraints are stored as separate rules.

It is easy to see the similarities of the database design tools for the various 
products. Yet more important differences between the systems lie in the data types 
used within each system. Although some of the data type names appear similar, 
be particularly careful with Oracle databases. Oracle’s underlying data types are 
different—particularly in dealing with numbers. Over time, the DBMS vendors 
have loosely adopted the SQL standard data types. In fact, you can use the generic 
names in almost any DBMS. However, each vendor adds additional types or inter-
esting twists. Designers often work with the vendor’s native data types instead of 
the generic names.

For both Oracle and SQL Server, the graphical forms seem easy to use; howev-
er, experienced developers almost always rely on direct SQL statements stored in 
a text file to create tables. Figure 3.66 gives an example for the Animal table. You 
simply create a list of all of the table creation statements and store them in a text 
file. This file is read by the database SQL processor to create the tables. The list 
has several advantages over the graphical approach: (1) It is easier to change the 
text file. (2) It is easier to re-create the tables on a different database or different 
computer. (3) Changing a table definition usually requires creating a new table, 
copying in the existing data, deleting the old table, and renaming the new one. 
With the text file, you can quickly define the new table and run the statement to 
create the table. (4) It is easier to specify the primary key and foreign key relation-
ships in the text file. Most of the graphical approaches are cumbersome and hard 

Figure 3.65
Microsoft SQL Server form for creating tables. You can right-click and choose a 
menu item to create relationships. 



166Chapter  3:  Data Normalization

to read. Also, some versions of Oracle had stricter limits using the graphical inter-
face that could be avoided by creating the SQL statements directly. (5) Because 
of the foreign key constraints, the order in which the tables are created is critical. 
You cannot refer to a table in the foreign key constraint unless that table already 
has been created. For example, the Category and Breed tables must be created 
before the Animal table. Keeping the table definitions in a text file means you only 
have to set up the sequence one time. If you are uncertain about the SQL syntax 
for creating a table, you can examine existing structure files, or you can use the 
Schema Manager to enter the basic information, then click the Show SQL button 
to cut and paste the underlying SQL code. 

Note that the DB Design tool can automatically generate the CREATE TABLE 
commands using the data types for each of the major DBMSs. It even analyzes the 
foreign key references and generates the tables in the proper order. If you prefer 
to stick with the individual vendor tools, note that almost all of them (except Ac-
cess) have an option to display the CREATE TABLE command defined by the 
visual tool. You can copy-and-paste this command into a separate text file for fu-
ture reference. However, you will have to sort the command into the correct order 
yourself.

Data Volume and Usage
One more step is required when designing a database: estimating the size of the 
resulting database. The process is straightforward, but you have to ask a lot of 
questions of the users. When you design a database, it is important to estimate the 
overall size and usage of the database. These values enable you to estimate the 
hardware requirements and cost of the system. The first step is to estimate the size 
of the tables. Generally, you should investigate three situations: How big is the 

CREATE TABLE Animal
(
 AnimalID INTEGER,
 Name  VARCHAR2(50),
 Category VARCHAR2(50),
 Breed  VARCHAR2(50),
 DateBorn DATE,
 Gender  VARCHAR2(50)
  CHECK (Gender=’Male’ Or Gender=’Female’
   Or Gender=’Unknown’ Or Gender Is Null)
 Registered VARCHAR2(50),
 Color  VARCHAR2(50),
 ListPrice NUMBER(38,4)
  DEFAULT 0,
 Photo  LONG RAW,
 ImageFile VARCHAR2(250),
 ImageHeight INTEGER,
 ImageWidth INTEGER,
	 	 CONSTRAINT	pk_Animal	PRIMARY	KEY	(AnimalID)
	 	 CONSTRAINT	fk_BreedAnimal	FOREIGN	KEY	(Category,	Breed)
  REFERENCES Breed(Category, Breed)
  ON DELETE CASCADE
	 CONSTRAINT	fk_CategoryAnimal	FOREIGN	KEY	(Category)
  REFERENCES Category(Category)
  ON DELETE CASCADE
);

Figure 3.66
Oracle SQL Statements to create the Animal table. The statements for SQL Server are 
similar—just change the data types.



167Chapter  3:  Data Normalization

database now? How big will the database be in 2 or 3 years? and How big will the 
database be in 10 years?

Begin with the list of normalized tables. The process consists of estimating the 
average number of bytes in each row of the table and then estimating the number 
of rows in the table. Multiply the two numbers to get an estimate of the size of the 
table, and then add the table sizes to estimate the total database size. This number 
represents the minimum size of the database. Many databases will be three to five 
times larger than this base estimate. Some systems have more complex rules and 
estimation procedures. For example, Oracle provides a utility to help you estimate 
the storage required for the database. You still begin with the data types for each 
column and the approximate number of rows. The utility then uses internal rules 
about Oracle’s procedures to help estimate the total storage space needed.

An example of estimating data volume is presented in Figure 3.67. Consider 
the Customer table. The database system sets aside a certain amount of storage 
space for each column of data. The amount used depends on the particular system, 
so consult the documentation for exact values. In the abbreviated Customer table, 
the identification number takes 4 bytes as a long integer, and you estimate that 
Names take an average of 15 characters. Other averages are displayed in the table. 
Better estimates could be obtained from statistical analysis of sample data. In any 
case the estimated size of one row of Customer data is 76 bytes. Evaluating the 
business provides an estimate of approximately 1,000 customers; hence, the Cus-
tomer table would be approximately 76K bytes.

Estimating the size of the Order table follows a similar process, yielding an 
estimate of 16 bytes per row. Managers might know how many orders are placed 
in a given year. However, it might be easier to obtain the average number of or-
ders placed by a given customer in 1 year. If that number is 10, then you could 

Customer(C#, Name, Address, City, State, Zip)

Order(O#, C#, Odate)

OrderItem(O#, P#, Quantity, SalePrice)

Row:         4 +  15    +   25     +  20  + 2    + 10   = 76  

Row:   4 +  4  +   8      = 16  

Row:          4 + 4    +   4        +  8            = 20 

Business rules
• Three year retention.
• 1000 customers.
• Average 10 orders per 

customer per year.
• Average 5 items per order.

Ordersin yrs Customers
Orders

Customer
yrs3 1000

10
3 30 000= =* * ,

OrderLines Orders
Lines

Order
= =30 000

5
150 000, * ,

• Customer 76 * 1000 76,000
• Order 16 * 30,000 480,000
• OrderItem 20 * 150,000 3,000,000
• Total 3,556,000

Figure 3.67
Estimating data volume. First estimate the size of each row, and then estimate the 
number of rows in the table. If there is a concatenated key, you will usually multiply 
an average value times the number of  rows in a prior table, as in the calculation for 
OrderItem.



168Chapter  3:  Data Normalization

expect 10,000 orders in a given year. Similarly, to get the number of rows in the 
OrderItem table, you need to know the average number of products ordered on 
one order form. If that number is 5, then you can expect to see 150,000 rows in the 
OrderItem table in 1 year.

The next step is to estimate the length of time data will be stored. Some com-
panies plan to keep their data online for many years, whereas others follow a strict 
retention and removal policy. For legal purposes data must be maintained for a 
certain number of years, depending on its nature. Keep in mind that agencies such 
as the IRS also require that retrieval software (e.g., the DBMS) be available to 
reproduce the data. 

In addition to the basic data storage, your database will also reserve space for 
indexes, log files, forms, programs, and backup data. Experience with a particular 
database system will provide a more specific estimate, but the final total will prob-
ably be three to five times the size of the base estimate.

The final number will give you some idea of the hardware needed to support 
the database. Although performance and prices continue to change, only small 
databases can be run effectively on personal computers. Larger databases can be 
moved to a file server on a local area network (LAN). The LAN provides access 
to the data by multiple users, but performance depends heavily on the size of the 
database, the characteristics of the DBMS, and the speed of the network. As the 
database size increases (hundreds or thousands of megabytes), it becomes neces-
sary to move to a dedicated computer to handle the data. Very large databases 
(terabytes) need multiple computers and specialized disk drives to minimize ca-
pacity and performance bottlenecks. The data estimates do not have to be perfect, 
but they provide basic information that you can give to the planning committee to 
help allocate funds for development, hardware, software, and personnel. 

While you are talking with the users about each table, you should ask them to 
identify some basic security information. You will eventually need to assign secu-
rity access rights to each table. Chapter 10 presents the details, but for now you 
should find out which people use the table, and which people should be denied 
some privileges. For example, clerks who order merchandise should not be al-
lowed to acknowledge receipt of that merchandise. Otherwise, an unethical clerk 
could order merchandise, record it as being received, and then steal it. Four basic 
operations can be granted to data: read it, change it, delete it, or add new data. You 
should keep a list of who may or may not access each table.

 Summary
Database design relies on normalization, or the process of splitting data into ta-
bles. Ultimately, each table refers to a single entity or concept. Each table must 
have a primary key that uniquely identifies each row of data. To create the tables, 
you begin with a collection of data—generally derived from a user form or report. 
You reach 1NF by finding the repeating groups of data and putting them in a sepa-
rate table. Next, you go through each of the intermediate tables and identify pri-
mary keys. You reach 2NF by checking each nonkey column and asking whether 
it depends on the whole key. If not, put the column into a new table along with the 
portion of the key that it does depend on. To reach 3NF, you check to see whether 
the nonkey column depends on anything that is not in the key. If so, pull out the 
column and the dependent column and put them into a new table. BCNF states 
that you cannot have hidden dependencies—all dependencies must be part of the 
primary key. 4NF looks at problems with keys, and states that you cannot have 



169Chapter  3:  Data Normalization

two (or more) independent relationships within one table. In all cases, when you 
find incorrect dependencies or hidden dependencies, you solve the problem by 
splitting the tables and making the dependency explicit with a primary key. 

Each form, report, or description that you collect from a user must be analyzed 
and a set of 4NF tables defined. For large projects several analysts may be given 
different forms, resulting in several lists of normalized tables. These tables must 
then be integrated into one standardized set of normalized data tables. Along the 
way you must specify the domain, or type of data, for each column. This final list 
of tables, with any comments, will be entered into the DMBS to start the database 
construction.

You should also collect estimates of data volume in terms of number of rows for 
each table. These numbers will enable you to estimate the average and maximum 
size of the database so that you can choose the proper hardware and software. You 
should also collect information on security conditions: Who owns the data? Who 
can have read access? Who can have write access? All of these conditions can be 
entered into the DBMS when you create the tables.

At this point, after you review your work, you can enter sample data to test 
your tables. When you are certain that the design is complete and accurate, you 
can begin building the application by constructing queries and creating forms and 
reports.

A Developer’s View
Miranda learned that the class diagram is converted into a set of normalized ta-
bles. These tables are the foundation of the database application. Database design 
is crucial to developing your application. Engrave the basic normalization rule 
onto the back of your eyelids: Each nonkey column depends on the whole key 
and nothing but the key. Since the design depends on the business rules, make 
certain that you understand the rules. Listen carefully to the users. When in doubt, 
opt for flexibility. For your class projects, you should now be able to create the 
list of normalized tables. You should also be able to estimate the size of the data-
base.



170Chapter  3:  Data Normalization

Key Terms

Review Questions
1. What is dependency?
2. What are the three main rules for normalization?
3. What problems do you encounter if data is not stored in normalized tables?
4. How are BCNF and 4NF different from 3NF?
5. What are the primary types of data that can be stored in a table?
6. Why is referential integrity important?
7. What complications are caused by setting referential integrity rules?
8. What problems do object-oriented designs cause in a relational database 

model and how do you compensate for them?
9. What elements do you look for when integrating views?
10. How do you estimate the potential size of a database?

atomic
autonumber
Boyce-Codd normal form (BCNF)
cascading delete
composite keys
data dictionary
data integrity
data repository
data volume
default values
deletion anomaly
dependence
domain-key normal form (DKNF)
first normal form (1NF)

foreign key
fourth normal form (4NF)
globally-unique identifier (GUID)
hidden dependency
insertion anomaly
master-detail
metadata
pseudo column
referential integrity
repeating groups
second normal form (2NF)
surrogate keys
third normal form (3NF)



171Chapter  3:  Data Normalization

Exercises
1. A local family has a large garden and regularly sells produce at the local 

Farmer’s Market. Up to now the group has just picked items and sold them 
each week—basically tracking just the amount of money received. Now the 
family wants to track sales by types of items (potatoes, lettuce, tomatoes, 
carrots, and so on); both in terms of quantity sold and the amount of money 
received. They want to use the data to determine planting amounts for the 
coming year. The crops require about the same level of fertilizer and watering 
so profits are mainly determined by the yield and the price received. No one 
wants to create individual item receipts for each sale—that would take too 
much time, but they will use a tally sheet to record the number of items sold 
and the prices. Then enter the sales into a computer (or tablet) at the end of 
the day. Some items are sold by the unit (such as melons or lettuce--bunch) 
while others, such as carrots, are sold by the pound. The family starts out the 
day with a set price, but if items are not selling well and have a limited shelf 
life, the price is reduced. So the amount sold needs to be recorded at each 
price point.

Market Location
Date
Family member in charge

Weather comments
Crowd comments
Competition

Item Quantity 
at Start

Sale 
Price

Quantity 
Sold

Unit/
Pounds

Comments

Carrots 20 $1.00 5 Pounds Few buyers
Carrots 0.50 10 Pounds
Tomatoes 40 $2.00 20 Pounds
Tomatoes $1.50 10 Pounds
Melons 10 $3.00 10 Units Cantaloupe



172Chapter  3:  Data Normalization

 2. Your doctor told you that you need to get more exercise—particularly 
strength-based. So you decided to start lifting weights at the gym. To make 
it more interesting, you created an application to track your progress on each 
exercise. To make it easier to enter data, the application is based on the day 
and enables you to enter additional information such as health (excellent, 
good, tired, weak, sick), and general comments. For most weight-lifting 
exercises, you perform multiple lifts (repetitions) within a set, then change 
the weight for a new set and do another set of repetitions.

Date:
Weight:
Comments

Health: <pick>
Total time:

Exercise Weight/set # Reps Comments



173Chapter  3:  Data Normalization

3. You have been hired by the student sports director to build a database for 
the intramural basketball leagues. The leagues have several teams each year. 
For the most part the teams get to select the level of competition: A, B, or 
C. There is more prestige to winning the A (or B) league so the better teams 
select into that league. There is also a league for teams composed of players 
all under 6 feet, and there is also a co-ed league that requires at least 2 
women on the floor for each game. For the most part, players are assigned to 
a single team, but they do have the ability to switch to a different team if they 
desire. So players sign up for each team game but no one tracks points scored 
by each person. Only the total team points and win/loss are tracked.

Team Name      League

Game	Date,	Time,	Court	 	 playoff	y/n
Referee,	phone

Player Student/faculty/staff Height

Opponent

Points  Opponent Points
Won/Loss



174Chapter  3:  Data Normalization

4. You recently added the twentieth device to your wireless network. Well, it 
feels like 20, but it might be 10 or even 30; you no longer remember which 
devices have wireless and when they were last updated. Partly to gain faster 
speeds (to handle all of the devices), you are planning to replace your main 
wireless router. Which means you will have to update all of the wireless 
devices. And then you will have to deal with all of your friends’ wireless 
devices when they come by. You considered buying a commercial network 
management tool but that seems too expensive. Instead, you want to build 
a small database application to record basic information about the wireless 
devices and the IP addresses they are assigned so that you can quickly 
identify each device when you need it. All devices have a unique MAC 
(media access control) address which the network uses to identify the item. 
Sometimes you have to change the MAC address, such as with routers so 
the upstream device can recognize it (common with cable modems). A big 
problem with wireless is that older devices do not support newer standards 
and you have to decide if you want to lower your overall standards to support 
older devices, or run two or three different wireless systems. You also need 
to track the owner of the device to decide if you want to remove support for 
it. Most devices use dynamic assignment (DHCP) to obtain a local IP address 
so it can change over time. But sometimes you need to set a static address to 
a device to make it accessible (such as older printers). You only need the IP 
address once in a while but when you need it you want to record it in case 
you might need it again. The values you need the most often can eventually 
be made static.

Device  Name  MAC Address
Category (router, cable modem, bridge, PC, phone, …)

Year 
Highest wireless standard (b, g, n, ac, …)
Max bit rate (56, 100, 150, 300, 600, 900, 1000, …)
Highest encryption (DES, AES, WPA2, …)

Upstream network device: 

Owner

Date updated
Source	of	update

Date IP Address DHCP/Static Comments



175Chapter  3:  Data Normalization

5. A friend of yours is starting a business to build semi-customized cases for 
cell phones and laptops. The focus of the case is in the design—colors, 
logos, artwork and so on. She plans to buy relatively plain cases and then 
paint them with various designs. She can even take photographs from 
customers and incorporate those into the artwork. Existing stores and Web 
sites focus on finding a case to fit a particular device, but she thinks the 
process should work the other direction. Customers will pick the design 
and artwork and then specify the device. Cases for popular devices will be 
supported automatically and kept in stock, but other devices will take time 
to customize. The device aspect ratio is a particular problem because the 
artwork is relatively easy to scale up or down in size but not if the ratio of 
width to height changes too far. Then it has to be redrawn. And Apple devices 
tend to use the older 4:3 aspect ratio compared to other companies that use 
the newer HD 16:9 ratio.

Design Name  Basic colors  File
Description
Category
Aspect Ratio

Base price

Standard Stock Devices

Date created
Date	modified
Date stopped

Artist
Phone
Commission rate

Device Name Price Quantity on Hand Device type Height Width 

Customer name
Phone
Address
City, State, ZIP

Sale Date
Shipment date

Item Phone/Device Sale Price Quantity Stock/Custom

Payment Method
Subtotal
Tax
Shipping
Total



176Chapter  3:  Data Normalization

6. A friend of yours is starting a “vintage” clothing shop. She will buy older 
clothes (lightly used) from people, clean and mend them if necessary, and 
then sell them in her store. Some older fashion items often become popular 
years later and “fashionistas” mix and match items to achieve their own style. 
But as the inventory grows, your friend needs a better way to track which 
items are popular to help figure out what price she should pay for clothing 
and when prices on existing items should be changed. Occasionally, a good 
customer will ask her to keep an eye out for a special item—particularly in 
terms of sizes. So she also needs to keep a list of search items. Currently, she 
tracks items by placing a tag on them when she buys them. The tag includes 
a basic description of the item, where and when she bought it, and eventually, 
she adds data to the tag that says when it was sold, the sale price and then the 
price/cost she paid for the item.

Item Description
Category
Men/Women/Child
Base color
Size

Designer/Manufacturer
Mfg.	Original	Price
History	if	known

Purchase Location
Purchase Date
Amount (coded on tag)
Condition

Repairs made:

Sale Date
Customer Name
E-mail
Phone

Sale Price

Search Item Description
Designer
Color   Desired Size
Category
Estimated Price
Substitutions (such as color)

Date Start
Date Needed
Date Found

Location
Price Paid
Condition

Customer Name
Phone
E-mail

Sale Date
Sale Price



177Chapter  3:  Data Normalization

7. You have volunteered to work for a local politician who is a friend of the 
family. She wants a system to track information about contacts with voters. 
Most voters in the district do not contact the office, but she wants to be 
sure to track information on those who do make contact. It is particularly 
important to track those who have strong opinions on various legislation. 
It is also important to track those who need rides to the polls each year or 
help with absentee ballots. And it is absolutely critical to track the requests 
for money sent to each person and the amount received each time. Note 
that houses are assigned to districts and regions; but those designations can 
change over time. Donors are often organized into groups where one person 
(a consolidator) collects money from other donors. Over time, voters and 
donors are assigned various tags (such as whale, whiner, or various issues) 
which are used to target future letters to each person. 

Voter Last Name, First Name, Gender
Phone
Address, City, State, ZIP
District #, Region

Party (repub/democ/ind)
Probability	of	voting	way	we	
want:

Contact	from	voter

Date/Time Method Reason Importance Staff	member
Phone
Vol/Paid

Fund-raising campaign
Campaign year

Event/Mailing/Request

Date Event/Mailing Primary topic Location Target

Donor Name
E-mail
Consolidator
Labels/Tags

Amount Date Event Comments



178Chapter  3:  Data Normalization

Sally’s Pet Store
8. Define the tables needed to extend the Pet Store database to handle genealogy 

records for the animals.
9. Define the tables needed to extend the Pet Store database to handle health 

and veterinary records for the animals.
10. Sally wants to add payroll and monthly employee evaluation information to 

the database. Define the tables needed.
11. Sally wants to add pet grooming services. Define the tables necessary to 

schedule appointments, assuming two workers will be dedicated to this area.
Rolling Thunder Bicycles
12. Using the class diagram, identify five business rules that are described by 

the table definitions and table relationships (similar to the ListPrice rules 
described by the Sale example).

13. The company wishes to add more data for human resources, such as tax 
withholding, benefits selected, and benefit payments by the employees and 
by the company. Research common methods of handling this type of data and 
define the required tables.

Corner Med
14. Physicians and medical administrators are often interested in a hierarchical 

classification of illnesses and diagnoses. Some of the hierarchy is built into 
the ICD codes, but the managers and physicians want to be able to create 
reports that roll up the weekly diagnoses into specific categories. They 
also want the ability to define new categories. Essentially, the physician 
administrators will create a medical category and list the various conditions 
that apply to the category. For example, Broken Bones could be a general 
category, and specific fractures (e.g., S62.2 Fracture of first metacarpal bone 
using ICD10) would comprise the list of conditions. Define the table(s) 
needed to handle this summarization data. Optional: What if the physicians 
what to create multiple levels within the summary data? For example, Family 
Practice could be a parent category to Childhood Diseases, Accidents, Minor 
Illnesses, and Checkups. Each of these could have subcategories. 

15. The physicians would like to add another step in the patient examination 
process. They want more complete records and the ability to handle cases 
where the diagnosis is not immediately available. Specifically, the physicians 
want to record the symptoms described by the patient at each visit. This 
record would also include the severity of the symptom and whether it was 
observed by the physician (or nurse). At each visit the patient’s weight, 
blood pressure, and heart rate are also recorded (children are also measured 
for height). Along the same lines, they want to record any tests taken and 
the results of the tests. The tests can include simple physical tests such as 
reflexes as well as chemical tests. Define the tables and modify the class 
diagram to handle this additional data.

Corner
Med

Corner
Med



179Chapter  3:  Data Normalization

16. In 2006, Benjamin Brewer, M.D., a practicing physician, listed common 
statistics for a medical office [“A Doctor Faces Tough Decision to Stop 
Taking New Patients,” The Wall Street Journal, February 7, 2006]. Read the 
article and use the numbers to estimate the size of the database after 1 year 
and 5 years of operation. Some basic data from the article: 3 physicians, 
2,500 patients, 90 patients per week in office visits per physician. But, read 
the article to gain perspective on the situation. It is available in your library. 

Web Site References

http://ibmdatamag.com/ IBM Data Magazine
http://www.for.gov.bc.ca/his/datadmin/ Canadian	Ministry	of	Forests	data	

administration	site,	with	useful	
information	on	data	administration	and	
design. Start with the development 
standards.

http://support.microsoft.com/kb/100139/en-us Introduction to normalization.
http://www.phpbuilder.com/columns/barry20000731.
php3

Normalization examples.

Additional Reading
Date, C. J., An Introduction to Database Systems, 8th ed. Reading: Addison-

Wesley, 2003. [A classic higher-level textbook that covers many details of 
normalization and databases.]

Fagin, R. “Multivalued dependencies and a new normal form for relational 
databases,” ACM Transactions on Database Systems, 2 no. 3 (September 
1977), pp. 262-278. [A classic paper in the development of normal forms.]

Fagin, R. “A Normal Form for Relational Databases That Is Based on Domains 
and Keys,” ACM Transactions on Database Systems, 6 no. 3 (September 
1981), pp 387-415. [The paper that initially described domain-key normal 
form.]

Kent, W. “A simple guide to five normal forms in relational database theory,” 
Communications of the ACM, 26 no. 2 (February 1983), 120-125. [A nice 
presentation of normalization with examples.]

Rivero, L., J. Doorn, and V. Ferraggine, “Elicitation and Conversion of Hidden 
Objects and Restrictions in a Database Schema, Proceedings of the 2002 
ACM Symposium on Applied Computing, 2002, 463-469. [Good discussion 
of referential integrity issues and problems with weak designs heavily 
dependent on surrogate ID columns.]

Wu, M.S., “The Practical Need for Fourth Normal Form,” Proceedings of the 
Twenty-third SIGCSE Technical Symposium on Computer Science Education, 
1992, 19-23. [A small study showing that fourth normal form violations are 
common in business applications.]



180Chapter  3:  Data Normalization

Appendix: Formal Definitions of Normalization
One of the strengths of the relational database model is that it was developed from 
the mathematical foundations of set theory. Although it is not necessary to know 
the formal definitions, sometimes they make it easier to understand the process. 
For a more detailed description of the normal forms and the complications, you 
should read C. J. Date’s advanced textbook. Keep in mind that the formal defi-
nitions use specific terms. Figure 3.1A lists the major terms and their common 
interpretation. Although the formal terms are more accurate, few people have a 
common understanding of the terms, so in most conversations, it is easier to use 
the informal terms.

Initial Definitions
A relation is a set of attributes with data that changes over time. Each attribute has 
a corresponding domain and refers to some real-world characteristic. The formal 
definitions refer to subsets of attributes, which are collections of the columns. The 
data value returned within tuples for a specified subset of attributes X is denoted 
t[X]. 

The essence of normalization is to recognize that a set of attributes has some 
real-world relationships. The goal is to accurately portray these relationship con-
straints. These semantic constraints are known as functional dependencies (FD). 
Definition: Functional Dependency and Determinant
Where X and Y are subsets of attributes, a functional dependency is denoted as X 
→ Y, read as (X implies Y or X determines Y) and holds when any rows of data 
that have identical values for the X attributes always have identical values for the 
Y attributes. That is, for tuples t1 and t2 of R, if t1[X] = t2[X], then t1[Y] = t2[Y]. 
In an FD, X is also known as a determinant, because given the dependency, once 
you are given the values for the X attributes, it determines the resulting values for 
the Y attributes. 

Formal Definition Informal
Relation A	set	of	attributes	with	data	that	

changes	over	time.	Often	denoted	R.
Table

Attribute Characteristic with a real-world domain. 
Subsets	of	attributes	are	multiple	
columns,	often	denoted	X	or	Y.

Column

Tuple The	data	values	returned	for	specific	
attribute	sets	are	often	denoted	as	t[X].

Row	of	data

Schema Collection	of	tables	and	constraints	and	
relationships.

Functional 
dependency

X		→	Y Business rule 
dependency

Figure 3.1A
Terminology. The formal terms are more accurate and defined mathematically, but 
difficult for developers and users to understand.



181Chapter  3:  Data Normalization

Definition: Keys
A key is a set of attributes K such that, where U is the set of all attributes in the 
relation, 

1. There is a functional dependency K → U.
2. If K' is a subset of K, then there is no FD K' → U.

That is, a set of key attributes K functionally determines all other attributes in the 
relation, and it is the smallest set of attributes that will do so (there is no smaller 
subset of K that determines the other attributes).

Primary keys are important in relational databases because they are used to 
identify rows of data. Sometimes multiple attribute sets could be used to form dif-
ferent keys, so they are sometimes referred to as candidate keys.

Normal Form Definitions
The definition of first normal form is closely tied to the definition of an atomic at-
tribute, so both need to be defined at the same time.
Definition: First Normal Form (1NF)

A relation is in first normal form if and only if all of its attributes are atomic.

Definition: Atomic Attributes

Atomic attributes are single valued, which means they cannot be composite, 
multi-valued, or nested relations.

Essentially, a 1NF relation is a table with simple cells under each attribute col-
umn. You are not allowed to play tricks and try to squeeze extra data, other rela-
tionships, or multiple columns into one column. Figure 3.2A provides an example 
of a table that is not in first normal form because it has two attributes that are not 
atomic.

Second normal form is defined in terms of primary keys and functional 
dependency.
Definition: Second Normal Form (2NF)

A relation is in second normal form if it is in first normal form and each nonkey 
attribute is fully functionally dependent on the primary key. That is, K → Ai for 
each nonkey attribute Ai. Consequently, there is no subset K' such that K' → Ai 
for any attribute.

Customer(CID, Name: First + Last, Phones, Address)

123 Main111-2223
111-3393
112-4582

Joe Jones111
AddressPhonesName: First + LastCID
123 Main111-2223

111-3393
112-4582

Joe Jones111
AddressPhonesName: First + LastCID

Figure 3.2A
Nonatomic attributes. This table is not in first normal form because the Name 
attribute is a composite of two elementary attributes, and the phone attribute is being 
used to handle multiple values.



182Chapter  3:  Data Normalization

This definition corresponds closely to the simpler version presented in the chap-
ter that each nonkey column depends on the entire key, not just a portion of the 
key. Figure 3.3A shows an example of a relation that is not in second normal form.

The formal definition of third normal form is a little harder to comprehend be-
cause it relies on a new concept: transitive dependency.
Definition: Transitive Dependency

Given functional dependencies X → Y and Y → Z, the transitive dependency X 
→ Z must also hold.

The concept of transitivity should be familiar from basic algebra. The fact that 
it holds true arises from the set-theory foundations. To understand the definition, 
remember that functional dependency represents business semantic relationships. 
Consider the relationship between OrderID, CustomerID, and customer Name at-
tributes. The business rule that there is only one customer per order translates to 
a functional dependency OrderID → CustomerID. Once you know the OrderID 
value you always know the CustomerID value. Likewise, the key relationship be-
tween CustomerID and other attributes such as Name means there is a functional 
dependency CustomerID → Name. Applying transitivity, once you know the Or-
derID value, you can obtain the CustomerID value, and in turn learn the value of 
the customer Name.

OrderProduct(OrderID, ProductID, Quantity, Description)

Blue Hose11533
Pliers21632
Blue Hose11532

DescriptionQuantityProductIDOrderID

Blue Hose11533
Pliers21632
Blue Hose11532

DescriptionQuantityProductIDOrderID

Figure 3.3A
Not full dependency. The product description depends on just the ProductID and not 
the full key {OrderID, ProductID}, so this relation is not in second normal form.

Order(OrderID, OrderDate, CustomerID, Name, Phone)

222-3333Jones15/6/200434
444-8888Hong25/5/200433
222-3333Jones15/5/200432

PhoneNameCustomerIDOrderDateOrderID

222-3333Jones15/6/200434
444-8888Hong25/5/200433
222-3333Jones15/5/200432

PhoneNameCustomerIDOrderDateOrderID

Figure 3.4A
Transitive dependency. The customer Name and Phone attributes transitively depend 
on the CustomerID, so this relation is not in third normal form.



183Chapter  3:  Data Normalization

Definition: Third Normal Form (3NF)

A relation is in third normal form if and only if it is in second normal form and 
no nonkey attributes are transitively dependent on the primary key. That is, given 
second normal form: K → Ai for each attribute Ai, there is no subset of attributes 
X such that K → X → Ai.

In simpler terms, each non-key attribute depends on the entire key (K), and 
not on some intermediate attribute (X). Figure 3.4A shows a common business 
example of a relation that is not in third normal form, because customer attributes 
depend transitively on the CustomerID.

As discussed in Chapter 3, Boyce-Codd normal form is a little harder to follow. 
It represents the same basic issue: removing a hidden dependency as seen by the 
formal definition.
Definition: Boyce-Codd Normal Form (BCNF)

A relation is in Boyce-Codd normal form if and only if it is in third normal form 
and every determinant is a candidate key. That is, if there is an FD X → Y, then 
X must be the primary key (or equivalent to the primary key). In simpler terms: 
there cannot be a hidden dependency, where hidden means it is not part of the 
primary key.
 As shown in the example in Figure 3.5A, consider the situation where employees 
can have many specialties, there are many employees for each specialty, and an 
employee can have many managers, but each manager is manager for only one spe-
cialty. This functional dependency (MangerID → Specialty) is not a key within the 
relation EmpSpecMgr(EID, Specialty, ManagerID), so the relation is not in BCNF. 
It has to be decomposed to create new relations ManagerSpecialty(ManagerID, 
Specialty), and EmployeeManager(EmployeeID, ManagerID) that explicitly have 
each functional dependency as keys.

Fourth normal form is slightly tricky but easy to apply once you understand it. 
The definition is closely tied to the definition of a multi-valued dependency.

1Drill34

2Weld33

1Drill32

ManagerIDSpecialityEID

1Drill34

2Weld33

1Drill32

ManagerIDSpecialityEID

Employees can have many specialties, and many employees can be 
within a specialty. Employees can have many managers, but a 
manager can have only one specialty:  Mgr  Specialty

EmpSpecMgr(EID, Specialty, ManagerID)

FD ManagerID Specialty is 
not currently a key.

Figure 3.5A
Boyce-Codd normal form. Notice that there is a functional dependency from 
ManagerID to Specialty. Because this FD is not a candidate key in the relation, it is 
hidden, and this relation is not in BCNF. 



184Chapter  3:  Data Normalization

Definition: Multi-Valued Dependency (MVD)

A multi-valued dependency (MVD) exists when there are at least three attributes 
in a relation (A, B, and C; which could be sets of attributes), and one attribute A 
determines the other two (B and C), but the two dependencies are independent 
of each other. That is, A → B and A → C, but B and C are not functionally 
dependent on each other.

 For example, employees can have many specialties and be assigned many 
tools, but tools and specialties are not directly related to each other.
Definition: Fourth Normal Form (4NF)

A relation is in fourth normal form if and only if it is in Boyce-Codd normal form 
and there are no multi-valued dependencies. That is, all attributes of the relation 
are functionally dependent on A.

In the multi-valued dependency example for employee specialties and tools, 
the relation EmpSpecTools(EID, Specialty, ToolID) is not in fourth normal form, 
because of the two functional dependencies: EID → Specialty; and EID → Tool-
ID. Solving the problem results in two simpler relations: EmployeeSpecialty(EID, 
Specialty) and EmployeeTools(EID, ToolID).

 



2Part

Queries

An important step in building applications is creating queries to 
retrieve exactly the data that you want. Queries are used to an-
swer business questions and serve as the foundation for forms 
and reports.

Chapter 4 shows you how to use two basic query systems: 
SQL and QBE. SQL has the advantage of being a standard that 
is supported by many database management systems. Once you 
learn it, you will be able to work with many different systems.

Chapter 5 shows some of the powerful aspects of SQL queries. 
In particular, it examines the use of subqueries to answer difficult 
business questions. It also shows that SQL is a complete database 
language that can be used to define new databases and tables. 
SQL is also a powerful tool to manipulate data.

Chapter 4: Data Queries

Chapter 5: Advanced Queries and Sub-Queries



186

What You Will Learn in This Chapter
•	 Why do you need a query language?
•	 What	are	the	main	tasks	of	a	query	language?
•	 What business questions can be answered with the basic SQL SELECT command?
•	 What	is	the	basic	structure	of	a	query?
•	 What tables and columns are used in the Pet Store?
•	 How	do	you	write	queries	for	a	specific	DBMS?
•	 How do you create a basic query?
•	 What	types	of	computations	can	be	performed	in	SQL?
•	 How do you compute subtotals?
•	 How do you use multiple tables in a query?
•	 How do you search XML and complex text strings?

Chapter Outline

Data Queries
4Chapter

Introduction, 187
Two-Minute Chapter, 188
Three	Tasks	of	a	Query	Language,	189
SQL SELECT Overview, 190
Four Questions to Retrieve Data, 191

What Output Do You Want to See?, 191
What Do You Already Know?, 192
What Tables Are Involved?, 192
How Are the Tables Joined?, 193

Sally’s Pet Store, 195
Vendor	Differences,	196
Query Basics, 196

Single Tables, 197
Introduction to SQL, 198
Sorting the Output, 200
Distinct, 200
Criteria, 201
Pattern Matching, 202
Boolean Algebra, 204
DeMorgan’s Law, 206
Useful WHERE Clauses, 208

Computations, 209
Basic Arithmetic Operators, 209
Aggregation, 210
Functions, 212

Subtotals and GROUP BY, 214
Conditions on Totals (HAVING), 216
WHERE versus HAVING, 216
The Best and the Worst, 217

Multiple Tables, 218
Joining Tables, 219
Identifying Columns in Different Tables, 
220
Joining Many Tables, 220
Hints on Joining Tables, 222
Table Alias, 223
Create View, 224

Newer Searches and Patterns, 226
XQuery, 227
Regular Expressions (RegEx) Patterns, 
233

Summary, 239
Key Terms, 240
Review Questions, 240
Exercises, 241
Web	Site	References,	247
Additional Reading, 247
Appendix: SQL Commands, 248



187Chapter  4: Data Queries

A Developer’s View
 Miranda: Wow that was hard work! I sure 

hope normalization gets easier the 
next time.

 Ariel: At least now you have a good 
database. What’s next? Are 
you ready to start building the 
application?

 Miranda:  Not quite yet. I told my uncle 
that I had some sample data. He 
already started asking me business 
questions; for example, Which 
products were backordered most 
often? and Which employees sold 
the most items last month? I think I 

need to know how to answer some 
of those questions before I try to 
build an application.

 Ariel: Can’t you just look through the data 
and find the answer?

 Miranda: Maybe, but that would take forever. 
Instead, I’ll use a query system that 
will do most of the work for me. I 
just have to figure out how to phrase 
the business questions as a correct 
query.

Introduction
Why do you need a query language? Why not just ask your question in a natural 
language like English? Natural language processors have improved, and several 
companies have attempted to connect them to databases. Similarly, speech rec-
ognition is improving. Eventually, computers may be able to answer ad hoc ques-
tions using a natural language. However, even if an excellent natural language 
processor existed, it still would be better to use a specialized query language. The 
main reason for the problem is communication. If you ask a question of a data-
base, a computer, or even another person, you can get an answer. The catch is, did 
the computer give you the answer to the question you asked? In other words, you 
have to know that the machine (or other person) interpreted the question in ex-
actly the way you wanted. The problem with any natural language is that it can be 
ambiguous. If there is any doubt in the interpretation, you run the risk of receiving 
an answer that might appear reasonable, but is not the answer to the question you 
meant to ask.

Getting Started
Building basic SQL queries requires you to address four questions. (1) 
What output (columns and calculations) do you want to see? (2) What 
do you know or what constraints are given? (3) What tables are in-
volved? (4) How are the tables joined? A powerful feature of SQL is the 
ease of computing subtotals with the GROUP BY statement. Learn the 
SELECT statement and use it as a fill-in-the-blanks model:

SELECT
FROM
INNER JOIN
WHERE
GROUP BY 
HAVING
ORDER BY



188Chapter  4: Data Queries

A query system is more structured than a natural language so there is less room 
for misinterpretation. Query systems are also becoming more standardized, so that 
developers and users can learn one language and use it on a variety of different 
systems. SQL is the standard database query language. The standard is established 
through the ISO (International Organization of Standards) and it is updated every 
few years. Most database management systems implement most of the SQL 2003 
standard. The draft SQL 2006 standard adopted as SQL 2008 provides definitions 
for several important programming concepts and for XML, but most DBMS ven-
dors have continued to use their existing, proprietary definitions.  Consequently, 
although these standards are accepted by most vendors, there is still room for 
variations in the SQL syntax, so queries written for one database system will not 
always work on another system. SQL 2011 added a few new elements to the fea-
tures added in 2008. Plus it initiated new definitions for handling time elements.

Most database systems also provide a query by example (QBE) method or 
query builder to help beginners create SQL queries. These visually oriented tools 
generally let users select items from lists, and handle the syntax details to make it 
easier to create ad hoc queries. Although the QBE designs are easy to use and save 
time by minimizing typing, you must still learn to use the SQL commands. Many 
times, you will have to enter SQL into programming code or copy and edit SQL 
statements. 

As you work on queries, you should also think about the overall database de-
sign. Chapter 3 shows how normalization is used to split data into tables that can 
be stored efficiently. Queries are the other side of that problem: They are used to 
put the tables back together to answer ad hoc questions and produce reports.

The first two sections of this chapter provide an overview of queries. The sec-
tions beginning with the Pet Store provide a more detailed explanation of how to 
build queries, starting with a single table and basic criteria issues. Overall, this 
chapter covers the basic features of the SELECT statement. The focus is on learn-
ing the key SELECT clauses and on translating business questions into SQL que-
ries. Chapter 5 covers more complex business questions that utilize some of the 
more complex and more powerful features of SQL.

Two-Minute Chapter
Relational databases were initially created to store large amounts of data efficient-
ly. Putting data into separate tables reduces duplication and simplifies adding new 
rows of data. For example, new sales can be added without interfering with exist-
ing sales or even added by multiple people at the same time. But, you might be 
wondering, how is it possible to retrieve this data? For example, the Customer 
data was split from the Sales data and stored in separate tables, linked by Custom-
erID. Sure, a person could retrieve a row from the Sales table, get the CustomerID 
value and then go look up the matching data in the Customer table, but that seems 
painful. 

The SQL query language was created to answer these questions. The founda-
tions of the SELECT command are covered in this chapter. One strength of SQL 
is that it is a declarative language instead of procedural. In a typically procedural 
programming language, you would have to write code to open a table, and loop 
through all of the rows to find the ones you want. With SQL, you simply tell 
(declare to) the DBMS what you want to see. You specify (1) the columns you 
want displayed, (2) the conditions you want to apply, (3) the tables involved, and 



189Chapter  4: Data Queries

(4) how the tables are connected. Retrieving Sales and Customers in March is a 
simple as:
SELECT Customer.CID, Lastname, SaleDate
FROM Customer
INNER JOIN Sale ON Customer.CID = Sale.CID
WHERE (SaleDate BETWEEN ‘3/1/2013’ AND ‘3/31/2013’); 

SQL can also handle basic calculations such as price * quantity. More impor-
tantly, it can compute totals with a simple function: Sum(price*quantity). Totals 
are computed across all of the specified rows. But SQL also computes subtotals 
for any level of grouping using the GROUP BY statement. A critical goal of this 
chapter is to be able to read business questions and write the matching SQL state-
ment—particularly for computing subtotals. For instance, to find the best employ-
ee for the month of March, use:

SELECT Employee.EID, Lastname, Sum(Price*Quantity) As 
TotalSales
FROM Employee
INNER JOIN Sale ON Employees.EID = Sales.EID
INNER JOIN SaleItem ON Sales.SaleID = SaleItems.SaleID
WHERE (SaleDate BETWEEN ‘3/1/2013’ AND ‘3/31/2013’)
GROUP BY Employee.EID, Lastname
ORDER BY Sum(Price*Quantity) DESC;

Query editors can be used to drag-and-drop tables and columns to create the 
JOINs and enter conditions. But you should learn the basic elements of the SE-
LECT command so you can type them by hand when necessary.

Three Tasks of a Query Language
What are the main tasks of a query language? To create databases and build 
applications, you need to perform three basic sets of tasks: (1) define the database, 
(2) change the data, and (3) retrieve data. Some systems use formal terms to de-
scribe these categories. Commands grouped as data definition language (DDL) 
are used to define the data tables and other features of the database. The com-
mon DDL commands include: ALTER, CREATE, and DROP. Commands used 
to modify the data are classified as data manipulation language (DML). Com-
mon DML commands are: DELETE, INSERT, and UPDATE. Some systems in-
clude data retrieval within the DML group, but the SELECT command is complex 
enough to require its own discussion. The appendix to this chapter lists the syntax 
of the various SQL commands. Virtually all tasks can be performed by issuing a 
DDL, DML, or query command. This chapter focuses on the SELECT command. 
The DML and DDL commands will be covered in more detail in Chapter 5. 

The SELECT command is used to retrieve data: It is the most complex SQL 
command, with several different options. The main objective of the SELECT 
command is to retrieve specified columns of data for rows that meet some criteria. 
Database management systems are driven by query systems. Many query systems 
support a graphical interface which makes it easier to create queries by reducing 
typing and through visualizing the relationships among tables. But, ultimately you 
should learn the text versions of the SQL commands.



190Chapter  4: Data Queries

SQL SELECT Overview
What business questions can be answered with the basic SQL SELECT com-
mand? For the most part, SQL is a declarative language, which is unlike tradi-
tional programming procedural languages. You simply have to tell the DBMS 
what you want and it determines how to get that data. You do not have to write 
loops or conditional statements. The SELECT command is the primary method of 
retrieving data from tables. This chapter focuses on its basic elements: (1) choos-
ing columns and making basic calculations, (2) selecting rows of data based on 
given information, (3) joining related tables, (4) sorting the results, and (5) com-
puting subtotals. Many business questions rely on these basic tools. 

At the simplest level, business questions just need to retrieve data that matches 
some basic conditions. Questions such as: List customers who made a purchase 
in a specified month or bought a specific product; or Find employees who sold 
items to a specific customer. Building a query to answer these basic questions just 
involves identifying the tables that hold the desired data, selecting the desired col-
umns to display, and entering the specified filter conditions, and perhaps sorting 
the results. It is critical that you learn to build these simple queries correctly.

As a small step up, the SELECT statement can also perform simple computa-
tions. Business problems often need to multiply values in two columns, such as 
Price*Quantity, or to subtract two values. The SELECT statement handles basic 
arithmetic as well as common mathematical and string functions. These calcula-
tions operate on data held in one row and follow standard rules for mathematical 
operations.

The most important capability of SQL in basic business questions is to com-
pute subtotals. A surprising number of business questions involve subtotals. For 
instance: Which customer spent the most money last month? Which employee 
sold the most items last week? Which product category is the best seller? What are 
total sales by month? SQL easily handles subtotals with the GROUP BY clause. 
Simply list the column that contains the items to break (group) on, then include 
an aggregate function (usually Sum, Avg, Count) as a computation. The DBMS 
will find each unique value in the GROUP BY column (such as each employee), 
then compute the subtotal indicated in the Sum function for each item. Sorting 
the results makes it easy to find the highest or lowest value. To convert a business 
question into SQL, you often identify the items to be summed (or counted) and 
then determine which columns hold the grouping values. Examine the business 
question and look for words such as “by” or “for each.” 

What output do you want to see? SELECT columns
What tables are invovled? FROM table
How	are	the	tables	joined? INNER JOIN table
What do you already know (or what 
constraints are given)?

WHERE conditions

Figure 4.1
Four questions to create a query. Every query is built by asking these four questions. 
The SELECT… FROM … INNER JOIN … WHERE … syntax is the SQL form to 
creating a query.



191Chapter  4: Data Queries

Four Questions to Retrieve Data
What is the basic structure of a query? Every attempt to retrieve data from a 
relational DBMS requires answering the four basic questions listed in Figure 4.1. 
The difference among query systems is how you fill in those answers. The figure 
also shows the matching SQL clauses for answering the questions. 
Notice that in some easy situations you will not have to answer all four questions. 
Many easy questions involve only one table, so you will not have to worry about 
joining tables. As another example, you might want the total sales for the entire 
company, as opposed to the total sales for a particular employee, so there may not 
be any constraints.

The SELECT statements can be used as a fill-in-the-blanks type of form. Start 
the query by writing down or typing those key words on the left side of the page. 
Then fill in the items to the right of the keywords. It is often easiest to begin by 
writing down the output that you want to see on the SELECT statement, followed 
by the constraints on the WHERE clause. Then you can identify all of the tables 
needed and use the relationship diagram to see how the tables are joined.

What Output Do You Want to See?
As an initial step, you can think of a query as a way to filter data—both in terms of 
columns you want to see and limiting the rows based on various conditions. You 
could just retrieve every column from a table, but it gets hard to wade through 
columns that are not important to the business question. So you need to tell the 
DBMS which columns you want to see. More importantly, you first have to vi-
sualize your output before you can write the rest of the query. In general, a query 
system answers your query by displaying rows of data from various columns. You 

EmployeeID LastName Phone
1 Reeves 402-146-7714
2 Gibson 919-245-0526
3 Reasoner 413-414-8275
4 Hopkins 412-524-0814
5 James 407-026-6653
6 Eaton 906-446-7957
7 Farris 615-891-5545
8 Carpenter 212-545-8897
9 O’Conner 203-180-0146
10 Shields 304-607-9081
11 Smith 80-333-9872

SELECT EmployeeID, LastName,Phone
FROM Employee

Figure 4.2
Simple example of a column filter. Use the SELECT clause to choose only the 
columns or calculations you want to see.



192Chapter  4: Data Queries

can also ask the DBMS to perform some basic computations, so you also need to 
identify any calculations and totals you need. 

You generally answer this question by selecting columns of data from the vari-
ous tables stored in the database. Of course, you need to know the names of all 
of the columns to answer this question. Generally, the hardest part in answering 
this question is to wade through the list of tables and identify the columns you re-
ally want to see. The problem is more difficult when the database has hundreds of 
tables and thousands of columns. Queries are easier to build if you have a copy of 
the class diagram that lists the tables, their columns, and the relationships that join 
the tables.

Figure 4.2 shows a simple example of a SELECT statement using the Employ-
ee table in the Pet Store database. The SELECT clause specifies the columns or 
calculations you want to see. You can think of it as a column filter—choosing a 
subset of the columns available in the tables. If you want to see all of the columns, 
you can simply use SELECT * FROM Employee to show all the columns.

What Do You Already Know?
In most situations you want to restrict your search based on various criteria. For 
instance, you might be interested in sales on a particular date or sales from only 
one department. The search conditions must be converted into a standard Boolean 
notation (phrases connected with AND or OR). The most important part of this 
step is to write down all the conditions to help you understand the purpose of the 
query.

Figure 4.3 shows that you can think of the WHERE clause as a filtering state-
ment. Rows are displayed in the results only if the data within the row matches 
the conditions in the WHERE clause. If multiple conditions are connected with an 
“OR” term, the query generally returns more rows because the data can match any 
one of the conditions. Connecting the conditions with an “AND” term reduces the 
number of rows because each row must match all of the conditions.

What Tables Are Involved?
With only a few tables, this question is easy. With hundreds of tables, it could 
take a while to determine exactly which ones you need. A good data dictionary 
with synonyms and comments will make it easier for you (and users) to determine 

EmployeeID LastName Phone EmploeeLevel
4 Hopins 412-524-9814 3
5 James 407-026-6653 3
7 Farris 615-891-5545 3

SELECT EmployeeID, LastName, phone, EmployeeLevel
FROM Employee
WHERE EmployeeLevel=3;

Figure 4.3
Simple example of a row filter. The WHERE clause limits the rows to be displayed 
based on multiple conditions. Connecting conditions with an “OR” statement returns 
more rows in the results because each row could meet on many conditions. 



193Chapter  4: Data Queries

exactly which tables you need for the query. It is also critical that tables be given 
names that accurately reflect their content and purpose.

One hint in choosing tables is to start with the tables containing the columns 
listed in the first two questions (output and criteria). Next decide whether other 
tables might be needed to serve as intermediaries to connect these tables.

How Are the Tables Joined?
This question relates to the issues in data normalization and is the heart of a rela-
tional database. Tables are connected by data in similar columns. For instance, as 
shown in Figure 4.4, a Sales table has a CustomerID column. Corresponding data 
is stored in the Customer table, which also has a CustomerID column. In many 
cases matching columns in the tables will have the same name (e.g., CustomerID) 
and this question is easy to answer. The join performs a matching or lookup for 
the rows. You can think of the result as one giant table and use any of the columns 
from any of the joined tables. Note that columns are not required to have the same 
name, so you sometimes have to think a little more carefully. For example, an 
Order table might have a column for SalesPerson, which is designed to match the 
EmployeeID key in an Employee table.

Joining tables is usually straightforward as long as your database design is 
sound. In fact, most QBE systems will automatically use the design to join any 
tables you add. However, two problems can arise in practice: (1) You should ver-
ify that all tables are joined, and (2) Double-check any tables with multiple join 
conditions. 

CustomerID
LastName
FirstName
Phone

Customer

CustomerID
LastName
FirstName
Phone

Customer

SaleID
SaleDate
CustomerID

Sales

SaleID
SaleDate
CustomerID

Sales

555-5662MarkSmith4

444-2222MiguelJackson3

222-3333MartaSmith2

111-2222MaryJones1

PhoneFirstNameLastNameCustomerID

555-5662MarkSmith4

444-2222MiguelJackson3

222-3333MartaSmith2

111-2222MaryJones1

PhoneFirstNameLastNameCustomerID

15/24

45/23

25/12

15/11

CustomerIDSaleDateSaleID

15/24

45/23

25/12

15/11

CustomerIDSaleDateSaleID

4

3

2

1

SaleID

5/2

5/2

5/1

5/1

SaleDate

1

4

2

1

CustomerID

111-2222MaryJones1

555-5662MarkSmith4

222-3333MartaSmith2

111-2222MaryJones1

PhoneFirstNameLastNameCustomerID

4

3

2

1

SaleID

5/2

5/2

5/1

5/1

SaleDate

1

4

2

1

CustomerID

111-2222MaryJones1

555-5662MarkSmith4

222-3333MartaSmith2

111-2222MaryJones1

PhoneFirstNameLastNameCustomerID

Figure 4.4
Joining tables. A join causes a lookup to match rows across the tables.



194Chapter  4: Data Queries

Technically, it is legal to use tables without adding a join condition. However, 
when no join condition is explicitly specified, the DBMS creates a cross join or 
Cartesian product between the tables. A cross join matches every row in the first 
table to every other row in the second table. For example, if both tables have 10 
rows, the resulting cross join yields 10*10 = 100 rows of data. If the tables each 
have 1,000 rows, the resulting join has one million rows! A cross join will seri-
ously degrade performance on any DBMS, so be sure to specify a join condition 
for every table. The one exception is that it is sometimes used to join a single-row 
result with every row in a second table. With only one row in a table, the cross 
join is reasonably fast. Figure 4.5 shows the results of a cross join using two small 
tables.

Sometimes table designs have multiple relationship connections between ta-
bles. For example, the Pet Store database joins Customer to City and City to Em-
ployee. A query system that automatically adds relationship joins will bring along 

CustomerID
LastName
FirstName
Phone

Customer

CustomerID
LastName
FirstName
Phone

Customer

SaleID
SaleDate
CustomerID

Sales

SaleID
SaleDate
CustomerID

Sales

555-5662MarkSmith4

444-2222MiguelJackson3

222-3333MartaSmith2

111-2222MaryJones1

PhoneFirstNameLastNameCustomerID

555-5662MarkSmith4

444-2222MiguelJackson3

222-3333MartaSmith2

111-2222MaryJones1

PhoneFirstNameLastNameCustomerID

15/24

45/23

25/12

15/11

CustomerIDSaleDateSaleID

15/24

45/23

25/12

15/11

CustomerIDSaleDateSaleID

555-5662MarkSmith415/11

111-2222MaryJones125/12

222-3333MartaSmith225/12

444-2222MiguelJackson325/12

2

1

1

1

SaleID

5/1

5/1

5/1

5/1

SaleDate

2

1

1

1

CustomerID

555-5662MarkSmith4

444-2222MiguelJackson3

222-3333MartaSmith2

111-2222MaryJones1

PhoneFirstNameLastNameCustomerID

555-5662MarkSmith415/11

111-2222MaryJones125/12

222-3333MartaSmith225/12

444-2222MiguelJackson325/12

2

1

1

1

SaleID

5/1

5/1

5/1

5/1

SaleDate

2

1

1

1

CustomerID

555-5662MarkSmith4

444-2222MiguelJackson3

222-3333MartaSmith2

111-2222MaryJones1

PhoneFirstNameLastNameCustomerID

8 more rows

Figure 4.5
Cross join. With no join condition, the DBMS performs a cross join and matches 
every row in the first table to every row in the second table, often leading to millions 
of rows in the result. Be sure to specify a join condition and stay away from cross 
joins.



195Chapter  4: Data Queries

every connection. But, you rarely want to use all of the joins at the same time. The 
key is to remember that a join represents a restrictive condition. In the Pet Store 
case, if you include the two joins from the Customer, City, and Employee tables, 
you would be saying that you only want to see customers who live in the same 
city as an employee.

Sally’s Pet Store
What tables and columns are used in the Pet Store? The initial Pet Store da-
tabase has been built, and some basic historical data has been transferred from 
Sally’s old files. When you show your work to Sally, she becomes very excited. 
She immediately starts asking questions about her business, and wants to see how 
the database can answer them.

The examples in this chapter are derived from the Pet Store database. The ta-
bles and relationships for this case are shown in Figure 4.6. After reading each 
section, you should work through the queries on your own. You should also solve 
the exercises at the end of the chapter. Queries always look easy when the answers 
are printed in the book. To learn to write queries, you must sit down and struggle 
through the process of answering the four basic questions.

SupplierID
Name
ContactName
Phone
Address
ZIPCode
CityID

Supplier

AnimalID
Name
Category
Breed
DateBorn
Gender
Registered
Color
Photo
ImageFile
Imageheight
ImageWidth
AdoptionID
SaleID
Donation

Animal

PONumber
OrderDate
ReceiveDate
SupplierID
EmployeeID
ShippingCost

MerchandiseOrder

AdoptionID
AdoptionSource
ContactName
ContactPhone

AdoptionGroup

CityID
ZIPCode
City
State
AreaCode
Population1990
Population1980
Country
Latitude
Longitude

City

PONumber
ItemID
Quantity
Cost

OrderItem

ItemID
Description
QuantityOnHand
ListPrice
Category

Merchandise

EmployeeID
LastName
FirstName
Phone
Address
ZIPCode
CityID
TaxPayerID
DateHired
DateReleased
ManagerID
EmployeeLevel
Title

Employee

SaleID
SaleDate
EmployeeID
CustomerID
SalesTax

Sale

SaleID
ItemID
Quantity
SalePrice

SaleItem

CustomerID
Phone
FirstName
LastName
Address
ZIPCode
CityID

Customer

Category
Registration

Category

Category
Breed

Breed

Figure 4.6
Tables for the Pet Store database. Notice that animals and merchandise are similar, 
but they are treated separately. 



196Chapter  4: Data Queries

Chapter 3 notes that data normalization results in a business model of the orga-
nization. The list of tables gives a picture of how the firm operates. Notice that the 
Pet Store treats merchandise differently than it treats animals. For example, each 
animal is listed separately on a sale, but customers can purchase multiple copies 
of merchandise items (e.g., bags of cat food). The reason for the split is that each 
animal is unique and can be adopted only once. Also, you need to keep additional 
information about the animals that does not apply to general merchandise.

When you begin to work with an existing database, the first thing you need to 
do is familiarize yourself with the tables and columns. You should look through 
some of the main tables to become familiar with the type and amount of data 
stored in each table. Make sure you understand the terminology and examine the 
underlying assumptions. For example, in the Pet Store case, an animal might be 
registered with a breeding agency, but it can be registered with only one agency. If 
it is not registered, the Registered column is NULL (or missing) for that animal. 
This first step is easier when you work for a specific company, since you should 
already be familiar with the firm’s operations and the terms that it uses for various 
objects.

Vendor Differences
How do you write queries for a specific DBMS? The SQL standards present a 
classic example of software development trade-offs. New releases of the standards 
provide useful features, but vendors face the need to maintain compatibility with 
a large installed base of applications and users. Consequently, substantial differ-
ences exist across database products. These differences are even more pronounced 
when you look at the graphical interfaces. 

Whenever possible, you should use the newer standards because the queries 
are easier to read. However, it is likely that you will encounter queries written in 
the older syntax, so you should also learn how to read these older versions. The 
one catch is that each DBMS vendor had its own proprietary syntax. It is impos-
sible to cover all of the variations in this book. The details of the syntax and the 
basic steps for writing and testing queries within a DBMS are explained in the ac-
companying workbooks. Each workbook explores the same issues using a single 
DBMS. At a minimum, you should read through and work the examples in one 
workbook. If you have time, it is instructive to compare the techniques of several 
vendors.

Query Basics
How do you create a basic query? The basic goal is to convert a business ques-
tion into a database query. It is best to begin with relatively easy queries. This 
chapter first presents queries that involve a single table to show the basics of cre-
ating a query. Then it covers details on constraints, followed by a discussion on 
computations and aggregations. Groups and subtotals are then explained. Finally, 
the chapter discusses how to select data from several tables at the same time.

Figure 4.7 presents several business questions that might arise at the Pet Store. 
Most of the questions are relatively easy to answer. In fact, if there are not too 
many rows in the Animal table, you could probably find the answers by hand-
searching the table. Actually, you might want to work some of the initial questions 
by hand to help you understand what the query system is doing.



197Chapter  4: Data Queries

The foundation of queries is that you want to see only some of the columns 
from a table and that you want to restrict the output to a set of rows that match 
some criteria. For example, in the first query (animals with yellow color), you 
might want to see the AnimalID, Category, Breed, and their Color. Instead of list-
ing every animal in the table, you want to restrict the list to just those with a yel-
low color.

Single Tables
The first query to consider is: Which animals were born after August 1? Figure 4.8 
shows a QBE approach and the SQL. The two methods utilize the same underly-
ing structure. The QBE approach saves some typing, but eventually you need to 
be able to write the SQL statements. If you write down the SQL keywords, you 
can fill in the blanks—similar to the way you fill in the QBE grid.

First consider answering this question with a QBE system. The QBE system 
will ask you to choose the tables involved. This question involves only one table: 
Animal. You know that because all of the data you want to see and the constraint 
are based on columns in the Animal table. With the table displayed, you can now 
choose which columns you want to see in the output. The business question is a 
little vague, so select AnimalID, Name, Category, and DateBorn.

The next step is to enter the criteria that you already know. In this example, 
you are looking for animals born after a specific date. On the QBE grid, enter the 
condition >’01-Aug-2013’ on the Criteria row under the DateBorn column. There 
is one catch: Different DBMSs use different syntax for the way you enter the date. 
Most of them will accept the date format and the single quotes shown here. For 

•	 Which	animals	were	born	after	August	1?
•	 List the animals by category and breed.
•	 List	the	categories	of	animals	that	are	in	the	Animal	list.
•	 Which dogs have a donation value greater than $250?
•	 Which cats have black in their color?
•	 List cats excluding those that are registered or have red in their color.
•	 List	all	dogs	who	are	male	and	registered	or	who	were	born	before	01-

June-2013 and have white in their color.
•	 What	is	the	extended	value	(price	*	quantity)	for	sale	items	on	sale	24?
•	 What	is	the	average	donation	value	for	animals?
•	 What	is	the	total	value	of	order	number	22?
•	 How many animals were adopted in each category?
•	 How	many	animals	were	adopted	in	each	category	with	total	adoptions	of	

more than 10?
•	 How	many	animals	born	after	June	1	were	adopted	in	each	category	with	

total adoptions more than 10?
•	 List	the	CustomerID	of	everyone	who	bought	or	adopted	something	

between April 1, 2013 and May 31, 2013.
•	 List	the	names	of	everyone	who	bought	or	adopted	something	between	

April 1, 2013 and May 31, 2013.
•	 List	the	name	and	phone	number	of	anyone	who	adopted	a	registered	

white cat between two given dates.

Figure 4.7
Sample questions for the Pet Store. Most of these are easier since they involve only 
one table. They represent typical questions that a manager or customer might ask.



198Chapter  4: Data Queries

Microsoft Access, do not include any quotation marks. The Access QBE interface 
will automatically add # marks instead. It is a good idea to run the query now. 
Check the DateBorn result to ensure that the query was entered correctly.

The four basic questions are answered by filling out blanks on the QBE grid. 
(1) The output to be displayed is placed as a field on the grid. (2) The constraints 
are entered as criteria or conditions under the appropriate fields. (3) The tables 
involved are displayed at the top (and often under each field name). (4) The table 
joins are shown as connecting lines among the tables. The one drawback to QBE 
systems is that you have to answer the most difficult question first: Identifying the 
tables involved. The QBE system uses the table list to provide a list of the col-
umns you can choose. Keep in mind that you can always add more tables as you 
work on the problem.

Introduction to SQL
SQL is a powerful query language. However, unlike QBE, you generally have to 
type in the entire statement. Most systems enable you to switch back and forth 
between QBE and SQL, which saves some typing. Perhaps the greatest strength of 
SQL is that it is a standard that most vendors of DBMS software support. Hence, 
once you learn the base language, you will be able to create queries on all of the 
major systems in use today. Note that some people pronounce SQL as “sequel,” 
arguing that it descended from a vendor’s early DBMS called quel. Also, “Sequel” 
is easier to say than “ess-cue-el.” But with the introduction of CQL for Cassandra 
(see Chapter 13) it will be safer to just say SQL.

The most commonly used command in SQL is the SELECT statement, which 
is used to retrieve data from tables. A simple version of the command is shown 

Figure 4.8
Sample query shown in QBE and SQL. Since there is only one table, only three 
questions need to be answered: What tables? What conditions? What do you want to 
see?

Field AnimalID Name Category DateBorn
Table Animal Animal Animal Animal
Sort
Criteria >’01-Aug-2013’
Or

SELECT AnimalID, Name, Category, Breed
FROM Animal
WHERE DateBorn > ’01-Aug-2013’;

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

Which	animals	were	born	after	August	1?



199Chapter  4: Data Queries

in Figure 4.9, which contains the four basic parts: SELECT, FROM, JOIN, and 
WHERE. These parts match the basic questions needed by every query. In the ex-
ample in Figure 4.8, notice the similarity between the QBE and SQL approaches. 
The four basic questions are answered by entering items after each of the four 
main keywords. When you write SQL statements, it is best to write down the key-
words and then fill in the blanks. You can start by listing the columns you want to 
see as output, then write the constraints in the WHERE clause. By looking at the 
columns you used, it is straightforward to identify the tables involved. You can 
use the class diagram to understand how the tables are joined.

SELECT Name, Category, Breed
FROM Animal
ORDER BY Category, Breed;

Name Category Breed
Cathy Bird African	Grey

Bird Canary
Debbie Bird Cockatiel

Bird Cockatiel
Terry Bird Lovebird

Bird Other
Charles Bird Parakeet
Curtis Bird Parakeet
Ruby Bird Parakeet
Sandy Bird Parrot
Hoyt Bird Parrot

Bird Parrot

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

Or
Criteria

AscendingAscendingSort
AnimalAnimalAnimalTable
BreedCategoryNameField

Or
Criteria

AscendingAscendingSort
AnimalAnimalAnimalTable
BreedCategoryNameField

SELECT columns What do you want to see?
FROM tables What tables are involved?
JOIN	 conditions	 How	are	the	tables	joined?
WHERE criteria What are the constraints? 

Figure 4.10
The ORDER BY clause sorts the output rows. The default is to sort in ascending 
order, adding the keyword DESC after a column name results in a descending sort. 
When columns like Category contain duplicate data, use a second column (e.g., 
Breed) to sort the rows within each category.

Figure 4.9
The basic SQL SELECT command matches the four questions you need to create 
a query. The uppercase letters are used in this text to highlight the SQL keywords. 
They can also be typed in lowercase.



200Chapter  4: Data Queries

Sorting the Output
Database systems treat tables as collections of data. For efficiency the DBMS is 
free to store the table data in any manner or any order that it chooses. Yet in most 
cases you will want to display the results of a query in a particular order. The SQL 
ORDER BY clause is an easy and fast means to display the output in any order 
you choose. As shown in Figure 4.10, simply list the columns you want to sort. 
The default is ascending (A to Z or low to high with numbers). Add the phrase 
DESC (for descending) after a column to sort from high to low. In QBE you select 
the sort order on the QBE grid.

In some cases you will want to sort columns that do not contain unique data. 
For example, the rows in Figure 4.10 are sorted by Category. In these situations 
you would want to add a second sort column. In the example, rows for each cat-
egory (e.g., Bird) are sorted on the Breed column. The column listed first is sorted 
first. In the example, all birds are listed first, and birds are then sorted by Breed. 
To change this sort sequence in QBE, you have to move the entire column on the 
QBE grid so that Category is to the left of Breed.

Distinct
The SELECT statement has an option that is useful in some queries. The DIS-
TINCT keyword tells the DBMS to display only rows that are unique. For ex-
ample, the query in Figure 4.11 (SELECT Category FROM Animal) would return 
a long list of animal types (Bird, Cat, Dog, etc.). In fact, it would return the cat-
egory for every animal in the table—obviously; there are many cats and dogs. To 
prevent the duplicates from being displayed, use the SELECT DISTINCT phrase. 

Note that the DISTINCT keyword applies to the entire row. If there are any dif-
ferences in a row, it will be displayed. For example, the query SELECT DISTINCT 
Category, Breed FROM Animal will return more than the seven rows shown in 

SELECT Category
FROM Animal;

Category
Fish
Dog
Fish
Cat
Cat
Dog
Fish
Dog
Dog
Dog
Fish
Cat
Dog
. . .

SELECT DISTINCT Category
FROM Animal;

Category
Bird
Cat
Dog
Fish
Mammal
Reptile
Spider

Figure 4.11
The DISTINCT keyword eliminates duplicate rows of the output. Without it the 
animal category is listed for every animal in the database.



201Chapter  4: Data Queries

Figure 4.11 because each category can have many breeds. That is, each catego-
ry/breed combination will be listed only once, such as Dog/Retriever. Microsoft 
Access supports the DISTINCT keyword, but you have to enter it in the SQL 
statement.

Criteria
In most questions, identifying the output columns and the tables is straightfor-
ward. If there are hundreds of tables, it might take a while to decide exactly which 
tables and columns you want, but it is just an issue of perseverance. On the other 
hand, identifying constraints and specifying them correctly can be more challeng-
ing. More importantly if you make a mistake on a constraint, you will still get a 
result. The problem is that it will not be the answer to the question you asked—
and it is often difficult to see that you made a mistake.

The primary concept of constraints is based on Boolean algebra, which you 
learned in mathematics. In practice, the term simply means that various conditions 
are connected with AND and OR clauses. Sometimes you will also use a NOT 
statement, which negates or reverses the truth of the statement that follows it. 
For example, NOT (Category = N‘Dog’) means you are interested in all animals 
except dogs.

Consider the example in Figure 4.12. The first step is to note that two condi-
tions define the business question: dog and donation. The second step is to rec-
ognize that both of these conditions need to be true at the same time, so they are 
connected by AND. As the database system examines each row, it evaluates both 

Figure 4.12
Boolean algebra. An example of two conditions connected by AND.  QBE uses an 
AND connector for all conditions listed on the same row. Note the use of the N’…’ 
notation in SQL Server and Oracle to specify Unicode (National) data for strings. In 
Access, simply use double-quote marks without the N.

SELECT AnimalID, Category, DateBorn
FROM Animal
WHERE Category=N’Dog’ AND Donation>250;

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

Field AnimalID Name Category Donation
Table Animal Animal Animal Animal
Sort
Criteria Dog >250
Or

Which dogs have a donation 
amount greater than $250?.



202Chapter  4: Data Queries

clauses. If any one clause is false, the row is skipped. Notice the use of N’Dog’ 
statement which converts the entered text to Unicode (national) format. Because 
the data table formats were defined as Unicode, it is best to enter this specification 
whenever you write a query. If the text in the query processor uses English, the 
conversion is usually automatic and you could skip the N prefix. However, it is 
always safer to specify the conversion explicitly.

Notice that the SQL statement is straightforward—just write the two conditions 
and connect them with an AND clause. The QBE is a little trickier. With QBE, 
every condition listed on the same criteria row is connected with an AND clause. 
Conditions on different criteria rows are joined with an OR clause. You have to be 
careful creating (and reading) QBE statements, particularly when there are many 
different criteria rows.

Pattern Matching
Databases are designed to handle many different types of data, including num-
bers, dates, and text. The standard comparison operators (<, >, =, and so on) work 
well for numbers, dates, and simple text values. However, larger text fields often 
require more powerful comparisons. The SQL standard provides the LIKE com-
mand to handle simple pattern matching tasks. The LIKE command uses two spe-
cial characters to create a pattern that is compared to each selected row of text. In 
standard SQL, the percent sign (%) in a pattern matches any character or charac-
ters (including none). The underscore ( _ ) matches exactly one character. Before 
exploring patterns, note that Microsoft Access uses an asterisk (*) and question 
mark (?) instead. Access does provide the option to use the standard percent sign 
and underscore characters, but almost no one activates that option.

You construct a pattern by using the percent or underscore characters. Gener-
ally, you want to search for a specific word or phrase. Consider the request from 
a customer who wants a black cat. If you look at the Color column of the Animal 
table, you will see that can contain multiple colors for any animal. If you think 
about animals for a minute, it is clear that an animal can have multiple colors. 
Technically, this choice means that the Color column is probably not atomic; and 
you could have specified a completely new table that lists each color on a separate 
line. However, color definitions are somewhat subjective, and it is more compli-
cated to enter data and write queries when multiple tables are involved. Conse-
quently, the database is a little more usable by listing the colors in a single column. 
But, now you have to search it. If you search using the equals sign (say, WHERE 
Color=N’Black’), you will see only animals that are completely black. Perhaps 
the customer is willing to settle for a cat that has a few white spots, which might 
have been entered as Black/White; and will not show up in the simple equality 
search.

The answer is to construct a pattern search that will list a cat that has the word 
Black anywhere in the Color column. Figure 4.13 shows the syntax of the query. 
The key is the phrase: Color LIKE N‘%Black%’. Placing a percent sign at the 
start of the pattern means that any characters can appear before the word Black. 
Placing a percent sign at the end of the pattern means that any characters can ap-
pear after the word Black. Consequently, if the word Black appears anywhere in 
the color list, the LIKE condition will be true. Note that the simple color “Black” 
will also be matched because the percent sign matches no characters. If you leave 
off the first percent sign (Color LIKE N‘Black%’), the condition would be true 
only if the Color column begins with the word Black (followed by anything else).



203Chapter  4: Data Queries

You can construct more complex conditions using pattern matching, but you 
should test these patterns carefully. For instance, you could search a Comment 
column for two words using: Comment LIKE N‘%friendly%children%’. This pat-
tern will match any row that has a comment containing both of the words (friendly 
and children). There can be other words in front of, behind, or between the two 
words, but they must appear in the order listed.

You can also use the single character matching tool (underscore) to create a 
pattern. This tool is useful in certain situations. It is most useful when you have a 
text column that is created with a particular format. For instance, most automobile 
license plates follow a given pattern (such as AAA-999). If a policeman gets a 
partial license plate number, he could search for matches. For instance, License 
LIKE N‘XQ_-12_’, would search for plates where the third character and third 
number are not known. Keep in mind that the single-character pattern will only 
match a character that exists. In the example, if a license number has three letters 
but only two numbers, the pattern will never match it because the pattern requires 
a third number. In business, the single-character pattern is useful for searching 
product codes that contain a fixed format. For instance, a department store might 
identify products by a three-character department code, a two-character color 
code, a two-digit size code, and a five-digit item code: DDDCC11-12345. If you 
wanted to find all blue (BL) items of size 9 (09), you could use: ItemCode LIKE 
N‘_ _ _BL09-_ _ _ _ _’. Note that spaces were added in the text to show the num-
ber of underscores, but you would need to enter the underscores into the query 
without any intervening spaces.

Which cats have black in their color?

SELECT AnimalID, Name, Category, Color
FROM Animal
WHERE Category=’Cat’ AND Color LIKE ‘%Black%’;

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

Or
LIKE ‘%Black%’‘Cat’Criteria

Sort
AnimalAnimalAnimalAnimalTable
ColorCategoryNameAnimalIDField

Or
LIKE ‘%Black%’‘Cat’Criteria

Sort
AnimalAnimalAnimalAnimalTable
ColorCategoryNameAnimalIDField

Figure 4.13
Pattern matching. The percent sign matches any characters, so if the word Black 
appears anywhere in the Color column the LIKE condition is true.



204Chapter  4: Data Queries

Boolean Algebra
One of the most important aspects of a query is the choice of rows that you want 
to see. Most tables contain a huge number of rows, and you want to see only 
the few that meet a business condition. Some conditions are straightforward. For 
example, you might want to examine only dogs. Other criteria are complex and 
involve several conditions. For instance, a customer might want a list of all yel-
low dogs born after June 1, 2013, or registered black labs. Conditions are evalu-
ated according to Boolean algebra, which is a standard set of rules for evaluating 
conditions. You are probably already familiar with the rules from basic algebra 
courses; however, it pays to be careful.

The DBMS uses Boolean algebra to evaluate conditions that consist of mul-
tiple clauses. The clauses are connected by these operators: AND, OR, NOT. Each 
individual clause is evaluated as true or false, and then the operators are applied 
to evaluate the truth value of the overall criterion. Figure 4.14 shows how the 
primary operators (AND, OR) work. The DBMS examines each row of data and 
evaluates the Boolean condition. The row is displayed only if the condition is true.

A condition consisting of two clauses connected by AND can be true only if 
both of the clauses (a And b) are true. A statement that consists of two clauses 
connected by OR is true as long as at least one of the two conditions is true. Con-
sider the examples shown in Figure 4.15. The first condition is false because it 

a = 3

b = -1

c = 2
(a > 4) Or (b < 0)

F T
F

(a > 4) And (b < 0)

F T
T

NOT (b < 0)
T

F

Figure 4.15
Boolean algebra examples. Evaluate each clause separately. Then evaluate the 
connector. The NOT operator reverses the truth value.

a b a AND b a OR b
T T T T
T F F T
F T F T
F F F F

Figure 4.14
A truth table shows the difference between AND and OR. Both clauses must be 
true when connected by AND. Only one clause needs to be true when clauses are 
connected by OR.



205Chapter  4: Data Queries

asks for both clauses to be true, and the first one is false (a < 4). The second ex-
ample is true because it requires only that one of the two clauses be true. Consider 
an example from the Pet Store. If a customer asks to see a list of yellow dogs, he 
or she wants a list of animals where the category is Dog AND the color is yellow.

As shown in Figure 4.16, conditions that are more complex can be created by 
adding additional clauses. A complication arises when the overall condition con-
tains both AND connectors and OR connectors. In this situation the resulting truth 
value depends on the order in which the clauses are evaluated. You should always 
use parentheses to specify the desired order. Innermost parentheses are evaluated 
first. In the example at the top of Figure 4.16, the AND operation is performed 
before the OR operation, giving a result of true. In the bottom example, the OR 
connector is evaluated first, leading to an evaluation of false.

If you do not use parentheses, the operators are evaluated from left to right. 
This result may not be what you intended, yet the DBMS will still provide a re-
sponse. To be safe, you should build complex conditions one clause at a time. 
Check the resulting selection each time to be sure you get what you wanted. To 
find the data matching the conditions in Figure 4.16, you would first enter the (a 
> 4) clause and display all of the values. Then you would add the (b < 0) clause 
and display the results. Finally, you would add the parentheses and then the (c > 
1) clause.

No matter how careful you are with Boolean algebra there is always room for 
error. The problem is that natural languages such as English are ambiguous. For 
example, consider the request by a customer who wants to see a list of “All dogs 
that are yellow or white and born after June 1.” This staement can be intrepreted 
two ways:

1. (dogs AND yellow) OR (white AND born after June 1).
2. (dogs) AND (yellow OR white) AND (born after June 1).

F T
F

T

( (a > 4) AND (b < 0) ) OR (c > 1)
T
T

F T

F
F

(a > 4) AND ( (b < 0) OR (c > 1) )
T

T

a = 3

b = -1

c = 2

Figure 4.16
Boolean algebra mixing AND and OR operators. The result changes depending on 
which operator is applied first. You must set the order of evaluation with parentheses. 
Innermost clauses are evaluated first.



206Chapter  4: Data Queries

These two requests are significantly different. The first interpretation returns all 
yellow dogs, even if they are older. The second interpretation requests only young 
dogs, and they must be yellow or white. Most people do not use parentheses when 
they speak—although pauses help indicate the desired interpretation. A good de-
signer (or salesperson) will ask the customer for clarification.

DeMorgan’s Law
Designing queries is an exercise in logic. A useful technique for simplifying com-
plex queries was created by a logician named Augustus DeMorgan. Consider the 
Pet Store example displayed in Figure 4.17. A customer might come in and say, 
“I want to look at a cat, but I don’t want any cats that are registered or that have 
red in their color.” Even in SQL, the condition for this query is a little confusing: 
(Category = N’Cat’) AND NOT ((Registered is NOT NULL) OR (Color LIKE 
N’%Red%’)). The negation (NOT) operator makes it harder to understand the 
condition. It is even more difficult to create the QBE version of the statement.

The solution lies with DeMorgan’s law, which explains how to negate condi-
tions when two clauses are connected with an AND or an OR. DeMorgan’s law 
states that to negate a condition with an AND or an OR connector, you negate 
each of the two clauses and switch the connector. An AND becomes an OR, and 
vice versa. Figure 4.17 shows how to handle the negative condition for the Pet 
Store customer. Each condition is negated (NOT NULL becomes NULL, and red 
becomes NOT red). Then the connector is changed from OR to AND. Figure 4.18 
shows that the final truth value stays the same when the statement is evaluated 
both ways.

The advantage of the new version of the condition is that it is a little easier 
to understand and much easier to use in QBE. In QBE you enter the individual 
clauses for Registration and Color. Placing them on the same line connects them 

Customer: "I want to look at a cat, but I 
don’t want any cats that are registered 
or that have red in their color." 

SELECT AnimalID, Category, Registered, Color
FROM Animal
WHERE (Category=‘Cat’) AND

NOT ((Registered is NOT NULL) 
OR (Color LIKE ‘%Red%’)). 

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

Is Null

Animal
Registered

Or
Not Like ‘%Red%’‘Cat’Criteria

Sort
AnimalAnimalAnimalTable
ColorCategoryAnimalIDField

Is Null

Animal
Registered

Or
Not Like ‘%Red%’‘Cat’Criteria

Sort
AnimalAnimalAnimalTable
ColorCategoryAnimalIDField

Figure 4.17
Sample problem with negation. Customer knows what he or she does not want. SQL 
can use NOT, but you should use DeMorgan’s law to negate the Registered and Color 
statements.



207Chapter  4: Data Queries

T F
T

F

NOT ((Registered is NOT NULL) OR (Color LIKE ‘%Red%’))

Registered=ASCF
Color=Black

(Registered is NULL) AND NOT (Color LIKE ‘%Red%’)
F

T
F

or

not

and
Fnot

Figure 4.18
DeMorgan’s law. Compound statements are negated by reversing each item and 
swapping the connector (AND for OR). Use truth tables to evaluate the examples.

Figure 4.19
Boolean criteria—mixing AND and OR. Notice the use of parentheses in SQL to 
ensure the clauses are interpreted in the right order. Also note that QBE required 
duplicating the condition for “Dog” in both rows.

List all dogs who are male and registered or who were 
born	before	6/1/2013 and have white in their color.

SELECT AnimalID, Category, Gender, Registered, DateBorn, Color
FROM Animal
WHERE (( Category=N‘Dog’) AND

( ( (Gender=N‘Male’) AND (Registered Is Not Null) ) OR
( (DateBorn<’01-Jun-2013’) AND (Color Like N‘%White%’) ) ) );

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

Field AnimalID Category Gender Registered DateBorn Color
Table Animal Animal Animal Animal Animal Animal
Sort
Criteria ‘Dog’ ‘Male’ Is Not Null
Or ‘Dog’ < ’01-Jun-2013’ Like ‘%White%’



208Chapter  4: Data Queries

with AND. In natural language the new version is expressed as follows: A cat that 
is not registered and is not red. In practice DeMorgan’s law is useful to simplify 
complex statements. However, you should always test your work by using sample 
data to evaluate the truth tables.

Criteria can become more complex when you mix clauses with AND and OR in 
the same query. Consider the question in Figure 4.19 to list all dogs who are male 
and registered or who were born before June 1 and have white in their color.

First, note that there is some ambiguity in the English statement about how to 
group the two clauses. Figure 4.20 shows the two possibilities. The use of the sec-
ond who helps to clarify the split, but the only way to be absolutely certain is to 
use either parentheses or more words.

The SQL version of the query is straightforward—just be sure to use paren-
theses to indicate the priority for evaluating each phrase. Innermost clauses are 
always evaluated first. A useful trick in proofreading queries is to use a sample 
row and mark T or F above each condition. Next, combine the marks based on the 
parentheses and connectors (AND, OR). Then read the statement in English and 
see whether you arrive at the same result.

With QBE you list clauses joined by AND on the same row, which is equivalent 
to putting them inside one set of parentheses. Separate clauses connected by OR 
are placed on a new row. To interpret the query, look at each criteria row sepa-
rately. If all of the conditions on one line are true, then the row is determined to be 
a match. A data row needs to match only one of the separate criteria lines (not all 
of them).

A second hint for building complex queries is to test just part of the criteria at 
one time—particularly with QBE. In this example, you would first write and test 
a query for male and registered. Then add the other conditions and check the re-
sults at each step. Although this process takes longer than just leaping to the final 
query, it helps to ensure that you get the correct answer. For complex queries it is 
always wise to examine the SQL WHERE clause to make sure the parentheses are 
correct.

Useful WHERE Clauses
Most database systems provide the comparison operators displayed in Figure 
4.21. Standard numeric data can be compared with equality and inequality op-
erators. Text comparisons are usually made with the LIKE operator for pattern 
matching. For all text criteria, you need to know if the system uses case-sensitive 
comparisons. By default, Microsoft Access and SQL Server are not case-sensitive, 
so you can type the pattern or condition using any case. On the other hand, Oracle 

List	all	dogs	who	are	male	and	registered	or	who	were	born	before	
6/1/2007 and have white in their color.

1:	(male	and	registered)	or	(born	before	June	1	and	white)
2:	(male)	and	(registered	or	born	before	June	1)	and	(white)

Figure 4.20
Ambiguity in natural languages means the sentence could be interpreted either way. 
However, version (1) is the most common interpretation.



209Chapter  4: Data Queries

is case-sensitive by default so you have to be careful to type the case correctly. If 
you do not know which case was used, you can use the UPPER function to con-
vert to upper case and then write the pattern using capital letters.

The BETWEEN clause is a useful way to handle common date conditions.  
The clause (SaleDate BETWEEN ’15-Aug-2013’ AND ’31-Aug-2013’ is equiva-
lent to (SaleDate >= ’15-Aug-2013’ AND SaleDate <= ’31-Aug-2013’). The date 
syntax shown here can be used on most database systems. Some systems allow 
you to use shorter formats, but on others, you will have to specify a conversion 
format. These conversion functions are not standard. For example, Access can 
read almost any common date format if you surround the date by pound signs (#) 
instead of quotes. Oracle often requires the TO_DATE conversion function, such 
as SaleDate >= TO_DATE(‘8/15/13’, ‘mm/dd/yy’). Be sure that you test all date 
conversions carefully, especially when you first start working with a new DBMS.

Another useful condition is to test for missing data with the NULL comparison. 
Two common forms are IS NULL and IS NOT NULL. Be careful—the statement 
(City = NULL) will not work with most systems, because NULL is not really 
a value. You must use (City IS NULL) instead. Unfortunately, conditions with 
the equality sign are not flagged as errors. The query will run—it just will never 
match anything.

Computations
What types of computations can be performed in SQL? For the most part you 
would use a spreadsheet or write separate programs for serious computations. 
However, queries can be used for two types of computations: aggregations and 
simple arithmetic on a row-by-row basis. Sometimes the two types of calculations 
are combined. Consider the row-by-row computations first. 

Basic Arithmetic Operators
SQL and QBE can both be used to perform basic computations on each row of 
data. This technique can be used to automate basic tasks and to reduce the amount 

Comparisons Examples
Operators <, =, >, <>, >=, BETWEEN, LIKE, IN
Numbers AccountBalance > 200
Text
  Simple
  Pattern match one
  Pattern match any

Name > ‘Jones’
License	LIKE	‘A_	_82_’
Name LIKE ‘J%’

Dates SaleDate BETWEEN ‘15-Aug-2013’ AND 
‘31-Aug-2013’

Missing Data City IS NULL
Negation Name IS NOT NULL
Sets Category IN (‘Cat’, ‘Dog’, ‘Hamster’)

Figure 4.21
Common comparisons used in the WHERE clause. The BETWEEN clause is useful 
for dates but can be used for any type of data.



210Chapter  4: Data Queries

of data storage. Consider a common order or sales form. As Figure 4.22 shows, 
the basic tables would include a list of items purchased: SaleItem(SaleID, ItemID, 
SalePrice, Quantity). In most situations you would need to multiply SalePrice by 
Quantity to get the total value for each item ordered. Because this computation 
is well defined (without any unusual conditions), there is no point in storing the 
result—it can be recomputed whenever it is needed. Simply build a query and 
add one more column. The new column uses elementary algebra and lists a name: 
SalePrice*Quantity AS Extended. Remember that the computations are performed 
for each row in the query. 

Most systems provide additional mathematical functions. For example, basic 
mathematical functions such as absolute value, logarithms, and trigonometric 
functions are usually available. Although these functions provide extended capa-
bilities, always remember that they can operate only on data stored in one row of 
a table or query at a time.

Aggregation
Databases for business often require the computation of totals and subtotals. 
Hence, query systems provide functions for aggregation of data. The common 
functions listed in Figure 4.23 can operate across several rows of data and return 
one value. The most commonly used functions are Sum and Avg, which are simi-
lar to those available in spreadsheets.

With SQL, the functions are simply added as part of the SELECT statement. 
With QBE, the functions are generally listed on a separate Total line. With Mi-
crosoft Access, you first have to click the summation (∑) button on the toolbar to 
add the Total line to the QBE grid. In both SQL and QBE, you should provide a 
meaningful name for the new column.

The Count function is useful in many situations, but make sure you understand 
the difference between Sum and Count. Sum totals the values in a numeric col-
umn. Count simply counts the number of rows. If you supply a column name to 
the Count function, you should use a primary key column or an asterisk (*). 

The difficulty with the Count function lies in knowing when to use it. You 
must first understand the English question. For example, the question How many 
employees does the Pet Store have? would use the Count function: SELECT 
Count(*) From Employee. The question How many units of Item 9764 have been 
sold? requires the Sum function: SELECT Sum(Quantity) FROM OrderItem. The 

SaleItem(SaleID, ItemID, SalePrice, Quantity)

Select SaleID, ItemID, SalePrice, Quantity, 
SalePrice*Quantity As Extended
From SaleItem;

SaleID ItemID Price Quantity Extended
24 25 2.70 3 8.10
24 26 5.40 2 10.80
24 27 31.50 1 31.50

Figure 4.22
Computations. Basic computations (+ - * /) can be performed on numeric data in a 
query. The new display column should be given a meaningful name.



211Chapter  4: Data Queries

difference is that there can be only one employee per row in the Employee table, 
whereas a customer can buy multiple quantities of an item at one time. Also keep 
in mind that Sum can be used only on a column of numeric data (e.g., Quantity).

In many cases you will want to combine the row-by-row calculations with an 
aggregate function. The example in Figure 4.24 asks for the total value of a par-
ticular order. To get total value, the database must first calculate Quantity * Cost 
for each row and then get the total of that column. The example also shows that it 
is common to specify a condition (WHERE) to limit the rows used for the total. In 
this example, you want the total for just one order.

There is one important restriction to remember with aggregation. You cannot 
display detail lines (row by row) at the same time you display totals. In the order 
example you can see either the detail computations (Figure 4.22) or the total value 
(Figure 4.24). In most cases it is simple enough to run two queries. However, if 
you want to see the detail and the totals at the same time, you need to create a 
report. Some of the most recent SQL standard extensions include provisions for 
displaying totals and details, but it is almost always easier to create a report.

Note that you can compute several aggregate functions at the same time. For 
example, you can display the Sum, Average, and Count at the same time: SE-
LECT Sum(Quantity), Avg(Quantity), Count(Quantity) From OrderItem. In fact, 
if you need all three values, you should compute them at one time. Consider what 
happens if you have a table with a million rows of data. If you write three separate 
queries, the DBMS has to make three passes through the data. By combining the 
computations in one query, you cut the total query time to one-third. With huge 
tables or complex systems, these minor changes in a query can make the differ-
ence between a successful application and one that takes days to run.

Sometimes when using the Count function, you will also want to include the 
DISTINCT operator. For example, SELECT COUNT (DISTINCT Category) 

Figure 4.23
Aggregation functions. Sample query in QBE and SQL to answer: What is the 
average sale price for all animals? Note that with Microsoft Access you have to click 
the summation button on the toolbar (∑) to display the Total line on the QBE grid.

SELECT Avg(Donation) AS AvgOfDonation
FROM Animal;

AnimalID
Name
Category
Donation

Animal

Field SalePrice
Table SaleAnimal
Total Avg
Sort
Criteria
Or

Sum
Avg
Min
Max
Count
StDev or 
StdDev
Var



212Chapter  4: Data Queries

FROM Animal will count the number of different categories and ignore dupli-
cates. Although the command is part of the SQL standard, some systems (notably 
Access) do not support the use of the DISTINCT clause within the Count state-
ment. To obtain the same results in Access, you would first build the query with 
the DISTINCT keyword. Save the query and then create a new query that com-
putes the Count on the saved query.

Functions
The SELECT command also supports functions that perform calculations on the 
data. These calculations include numeric forms such as the trigonometric func-
tions, string function such as concatenating two strings, date arithmetic func-
tions, and formatting functions to control the display of the data. Unfortunately, 
these functions are not standardized, so each DBMS vendor has different func-
tion names and different capabilities. Nonetheless, you should learn how to per-
form certain standard tasks in whichever DBMS you are using. Figure 4.25 lists 
some of the common functions you might need. Even if you are learning only one 
DBMS right now, you should keep this table handy in case you need to convert a 
query from one system to another.

String operations are relatively useful. Concatenation is one of the more pow-
erful functions, because it enables you to combine data from multiple columns 
into a single display field. It is particularly useful when you want to combine a 
person’s last and first names. Other common string functions convert the data to 
all lowercase or all uppercase characters. The length function counts the number 
of characters in the string column. A substring function is used to return a selected 
portion of a string. For example, you might choose to display only the first 20 
characters of a long title.

SELECT Sum(Quantity*Cost) AS OrderTotal
FROM OrderItem
WHERE (PONumber=22);

PONumber
ItemID
Quantity
Cost

OrderItem

Total

Or
=22Criteria

Sort

OrderItemOrderItemTable
OrderTotal: Quantity*CostPONumberField

Total

Or
=22Criteria

Sort

OrderItemOrderItemTable
OrderTotal: Quantity*CostPONumberField

OrderTotal
1798.28

Figure 4.24
Computations. Row-by-row computations (Quantity*Cost) can be performed within 
an aggregation function (Sum), but only the final total will be displayed in the result.



213Chapter  4: Data Queries

The powerful date functions are often used in business applications. Date col-
umns can be subtracted to obtain the number of days between two dates. Addition-
al functions exist to get the current date and time or to extract the month, day, or 
year parts of a date column. Date arithmetic functions can be used to add (or sub-
tract) months, weeks, or years to a date. One issue you have to be careful with is 
entering date values into a query. Most systems are sensitive to the fact that world 
regions have different standards for entering and displaying dates. For example, 
5/1/2013 is the first day in May in the United States, but it is the fifth day in Janu-
ary in Europe. To make sure that the DBMS understands exactly how you want a 
date interpreted, you might have to use a conversion function and specify the date 
format. Additional formatting functions can be used for other types of data, such 
as setting a fixed number of decimal points or displaying a currency sign.

A DBMS might have dozens of numeric functions, but you will rarely use more 
than a handful. Most systems have the common trigonometric functions (e.g., sine 
and cosine), as well as the ability to raise a number to a power. Most also provide 
some limited statistical calculations such as the average and standard deviation, 
and occasionally correlation or regression computations. You will have to con-
sult the DBMS documentation for availability and details on additional functions. 
However, keep in mind that you can always write your own functions and use 
them in queries just as easily as the built-in functions.

Task Access SQL Server Oracle
Strings
  Concatenation
  Length
  Upper case
  Lower case
  Partial string

FName & “ “ & LName
Len(LName)
UCase(LName)
LCause(LName)
MID(LName,2,3)

FName + ‘ ‘ + LName
Length(LName)
Upper(LName)
Lower(LName)
Substring(LName,2,3)

Fname || ‘ ‘ || LName
LENGTH(LName)
UPPER(LName)
LOWER(LName)
SUBSTR(LName,2,3)

Dates
  Today
  Month
  Day
  Year
  Date arithmetic

Date( ), Time( ), Now( )
Month(myDate)
Day(myDate)
Year(myDate)
DateAdd
DateDiff

GetDate( )
DateName(month, myDate)
DatePart(day, myDate)
DatePart(year, myDate)
DateAdd
DateDif

SYSDATE
TRUNC(myDate, ‘mm’)
TRUNC(myDate, ‘dd’)
TRUNC(myDate, ‘yyyy’)
ADD_MONTHS
MONTHS_BETWEEN
LAST_DAY

Formatting Format(item,	format) Str(item, length, decimal)
Cast, Convert

TO_CHAR(item,	format)
TO_DATE(item,	format)

Numbers
		Math	functions
  Exponentiation
  Aggregation
  Statistics

Cos, Sin, Tan, Sqrt
2 ^ 3
Min, Max, Sum, Count, 
Avg, StDev, Var

Cos, Sin, Tan, Sqrt
Power(2, 3)
Min, Max, Sum, Count,
Avg, StDev, Var, 
LinRegSlope, Correlation

COS, SIN, TAN, SQRT
POWER(2, 3)
MIN, MAX, SUM, COUNT, 
REGR, CORR

Figure 4.25
Differences in SQL functions.  This table shows some of the differences that are 
commonly encountered when working with these database systems. Queries are often 
used to perform basic computations, but the syntax for handling these computations 
depends on the specific DBMS. 



214Chapter  4: Data Queries

Subtotals and GROUP BY
How do you compute subtotals? To look at totals for only a few categories, you 
can use the Sum function with a WHERE clause. For example you might ask 
How many cats are in the animal list? The query is straightforward: SELECT 
Count (AnimalID) FROM Animal Where (Category = N’Cat’). This technique 
will work, and you will get the correct answer. You could then go back and edit 
the query to get the count for dogs or any other category of animal. However, 
eventually you will get tired of changing the query. Also, what if you do not know 
all the categories?

Consider the more general query: Count the number of animals in each cat-
egory. As shown in Figure 4.26, this type of query is best solved with the GROUP 
BY clause. This technique is available in both QBE and SQL. The SQL syntax 
is straightforward: just add the clause GROUP BY Category. The GROUP BY 
statement can be used only with one of the aggregate functions (Sum, Avg, Count, 
and so on). With the GROUP BY statement, the DBMS looks at all the data, finds 
the unique items in the group, and then performs the aggregate function for each 
item in the group.

By default, the output will generally be sorted by the group items. However, for 
business questions, it is common to sort (ORDER BY) based on the computation. 
The Pet Store example is sorted by the Count, listing the animals with the highest 
count first. Be careful about adding multiple columns to the GROUP BY clause. 
The subtotals will be computed for each distinct item in the entire GROUP BY 

SELECT Category,	Count(AnimalID)	AS	CountOfAnimalID
FROM Animal
GROUP BY Category
ORDER BY Count(AnimalID) DESC;

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

CountGroup ByTotal

Or
Criteria

DescendingSort

AnimalAnimalTable
AnimalIDCategoryField

CountGroup ByTotal

Or
Criteria

DescendingSort

AnimalAnimalTable
AnimalIDCategoryField

Category CountOfAnimalID
Dog 100
Cat 47
Bird 15
Fish 14
Reptile 6
Mammal 6
Spider 3

Figure 4.26
GROUP BY computes subtotals and counts for each type of animal. This approach is 
much more efficient than trying to create a WHERE clause for each type of animal. 
To convert business questions to SQL, watch for phrases such as by or for each 
which usually signify the use of the GROUP BY clause.



215Chapter  4: Data Queries

clause. If you include additional columns (e.g., Category and Breed), you might 
end up with a more detailed breakdown than you wanted.

Microsoft added a useful feature that can be used in conjunction with the OR-
DER BY statement. Sometimes a query will return thousands of lines of output. 
Although the rows are sorted, you might want to examine only the first few rows. 
For example, you might want to list your 10 best salespeople or the top 10 percent 
of your customers. When you have sorted the results, you can easily limit the 
output displayed by including the TOP statement; for example, SELECT TOP 
10 SalesPerson, SUM(Sales) FROM Sales GROUP BY SalesPerson ORDER BY 
SUM(Sales) DESC. This query will compute total sales for each salesperson and 
display a list sorted in descending order. However, only the first 10 rows of the 
output will be displayed. Of course, you could choose any value instead of 10. 
You can also enter a percentage value (e.g., TOP 5 PERCENT), which will cut the 
list off after 5 percent of the rows have been displayed. These commands are use-
ful when a manager wants to see the “best” of something and skip the rest of the 
rows. Oracle does not support the TOP condition, but you can use the internal row 
numbers to accomplish the same task. The command syntax relies on subqueries 
covered in the next chapter, but you might want to reduce your output rows, so an 
example is given here:
SELECT * FROM (SELECT … FROM …) WHERE ROWNUM <= 10;

SELECT Category,	Count(AnimalID)	AS	CountOfAnimalID
FROM Animal
GROUP BY Category
HAVING Count(AnimalID) > 10
ORDER BY Count(AnimalID) DESC;

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

CountGroup ByTotal

Or
>10Criteria
DescendingSort

AnimalAnimalTable
AnimalIDCategoryField

CountGroup ByTotal

Or
>10Criteria
DescendingSort

AnimalAnimalTable
AnimalIDCategoryField

Category CountOfAnimalID
Dog 100
Cat 47
Bird 15
Fish 14

Figure 4.27
Limiting the output with a HAVING clause. The GROUP BY clause with the Count 
function provides a count of the number of animals in each category. The HAVING 
clause restricts the output to only those categories having more than 10 animals.



216Chapter  4: Data Queries

The 2011 SQL standard expanded a clause to do the same thing but the syntax 
is slightly different and it might take a while to be fully supported. The new clause 
is the FETCH statement added to the end of the SELECT clause. For example, the 
salesperson query would be written as:

SELECT SalesPerson, SUM(Sales) FROM Sales GROUP BY 
SalesPerson ORDER BY SUM(Sales) DESC 
FETCH FIRST 10 ROWS WITH TIES

Conditions on Totals (HAVING)
The GROUP BY clause is powerful and provides useful information for making 
decisions. In cases involving many groups, you might want to restrict the output 
list, particularly when some of the groups are relatively minor. The Pet Store has 
categories for reptiles and spiders, but they are usually special-order items. In ana-
lyzing sales the managers might prefer to focus on the top-selling categories.

One way to reduce the amount of data displayed is to add the HAVING clause. 
The HAVING clause is a condition that applies to the GROUP BY output. In the 
example presented in Figure 4.27, the managers want to skip any animal category 
that has fewer than 10 animals. Notice that the SQL statement simply adds one 
line. The same condition can be added to the criteria grid in the QBE query. The 
HAVING clause is powerful and works much like a WHERE statement. Just be 
sure that the conditions you impose apply to the computations indicated by the 
GROUP BY clause. The HAVING clause is a possible substitute in Oracle which 
lacks the TOP statement. You can sort a set of subtotals and cut off the list to dis-
play only values above a certain limit.

WHERE versus HAVING
When you first learn QBE and SQL, WHERE and HAVING look very similar, 
and choosing the proper clause can be confusing. Yet it is crucial that you under-
stand the difference. If you make a mistake, the DBMS will give you an answer, 
but it will not be the answer to the question you want.

The key is that the WHERE statement applies to every single detail row in the 
original table. The HAVING statement applies only to the subtotal output from a 
GROUP BY query. To add to the confusion, you can even combine WHERE and 
HAVING clauses in a single query—because you might want to look at only some 
rows of data and then limit the display on the subtotals.

Consider the question in Figure 4.28 that counts the animals born after June 
1, 2013, in each Category, but lists only the Category if there are more than 10 
of these animals. The structure of the query is similar to the example in Figure 
4.25. The difference in the SQL statement is the addition of the WHERE clause 
(DateBorn > #6/1/2013#). This clause is applied to every row of the original data 
to decide whether it should be included in the computation. Compare the count for 
dogs in Figure 4.26 (30) with the count in Figure 4.25 (100). Only 30 dogs were 
born after June 1, 2013. The HAVING clause then limits the display to only those 
categories with more than 10 animals.

The query is processed by first examining each row to decide whether it meets 
the WHERE condition. If so, the Category is examined and the Count is increased 
for that category. After processing each row in the table, the totals are examined 
to see whether they meet the HAVING condition. Only the acceptable rows are 
displayed. The same query in QBE is a bit more confusing. Both of the conditions 
are listed in the criteria grid. However, look closely at the Total row, and you will 



217Chapter  4: Data Queries

see a Where entry for the DateBorn column. This entry is required to differentiate 
between a HAVING and a WHERE condition. To be safe, you should always look 
at the SQL statement to make sure your query was interpreted correctly.

The Best and the Worst
Think about the business question, Which product is our best seller? How would 
you build a SQL statement to answer that question? To begin, you have to decide 
if “best” is measured in quantity or revenue (price times quantity). For now, sim-
ply use quantity. A common temptation is to write a query similar to: SELECT 
Max(Quantity) FROM SaleItem. This query will run. It will return the individual 
sale that had the highest sale quantity, but it will not sum the quantities. A step 
closer might be: SELECT ItemID, Max(Sum(Quantity)) FROM SaleItem GROUP 
BY ItemID. But this query will not run because the database cannot compute the 
maximum until after it has computed the sum. So, the best answer is to use: SE-
LECT ItemID, Sum(Quantity) FROM SaleItem GROUP BY ItemID ORDER BY 
Sum(Quantity) DESC. This query will compute the total quantities purchased for 
each item and display the result in descending order—the best-sellers will be at 
the top of the list.

Note that this query displays more than the simple “best” answer. It displays all 
of the totals. The advantage to this approach is that it shows other rows that might 

Figure 4.28
WHERE versus HAVING. Count the animals born after June 1, 2007, in each 
category, but list the category only if it has more than 10 of these animals. The 
WHERE clause first determines whether each row will be used in the computation. 
The GROUP BY clause produces the total count for each category. The HAVING 
clause restricts the output to only those categories with more than 10 animals.

SELECT Category, Count(AnimalID) AS CountOfAnimalID
FROM Animal
WHERE DateBorn > ’01-Jun-2013’
GROUP BY Category
HAVING Count(AnimalID) > 10
ORDER BY Count(AnimalID) DESC;

AnimalID
Name
Category
Breed
DateBorn
Gender

Animal

Field Category AnimalID DateBorn
Table Animal Animal Animal
Total Group By Count Where
Sort Descending
Criteria >10 >’01-Jun-2013’
Or

CategoryCountOfAnimalID
Dog 30
Cat 18



218Chapter  4: Data Queries

be close to the “best” entry, which is information that might be valuable to the 
decision maker. The one drawback to this approach is that it returns the complete 
list of items sold. Generally, most businesspeople will want to see more than just 
the top or bottom item, so it is not a serious drawback—unless the list is too long. 
In that case, you can use the TOP or HAVING command to reduce the length of 
the list.

Multiple Tables
How do you use multiple tables in a query? All the examples so far have used 
a single table—to keep the discussion centered on the specific topics. In practice, 
however, you often need to combine data from several tables. In fact, the strength 
of a DBMS is its ability to combine data from multiple tables.
Chapter 3 shows how business forms and reports are dissected into related tables. 
Although the normalization process makes data storage more efficient and avoids 
common problems, ultimately, to answer the business question, you need to re-
combine the data from the tables. For example, the Sale table contains just the 
CustomerID to identify the specific customer. Most people would prefer to see the 
customer name and other attributes. This additional data is stored in the Customer 
table—along with the CustomerID. The objective is to take the CustomerID from 
the Sale table and look up the matching data in the Customer table. 

Figure 4.29
List the CustomerID of everyone who bought something between April 1, 2013 
and May 31, 2013. Most people would prefer to see the name and address of the 
customer—those attributes are in the Customer table.

SELECT DISTINCT CustomerID
FROM Sale
WHERE (SaleDate Between ’01-Apr-2013’ 

And ’31-May-2013’)
ORDER BY CustomerID;

SaleID
SaleDate
EmployeeID
CustomerID
SalesTax

Sale

Field CustomerID SaleDate
Table Sale Sale
Sort Ascending
Criteria Between ’01-Apr-2013’ 

And ’31-May-2013’
Or

CustomerID
6
8
14
19
22
24
28
36
37
38
39
42
50
57
58
63
74
80
90



219Chapter  4: Data Queries

Joining Tables
With modern query languages, combining data from multiple tables is straightfor-
ward. You simply specify which tables are involved and how the tables are con-
nected. QBE is particularly easy to use for this process. To understand the process, 
first consider the business question posed in Figure 4.29: list the CustomerID of 
everyone who bought something between 4/1/2013 and 5/31/2013. Because some 
customers might have made purchases on several days, the DISTINCT clause can 
be used to delete the duplicate listings.

Most managers would prefer to see the customer name instead of CustomerID. 
However, the name is stored in the Customer table because it would be a waste of 
space to copy all of the attributes to every table that referred to the customer. If 
you had these tables only as printed reports, you would have to take the Custom-
erID from the sale reports and find the matching row in the Customer table to get 
the customer name. Of course, it would be time-consuming to do the matching by 
hand. The query system can do it easily.

As illustrated in Figure 4.30, the QBE approach is somewhat easier than the 
SQL syntax. However, the concept is the same. First, identify the two tables in-
volved (Sale and Customer). In QBE, you select the tables from a list, and they are 
displayed at the top of the form. In SQL, you enter the table names on the FROM 
line. Second, you tell the DBMS which columns are matched in each table. In this 
case you match CustomerID in the Sale table to the CustomerID in the Customer 
table. Most of the time the column names will be the same, but they could be 
different.

Figure 4.30
Joining tables causes the rows to be matched based on the columns in the JOIN 
statement. You can then use data from either table. The business question is, List the 
last name of customers who bought something between April 1, 2013, and May 31, 
2013.

SELECT DISTINCT Sale.CustomerID, Customer.LastName
FROM Customer
INNER JOIN Sale ON Customer.CustomerID = Sale.CustomerID
WHERE (SaleDate Between ’01-Apr-2013’ And ’31-May-2013’)
ORDER BY Customer.LastName;

SaleID
SaleDate
EmployeeID
CustomerID

Sale

Field CustomerID LastName SaleDate
Table Sale Customer Sale
Sort Ascending
Criteria Between ’01-Apr-2013’ 

And ’31-May-2013’
Or

CustomerID LastName
22 Adkins
57 Carter
38 Franklin
42 Froedge
63 Grimes
74 Hinton
36 Holland
6 Hopkins
50 Lee
58 McCain
… 

CustomerID
Phone
FirstName
LastName

Customer



220Chapter  4: Data Queries

In SQL tables are connected with the JOIN statement. This statement was 
changed with the introduction of SQL 92—however, you will encounter many 
older queries that still use the older SQL 89 syntax. With SQL 89 the JOIN condi-
tion is part of the WHERE clause. Most vendors have converted to the SQL 92 
syntax, so this text will rely on that format. As Chapter 5 shows, the SQL 92 syn-
tax is much easier to understand when you need to change the join configuration.

The syntax for a JOIN is displayed in Figure 4.31. An informal syntax similar 
to SQL 89 is also shown. The DBMS will not accept statements using the infor-
mal syntax, but when the query uses many tables, it is easier to jot down the in-
formal syntax first and then add the details needed for the proper syntax. Note that 
with both QBE and SQL, you must specify the tables involved and which columns 
contain matching data.

Identifying Columns in Different Tables
Examine how the columns are specified in the SQL JOIN statement. Because the 
column CustomerID is used in both tables, it would not make sense to write Cus-
tomerID = CustomerID. The DBMS would not know what you meant. To keep 
track of which column you want, you must also specify the name of the table: 
Sale.CustomerID. Actually, you can use this syntax anytime you refer to a col-
umn. You are required to use the full table.column name only when the same col-
umn name is used in more than one table.

Joining Many Tables
A query can use data from several different tables. The process is similar regard-
less of the number of tables. Each table you want to add must be joined to one 
other table through a data column. If you cannot find a common column, either the 
normalization is wrong or you need to find a third table that contains links to both 
tables.

Consider the example in Figure 4.32: List the name and phone number of any-
one who adopted a registered white cat between two given dates. An important 
step is to identify the tables needed. For large problems involving several tables, it 
is best to first list the columns you want to see as output and the ones involved in 
the constraints. In the example, the name and phone number you want to see are 

SQL 92/Current Syntax
FROM Table1
INNER JOIN Table2
  ON Table1.Column = Table2.Column

SQL 89/Old Sytnax
FROM Table1, Table2
WHERE Table1.Column = Table2.Column

Informal Syntax for Notes
FROM Table1, Table2
JOIN Column

Figure 4.31
SQL 92 and SQL 89 syntax to join tables. The informal syntax cannot be used with a 
DBMS, but it is easier to read when you need to combine many tables.



221Chapter  4: Data Queries

in the Customer table. The Registration status, Color, and Category (Cat) are all in 
the Animal table. The SaleDate is in the Sale table. The Animal table connects to 
the Sale table through the SaleID column in the Animal table.

 When the database contains a large number of tables, complex queries can be 
challenging to build. You need to be familiar with the tables to determine which 
tables contain the columns you want to see. For large databases, an entity-relation-
ship diagram (ERD) or a class diagram can show how the tables are connected. 
Chapter 3 explains how Access sets referential integrity for foreign key relation-
ships. Access uses the relationships to automatically add the JOINs to QBE when 
you choose a table. You can also use the class diagram to help users build queries.

When you first see it, the SQL 92 syntax for joining more than two tables can 
look confusing. In practice, it is best not to memorize the syntax. When you are 
first learning SQL, understanding the concept of the JOIN is far more important 
than worrying about syntax. Figure 4.33 shows the syntax needed to join three 
tables. To read it or to create a similar statement, start with the first table and JOIN 
it to a second table with the corresponding ON condition. Then JOIN the next 
table with a matching ON statement. Just be sure that the new table can be joined 
to one of the existing tables. Unfortunately, this syntax will not work in Microsoft 
Access, which requires the addition of parentheses. Figure 4.33 also shows an 
easier syntax that is faster to write when you are first developing a query or when 
you are in a hurry—perhaps on an exam. It is similar to the older SQL 89 syntax 
(but not exactly correct) where you list all the tables in the FROM clause and then 
join them in the WHERE statement.

Figure 4.32
Joining multiple tables. QBE makes joining multiple tables relatively easy—just 
connect the tables with a line. With SQL, just start with two tables and expand 
outward; for example, start with (Animal INNER JOIN SaleAnimal ON Animal.
malID = SaleAnimal.AnimalID), and then add a third table (Sale) with its JOIN.

SELECT Customer.LastName, Customer.Phone
FROM Customer 
INNER JOIN Sale ON Customer.CustomerID=Sale.CustomerID
INNER JOIN Animal ON Sale.SaleID=Animal.SaleID
WHERE ((Animal.Category=N‘Cat’) AND (Animal.Registered Is Not Null)
AND (Color Like N‘%White%’)  AND (SaleDate Between ’01-Jun-2013’ And ’31-Dec-2013’));

SaleID
SaleDate
EmployeeID
CustomerID

Sale

Field LastName Phone Category Registered Color SaleDate
Table Customer Customer Animal Animal Animal Sale
Sort Ascending
Criteria ‘Cat’ Is Not Null Like ‘%White%’ Between ’01-Jun-2013’ 

And ’31-Dec-2013’
Or

CustomerID
Phone
FirstName
LastName

Customer
AnimalID
Name
Category
SaleID

Animal



222Chapter  4: Data Queries

Hints on Joining Tables
Joining tables is closely related to data normalization. Normalization splits data 
into tables that can be stored and searched more efficiently. Queries and SQL are 
the reverse operation: JOINs are used to recombine the data from the tables. If the 
normalization is incorrect, it might not be possible to join the tables. As you build 
queries, double-check your normalization to make sure it is correct. Students of-
ten have trouble with JOINs, so this section provides some hints to help you un-
derstand the potential problems.

Remember that any time you use multiple tables, you must join them together. 
Most database query systems will accept a query even if the tables are not joined. 
They will even give you a result. Unfortunately, the result is usually meaningless. 
The joined tables also create a huge query result. Without any constraints most 
query systems will produce a cross join, where every row in one table is paired 
with every row in the other table.

 Where possible, you should double-check the answer to a complex query. Use 
sample data and individual test cases in which you can compute the answer by 
hand. You should also build a complex query in stages. Start with one or two 
tables and check the intermediate results to see if they make sense. Then add new 
tables and additional constraints. Add the summary calculations last (e.g., Sum, 
Avg). It’s hard to look at one number (total) and decide whether it is correct. In-
stead, look at an intermediate listing and make sure it includes all of the rows you 
want; then add the computations.

Columns used in a JOIN are often key columns, but you can join tables on any 
column. Similarly, joined columns may have different names. For example, you 
might join an Employee.EmployeeID column to a Sale.SalesPerson column. The 
only technical constraint is that the columns must contain the same type of data 
(domain). In some cases, you can minimize this limitation by using a function to 
convert the data. For example, you might use Left(ZipCode,5) = ZipCode5 to re-
duce a nine-digit ZipCode string to five digits. Just make sure that it makes sense 
to match the data in the two columns. For instance, joining tables on Animal.Ani-
malID = Employee.EmployeeID would be meaningless. The DBMS would actu-
ally accept the JOIN (if both ID values are integers), but the JOIN does not make 
any sense because an Employee can never be an Animal (except in science-fiction 
movies).

SQL 92 Syntax for Three Tables
FROM Table1
  INNER JOIN Table2 ON Table1.ColA = Table2.ColA
  INNER JOIN Table3 ON Table2.ColB = Table3.ColB

Easier notation, But Not Correct Syntax
FROM Table1, Table2, Table3
JOIN           ColA      ColB

Figure 4.33
Joining multiple tables. With SQL 92 syntax, first join two tables within parentheses 
and  then add a table and its JOIN condition. When you want to focus on the tables 
being joined, use the easier notation—just remember that it must be converted to 
SQL 92 syntax for the computer to understand it.



223Chapter  4: Data Queries

Avoid multiple ties between tables. This problem often arises in Access when 
you have predefined relationships between tables. Access QBE automatically uses 
those relationships to join tables in a query. If you select the four tables shown in 
Figure 4.34 and leave all four JOINs, you will not get the answer you want. The 
four JOINs will return Sales only where the Employee placing the order has the 
same CityID as the Customer! If you only need the City for the Customer, the so-
lution is to delete the JOIN between Employee and City. In general, if your query 
uses four tables, you should have three JOINs (one less than the number of tables).

Sometimes it is helpful to remember that a JOIN condition also works as a row 
filter. The standard join will only return rows from a table that match those in 
the first table. For example, Sale.CustomerID = Customer.CustomerID will return 
customer data but only if those customers have already participated in a sale.

Table Alias
Consider the preceding Employee/Customer/City example in more detail. What if 
you really want to display the City for the Customer and the City for the Employ-
ee? Of course, you want to allow the cities to be different. The answer involves a 
little-known trick in SQL: just add the City table twice. The second “copy” will 
have a different name (e.g., City_1). You give a table a new name (alias) within 
the FROM clause: FROM City AS City_1. As shown in Figure 4.35, the City table 
is joined to the Customer. The City_1 table is joined to the Employee table. Now 
the query will perform two separate JOINs to the same table—simply because it 
has a different name.

SaleID
SaleDate
EmployeeID
CustomerID

Sale

CustomerID
Phone
Name
CityID

Customer

EmployeeID
Name
Phone
TaxPayerID
DateHired
CityID
ManagerID

Employee

CityID
ZipCode
City
State

City

1

1

1

1

*
*

*

*

Figure 4.34
A query with these four tables with four JOINS would return only rows where the 
Employee had the same CityID as the Customer. If you need only the Customer city, 
just delete the JOIN between Employee and CityID. If you want both cities, add a 
second copy of the City table as a fifth table.



224Chapter  4: Data Queries

Create View
Any query that you build can be saved as a view. Microsoft simply refers to them 
as saved queries, but SQL and Oracle call them views. In either case the DBMS 
analyzes and stores the SQL statement so that it can be run later. If a query needs 
to be run many times, you should save it as a view so that the DBMS has to ana-
lyze it only once. Figure 4.36 shows the basic SQL syntax for creating a view. You 
start with any SELECT statement and add the line (CREATE VIEW …). 

The most powerful feature of a view is that it can be used within another query. 
Views are useful for queries that you have to run many times. You can also create 
views to handle complex questions. Users can then create new, simpler queries 
based on the views. In the example in Figure 4.36, you would create a view (Kit-

CREATE VIEW Kittens AS
SELECT *
FROM Animal
WHERE (Category = ‘Cat’ AND (Today-DateBorn < 180);

Figure 4.35
Table alias. The City table is used twice. The second time, it is given the alias City_1 
and treated as a separate table. Hence, different cities can be retrieved for Customer 
and for Employee.

Figure 4.36
Views. Views are saved queries that can be run at any time. They improve 
performance because they have to be entered only once, and the DBMS has to 
analyze them only once.

CID Customer.CityID City.City EID LastName Employee.CityID City_1.City
15 11013 Galveston 1 Reeves 11060 Lackland AFB
53 11559 Beaver Dam 2 Gibson 9146 Roanoke Rapids
38 11701 Laramie 3 Reasoner 8313 Springfield
66 7935 Danville 8 Carpenter 10592 Philadelphia
5 9175 Fargo 3 Reasoner 8313 Springfield

SELECT Customer.CustomerID, Customer.CityID, City.City, Sale.EmployeeID, 
Employee.LastName, Employee.CityID, City_1.City
FROM (City INNER JOIN (Customer INNER JOIN (Employee INNER JOIN Sale ON 
Employee.EmployeeID = Sale.EmployeeID) ON Customer.CustomerID = 
Sale.CustomerID) ON City.CityID = Customer.CityID) INNER JOIN City AS City_1 ON 
Employee.CityID = City_1.CityID;

EmployeeID
LastName
ZipCode
CityID

Employee

CityID
ZipCode
City
State

City_1

CustomerID
Phone
Name
CityID

Customer

CityID
ZipCode
City
State

City

SaleID
SaleDate
EmployeeID
CustomerID

Sale



225Chapter  4: Data Queries

tens) that displays data for Cats born within the last 180 days. As shown in Figure 
4.37, users could search the Kittens view based on other criteria such as color.

As long as you want to use a view only to display data, the technique is straight-
forward. However, if you want a view that will be used to change data, you must 
be careful. Depending on how you create the view, you might not be able to up-
date some of the data columns in the view. The example shown in Figure 4.38 is 
an updatable view. The purpose is to add new data for ordering items. The user 
enters the OrderID and the ItemID. The corresponding description of that Item is 
automatically retrieved from the Item table. 

Figure 4.39 illustrates the problem that can arise if you are hasty in choosing 
the columns in a view. Here the OrderLine view uses the ItemID value from the 
Item table (instead of from the OrderItem table). Now you will not be able to add 
new data to the OrderLine view. To understand why, consider what happens when 
you try to change the ItemID from 57 to 32. If it works at all, the new value is 
stored in the Item table, which simply changes the ItemID of cat food from 57 to 
32. 

To ensure that a view can be updated, the view should be designed to change 
data in only one table. The rest of the data is included simply for display—such 
as verifying that the user entered the correct ItemID. You should never include 
primary key columns from more than one table. Also, to remain updatable, a view 
cannot use the DISTINCT keyword or contain a GROUP BY or HAVING clause.

Views have many uses in a database. They are particularly useful in helping 
business managers work with the database. A database administrator (DBA) or 
MIS worker can create views for the business managers, who see the section of 
the database expressed only in the views. Hence, you can hide the view’s com-
plexity and size. Most important, you can hide the JOINs needed to build the 
view, so managers can work with simple constraints. By keeping the view updat-
able, managers never need to use the underlying raw tables.

Figure 4.38
Updatable view. The OrderLine view is designed to change data in only one table 
(OrderItem). The Description from the Item table is used for display to help the user 
verify that the ItemID was entered correctly.

SaleItem(SaleID, ItemID, Quantity) Merchandise(ItemID, Description)

SaleLine(SaleID, ItemID, Description, Quantity)

Figure 4.37
Queries based on views. Views can be used within other queries.

SELECT Avg(ListPrice)
FROM Kittens
WHERE (Color LIKE ‘%Black%’);



226Chapter  4: Data Queries

Note that some database systems place restrictions on commands allowed with-
in a view. For example, older Oracle and newer SQL Server systems do not allow 
you to use the ORDER BY clause in a saved view. The reason for this restriction 
was to enable the system to provide better performance by optimizing the query. 
To sort a result, you had to add the ORDER BY statement to a new query that 
called the saved view. Finally, no matter how careful you are at constructing a 
view with a JOIN statement, the DBMS might still refuse to consider it update-
able. When the DMBS accepts it, updateable views can save some time later when 
building forms. But, at other times you have to give up and go with simpler forms. 

Newer Searches and Patterns
How do you search XML and complex 
text strings? Over time, companies have 
found the need to store complex data in 
databases. Although most DBMSs can 
store new and different types of data, it 
also becomes important to retrieve that 
data. The standard WHERE conditions 
apply only to the basic data types (simple 
numbers and text). A few types of com-
plex data have become important and common enough that vendors have adopted 
standard methods to search these new data types. The two most common types of 
data are: XML hierarchies and long text.

XML is stored as tagged data, and an entry is commonly organized as a hier-
archy. A parent node can have multiple child nodes. For instance, an <Order> tag 
can have multiple <Item> tags to indicate which items are being ordered. Devel-
opers and users need a common method to search an XML tag, including the abil-
ity to drill down and list elements within the hierarchy. XQuery was developed as 
a standard to perform these searches. Today, the SQL 2006 standard and most of 
the big DBMSs support the XML data type and the use of XQuery to search XML 
data.

Note: This section covers XQuery 
and RegEx searches for XML data 
and text strings. It could be skipped 
or covered later. Be sure you under-
stand basic SQL commands before 
dealing with this material. 

Figure 4.39
Nonupdatable view. Do not mix primary keys from different tables. If this view 
works at all, it will not do what you want. If you try to change the ItemID from 57 
to 32, you will only change the ItemID of cat food. You will not be able to enter new 
data into the OrderItem table.

SaleItem(SaleID, ItemID, Quantity) Merchandise(ItemID, Description)

SaleLine(SaleID, Item.ItemID, Description, Quantity)

121 57 3
121 82 2
122 57 1

57 Cat	food
58 Dog	food
59 Bird	food

121 57 Cat	food 3
121 82 Bird	feeder 2
122 57 Cat	food 1

32



227Chapter  4: Data Queries

The basic pattern matching provided by the SQL standard is somewhat simplis-
tic. With only two search symbols (all text or one character), it is relatively easy 
to use. But it is not very powerful. Programmers have long had a powerful string 
search tool called regular expressions. Technically, regular expressions were add-
ed to the SQL 1999 standard, but only recently have vendors added it as a feature. 

XQuery
XQuery is a standardized method for retrieving values from an XML string. XML 
uses tags to mark each item and the designer can create almost any terms for the 
tags. But the XML string has to be well-formed and can be validated against a 
schema that specifies the data model. An XML data model is essentially a hierar-
chical definition of the data and repeating elements that can be stored in the XML 
string. Figure 4.40 shows a simple XML file with sample data. When vendors ship 
products to Sally’s Pet Store, they are asked to send this XML file that contains 
the shipping invoice data. The vendor provides a ShipID and the ShipDate to ref-
erence their data in case questions arise later. The repeating Items section contains 
a list of the items that were shipped along with the quantity and price paid. This 
example is intentionally kept simple. A real-world invoice could have many levels 
and options. Note that all XML tags are case-sensitive.
 For illustration, Figure 4.41 shows a simple version of the XML schema for 
the sample data. The schema is the data definition and it can be used to create 
and to validate XML data files. Note how the hierarchical form is defined through 
the nested elements. In this case, the reference to Items is listed within the main 
shipment. Also, note that each data point is defined by an element and the ele-

Figure 4.40
Sample XML data. Assume vendors send a shipping invoice file when they send 
products. The sample data shows a single shipment that contains a ShipID and 
ShipDate. The repeating section contains a list of items and the quantity that were 
shipped.

<shipment>
<ShipID>1573</ShipID>
<ShipDate>15-May-2010</ShipDate>
<Items>
  <Item>
    <ItemID>15</ItemID>
    <Description>Leash</Description>
    <Quantity>20</Quantity>
    <Price>8.95</Price>
  </Item>
  <Item>
    <ItemID>32</ItemID>
    <Description>Collar</Description>
    <Quantity>25</Quantity>
    <Price>14.50</Price>
  </Item>
  </Items>
</shipment>



228Chapter  4: Data Queries

ment specifies the type of data. The default data type is text. XML and schemas 
support considerably more complex data specifications, but it is best to start with 
the simple formats. One way to create an XML data file and a schema definition 
is to export a table from Microsoft Access as an XML file. This approach adds 
some overhead to define a few Office/Access features; but it is a relatively pain-
less method to create an XML schema.
Storing XML Data
Unfortunately, Microsoft Access tables do not directly support the XML data type 
and XQuery. You will need to use SQL Server or Oracle to work with the remain-
ing examples. A few standalone tools found on the Web can also be used to learn 
and experiment with XQuery. 

SQL Server (and Oracle) can handle XML both as data stored within a table 
and as a data variable within the programming language. The underlying concepts 
are the same, but since this chapter focuses on tables and queries, the examples 
here use XML data placed into a table. Figure 4.42 shows the CREATE TABLE 
and INSERT commands to create a new ShippingInvoice table and insert the sam-
ple data. Notice that the entire XML string is inserted into a single cell (row/col-
umn) of the ShippingInvoice table. That is, the table contains one row to represent 
the single invoice and all of the XML data goes into the XML Contents column. 
Retrieving XML Data with XQuery
XML data is basically a large string. You can retrieve the entire XML string with 
a relatively standard SELECT statement, simply by specifying the desired row. 

Figure 4.41
Simple XML schema for sample data. Note the hierarchical definition through the 
nested elements.

<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema” >
  <xsd:element name=“shipment”>
    <xsd:complexType>
      <xsd:element name=“ShipID” minOccurs=“0” type=“xsd:int” />
      <xsd:element name=“ShipDate” minOccurs=“0” type=“xsd:date” />
      <xsd:sequence>
								<xsd:element	ref=“Items”	minOccurs=“0”	maxOccurs=“unbounded”	/>
      </xsd:sequence>
    </xsd:complexType
  </xsd:element>
  <xsd:element name=“Items”>
    <xsd:complexType>
      <xsd:sequence>
        <xsd:element name=“ItemID” minOccurs=“0”  type=“xsd:int” />
        <xsd:element name=“Description” minOccurs=“0” />
        <xsd:element name=“Quantity” minOccurs=“0” type=“xsd:int” />
        <xsd:element name=“Price” minOccurs=“0” type=“xsd:double” />
      </xsd:sequence>
    </xsd:complexType>
  </xsd:element>
</xsd:schema>



229Chapter  4: Data Queries

Figure 4.43
Simple XQuery example. The SQL SELECT statement specifies the desired row and 
column that contains the XML data. The  .query(‘shipment/Items’) term is a new 
element that builds the XML query.

SELECT Contents.query(‘shipment/Items’) As ItemList
FROM ShippingInvoice
WHERE ShippingID=1;
<Items>
  <Item>
    <ItemID>15</ItemID>
    <Description>Leash</Description>
    <Quantity>20</Quantity>
    <Price>8.95</Price>
  </Item>
  <Item>
    <ItemID>32</ItemID>
    <Description>Collar</Description>
    <Quantity>25</Quantity>
    <Price>14.50</Price>
  </Item>
</Items>

Figure 4.42
SQL Server table with XML data and INSERT command.

CREATE TABLE ShippingInvoice (
 ShippingID int IDENTITY(1,1) NOT NULL,
 InvoiceDate date NULL,
 OrderID int NULL,
 Contents xml NULL,
	CONSTRAINT	pk_ShippingInvoice	PRIMARY	KEY	(ShippingID)
)
GO
INSERT INTO ShippingInvoice (InvoiceDate, OrderID, Contents)
VALUES (’19-May-2013’, 12, ‘
<shipment>
<ShipID>1573</ShipID>
<ShipDate>15-May-2013</ShipDate>
<Items>
 <Item><ItemID>15</ItemID><Description>Leash</Description>
    <Quantity>20</Quantity><Price>8.95</Price></Item>
 <Item><ItemID>32</ItemID><Description>Collar</Description>
    <Quantity>25</Quantity><Price>14.50</Price></Item>
  </Items>
</shipment>
‘);



230Chapter  4: Data Queries

However, you will often need to use XQuery to extract particular elements from 
the XML string. Figure 4.43 shows one of the simplest XQuery examples. The 
SQL SELECT statement is used to specify the desired row (ShippingID=1) and 
the column (Contents) of the XML document. The .query(‘shipment/Items’) is the 
new term that activates XQuery. XQuery supports several relatively complex ca-
pabilities for searching an XML document. Only a few commonly-used examples 
are given here. Once you understand the basic structure of XML and XQuery, 
you can study the reference documents to create more complex queries. However, 
keep in mind that instead of building a hugely complex XQuery, it is often better 
to extract all of the XML data and store it directly in relational tables. Then you 
can use the power and speed of SQL to retrieve the data.

The simplest form of an XQuery is to retrieve a segment of the XML docu-
ment. The clearest way to do that is to simply specify the desired segment from 
the top down. In the sample data, “shipment” is the root node and “Items” is the 
repeating section. Hence, the query ‘shipment/Items’ returns the entire entry under 
the “Items” node.

What if you want to retrieve data based on a specific value stored within a 
node? For instance, you want to retrieve all of the information for ItemID 15 in 
the sample data. XQuery has a couple of methods for retrieving this data. Figure 
4.44 shows the simplest approach: /shipment/Items/Item[ItemID=15]. Specify the 
hierarchical structure and then enter the desired condition in square brackets [ ]. 

Another useful trick is to return just a single element within a node. In the prior 
example, instead of returning the entire entry for ItemID 15, it might be useful 
to retrieve only the Quantity shipped. Figure 4.45 shows the syntax for specify-
ing a single node. Simply add the node name after the brackets: /shipment/Items/
Item[ItemID=15]/Quantity. 

Complex search conditions are available, including a “contains” function to 
search text elements for specific values. Elements can also include attributes, 
such as <Price currency=”USD”>8.95</Price>, which uses a currency attribute 
to specify the monetary units. (USD is the standard symbol for U.S. Dollar). To 
search for this particular attribute, you could use a query of the form: /shipment/

SELECT Contents.query(‘
		/shipment/Items/Item[ItemID=15]
‘) As ItemList
FROM ShippingInvoice
WHERE ShippingID=1;

<Item>
  <ItemID>15</ItemID>
  <Description>Leash</Description>
  <Quantity>20</Quantity>
  <Price>8.95</Price>
</Item>

Figure 4.44
XQuery to retrieve entry based on value stored within an element. Find entry for 
ItemID 15.



231Chapter  4: Data Queries

Items/Item/Price[@currency=”USD]; which will return only those items where 
the price currency is directly specified as USD.

Several other search options are available, but they use a somewhat cryptic an-
notation mechanism. XQuery also supports a relatively flexible search language 
that is often easier to read. It is abbreviated as FLWOR: for, let, where, order by, 
return. Figure 4.46 shows an example of the “for” loop that examines all of the 
items, searching for an entry with ItemID equal to 15. Note the use of an internal 
variable ($item) that is used to temporarily hold the values of each node being 
examined. The query also uses the data function to extract the value and return 
the simple number (20) without its XML tags. This data function could have been 
used in the prior examples as well. The point of the “for” loop is that it returns all 
of the nodes that meet the specified criteria, so it can return multiple “rows” of 
data—although all of the “rows” are stored within the single XML document. The 
return statement also supports an if/then/else construct so you can return modified 
results based on a conditional test.
XQuery in Oracle
Oracle support for XML and XQuery is similar to the examples in this section, 
but the syntax is slightly different. First, the data type needed is XMLType. Also, 
note that “contents” is a reserved word in Oracle, so the column name in the Ship-
pingInvoice table should be changed to xContents. If you create a sequence and an 
insert trigger for the table, the existing INSERT command will work. However, it 

Figure 4.45
Extract a single element from the found node by adding the element name (/Quantity) 
after the brackets.

SELECT Contents.query(‘
		for	$item	in	/shipment/Items/Item
    where $item/ItemID=15
  return data($item/Quantity)
‘) As ItemList
FROM ShippingInvoice
WHERE ShippingID=1;

20

Figure 4.46
Using FLWOR commands to search nodes and return a single value. Also uses the 
data function to return the value without the XML tags.

SELECT Contents.query(‘
		/shipment/Items/Item[ItemID=15]/Quantity
‘) As ItemList
FROM ShippingInvoice
WHERE ShippingID=1;

<Quantity>20</Quantity>



232Chapter  4: Data Queries

is probably easier to just modify the INSERT command to include the ShippingID 
and specify the ShippingID value as 1. So, the setup commands are:
CREATE TABLE ShippingInvoice (
 ShippingID number NOT NULL,
 InvoiceDate date,
 OrderID number,
 xContents XMLType,
 CONSTRAINT pk_ShippingInvoice PRIMARY KEY (ShippingID)
);
INSERT INTO ShippingInvoice (ShippingID, InvoiceDate, 
OrderID, xContents)
VALUES (1, ‘19-May-2013’, 12, ‘
<shipment>
<ShipID>1573</ShipID>
<ShipDate>15-May-2013</ShipDate>
<Items>
  <Item><ItemID>15</ItemID><Description>Leash</
Description>
    <Quantity>20</Quantity><Price>8.95</Price></Item>
  <Item><ItemID>32</ItemID><Description>Collar</
Description>
    <Quantity>25</Quantity><Price>14.50</Price></Item>
  </Items>
</shipment>
‘);

The syntax for calling XQuery is also somewhat different. However, the XQue-
ry functions are mostly standardized. The basic command matching Figure 4.43 
shows the difference using the extract function:
SELECT extract(xContents, ‘
   /shipment/Items
‘) As ListResult
FROM ShippingInvoice
WHERE ShippingID=1;

Once you understand the syntax, the method of using XQuery is the same as 
the other examples. But always be sure to test everything.
Summary
XQuery is a powerful tool for searching XML data trees. However, keep in mind 
that all searches through XML are based on string values and they are rarely (if 
ever) indexed. Consequently, XQuery searches can be quite slow. Additionally, 
you have to be cautious and test all of your queries to ensure they are retrieving 
exactly the requested data and not missing anything. If XML data needs to be 
searched often, it is better to extract the individual elements and put them into 
standard relational tables. Then use SQL to perform the searches. XQuery could 
be used to perform the data extraction. Remember that XQuery works on data in 
one row and one cell at a time.

Ultimately, a designer must make the decision of whether to extract XML data 
into relational tables or to leave it stored as a single XML document. If the data 
is rarely used except for occasional searches, it can probably be left as an XML 
document. However, it will still be necessary to have someone around who can 



233Chapter  4: Data Queries

write and test XQuery code for those times when a manager does need to search 
the data. As shown in the examples, it is possible to prebuild SQL views that con-
tain XQuery searches. These views can be saved and run later. The tools include 
the ability to reference SQL parameter variables within the XQuery so these views 
can be controlled through other code. However, because of the complexity and 
tricky nature of XML queries, avoid giving users the ability to create their own 
XQuery searches.

Regular Expressions (RegEx) Patterns
Increasingly, applications are being built that contain unstructured text data. For 
instance, a database might hold open-ended comments entered by workers or cus-
tomers; or a database might be built to hold boilerplate paragraphs for use in con-
tracts or negotiations. Think in terms of the open content on the Web, but it is 
data stored in internal databases. Now think about how people will want to search 
this data. Many times, they will want to enter keywords or phrases or even more 
complex conditions to find matches to sophisticated patterns. If the data consists 
of HTML or PDF pages stored on an internal Web server, it is possible to purchase 
commercial search engines to help index and find pages. But how are you going to 
create searches for text stored in a relational database? Basic SQL pattern match-
ing was discussed in an earlier section of this chapter. It consists of two wildcard 
characters (% and _ in the standard) that match any characters or any single char-
acter. This basic approach is not going to be enough. To address these issues, SQL 
1999 added support for regular expressions, usually abbreviated RegEx. It has 
taken vendors a few years, but the big systems now support regular expression 
searches. 

Figure 4.47
Steps to create a CLR project in SQL Server and enable CLR functions in the 
database.

1. Start Visual Studio.
2. Open	a	New	Project:	Visual	C#,	Database,	SQL	Server:	Visual	

C#	SQL	CLR	Database	Project.
3. Choose the Pet Store database.
4. Right-click	the	project	name,	Add,	User	Defined	Function:	

RegexMatch.cs.
5. If	using	VS	2010,	right-click	project	name,	Properties.	Change	

.NET	version	from	4.0	down	to	3.5	(not	the	client).	
6. Modify	or	replace	the	function	code	(in	the	next	figure).
7. Build then Build, Deploy.
8. In SQL Server Management Studio, open the database and 

enable	CLR	functions.

EXEC	sp_configure	‘show	advanced	options’	,	‘1’;	
reconfigure;	
EXEC	sp_configure	‘clr	enabled’	,	‘1’	;
reconfigure;	
EXEC	sp_configure	‘show	advanced	options’	,	‘0’;	
reconfigure;



234Chapter  4: Data Queries

Regular expressions were created many years ago and were heavily used by 
programmers—particularly on UNIX-based systems. Today, most programming 
languages support them, and the big DBMSs also support their usage for matching 
text values. Microsoft Access does not support them for table searches; however, 
any code written in one of the Microsoft languages (Visual Basic, C#, C++ and so 
on) has regular expression processing which can be applied to the rows retrieved 
from queries.

Some systems, such as MySQL, support regular expressions directly as part of 
the query. For example, Oracle defines functions for Regexp_Count, Regexp_In-
str, Regexp_Like, and Regexp_Replace. The Regexp_Like function is similar to 
an extended Like command used in the WHERE clause. SQL Server is more com-
plicated to set up, but SQL server also has a simpler option that extends the stan-
dard LIKE command. 

Regular expressions have powerful options supporting many complex types of 
searches. On the simple side, a pattern can search for a single word. More com-
plex patterns can be created to see if an entered string is an e-mail address. Pat-
terns can be written to search for repeating characters or phrases.
SQL Server Setup
Beginning with SQL Server 2005, Microsoft added the ability to create user-de-
fined common-language runtime (CLR) functions in SQL Server. CLR func-
tions are written in a Visual Studio language, such as C#, compiled and installed 
into the database so that they can be used as functions within SQL. The process 
takes a few steps to set up the function, but once the function is installed, it is used 

using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using System.Text.RegularExpressions;
using	Microsoft.SqlServer.Server;

public	partial	class	UserDefinedFunctions
{
    public static readonly RegexOptions Options =
    RegexOptions.IgnorePatternWhitespace |
    RegexOptions.Singleline;

				[Microsoft.SqlServer.Server.SqlFunction]
    public static SqlBoolean RegexMatch(
        SqlChars input, SqlString pattern)
    {
        Regex regex = new Regex( pattern.Value, Options );
        return regex.IsMatch( new string( input.Value ) );
    }
};

Figure 4.48
Microsoft C# function to create the RegexMatch function for use in SQL Server.



235Chapter  4: Data Queries

much like the functions in the other database systems. Figure 4.47 outlines the 
steps needed to create a CLR function and enable it to work within the database.

Figure 4.48 shows the entire C# code needed to create the RegexMatch func-
tion. Visual Studio generates much of the code automatically, but it needs to be 
edited. It might be easier to use copy-and-paste to replace the entire function.

Use the Build option to compile the function and correct any errors. Use the 
Build | Publish menu option and Visual Studio will compile the function and in-
stall it in the database. From that point, you can use the new function (Regex-
Match) to examine any string or table column for patterns.
RegEx Patterns
Regular expressions are powerful search tools, but they can be cryptic and hard to 
follow. This section presents only the basic concepts to get started. Once you are 
comfortable with these tools, you can use tutorials and reference documents on 
the Web to learn more detailed techniques if you need them. For example, RegEx 
also supports search and replace for patterns, but this option is not covered here.

The regex function uses two string parameters: (1) The text to be searched, 
and (2) A regex pattern. In a database context, the text to be searched can be a 
column from a table and the function can be written into the SELECT clause or 
the WHERE clause. For instance, consider searching the Merchandise table in the 
Pet Store database. Figure 4.49 illustrates using the RegEx function to search for 
any description containing the word “Small.” A plain string is the simplest search 
pattern. Note that patterns are case-sensitive by default. The simple pattern will 
match a row if the pattern exists exactly as written anywhere within the column 
data.

One useful tool of RegEx is the ability to specify a range of characters using 
square brackets. For example, as shown in Figure 4.50, the pattern [a-z] would 
match a single letter between “a” and “z” and only in lower-case form. The hy-
phen is a range indicator but it is also possible to specify individual characters. 
For example, the pattern [AEIOU] would match any one of the vowels in the list, 
or [123] would match one of the three digits.

The Microsoft SQL Server LIKE command also supports the square brackets—
even without implementing the regular expression function. Hence, if all you need 
is a simple pattern to check for individual characters or ranges of characters, you 

SELECT *
FROM Merchandise
WHERE dbo.RegexMatch(Description, N’Small’) <> 0;

1 Dog Kennel-Small 11 45.00 Dog
5 Cat Bed-Small 36 25.00 Cat
32 Collar-Dog-Small 47 12.00 Dog

Figure 4.49
A simple text pattern search using RegEx in the LIKE clause. By default, RegEx 
comparisons are case-sensitive. Entering a simple string will try to match that pattern 
anywhere within the Description column.



236Chapter  4: Data Queries

can use the square brackets directly within the LIKE clause. For example, con-
sider the clause:
 WHERE LastName LIKE N‘Sm[iy]th’

This clause will match either Smith or Smyth because the brackets accept either 
the “i” or the “y” character.

RegEx has several special characters—many of which handle common ranges 
that are useful for various comparisons. Figure 4.51 shows the most commonly-
used characters. Note the case-sensitive characters. Upper-case letters generally 
mean the negation or reverse of the lower-case symbol, such as “d” for digits and 
“D” for anything except digits. The caret (^) and dollar sign ($) are useful because 
they anchor the string comparison to the start or end of the input text. Without 
these, the pattern is always tested at any point within the text string. For instance, 

. (dot) Match any single character.
\n Match newline character.
\t Match the tab character.
\d Match	a	digit	[0-9].
\D Match	a	non-digit	[^0-9].
\w Match an alphanumeric character.
\W Match a non-alphanumeric character.
\s Match a whitespace character.
\S Match a non-whitespace character.
\ Escape special characters, such as \.
^ Match	the	beginning	of	the	input.
$ Match	the	end	of	the	input.

Figure 4.50
Groups of characters using square brackets. Will match if a single character matches 
one of the pattern characters. The example would find customers with a last name of 
Hill or Hall. The caret (^) negates the pattern.

Figure 4.51
Special characters. Many of them match commonly-used ranges such as digits or 
alphanumeric characters.

[a-z]
[AEIOU]
[123]
[^0-9]

Match one lower-case letter.
Match	one	of	the	vowels.
Match	one	of	the	numbers.
Match a character not a digit.

SELECT *
FROM Customer
WHERE	dbo.RegexMatch(LastName,	N’H[ai]ll’)	<>	0;
78   (505) 646-2748   Elaine   Hall …



237Chapter  4: Data Queries

a simple pattern “One” would be tested and could appear at any point in the search 
text. However, the pattern “^One” will only match if the word “One” appears ex-
actly at the start of the input.

So far, the patterns apply to a single character or word at a time. In many cas-
es, it is useful to allow a digit or character to repeat. RegEx has several ways to 
quantify the number of characters. Three special characters are useful: * ? +. The 
asterisk (*) matches any number of what falls before it—from zero to infinity. The 
question mark (?) matches zero or one of the pattern preceding it. The plus sign 
(+) matches one or more of the pattern before it. Figure 4.52 summarizes these 
differences and provides an example of the difference between the asterisk and the 
plus sign. You should run the two queries and check the results. Almost all of the 
merchandise rows will appear when using the asterisk because the “n” is optional 
and most rows contain the letter “e”.

These special characters cover cases of zero, one, and infinite repetition. In 
some cases, you want the ability to specify exactly how many times a pattern 
should repeat. The RegEx pattern for that is to put the number in curly braces, 
such as: \d{3}. The letter \d specifics a numeric digit and the {3} repetition anno-
tation says exactly three digits must exist. Figure 4.53 shows an example of using 
the fixed repetition to test a U.S. Social Security number. This example comes 
from Microsoft’s MSDN article. U.S. Social Security numbers consist of nine dig-
its, commonly written in three groups separated by hyphens, such as 123-45-6789. 
The RegEx pattern is straightforward. For example, the term \d{3} tests for the 
presence of exactly three digits. In the full pattern, note the use of the start (^) and 
end ($) markers to prevent the introduction of extraneous characters.

RegEx patterns can be much more complex. One useful feature is the ability to 
group characters together using parentheses ( ). Figure 4.54 shows some straight-
forward examples of creating groups. Anything placed in parentheses is treated 
as a group, so the pattern (ab)+ searches for at least one occurrence of the two 

*	 Match	zero	or	infinite	of	the	pattern	before	the	asterisk.
?	 Match	zero	or	one	of	the	pattern	before.
+	 Match	one	or	more	of	the	pattern	before.

SELECT *
FROM Merchandise
WHERE dbo.RegexMatch(Description, N’n*e’)<>0;
>>>> Match any description that contains the letter “e”.
(Because the * means the n is optional.

SELECT *
FROM Merchandise
WHERE dbo.RegexMatch(Description, N’n+e’)<>0;
>>>>	Match	any	description	that	contains	the	letter	“n”	followed	by	any	
characters and then the letter “e”.
(Because the + means the n is required.

Figure 4.52
Repetition Characters. The characters apply to the pattern immediately preceding 
the character. Notice that the asterisk is less useful than it appears because the zero 
means the pattern does not have to exist.



238Chapter  4: Data Queries

characters “ab” together. The figure also shows that grouping is more powerful 
when the “Or” connector ( | ) is added. The pattern (aa|bb)+ searches for at least 
one occurrence of either “aa” or “bb” (or both). Be careful to note the difference 
between square brackets and parentheses. Brackets represent a single character 
to be matched while parentheses require the entire term to be matched. In the 
example, [ab] would match either the letter a or b, so the string “acb” would be 
matched as true because it contains an “a” (and a “b”). However the pattern (ab) 
does not match the string “acb” because the parentheses require an exact match of 
the entire term and the pattern “ab” does not exist in the string “acb”.
Summary
This section is merely an introduction to regular expressions. Several other fea-
tures exist, and you can find many tutorials and reference works on the Web. How-
ever, before trying to learn, and memorize, the many features of expressions you 
need to practice the simpler versions so that you completely understand these fea-
tures. Regular expressions are often combined into long, complex pattern strings. 
These patterns can be difficult to read and debug. They are even harder when 
someone else has written the pattern. Whenever you create regular expression 
patterns, be sure you document them and explain the objectives. Better yet, you 
should always create sample test cases before you try to write a RegEx pattern. 
Create or find real-world sample data that includes several cases that you do and 
do not want to match. As you build the pattern, you can test it in sections against 
the sample data. More importantly, if anyone modifies the patterns later, they can 
be re-tested against the data to ensure they are still correct.

Be cautious when creating regular expressions—particularly if they are intend-
ed for use at restricting data entry. For example, it is tempting to create a pattern 
to force people to enter telephone numbers in a specific manner. But, what hap-

(ab)+ matches ab, abab, tab, but not acb.
(aa|bb)+ matches aa, bbcc, bbddaa, but not abab. 

Figure 4.54
Grouping patterns with parentheses and using the Or connector: |.

Figure 4.53
Exact repetition. Enter the exact number of repetitions in curly braces. A useful 
method when a data element must have an exact number of digits, spaces, or 
characters.

{#}	such	as	{3}	 Exact	number	of	repetitions.

SELECT dbo.RegexMatch(N’123-45-6789’, N’^\d{3}-\d{2}-\d{4}$’ )

Pattern to test a U.S. Social Security Number. The string must begin with 3 
digits, then a hyphen, then 2 digits, another hyphen, and end with exactly 4 
digits.



239Chapter  4: Data Queries

pens when someone needs to enter a phone number that does not match the pat-
tern? For example, international phone numbers require more digits (international 
code), and generally do not follow the same pattern as U.S. phone numbers. Simi-
larly, be cautious writing patterns for e-mail addresses. Data formats and usages 
change over time.

Regular expressions are powerful tools, but they carry a price. Because of their 
complexity, they are difficult to optimize and rarely used with indexes. In most 
cases, the query processor needs to retrieve every single row, apply the pattern, 
and then decide whether the row is included in the results. This process can be 
time consuming if the query retrieves millions, billions, or trillions of rows of 
data. When users truly need to search everything, the delay is probably accept-
able. However, it is best to try and write a query without using regular expres-
sions—particularly for queries with multiple tables and JOINs.

Summary
The key to creating a query is to answer four questions: (1) What output do you 
want to see? (2) What constraints do you know? (3) What tables are involved? (4) 
How are the tables joined? The essence of creating a query is to use these four 
questions to get the logic correct. The WHERE clause is a common source of 
errors. Be sure that you understand the objectives of the query. Be careful when 
combining OR and AND statements and use DeMorgan’s law to simplify the 
conditions.

Always test your queries. The best method to build complex queries is to start 
with a simpler query and add tables. Then add conditions one at a time and check 
the output to see whether it is correct. Finally, enter the computations and GROUP 
BY clauses. When performing computations, be sure that you understand the dif-
ference between Sum and Count. Remember that Count simply counts the number 
of rows. Sum produces the total of the values in the specified column.

Joining tables is straightforward. Generally the best approach is to use QBE to 
specify the columns that link the tables and then check the syntax of the SQL com-
mand. Remember that JOIN columns can have different names. Also remember 
that you need to add a third (or fourth) table to link two tables with no columns in 
common. Keep the class diagram handy to help you determine which tables to use 
and how they are linked to each other.

A Developer’s View
As Miranda noted, SQL and QBE are much easier than writing programs to re-
trieve data. However, you must still be careful. The most dangerous aspect of 
queries is that you may get a result that is not really an answer to the business 
question. To minimize this risk, build queries in pieces and check the results at 
each step. Be particularly careful to add aggregation and GROUP BY clauses 
last, so that you can see whether the WHERE clause was entered correctly. If 
you name your columns carefully, it is easier to see how tables should be joined. 
However, columns do not need the same names to be joined. For your class proj-
ect, you should identify some common business questions and write queries for 
them.



240Chapter  4: Data Queries

Key Terms

Review Questions
1. What are the three basic tasks of a query language?
2. What are the four questions used to create a query?
3. What is the basic structure of the SQL SELECT command?
4. What is the purpose of the DISTINCT operator?
5. Why is it important to use parentheses in complex (Boolean) WHERE 

clauses?
6. How is pattern matching used to select rows of data?
7. What is DeMorgan’s law, and how does it simplify conditions?
8. How do you compute subtotals using SQL?
9. How do the basic SQL arithmetic operators (+, -, etc.) differ from the 

aggregation (SUM, etc.) commands?
10. What basic aggregation functions are available in the SELECT command?
11. What is the difference between Count and Sum? Give an example of how 

each would be used.
12. What is the difference between the WHERE and HAVING clauses? Give an 

example of how each would be used.
13. What is the SQL syntax for joining two tables?
14. How do you identify a column when the same name appears in more than 

one table?
15. What is XQuery and when would you use it?
16. What are regular expressions? What are their strengths and weaknesses?

aggregation
alias
BETWEEN
Boolean algebra
common-language runtime (CLR)
cross join
data definition language (DDL)
data manipulation language (DML)
DeMorgan’s law
DESC
DISTINCT
FETCH
FROM
GROUP BY
HAVING

JOIN
LIKE
NOT
NULL
ORDER BY
query by example (QBE)
regular expression (RegEx)
row-by-row calculations
SELECT
SQL
TOP
view
WHERE
XML schema
XQuery



241Chapter  4: Data Queries

Exercises

Sally’s Pet Store
1. Which employee still working for the store was hired the most recently?
2. What is the largest quantity of items ever ordered/purchased by the store at 

one time?
3. List all cats with no black in their coloring.
4. List customers from Tennessee (TN) who bought cat merchandise.
5. List employees who participated in adoptions of female dogs in March.
6. List customers who bought a dog kennel in March.
7. List the name and contact information for suppliers in Nebraska (NE).
8. List the items sold in May with no duplicates.
9. List the name and phone number of each customer who adopted an animal in 

February.
10. List the adoption groups with phone number who placed cats in October.
11. List all of the employees who are managed by Katy Reasoner.
12. What is the largest value of sale ever made?

SupplierID
Name
ContactName
Phone
Address
ZIPCode
CityID

Supplier

AnimalID
Name
Category
Breed
DateBorn
Gender
Registered
Color
Photo
ImageFile
Imageheight
ImageWidth
AdoptionID
SaleID
Donation

Animal

PONumber
OrderDate
ReceiveDate
SupplierID
EmployeeID
ShippingCost

MerchandiseOrder

AdoptionID
AdoptionSource
ContactName
ContactPhone

AdoptionGroup

CityID
ZIPCode
City
State
AreaCode
Population1990
Population1980
Country
Latitude
Longitude

City

PONumber
ItemID
Quantity
Cost

OrderItem

ItemID
Description
QuantityOnHand
ListPrice
Category

Merchandise

EmployeeID
LastName
FirstName
Phone
Address
ZIPCode
CityID
TaxPayerID
DateHired
DateReleased
ManagerID
EmployeeLevel
Title

Employee

SaleID
SaleDate
EmployeeID
CustomerID
SalesTax

Sale

SaleID
ItemID
Quantity
SalePrice

SaleItem

CustomerID
Phone
FirstName
LastName
Address
ZIPCode
CityID

Customer

Category
Registration

Category

Category
Breed

Breed



242Chapter  4: Data Queries

13. Which adoption group has placed the most animals?
14. Which day of the week (Sun/Mon/…) has the highest total sales value? Hint: 

In Access use the function Format(date, “ddd”) to obtain the day of the week.
15. Are male dogs more likely to be registered than the females?
16. What was the most popular item sold in May (by quantity)?
17. By total value, which supplier has the highest sales for the year?
18. Does the store have more money tied up in inventory (quantity on hand) for 

dog items or cat items?
19. On average by supplier, how long does it take to receive an order from 

suppliers?
20. By value, which category of items were sold the most in the second quarter 

of the year?
21. Which employee sold the most quantity of items in March?
22. By count of state, where are most of the customers located?
23. Which category of items had the highest sales value in May?
24. From which supplier did the store purchase the most cat merchandise by 

value?
25. Which sale had the highest total discount (ListPrice – SalePrice)*Quantity?



243Chapter  4: Data Queries

Rolling Thunder Bicycles
Write the SQL statements that will answer questions 26 through 50 based on the 
tables in the Rolling Thunder database.

26. List customers (name, phone) who bought race bikes in 2012 with a frame 
size greater than 60 cm.

27. List the component product number and weight that are in the SRAM Red 
2012 groupo.

28. Which full suspension bikes sold in 2012 were equipped with SRAM 
(manufacturer) cranks?

29. List the employees who sold race bikes with a sale price of more than $9000 
in 2010.

30. List the retail stores (ID > 2) that participated in selling hybrid bikes in 2012.
31. List the phone number of all women who purchased race bikes with white in 

the color in 2012.
32. For future correlation analysis, list the sale price, most recent population and 

per capita income for the city where it was purchased in 2013.
33. List all of the employees who placed purchase orders with Shimano 

(manufacturer) in 2012 with a total list value over 120,000.

CustomerID
Phone
FirstName
LastName
Gender
Address
ZIPCode
CityID
BalanceDue

Customer

SerialNumber
CustomerID
ModelType
PaintID
FrameSize
OrderDate
StartDate
ShipDate
ShipEmployee
FrameAssembler
Painter
Construction
WaterBottleBrazeOn
CustomerName
LetterStyleID
StoreID
EmployeeID
TopTube
ChainStay
HeadTubeAngle
SeatTubeAngle
ListPrice
SalePrice
SalesTax
SaleState
ShipPrice
FramePrice
ComponentList

Bicycle

CustomerID
TransactionDate
EmployeeID
Amount
Description
Reference

CustomerTrans

StoreID
StoreName
Phone
ContactFirstName
ContactLastName
Address
ZIPCode
CityID

RetailStore

State
TaxRate

StateTaxRate

ModelType
Description
ComponentID

ModelType

PaintID
ColorName
ColorStyle
ColorList
DateIntroduced
DateDiscontinued

Paint

EmployeeID
TaxpayerID
LastName
FirstName
HomePhone
Address
ZIPCode
CityID
DateHired
DateReleased
CurrentManager
SalaryGrade
Salary
Title
WorkArea

Employee

WorkArea
Description

WorkArea

CityID
ZIPCode
City
State
AreaCode
Population2000
Population1990
Population1980
Country
Latitude
Longitude
SelectionCDF
FIPS
Income2004
Division
StateCode
MSACMSA
MASC
CMSA
<more>

City

SerialNumber
TubeID
Quantity

BicycleTubeUsae

ModelType
Msize
TopTube
ChainStay
TotalLength
GroundClearance
HeadTubeAngle
SeatTubeAngle

ModelType

LetterStyleID
Description

LetterStyle

PurchaseID
EmployeeID
ManufacturerID
TotalList
ShippingCost
Discount
OrderDate
ReceiveDate
AmountDue

PurchaseOrder

ManufacturerID
ManufacturerName
ContactName
Phone
Address
ZIPCode
CityID
BalanceDue

Manufacturer

ManufacturerID
TransactionDate
EmployeeID
Amount
Description
Reference

ManufacturerTrans

PurchaseID
ComponentID
PricePaid
Quantity
QuantityReceived

PurchaseItem

SerialNumber
ComponentID
SubstituteID
Location
Quantity
DateInstalled
EmployeeID

BikeParts

SerialNumber
TubeName
TubeID
Length

BikeTubes

ComponentGroupID
GroupName
BikeType
Year
EndYear
Weight

Groupo

ComponentID
ManufacturerID
ProductNumber
Road
Category
Length
Height
Width
Weight
Year
EndYear
Description
ListPrice
EstimatedCost
QuantityOnHand

Component

TubeID
Material
Description
Diameter
Thickness
Roundness
Weight
Stiffness
ListPrice
Construction
IsActive

TubeMaterial

GroupID
ComponentID

GroupComponent

ComponentName
AssemblyOrder
Description

ComponentName



244Chapter  4: Data Queries

34. Looking for tall riders, list all customers who purchased road bikes in 2012 
with a frame size greater than or equal to 62 cm for men and 60 cm for 
women.

35. Find the greatest percentage discount (Discount/TotalList) received on a 
purchase order placed in 2013.

36. Compute the total price of components installed on each Road bike sold in 
2013 (without using the ComponentList value in the Bicycle table).

37. Compute the average price paid for Campy Record 11 cranks purchased in 
2013.

38. What was the most popular letter style in 2012 on all Mountain bikes?
39. How many Race bikes were sold to women in each state in 2013?
40. On average, not counting frames, what is the most expensive (list price) 

category of component carried for the 2012 component year?
41. In 2012, which model type carried the highest average sale price?
42. For the years 2010-2013 (inclusive), did men or women pay higher average 

prices for Road bikes?
43. Compute the total value and count of sales by month for 2010 through 

2013. Hint: In Access, use the format string “yyyy-mm”, or Year(…
)*100+Month(…) for others.

44. Which customer purchased the most number of Road and Race bikes 
combined (for all dates)?

45. Show how the average weight of rear derailleurs for Road bikes has changed 
over time.

46. What is the total tax value collected and owed to each state for bikes sold in 
2013?

47. Which employee sold the most bikes by value in November 2012?
48. What is the average percentage of shipping cost per total list by manufacturer 

for orders placed in 2013?
49. For 2013, did the average percent discount on bike prices vary significantly 

based on model type?
50. Which manufacturer made the most popular crank installed on Race bikes in 

2013?



245Chapter  4: Data Queries

Corner Med
51. Which patient paid the most amount of money directly for a single visit in 

April 2013?
52. List all of the drugs prescribed on June 24, 2013.
53. List the employees who treated patients on July 4, 2013; without duplicates.
54. List the female patients who do not use tobacco and were between 50 and 55 

at the time of the visit. Hint: Use the DateDiff function to compute the age.
55. List all of the procedures and amounts charged for patients treated by Dr. 

Johnson on May 15.
56. List any patients who were older than 60 and had a systolic pressure below 

120 (but not zero).
57. List all of the ICD10 diagnostic codes that refer to the esophagus.
58. List the visits where the patient paid nothing up front and the insurance 

company took longer than 90 days to pay the bill (DateInsurancePaid – 
DateBillSubmitted).

59. List all of the physicians who prescribed the drug Ambien in October.
60. List all of the patients (name and phone) seen by Dr. Sanchez in February.
61. What was the most commonly used insurance company in March?
62. What was the highest total amount billed for a single visit in August?
63. What were the total amounts charged for each week in the year?
64. Compare the total number of visits by day of the week for the year.
65. Based on the first seven letters of the trade name, what was the most 

commonly prescribed drug in July?
66. For December, which group performed more total procedures: Physicians or 

everyone else?

Corner
Med

Corner
Med



246Chapter  4: Data Queries

67. Which employee took the most total vacation time for the year?
68. Which patient was prescribed the most number of drugs (count) in 

September?
69. Which 2-level ICD10 treatment procedure was most common in January – 

March? 
70. What was the total amount charged to each insurance company for the month 

of November?
XQuery
71. Create the ShippingInvoice table and add the sample data. Run the sample 

queries from the figures and verify the results.
72. Create an XQuery that retrieves the items with a quantity of more than 20.
73. Create an XQuery that retrieves the price for any description equal to 

“Collar.”
74. Create an XQuery that retrieves the Item Descriptions shipped where 

ShippingID=1 and ItemID is 15. Use the text( ) function to return just the 
value without the tags.

75. Write an XQuery using the “for” statement that returns all of the ItemIDs 
in ascending order from the first shipment. Hint: The result should be: 
<ItemID>15</ItemID><ItemID>32</ItemID>.

Regular Expressions
76. If you are using SQL Server, write the code to create and deploy the Visual 

Studio C# RegexMatch function and enable the CLR code in the Pet Store 
database. In all cases, create and test the RegEx expressions from the figures 
in the chapter.

77. Create a regular expression pattern that retrieves all Merchandise items that 
refer to dry food which might be written as in either order (dry…food or 
food…dry).

78. Create a regular expression pattern that retrieves all Merchandise items with 
a weight of 10 pounds. Do not include 100 pound items and do not assume 
there is a space after the 10.

79. Get a list of customers who have a street address that contains less than 4 
digits. Hint: The number must appear at the start of the Address and look up 
the options for the { } repeating specification.

80. Check the breed entries to list all of the Terriers, but also check for 
misspellings that use only a single “r” (Terier).

81. Using the CornerMed database and RegEx, list all of the Descriptions in the 
ICD10 procedures that include the words (Left, Artery, and Endoscopic) in 
any order. Hint: Search for RegEx lookahead examples.

82. Using the CornerMed database and RegEx, list all of the patients with a last 
name of McCarthy; which might be spelled with or without a space between 
the “C”s and might have only one C.



247Chapter  4: Data Queries

Web Site References

http://www.jcc.com/sql.htm Blog on SQL Standards
http://jtc1sc32.org/
http://www.wiscorp.com/SQLStandards.html

Standards documents.
Free	versions	of	some	drafts.

http://www.sqlmag.com Magazine with SQL emphasis.
http://www.sqlteam.com SQL hints and comments.
http://www.sqlcourse.com Online SQL notes.
http://www.w3.org/TR/xquery/ XQuery	reference
http://docs.oracle.com/cd/E13214_01/wli/docs92/
xref/xqlangxml.html		

Oracle XML documentation

http://www.aivosto.com/vbtips/regex.html One regex tutorial
http://msdn.microsoft.com/en-us/magazine/
cc163473.aspx 

Microsoft	article	with	the	CLR	regex	
function.

Additional Reading
Gulutzan, P. and T. Pelzer, SQL-99 Complete, Really, Gilroy, CA: CMP Books, 

2000. [In depth presentation of the SQL-99/SQL3 standard.]
Melton, J. and A. R. Simon. SQL 1999: Understanding Relational Language 

Components, 2002. San Mateo: Morgan Kaufmann Publishers, 1993. [An 
in-depth presentation of SQL 1999, by those who played a leading role in 
developing the standard.] 

http://jtc1sc32.org/
http://www.sqlmag.com
http://www.sqlteam.com


248Chapter  4: Data Queries

Appendix: SQL Syntax

SQL Commands

Alter Table
ALTER TABLE table
 ADD COLUMN column datatype (size)
 DROP COLUMN column

Commit Work
COMMIT WORK

Create Index
CREATE	[UNIQUE]	INDEX	index
ON table (column1, column2, …)
WITH {PRIMARY | DISALLOW NULL | IGNORE NULL}

Create Table
CREATE TABLE table
(
	 column1	datatype	(size)	[NOT	NULL]	[index1],
	 column2	datatype	(size)	[NOT	NULL]	[index2],
 … ,
 CONSTRAINT pkname PRIMARY KEY (column, …),
	 CONSTRAINT	fkname	FOREIGN	KEY	(column)
	 	 REFERENCES	existing_table	(key_column)
  ON DELETE CASCADE
)

Create Trigger
CREATE TRIGGER triggername { BEFORE | AFTER } 
 {DELETE | INSERT | UPDATE}
 ON table { FOR EACH ROW }
 { program code block}

Create View
CREATE VIEW viewname AS
SELECT …

Delete
DELETE
FROM table
WHERE condition

Drop Index
DROP INDEX index ON table



249Chapter  4: Data Queries

Drop Table
DROP TABLE table name

Drop Trigger
DROP TRIGGER trigger name

Drop View
DROP VIEW view name

Insert
INSERT INTO table (column1, column2, …)
VALUES (value1, value2, …)

Insert (copy multiple rows)
INSERT INTO newtable (column1, column2, …)
SELECT …

Grant
GRANT privilege
ON	object
TO user | PUBLIC

Revoke
REVOKE privilege
ON	object
FROM user | PUBLI

Privileges for Grant and Revoke
ALL, ALTER, DELETE, INDEX,
INSERT, SELECT, UPDATE

Rollback
ROLLBACK WORK
TO savepoint

SavePoint
SAVEPOINT savepoint



250Chapter  4: Data Queries

Select
SELECT DISTINCT table.column {AS alias}, …
FROM table/view
INNER JOIN table/view ON T1.ColA = T2.ColB
WHERE (condition)
GROUP BY column
HAVING (group condition)
ORDER BY table.column
{ UNION, INTERSECT, EXCEPT, … }

Select Into
SELECT column1, column2, …
INTO newtable
FROM tables
WHERE condition

Update
UPDATE table
SET column1 = value1, column2 = value2, …
WHERE condition



251

What You Will Learn in This Chapter
•	 How can SQL be used to answer more complex questions?
•	 Why	are	some	business	questions	more	difficult	than	others?
•	 What	common	uses	for	subqueries?
•	 How	do	you	find	something	that	did	not	happen?
•	 How	do	you	include	rows	from	tables	in	a	join	even	if	the	rows	do	not	match?
•	 What are correlated subqueries?
•	 What tricky problems arise and how do you handle them in SQL?
•	 What	are	the	SQL	data	definition	commands?
•	 What SQL commands alter the data stored in tables?
•	 How	do	you	know	if	your	query	is	correct?

Chapter Outline

Advanced Queries and 
Subqueries

5Chapter

Introduction, 252
Two-Minute Chapter, 253
Sally’s Pet Store, 254
Outer Joins (LEFT JOIN), 255
Subqueries: IN and NOT IN, 258
Subqueries, 261

Calculations or Simple Lookup, 262
Calculations for Percentages, 262
Subqueries and Sets of Data , 264
Subquery with ANY, ALL, and EXISTS, 
266

Correlated Subqueries, 268
More Features and Tricks with SQL 
SELECT, 270

UNION, INTERSECT, EXCEPT, 270
Multiple JOIN Columns, 272
Reflexive Join, 273
CASE Function, 275
Inequality Joins, 276
Exists and Crosstabs, 277
SQL SELECT Summary, 280

SQL	Data	Definition	Commands,	280
SQL Data Manipulation Commands, 283

INSERT and DELETE, 283

UPDATE, 284
Quality: Testing Queries, 285
Summary, 287
Key Terms, 288
Review Questions, 289
Exercises, 290
Web	Site	References,	295
Additional Reading, 295
Appendix: Programming, 296
Variable Scope, 297
Computations, 298
Standard Internal Functions, 300
Input and Output, 300
Conditions, 301
Loops, 303
Subroutines, 304
Summary, 305



252Chapter  5: Advanced Queries and Subqueries

A Developer’s View

 Ariel: Hi Miranda. You look happy. 

 Miranda: I am. This query system is 
great. I can see how it will help 
the managers. Once I get the 
application done, they can get 
answers to any questions they 
have. They won’t have to call me 
for answers every day. Plus, I can 
really see how the query system 
relates to data normalization. With 
normalization I split the tables 
so the database could store them 
properly. Now the query system 
helps me rejoin them to answer my 
questions.

 Ariel: Does that mean you’re finally ready 
to create the application?

 Miranda: Close, but I’m not quite ready. 
Yesterday my uncle asked me a 
question that I don’t know how to 

answer.

 Ariel: Really, I thought you could do 
anything with SQL. What was the 
question?

 Miranda: Something about customers who 
did not order anything last month. I 
tried several times to get it to work, 
but the answers I get just aren’t 
right.

 Ariel: It doesn’t sound like a hard 
question.

 Miranda: I know. I can get a list of customers 
and orders that were placed any 
time except last month. But every 
time I join the Customer table to 
the Order table, all I get are the 
customers who did place orders. I 
don’t know how to find something 
that’s not there.

Introduction
How can SQL be used to answer more complex questions? Now that you un-
derstand the basics of the SQL SELECT statement as described in Chapter 4, it 
is time to study more complex questions. The basic SELECT statement you have 
learned is useful for returning filtered rows and columns of data and for comput-
ing subtotals.However, some business questions are more complex than those ex-
amples. For instance, how would you find items that were not sold? The database 
only stores things that did happen and note that when tables are joined, only the 
rows with matching data are returned. How can you get to the data that is not 
matched—that is, data in one table (Merchandise) but not in the other (SaleItem)? 
Also, what if you need to combine data from multiple queries? A classic example 
is percentages. To compute percentages within a group, you must first compute 
the group totals and then divide by the overall total. One of the most powerful 
features of the SQL SELECT command is known as a subquery or nested query. 

Getting Started
SQL has several powerful capabilities, including subqueries (the abil-
ity to nest a query inside another one), and outer joins (returning all 
rows from one table in a join instead of ignoring unmatched data). You 
need to think of data and questions in terms of sets. To answer complex 
questions, break it into pieces and create a query to return the data set 
for each piece. Then combine the pieces using joins, subqueries, or set 
operations.



253Chapter  5: Advanced Queries and Subqueries

This feature enables you to ask complex questions that entail retrieving different 
types of data or data from different sources.

SQL is also more than a query language. The language can be used to create 
tables, as well as insert, delete, and update data. It can be used to create the entire 
database (data definition language). SQL has powerful commands to alter the data 
(data manipulation language). SQL also has a couple of commands to set security 
conditions (data control language).

Two key points will help you learn how to use subqueries: (1) SQL was de-
signed to work with sets of data—avoid thinking in terms of individual rows, and 
(2) you can split nested queries into their separate parts and deal with the parts 
individually. Sometimes it is helpful to write a query to answer part of a question 
and save it. This saved query or view can then be used in part of a second query.

The features of SQL covered in Chapter 4 are already quite powerful. Why do 
you need more features? Consider this common business question for Sally’s Pet 
Store: Which merchandise items have not been sold? Think about how you might 
answer that question using the SQL you know to this point. 

The first step might be to choose the tables: Merchandise and SaleItem appear 
to be likely choices. Second, select the columns as output: ItemID and Descrip-
tion. Third, specify a condition. Fourth, join the tables. These last two steps cause 
the most problems in this example. How do you specify that an item has not been 
sold? The big catch is that you have to be careful when examining data in the 
SaleItem table. Because the item has not been sold, the SaleItem table will not 
contain any entries for it. The SaleItem table records things that have happened. 
You are looking for something that has not happened. 

Actually, the fourth step (joining the tables) causes even more problems. Say 
you wrote a query like this:  SELECT ItemID, Name FROM Merchandise IN-
NER JOIN SaleItem ON (Merchandise.ItemID = SaleItem.ItemID). As soon as 
you write that JOIN condition, you eliminate all the items you want to see. The 
JOIN clause restricts the output—just like a WHERE clause would. In this ex-
ample, you told the DBMS to return only those items that are listed in both the 
Merchandise and SaleItem tables. But only items that have been sold are listed in 
the SaleItem table, so this query can never tell you anything about items that have 
not been sold. The following sections describe two solutions to this problem: ei-
ther fix the JOIN statement so that it is not as restrictive or use a subquery.

Two-Minute Chapter
Some business questions are harder to answer than they first appear. Chapter 4 
showed how to create basic SQL queries—selecting columns and rows, making 
basic calculations, and computing aggregations such as averages and sums. Com-
puting subtotals using the GROUP BY statement is an important part of many 
queries. This foundation is used again in this chapter, but with a few twists. From 
a SQL perspective, four primary elements are added in this chapter: (1) subque-
ries, where you can embed a second SELECT statement into another one to look 
up different data, (2) LEFT JOINs, which keep rows of data from a table even if 
no values are matched on the other side of the join, (3) inequality JOINs where 
values can be compared using conditions beyond a simple equals sign, and (4) 
data manipulation language commands that enable you to INSERT, UPDATE, and 
DELETE data, not just retrieve it.

Just looking at the SQL capabilities, it is not always clear why these new fea-
tures are needed. But some business questions can be tricky. How do you find 



254Chapter  5: Advanced Queries and Subqueries

something that did not happen? A database table only stores things that did hap-
pen, so you need a way to find items in one list that are not in a second list. For in-
stance, find Employees who did not make a Sale in a specific month. This question 
can be answered with a NOT IN subquery, or using a LEFT JOIN to connect the 
tables. Some business questions require separate sets of data—such as listing cus-
tomers who bought items in March and June. Those lists have to be defined with 
separate queries and then combined—either through subqueries or as two saved 
views. Similarly, subqueries are useful when you need to compute percentage val-
ues—such as the percentage of total monthly sales attributed to each employee. At 
almost any point in SQL where you need a new value (divide by total), you can 
add parentheses and write a new SELECT statement to retrieve that value.

SQL contains a full set of commands to CREATE and DROP tables, indexes, 
and other items. It also has commands to UPDATE, INSERT, or DELETE rows 
of data. When working with these commands it is best to think in terms of sets of 
data. Using the power of the WHERE command (including subqueries) you can 
modify specific collections of data with one command.

When working with complex SQL commands, it is critical to build queries in 
pieces and test each piece along the way. The scariest part of SQL is that in most 
cases, a SELECT statement will return values—but you need to be sure that the 
query was interpreted the way you intended and the values accurately answer the 
business question.

Sally’s Pet Store
Why are some business questions more difficult than others? Figure 5.1 shows 
some more business questions that Sally needs to answer to manage her business. 
Again, think about how you might answer these questions using the basic SQL of 

•	 Which items have not been sold?
•	 Which items were not sold in July 2013?
•	 Which	cat	merchandise	sold	for	more	than	the	average	sale	price	of	cat	

merchandise?
•	 Compute	the	merchandise	sales	by	category	in	terms	of	percentage	of	total	sales.
•	 List	all	of	the	customers	who	bought	something	in	March	and	who	bought	

something in May. (Two tests on the same data!)
•	 List	dog	merchandise	with	a	list	price	greater	than	the	sale	price	of	the	cheapest	cat	

product.
•	 Has	one	salesperson	made	all	of	the	sales	on	a	particular	day?
•	 Use Not Exists to list customers who have not bought anything.
•	 Which	merchandise	has	a	list	price	greater	than	the	average	sale	price	of	

merchandise within that category?
•	 List all the managers and their direct reports.
•	 Convert age ranges into categories.
•	 Classify	payments	by	number	of	days	late.
•	 Which	employees	sold	merchandise	from	every	category?
•	 List customers who adopted dogs and also bought cat products.

Figure 5.1
Harder	questions.	Even	though	there	are	few	constraints	on	the	problems,	these	
questions	are	more	complex.	To	answer	many	of	them,	we	need	to	use	subqueries	or	
outer	joins.



255Chapter  5: Advanced Queries and Subqueries

Chapter 4. At first glance they do not seem too difficult. However, even the easi-
est question—to identify cats that sold for more than the average price—is harder 
than it first appears. 

The common feature of these questions is that they need to be answered in mul-
tiple steps. All of these questions require an additional tool: the subquery. Actual-
ly, you can also answer multi-step questions by writing and saving the first part as 
a view and then using the view in another query. However, you should generally 
try to use subqueries so the DBMS query optimizer can use the complete query to 
find the most efficient solution. 

Outer Joins (LEFT JOIN)
How do you find something that did not happen? One question that commonly 
arises in business settings is illustrated in Figure 5.2 with the question: Which 
merchandise has not been sold? This question is deceptive. At first glance it looks 
like you could just join the Merchandise table to the SaleItem table. But then 
what? The standard INNER JOIN statement will display only that merchandise 
that appears in both the Merchandise and SaleItem tables. As soon as you enter 
the JOIN statement, you automatically restrict your list to only that merchandise 
that has been sold. 

Figure 5.2
INNER JOIN is a filter. Rows that are not in both tables are ignored. Because 
SaleItem includes only merchandise that has been sold, INNER JOIN discards the 
very data that you want to see. 

Which items have not been sold?
Try:
SELECT *
FROM Merchandise
INNER JOIN SaleItem
   ON Merchandise.ItemID = SaleItem.ItemID

But	INNER	JOIN	is	a	filter	that	returns	only	rows	that	exist	in	both	tables.

ItemID Description
1 Dog Kennel-Small
2 Dog Kennel-Medium
3 Dog Kennel-Large
4 Dog Kennel-Extra Large
5 Cat Bed-Small
6 Cat Bed-Medium
7 Dog Toy
8 Cat Toy
9 Dog Food-Dry-10 pound
10 Dog Food-Dry-25 pound
11 Dog Food-Dry-50 pound
12 Cat Food-Dry-5 pound
13 Cat Food-Dry-10 pound
14 Cat Food-Dry-25 pound
15 Dog Food-Can-Regular

SaleID ItemID
4 1
4 36
6 20
6 21
7 5
7 19
7 40
8 11
8 16
8 36
10 23
10 25
10 26
10 27

SaleItem Merchandise



256Chapter  5: Advanced Queries and Subqueries

One way to solve this problem is to change the behavior of the JOIN command. 
SQL provides the OUTER JOIN specifically to include the data that would other-
wise be ignored with the INNER JOIN. In particular, the OUTER JOIN describes 
what should happen when values in one table do not exist in the second table.

In joining two tables, you have to consider two basic situations: (1) A value 
might exist in the left table with no matching value in the right table, or (2) a value 
might exist in the right table with no matching value in the left table. Of course, it 
really does not matter which table is on the left or right. However, you have to be 
careful about not mixing them up after you list the tables. 

The query in Figure 5.3 illustrates a typical LEFT JOIN. With a LEFT JOIN, 
all rows in the table on the left will be displayed in the results, regardless of what 
rows exist in the other table. If there is no matching value from the table on the 

M.ItemID Description SA.ItemID SaleID
1
2
3
4
5
6
7
8
9
10
11
12
13

Dog Kennel-Small
Dog Kennel-Medium
Dog Kennel-Large
Dog Kennel-Extra Large
Cat Bed-Small
Cat Bed-Medium
Dog Toy
Cat Toy
Dog Food-Dry-10 pound
Dog Feed-Dry-25 pound
Dog Food-Dry-50 pound
Cat Food-Dry-5 pound
Cat Food-Dry-10 pound

1
2
3
4
5
6
7
8
9
10
11

4
54
17
18
7
46
64
13
48
60
8

Figure 5.4
Partial results from the left outer join. Note the missing (Null) values for items that 
have not been sold. To list just a single SaleID, use GROUP BY and use the FIRST 
option to pick a single SaleID.

Which merchandise has not been sold?
SELECT Merchandise.ItemID, Merchandise.Description, SaleItem.
SaleID
FROM Merchandise
LEFT JOIN SaleItem ON Merchandise.ItemID = SaleItem.ItemID
WHERE SaleItem.SaleID Is Null;

ItemID
12
13

Description
Cat Food-Dry-5 pound
Cat Food-Dry-10 pound

SaleID

Figure 5.3
LEFT JOIN. The left outer join includes all rows from the Merchandise (left) table 
and any matching rows from the SaleItem table. If an item has not been sold, there 
will be no entry in the SaleItem table, so the corresponding entries will be NULL.



257Chapter  5: Advanced Queries and Subqueries

right, NULL values will be inserted into the output. Note how the LEFT JOIN re-
solves the problem of identifying items that have not been sold. Because the query 
will now list all Merchandise items, the rows where the SaleID is Null represent 
items that are not in the SaleItem table and have not been sold. 

Figure 5.4 shows the sample data without the “Is Null” condition. The data has 
also been reduced using a GROUP BY and First statement to focus on the indi-
vidual Merchandise items. Notice the two values with the missing or null values. 

The RIGHT JOIN behaves similarly to the LEFT JOIN. The only difference 
is the order of the tables. If you want to use all the rows from the table on the 
right side, use a RIGHT JOIN. Why not just have a LEFT JOIN and simply rear-
range the tables? Most of the time, that is exactly what you will do. However, if 
you have a query that joins several tables, it is sometimes easier to use a RIGHT 
JOIN instead of trying to rearrange the tables. And with visual tools such as the 
Microsoft Access query editor, the position of the displayed table does not have 
to match the SQL statement. In every case, the Left/Right applies to the way the 
SQL statement is written.

Another join is the full OUTER JOIN (FULL JOIN) that combines every row 
from the left table and every row from the right table. Where the rows do not 
match (from the ON condition), the join inserts NULL values into the appropriate 
columns. Many systems do not support the FULL or OUTER JOIN on both tables 
at the same time. If you encounter a question that requires both a left and right 
join, you can use a LEFT JOIN and a RIGHT JOIN against a full list of the ID 
values--which can be obtained using a saved UNION query.

Warning: Be careful with OUTER JOINs—particularly full joins. With two 
large tables that do not have much data in common, you end up with a very large 
result that is not very useful. Also be careful when using outer joins on more than 
two tables in one query. You get different results depending on the order in which 
you join the tables. Many times you will find it necessary to create a view with 
only two tables to create an outer join. You can then use that view in other queries 
to add more tables.

Finally, note that these examples rely on the SQL 92 syntax, which is fairly 
easy to read and understand. Unfortunately, you will most likely encounter some 
queries that use older, proprietary syntax for outer joins. Figure 5.5 shows the 
query using the syntax for SQL Server and Oracle. SQL Server uses *= to indi-

SELECT *  (SQL Server)
FROM Merchandise, SaleItem
WHERE Merchandise.ItemID *= SaleItemID.ItemID
And SaleItem.SaleID Is Null

SELECT *  (Oracle)
FROM Merchandise, SaleItem
WHERE Merchandise.ItemID = SaleItemID.ItemID (+)
And SaleItem.SaleID Is Null

Figure 5.5
Older syntax for LEFT JOIN. Note the asterisk in SQL Server to indicate the LEFT 
side table. Note the plus-sign in Oracle and note that it is on opposite side from what 
you would expect.



258Chapter  5: Advanced Queries and Subqueries

cate a left join, where the asterisk can be interpreted as the “all rows” side of the 
join. Oracle uses a plus sign, and it confusingly puts it on the opposite side of the 
equals sign. Be careful when reading older queries to look for the asterisk or plus 
sign. The query results are quite different if you ignore these left join indicators. 
Fortunately, all of the major systems now accept the newer syntax, so you should 
convert older queries to the new syntax to improve readability.

Subqueries: IN and NOT IN
How is a subquery used for IN and NOT IN conditions? There is another way 
to answer the question of which items have not been sold. This new approach has 
considerable power and can be used for many types of questions. The main tool 
is the subquery, but for the problem of finding things that did not happen it is tied 
to a special WHERE condition known as the IN statement. So this section begins 
with a brief explanation of the IN function.function. The IN function defines a 
set of values. You can think of it as a shortcut way of combining several entries 
with an “Or” condition. For example, say you want to search for a Customer but 
you are not certain about his first name. You think it might be “Tim” or “David” 
or “Dale.” As shown in Figure 5.6, you could build a query using “Or” condi-
tions: WHERE FirstName=”Tim” or FirstName=”David” or FirstName=”Dale”. 
However, the figure also shows an easier way to write the query using the IN 
function. Simply list all possible values separated by commas and enclose them in 
parentheses. The IN function essentially defines a set of possible matches. It can 

List Merchandise based on ItemID that has been sold.
SELECT * FROM Merchandise 
WHERE ItemID IN (1,2,3,4,5,6,7,8,9,10,11,14,15);
SELECT *
FROM Merchandise
WHERE ItemID IN
  (SELECT ItemID FROM SaleItem); 

Figure 5.6
IN function. The IN function compares a column to a set of values. The WHERE 
condition is true if the column/row matches any one of the entries.

Figure 5.7
Subquery to find data for an IN set of values. This subquery essentially functions as 
a JOIN condition. Matching ItemID in the Merchandise table to the ItemID in the 
SaleItem table.

Find	a	Customer	with	first	name	of	Tim,	David,	or	Dale
SELECT *
FROM Customer
WHERE FirstName=N'Tim' Or FirstName=N'David' Or FirstName=N'Dale'
SELECT *
FROM Customer
WHRE FirstName IN (N'Tim', N'David', N'Dale')



259Chapter  5: Advanced Queries and Subqueries

be used in many situations, just be sure to match the data types with the search 
column. In this case, the set contains possible FirstName values.

Now consider a more relevant set of data shown in Figure 5.7, using a different 
question: List Merchandise where ItemID is one of 1,2,3,4,5,6,7,8,9,10,11,14,15. 
The list of items is a bit long, but the process is identical to that used for the 
names: SELECT * FROM Merchandise WHERE ItemID IN (1,2,3,4,5,6,7,8,9,10,1
1,14,15). Using the raw numbers, this list is not particularly interesting. However, 
rewrite the query as shown in the second half of the figure. Instead of a fixed list 
of numbers, use a new query (SELECT ItemID FROM SaleItem) to retrieve a list 
of ItemID values. This subquery is embedded directly into the main query; how-
ever, note that it is surrounded by parentheses. Also, the subquery text is indented 
to make it easier to read. The parentheses are required, the indentation is not. This 
subquery performs the same role as an INNER JOIN statement. Rows from the 
Merchandise table will be returned only if the ItemID exists in the SaleItem table. 
Notice that with this formulation, only data from the top-most query (Merchan-
dise) can be displayed. The subquery acts as a filter, but data from the subquery 
table cannot be displayed in the results. 

Finally, as shown in Figure 5.8, it is possible to answer the original question: 
List the merchandise that has not been sold. Note that the previous version list-
ed merchandise that was sold. That is, list the Merchandise items that are in the 

List Merchandise that has not been sold.
SELECT *
FROM Merchandise
WHERE ItemID NOT IN
  (SELECT ItemID FROM SaleItem); 

ItemID Description
1 Dog Kennel-Small
2 Dog Kennel-Medium
3 Dog Kennel-Large
4 Dog Kennel-Extra Large
5 Cat Bed-Small
6 Cat Bed-Medium
7 Dog Toy
8 Cat Toy
9 Dog Food-Dry-10 pound
10 Dog Food-Dry-25 pound
11 Dog Food-Dry-50 pound
12 Cat Food-Dry-5 pound
13 Cat Food-Dry-10 pound
14 Cat Food-Dry-25 pound
15 Dog Food-Can-Regular

Merchandise

Figure 5.8
NOT IN. The top-level query retrieves items from the complete list (Merchandise) 
and subtracts items that are in the second list (SaleItem). Leaving the results of items 
in the first list that are not in the second list—or things that did not happen.



260Chapter  5: Advanced Queries and Subqueries

SaleItem table. To answer the main question, start with the main list (Merchan-
dise) and subtract the items that were sold (SaleItem). The process is similar to 
the way you would answer the question by hand if you had only paper lists. You 
would begin with the main Merchandise list, go through the SaleItem list and 
cross off all of the entries that you found. The ones that remain are the Merchan-
dise items that never appeared on the SaleItem list so they were not sold.

When would you use the NOT IN subquery versus the LEFT JOIN? Ultimately, 
there is no fixed rule—use whichever method you feel is easiest to answer the 
question correctly. There are often multiple ways to write complex queries. Ini-
tially, the most important aspect is that you build the query correctly to answer the 
question. But, is one method faster to process than the other? Possibly, but ulti-
mately that answer is up to the specific DBMS you are using. The high-end query 
processors automatically optimize every query, sometimes rewriting it to make 
it more efficient. On the other hand, if you work with a lower-end DBMS, you 
might have to rewrite some queries yourself to make them faster—particularly if 
the query needs to be run multiple times on large datasets. 

Consider one more example to point out some other difficulties in creating que-
ries that search for things not in the database. Which merchandise was not sold in 
July 2013? The change is to add the date condition. First, look at the subquery ap-

Which merchandise was not sold in July 2013?
SELECT Merchandise.*
FROM Sale 
INNER JOIN (Merchandise 
   LEFT JOIN SaleItem ON Merchandise.ItemID = SaleItem.ItemID) 
   ON Sale.SaleID = SaleItem.SaleID
WHERE SaleDate BETWEEN ’01-JUL-2013’ AND ’31-JUL-2013’;

Figure 5.10
LEFT JOIN. This query might not run, and if it does, it might not return the correct 
results. The problem is that the question requires filtering the data rows in the 
SaleItem table first and then performing the LEFT JOIN.

Which merchandise was not sold in July 2013?
SELECT *
FROM Merchandise
WHERE ItemID NOT IN
  (SELECT ItemID 
   FROM SaleItem 
   INNER JOIN Sale ON Sale.SaleID=SaleItem.SaleID
   WHERE SaleDate BETWEEN 
       ’01-JUL-2013’ AND ’31-JUL-2013’
   );

Figure 5.9
Subquery with a Date condition. Subqueries can be relatively complex. They can 
even be nested several levels deep. Often, subqueries can be used to write a single 
complex query that would need to be broken into pieces if handled differently.



261Chapter  5: Advanced Queries and Subqueries

proach. Figure 5.9 shows how to answer the question with a subquery. Essentially, 
the approach is the same as before—with a more complex subquery. Simply add 
the Sale table to the subquery and add the date condition. The overall structure is 
the same. Running the query results in 27 rows or items that were not sold in July.

 Now consider writing the same query using the LEFT JOIN approach. As 
shown in Figure 5.10, try building the query directly. Note that it requires three 
tables: Merchandise, Sale, and SaleItem. Sale and SaleItem are connected with an 
INNER JOIN and Merchandise with a LEFT JOIN. Because of these links, it is 
likely that this query will not run. Even if it does return results, they might not be 
the correct results. The problem is that the question requires that the data be ex-
tracted in a specific order—and SQL does not guarantee that processing is handled 
in a specific sequence. To work correctly, the query must first filter the rows in the 
Sale+SaleItem tables to just sales that took place in July. This result must then use 
an outer join with the Merchandise table.

If you want (or need) to use LEFT JOIN to answer the question, you should 
build the query in two steps. As shown in Figure 5.11, in step 1, create and save a 
view that retrieves the ItemID for merchandise sold in July. In step 2, LEFT JOIN 
the Merchandise table to the new view. The result should be the same 27 items 
found using the subquery. The key to this query is that the view is created to en-
sure that the rows for sales in July are extracted first and then the LEFT JOIN is 
applied to the Merchandise table.

Subqueries
What are the common uses for subqueries? The most difficult step in creating 
a query is determining the overall structure. Chapter 4 shows you how to use the 
four big questions to determine the structure of simple queries. But you need to 
recognize when subqueries are needed. If you fail to use a subquery, you are likely 
to end up with bad results, and waste considerable time in the process. This sec-
tion presents the most common situations that require the use of subqueries. The 
main situations are: (1) Calculations or lookup comparisons, (2) matching sets of 
data, (3) existence checks, and (4) finding items that are not in a list. The last ex-
ample was covered in the previous section.

Which merchandise was not sold in July 2013?
CREATE VIEW JulyItems AS
SELECT Sale.SaleID, ItemID
FROM Sale
INNER JOIN SaleItem ON Sale.SaleID=SaleItem.SaleID
WHERE SaleDate BETWEEN ’01-JUL-2013’ AND ’31-JUL-2013’;
SELECT Merchandise.*
FROM Merchandise
LEFT JOIN JulyItems ON Merchandise.ItemID=JulyItems.ItemID
WHERE JulyItems.Sale Is Null;

Figure 5.11
Saved View. To ensure the proper sequencing, save the view that filters the list of sale 
items to July. 



262Chapter  5: Advanced Queries and Subqueries

Calculations or Simple Lookup
Perhaps the easiest way to see the value of a subquery is to consider the relatively 
simple question: Which cat merchandise sold for more than the average price of 
cat merchandise? If you already know the average sale price of cat merchandise 
(say, $9), the query is easy, as shown in the top half of Figure 5.12.

Chapter 4 showed that it is also straightforward to write a query to compute the 
average price of cat merchandise. If you do not know anything about subqueries, 
you could write the average value on a piece of paper and then enter it into the 
main query in place of the 9. However, with a subquery, you can go one step fur-
ther: The result (average) from the query can be transferred directly to the original 
query. Simply replace the value ($9) with the complete SELECT AVG query as 
shown in the lower half of Figure 5.12. In fact, anytime you want to insert a value 
or comparison, you can use a subquery instead. You can even go to several lev-
els, so a subquery can contain another subquery and so on. The DBMS generally 
evaluates the innermost query first and passes the results back to the higher level.

Calculations for Percentages
Typically, subqueries for calculations arise in WHERE clauses similar to the prior 
example when you need to make a comparison. You can also add subqueries to the 
SELECT statement to retrieve a value for a calculation. For instance, you might 
issue a subquery to retrieve a tax rate that is multiplied times a total. 

Another interesting business problem is the need to compute percentages. Fig-
ure 5.13 shows a typical question to compute the percentage of merchandise sales 
by category. The first step is to compute the total sales by category—which is a 
straightforward question from Chapter 4. That query contains the subtotal calcula-

Which cat merchandise sold for more than the average sale price of cat 
merchandise?

SELECT Merchandise.ItemID, Merchandise.Description, Merchandise.
Category, SaleItem.SalePrice
FROM Merchandise 
INNER JOIN SaleItem ON Merchandise.ItemID = SaleItem.ItemID
WHERE Merchandise.Category=N’Cat’ AND SaleItem.SalePrice > 9;
SELECT Merchandise.ItemID, Merchandise.Description, Merchandise.
Category, SaleItem.SalePrice
FROM Merchandise 
INNER JOIN SaleItem ON Merchandise.ItemID = SaleItem.ItemID
WHERE Merchandise.Category=N’Cat’ AND SaleItem.SalePrice >  
  	(SELECT	Avg(SaleItem.SalePrice)	AS	AvgOfSalePrice
   FROM Merchandise 
   INNER JOIN SaleItem ON Merchandise.ItemID = SaleItem.ItemID
   WHERE Merchandise.Category=N’Cat’)

Figure 5.12
Subqueries for calculation. If you know the average price is 9, the query is 
straightforward. If you do not know the average price, you can use a subquery to 
compute it. The subquery is always written inside a separate set of parentheses. The 
subquery in parentheses replaces the 9 in the original query).



263Chapter  5: Advanced Queries and Subqueries

tion: Sum([Quantity]*[SalePrice]). To compute the percentages, add a new column 
that uses the same subtotal and divides by the overall total. The trick is that the 
overall total is computed using a subquery: SELECT Sum([Quantity]*[SalePrice]) 
FROM SaleItem. So the entire calculation becomes: 
SELECT ... Sum([Quantity]*[SalePrice]) /
    (SELECT Sum([Quantity]*[SalePrice] FROM SaleItem)
GROUP BY Category... 

Of course, most problems are even more complex and trying to jam everything 
into one query can lead to mistakes. So you might want to first create a saved 
query that computes totals by category and use a  second query to compute per-
centages, which makes it easier to check the results. Once the subtotals have been 
computed and saved, the small addition to compute percentages is almost always 
the same.

You should realize by now that there are other ways to answer the original 
question. For example, keep the first view that computes the subtotals. Create a 
second view to compute the overall total. This second view will contain only one 
row as a result. Now build a third query that joins these two results. Simply do not 
enter a JOIN condition—let the DBMS build a cross-join so that the overall total 
is matched to every row of the first query. Figure 5.14 shows the new view and 
the query that performs the cross join and division. The results should match those 
with the subquery method.

Two useful practices you should follow when building subqueries are to indent 
the subquery to make it stand out so humans can read it and to test the subquery 
before inserting it into the main query. Fortunately, most modern database systems 
make it easy to create a subquery and then cut and paste the SQL into the main 

Compute	the	merchandise	sales	by	category	in	terms	of	percentage	of	total	
sales.

CREATE VIEW CategorySubtotals AS
SELECT	Merchandise.Category,	Sum([Quantity]*[SalePrice])	AS	[Value]
FROM Merchandise 
INNER JOIN SaleItem ON Merchandise.ItemID = SaleItem.ItemID
GROUP BY Merchandise.Category;
SELECT CategorySubtotals.Category, CategorySubtotals.Value, 
[Value]	/	
  (SELECT Sum(Value) FROM CategorySubtotals) AS Percentage
FROM CategorySubtotals;

Category
Bird
Cat
Dog
Fish
Mammal

Value
$631.50
$1,293.30
$4,863.49
$1,597.50
$90.00

Percentage
7.45063292035315E-02
0.152587546411603
0.573809638983505
0.188478006179955
1.06184792214059E-02

Figure 5.13
To obtain percentages, first compute the group subtotals and save the view. Select the 
values from the saved view and use a subquery in the SELECT clause to divide by 
the total. Ultimately, format the new percentage column to make it readable.



264Chapter  5: Advanced Queries and Subqueries

query. Similarly, if you have problems getting a complex query to work, cut out 
the inner subqueries and test them separately. And always remember to enclose 
the subquery in parentheses.

The main drawback to subqueries is that they are difficult to read and under-
stand. It is easy to make mistakes and it is difficult to read complex queries cre-
ated by other developers. You should always document your work when creating 
complex queries. Whenever possible, use the SQL comment characters (--) to add 
notes to the query to explain its purpose and how it is supposed to work. Some-
times, it is better to store complex subqueries as views and use a final query to 
retrieve data from the carefully-named views. 

The other trick you will quickly learn is that QBE grids are not very useful 
when designing subqueries. You almost always need to work with plain SQL 
statements. If you want to save some typing, you can use QBE to write the join 
statements, but eventually, you need to copy and paste the SQL text.

Subqueries and Sets of Data 
A key to understanding SQL is to focus on sets of data. Complex queries generally 
can be broken down into multiple pieces, where each piece of the question refers 
to a set of data. Then you have to figure out how to combine those sets to answer 
the business question. So far you have seen two ways to combine sets of data: (1) 
By saving each piece and using a JOIN statement, or (2) Using a subquery, typi-
cally with an IN function. In effect, these two methods work the same way. Which 
one you choose depends on which is easiest or fastest to use. Keep in mind that 
subqueries enable you to put the entire SQL into a single query, which reduces the 
risk of someone accidentally deleting a supporting saved view—because no one 
knew what it was for. 

To understand the issue of sets of data, think about an apparently simple ques-
tion: List all of the customers who bought something in March and in May. As 
shown in Figure 5.15, a beginner might try to answer the question by creating a 
simple query with the WHERE clause: SaleDate Between 01-Mar And 31-Mar 
AND SaleDate Between 01-May and 31-May. What is wrong with this approach? 
Try it. The query will run, but you will not get any matches. Why not? Because 
the clause is asking the DBMS to return rows where the SaleDate is in March and 
in May, at the same time! It is not possible for a date to be in two months at the 
same time.

Compute	the	merchandise	sales	by	category	in	terms	of	percentage	of	
total sales.

CREATE VIEW TotalItemSales AS
SELECT Sum(Value) AS MainTotal
FROM CategorySubtotals;
SELECT Category, Value, Value/MainTotal AS Percentage
FROM CategorySubtotals, TotalItemSales;

Figure 5.14
Percentages using a cross join. Create a view to compute the total. A third query uses 
a cross join to connect this single value to every row in the subtotal query and then 
divide to get the percentage.



265Chapter  5: Advanced Queries and Subqueries

The answer to the question lies in realizing that you need to get two separate 
lists of people: those who bought something in March and those who bought 
something in May. Then you combine the lists to identify the people in both sets. 
You can answer this question with a subquery, or you can create two separate 
views and join them. The subquery illustrates the set operations.

Figure 5.16 shows the subquery approach. The outermost (top) query retrieves 
customers who bought something in March, and the subquery retrieves ID num-
bers for customers who bought something in May. Either month could be tested 
first, but it is critical to recognize that you need two separate queries to create the 
two separate WHERE clauses. The IN operator performs the matching so that the 
final query displays only those customers who fall in both sets of data.

Figure 5.17 shows how to answer the same query with a JOIN statement on 
saved views. The views are used to retrieve the desired sets, and they highlight 
that the sets are separate. The final query uses the JOIN command to retrieve only 
the values that exist in both of the saved views (March and May).

Both approaches (subquery and saved views) provide the same answer and you 
generally get to choose which approach you want to use. The drawback to saving 
views is that you end up with a huge collection of views, and no one remembers 

List	all	of	the	customers	who	bought	something	in	March	and	who	
bought something in May.

SELECT Customer.LastName, Customer.FirstName
FROM Customer INNER JOIN Sale ON Customer.CustomerID = 
Sale.CustomerID
WHERE (SaleDate Between ’01-MAR-2013’ And ‘31-MAR-2013’)
AND Customer.CustomerID IN
   (SELECT CustomerID
    FROM Sale
    WHERE (SaleDate Between ‘01-MAY-2013’ And ’31-MAY-2013’) );

Figure 5.16
Combining two separate lists. The question requires you to create two separate lists 
and then compare the matching values. This query uses the IN statement to find the 
customers that appear in both lists.

Figure 5.15
The wrong approach. Why does this query always return no rows? Because it is 
checking the date on each row to see if it falls in March AND May. No date can be in 
two months at the same time.

List	all	of	the	customers	who	bought	something	in	March	and	who	
bought something in May.

SELECT Customer.CustomerID, Customer.Phone, Customer.
LastName, Sale.SaleDate
FROM Customer 
INNER JOIN Sale ON Customer.CustomerID = Sale.CustomerID
WHERE Sale.SaleDate Between ’01-MAR-2013’ And ’31-MAR-2013’
   AND Sale.SaleDate Between ’01-MAY-2013’ And ’31-MAY-2013’;



266Chapter  5: Advanced Queries and Subqueries

which views depend on other views. Some administrator could accidentally delete 
a view that is required by another query. On the other hand, the views could be re-
used in multiple queries, which might save a developer time on a different project. 
The bottom line is that you need to know how to write the queries both ways, and 
choose the method that is best in each situation.

Subquery with ANY, ALL, and EXISTS
The ANY and ALL operators combine comparison of numbers with subsets. In 
the previous sections, the IN operator compared a value to a list of items in a 
set: however, the comparison was based on equality. The test item had to exactly 
match an entry in the list. The ANY and ALL operators work with a less than (<) 
or greater than (>) operator and compare the test value to a list of values. 

Figure 5.18 illustrates the use of the ANY query. It is hard to find a solid busi-
ness example that needs the ANY operator. In the example, it would be just as 
easy to use the subquery to find the minimum value (MIN function) in the list 
and then do the comparison. However, sometimes it is clearer to use the ANY 
operator. 

The ALL operator behaves similarly, but the test value must be greater than 
all of the values in the list. In other words, the test value must exceed the largest 
value in the list. Hence, the ALL operator is much more restrictive. 

The ALL operator can be a powerful tool—particularly when used with an 
equals (=) comparison. For instance, you might want to test whether one salesper-
son made all of the sales on a particular day. Figure 5.19 shows that the WHERE 
clause contains the statement: EmployeeID = ALL (SELECT EmployeeID FROM 
Sale WHERE SaleDate = ‘28-MAR’). The subquery returns a list of IDs for all 
employees who sold something on that date. The “= ALL” clause checks to see if 
all of the values are the same and match a single employee. This query is some-

Figure 5.17
Combining two separate lists with JOIN. You can save separate lists as views and use 
the JOIN command to retrieve only the values that match.

List	all	of	the	customers	who	bought	something	in	March	and	who	
bought something in May. (Saved views.)

CREATE VIEW MarchCustomers AS
SELECT CustomerID
FROM Sale
WHERE (SaleDate Between ’01-MAR-2013’ And ’31-MAR-2013’);

CREATE VIEW MayCustomers AS
SELECT CustomerID
FROM Sale
WHERE (SaleDate Between ’01-MAY-2013’ And ’31-MAY-2013’);

SELECT Customer.LastName, Customer.FirstName
FROM Customer 
INNER JOIN MarchCustomers ON Customer.
CustomerID=MarchCustomers.CustomerID
INNER JOIN MayCustomers ON MarchCustomers.
CustomerID=MayCustomers.CustomerID;



267Chapter  5: Advanced Queries and Subqueries

what contrived, but it can be useful when you need to find a specific answer. The 
alternative in this situation is to count the number of sales by each employee on 
the specified date and visually check to see if there is more than one value. But, 
sometime you might want to find the exact answer using the ANY query.

Sometimes it is difficult to control the details returned from a subquery. Per-
haps the data exists in a table created by someone else, such as a system table. In 
these cases, only the WHERE clause matters. Does the query return any rows that 
match the conditions? The EXISTS key word handles these situations. It is true if 
the subquery returns any rows of data—otherwise it is false. The specific columns 
returned are irrelevant. Figure 5.20 shows a simple example. In actual practice, 
the example would be better written with a JOIN statement, but it does illustrate 
how the EXISTS term works. The EXISTS term is useful when you need to see if 
rows are retrieved in a subquery but you do not want to match the actual values.

Figure 5.18
Subquery with ANY and ALL. The example identifies any animal that sold for more 
than any of the prices of cats. Effectively, it returns values greater than the smallest 
entry in the subquery list.

List	dog	merchandise	with	a	list	price	greater	than	the	sale	price	of	the	
cheapest cat product.

SELECT Merchandise.ItemID, Merchandise.Description, 
Merchandise.Category, Merchandise.ListPrice
FROM Merchandise
WHERE Category=N'Dog'
AND ListPrice > ANY
  (SELECT SalePrice
   FROM Merchandise
   INNER JOIN SaleItem ON Merchandise.ItemID=SaleItem.ItemID
   WHERE Merchandise.Category=N'Cat')
;

Has	one	salesperson	made	all	of	the	sales	on	a	particular	day	(Mar	28)?
SELECT Employee.EmployeeID, Employee.LastName
FROM Employee
WHERE EmployeeID = ALL
   (SELECT EmployeeID
    FROM Sale
    WHERE SaleDate = '28-MAR-2013')
;

Figure 5.19
Subquery with All and equality test. The subquery returns a list of EmployeeID 
values who made sales on the specified date. The “= ALL” test checks to see if they 
are all the same value and returns the matching employee.



268Chapter  5: Advanced Queries and Subqueries

Correlated Subqueries
What are correlated subqueries? Recall the example in Figure 5.12 that asked: 
Which cat merchandise sold for more than the average sale price of cat merchan-
dise? This example used a subquery to first find the average sale price of cat mer-
chandise and then examined all sales of cat merchandises to display the ones that 
had higher prices. It is a reasonable business question to extend this idea to other 
categories of animals. Managers would like to identify all merchandise that was 
sold for a price greater than the average price of other merchandise within their 
respective categories (dog merchandise compared to other dog merchandise, fish 
compared to fish, and so on).

As shown in Figure 5.21, building this query is tricky. The merchandise cat-
egory in the subquery has to match that in the outer query. This task is accom-
plished by setting the categories equal to each other. But, the Merchandise table is 
used in both queries, so the condition can only be written by assigning aliases to 
the Merchandise table in both queries. Here, it is renamed as Merchandise1 and 

Which	merchandise	has	a	list	price	greater	than	the	average	sale	price	of	
merchandise within that category?

SELECT Merchandise1.ItemID, Merchandise1.Description, 
Merchandise1.Category, Merchandise1.ListPrice
FROM Merchandise AS Merchandise1 
WHERE Merchandise1.ListPrice>
(
SELECT	Avg(SaleItem.SalePrice)	AS	AvgOfSalePrice
FROM Merchandise As Merchandise2 INNER JOIN SaleItem ON 
Merchandise2.ItemID = SaleItem.ItemID
WHERE Merchandise2.Category=Merchandise1.Category
);

Figure 5.21
Correlated subquery. The condition in the subquery depends on values in the 
outermost query. In some query systems, this query could run slowly if large tables 
are involved.

Use Not Exists to list customers who have not bought anything.
SELECT Customer.CustomerID, Customer.Phone, Customer.
LastName
FROM Customer
WHERE NOT EXISTS
  (SELECT SaleID, SaleDate 
   FROM Sale WHERE Sale.CustomerID=Customer.CustomerID);

Figure 5.20
Subquery with Exists. If the only thing that matters is the WHERE clause, you can 
use the EXISTS phrase to test if rows are returned or not. It is also useful when the 
details of the subquery are difficult to change.



269Chapter  5: Advanced Queries and Subqueries

Merchandise2, but any distinct names would work. This type of query is called a 
correlated subquery, because the subquery refers to data rows in the main query.

The query in Figure 5.21 will run. However, it might be inefficient. Perfor-
mance depends on the query optimizer, but systems might have problems comput-
ing this query for large sets of data. Even on a fast computer, queries of this type 
have been known to run for several days without finishing. If the query is run 
as written, the calculation in the subquery must be recomputed for each entry in 
the main table. The problem is illustrated in Figure 5.22. Consider an inefficient 
DBMS that starts at the top row of the Merchandise table. When it sees the cat-
egory is Dog, it computes the average sale price of dog merchandise ($23.32). 
Then it moves to the next row and computes the average sale price for dogs again. 
In the worst case, the DBMS recomputes the average for every single row in the 
Merchandise table. Recomputing the average sale price for every single row in 
the main query is time-consuming. To compute an average, the DBMS must go 
through every row in the SaleItem table that has the same category of animal. 
Consider a relatively small query of 100,000 rows and five categories of animals. 
On average, there are 20,000 rows per category. To recompute the average each 
time, the DBMS will have to retrieve 100,000 * 20,000 or 2,000,000,000 rows! 

Unfortunately, you cannot just tell the manager that it is impossible to answer 
this important business question. Is there an efficient way to answer this question? 
Some query processors can automatically cache the averages. In other cases, you 
will have to do it yourself. The answer illustrates the power of SQL and highlights 
the importance of thinking about the problem before you try to write a query. The 
problem with the correlated subquery lies in the fact that it has to continually 
recompute the average for each category. Think about how you might solve this 
problem by hand. You would first make a table that listed the average for each 
category and then simply look up the appropriate value when you needed it. As 
shown in Figure 5.23, the same approach can be used with SQL. Just create the 
query for the averages using GROUP BY and save it. Then join it to the Merchan-
dise table to do the comparison. 

1 Dog $45.00
2 Dog $65.00
3 Dog $85.00
4 Dog $110.00
5 Cat $25.00
6 Cat $35.00
7 Dog $4.00
8 Cat $3.00
9 Dog $7.50

Compute Avg: $23.32
Compute Avg: $23.32
Compute Avg: $23.32
Compute Avg: $23.32
Compute Avg: $8.99
Recompute average 
for	every	row	in	the	
main query!

MerchID Category ListPrice

Figure 5.22
Potential problem with correlated subquery. The average is recomputed for every row 
in the main query. Every time the DBMS sees a dog product, it computes the average 
to be $23.32. It is inefficient and slow to force the machine to recalculate the average 
each time.



270Chapter  5: Advanced Queries and Subqueries

Today, you probably do not have to worry too much about the performance of 
correlated subquries. The high-end DBMSs have good query optimizers that can 
recognize the problem and automatically find the solution to compute the values 
quickly and store them in a cache. However, some queries still require hand tun-
ing. Also, you need to remember to look for different ways to approach queries. 
The solution in Figure 5.23 is much easier to read and verify that the answer is 
correct.

More Features and Tricks with SQL SELECT
What tricky problems arise and how do you handle them in SQL? As you 
may have noticed, the SQL SELECT command is powerful and has plenty of op-
tions. There are even more features and tricks that you should know about. Busi-
ness questions can be difficult to answer. It helps to study different examples to 
gain a wider perspective on the problems and solutions you will encounter. One 
of the first big questions you will face is the need to combine rows from different 
tables. You also need to know how to handle several other complications, such as 
joining tables with multiple columns or inequality joins.

UNION, INTERSECT, EXCEPT
Codd originally conceived of tables as sets of data. The basic filtering aspects of 
the SELECT command perform some operations on these sets, but it is some-
times nice to be able to use more traditional set operators. Up to this point, the 
tables you have encountered have contained unique columns of data. The JOIN 
command links tables together so that a query can display and compare different 
columns of data from tables. Occasionally you will encounter a different type of 
problem where you need to combine rows of data from similar tables. The set 
operations, such as the UNION operator are designed to accomplish these tasks.

As an example, assume you work for a company that has offices in Los Angeles 
and New York. Each office maintains its own database. Each office has an Em-
ployee file that contains standard data about its employees. The offices are linked 
by a network, so you have access to both tables (call them EmployeeEast and 
EmployeeWest). But the corporate managers often want to search the entire Em-

Figure 5.23
More efficient solution. Create and save a query to compute the averages using 
GROUP BY Category. Then join the query to the Merchandise table to do the 
comparison.

Bird $37.60
Cat $8.99
Dog $23.32
Fish $38.18
Mammal $9.00

Category AvgOfSalePrice
Saved Query

JOIN

Merchandise.Category = 
Query05_Fig23a.Category

1 Dog $45.00
2 Dog $65.00
3 Dog $85.00
4 Dog $110.00
5 Cat $25.00
6 Cat $35.00
7 Dog $4.00
8 Cat $3.00
9 Dog $7.50

Merchandise
MerchID Category ListPrice



271Chapter  5: Advanced Queries and Subqueries

ployee file—for example, to determine total employee salaries of the marketing 
department. One solution might be to run their basic query twice (once on each 
table) and then combine the results by hand.

As shown in Figure 5.24, the easier solution is to use the UNION operator to 
create a new query that combines the data from the two tables. All searches and 
operations performed on this new query will treat the two tables as one large table. 
By combining the tables with a view, each office can make changes to the original 
data on its system. Whenever managers need to search across the entire company, 

T1 T2

A B C

T1 UNION T2 A + B + C

T1 INTERSECT T2 B

T1 EXCEPT T2 A

Figure 5.25
Operators for combining rows from two tables. UNION selects all of the rows. 
INTERSECT retrieves only the rows that are in both tables. EXCEPT retrieves rows 
that exist in only one table.

SELECT	EID,	Name,	Phone,	Salary,	‘East’	As	Office
FROM EmployeeEast
UNION
SELECT	EID,	Name,	Phone,	Salary,	‘West’	As	Office
FROM EmployeeWest;

EID Name Phone Salary Office
352
876
372

890
631

Jones
Inez
Stoiko

Smythe
Kim

3352
8736
7632

9803
7736

45,000
47,000
38,000

62,000
73,000

East
East
East

West
West

Figure 5.24
The UNION operator combines rows of data from two SELECT statements. The 
columns in both SELECT lines must match. The query is usually saved and used 
when managers need to search across both tables. Note the use of a new, constant 
column (Office) to track the source of the data.



272Chapter  5: Advanced Queries and Subqueries

they use the saved query, which automatically examines the data from current ver-
sions of both tables.

The most important concept to remember when creating a UNION is that the 
data from both tables must match (e.g., EID to EID, Name to Name). Another 
useful trick is to insert a constant value in the SELECT statement. In this example 
the constant keeps track of which table held the original data. This value can also 
be used to balance out a SELECT statement if one of the queries will produce a 
column that is not available in the other query. To make sure both queries return 
the same number of columns, just insert a constant value in the query that does not 
contain the desired column. Make sure that it contains the same type of data that is 
stored in the other query (domains must match).

The UNION command combines matching rows of data from two tables. The 
basic version of the command automatically eliminates duplicate rows of data. If 
you want to keep all the rows—even the duplications, use the command UNION 
ALL. Two other options for combining rows are EXCEPT and INTERSECT. 
Figure 5.25 shows the difference between the three commands. They all apply to 
sets of rows and the Venn diagram shows that the tables might have some data in 
common (area B). The UNION operator returns all the rows that appear in either 
one of the tables, but rows appearing in both tables are only listed once. The IN-
TERSECT operator returns the rows that appear in both tables (area B). The EX-
CEPT operator returns only rows that appear in the first table (area A). Notice that 
the result of the EXCEPT operator depends on which table is listed first. Micro-
soft Access supports only the UNION command. SQL Server (and other DBMSs) 
support all three. These set operators are another way to handle complex business 
questions, similar to the NOT IN problem of finding things in one set that are not 
in the second set. Just remember that there are often many ways to create a query.

Multiple JOIN Columns
Sometimes you will need to join tables based on data in more than one column. 
In the Pet Store example, each animal belongs to some category (Cat, Dog, Fish, 

AnimalID
Name
Category
Breed
DateBorn
Gender
. . .

Category
Breed

Breed

Animal

SELECT *
FROM Breed INNER JOIN Animal
ON Breed.Category = Animal.Category
AND Breed.Breed = Animal.Breed

Figure 5.26
Multiple JOIN columns. The values in the tables are connected only when both the 
category and the breed match.



273Chapter  5: Advanced Queries and Subqueries

etc.). Each category of animal has different breeds. For example, a Cat might be 
a Manx, Maine Coon, or Persian; a Dog might be a Retriever, Labrador, or St. 
Bernard. A portion of the class diagram is reproduced in Figure 5.26. Notice the 
two lines connecting the Breed and Animal tables. This relationship ensures that 
only breeds listed in the Breed table can be entered for each type of Animal. A real 
store might want to include additional features in the Breed table (such as regis-
tration organization, breed description, or breed characteristics). The key point is 
that the tables must be connected by both the Category and the Breed.

In Microsoft Access QBE, the JOIN can be created by marking both columns 
and simultaneously dragging the two columns to the Animal table, but it is often 
easier to edit in SQL. The syntax for the SQL JOIN command is given in Figure 
5.26. Simply expand the ON statement by listing both column connections. In 
this case, you want both sets of columns to be equal at the same time, so the state-
ments are connected with an AND.

Reflexive Join
A reflexive join or self-join means simply that a table is joined to itself. One 
column in the table is used to match values in a second column in the same ta-
ble. A common business example arises with an Employee table as illustrated in 
Figure 5.27. Employees typically have one manager. Hence the manager’s ID 
can be stored in the row corresponding to each employee. The table would be 
Employee(EID, Name, Phone, . . ., Manager). The interesting feature is that a 
manager is also an employee, so the Manager column actually contains a value 
for EID. To get the corresponding name of the manager, you need to join the Em-
ployee table to itself.

SELECT Employee.EmployeeID, Employee.LastName, Employee.
ManagerID, E2.LastName
FROM Employee INNER JOIN Employee AS E2
ON Employee.ManagerID = E2.EmployeeID

EID Name Manager Name
1
2
3

Reeves
Gibson
Reasoner

11
1
1

Smith
Reeves
Reeves

EID Name . . . Manager
1 Reeves 11
2 Gibson 1
3 Reasoner 1
4 Hopkins 3

Employee

Figure 5.27
Reflexive JOIN to connect Employee table with itself. A manager is also an 
employee. Use a second copy of the Employee table (renamed to E2) to get the 
manager’s name.



274Chapter  5: Advanced Queries and Subqueries

The only trick with this operation is that you have to be careful with the ON 
condition. For instance, the following condition does not make sense: ON Em-
ployee.Manager = Employee.EID. The query would try to return employees who 
were their own managers, which is not likely to be what you wanted. Instead, you 
must use two instances of the Employee table and use an alias (say, E2) to rename 
the second copy. Then the correct ON condition becomes ON Employee.Manager 
= E2.EID. The key to self-joins is to make sure that the columns contain the same 
type of data and to create an alias for the second copy of the table.

SQL 1999 provides an even more powerful feature related to reflexive joins. 
Consider the employee example where you want to list all of the people who work 
for someone—not just the direct reports, but also the people who work for them, 
and the people who work for that group, and so on down the employee hierarchy 
tree. The standard provides the WITH RECURSIVE command that has several 

Figure 5.28
Recursive query. The employee-manager relationship is a classic recursive example. 
The recursive query requires three steps: (1) Define the root level, (2) Define the 
recursion member that links to the higher level, and (3) Run the SELECT statement 
to execute the expression and sort the results. 

List all the managers and their direct reports.
WITH DirectReports(EmployeeID, LastName, ManagerID, Title, Level) 
AS
( 
	 --Root/anchor	member	(find	employee	with	no	manager)
 SELECT EmployeeID, LastName, ManagerID, Title, 0 As Level
 FROM Employee WHERE ManagerID=0  -- starting level
 UNION ALL
 -- Recursive members
 SELECT Employee.EmployeeID, Employee.LastName, 
  Employee.ManagerID, Employee.Title, Level +1
 FROM Employee INNER JOIN DirectReports
 ON Employee.ManagerID = DirectReports.EmployeeID 
)
-- Now exectue the common table expression
SELECT ManagerID, EmployeeID, LastName, Title, Level
FROM DirectReports
ORDER BY Level, ManagerID, LastName

ManagerID EmployeeID LastName Title Level
0
11
1
1
2
2
2
2
2
3
3

11
1
2
3
6
7
5
9
10
8
4

Smith
Reeves
Gibson
Reasoner
Eaton
Farris
James
O'Connor
Shields
Carpenter
Hopkins

Owner
Manager
Manager
Manager
Animal Friend
Animal Friend
Animal Friend
Animal Friend
Animal Friend
Worker
Worker

0
1
2
2
3
3
3
3
3
3
3



275Chapter  5: Advanced Queries and Subqueries

options to search a data tree. Consider the pet store case with the partial Employee 
table: Employee(EmployeeID, LastName, Title, ManagerID). You want to start at 
the top with the CEO/owner and list all of the employees who report directly to 
a manager. For example, EmployeeID 1 (Reeves) is the only person who reports 
directly to Sally (EmployeeID=11), but two people (EmployeeID 2 and 3) report 
directly to Reeves. The actual syntax can be slightly different across systems. See 
the Workbooks for examples. Figure 5.28 shows the syntax used by SQL Server. 
The main difference with the standard is that the standard uses WITH RECUR-
SIVE instead of just the WITH keyword. The main step is to define the common 
table expression to handle the recursion. You give a unique name (e.g., DirectRe-
ports) to the new expression and specify the columns that will be retrieved. The 
three main steps are: (1) Define the root starting point for the tree with a SELECT 
statement, (2) Define the recursive members with a second SELECT statement 
that links to the level above, and (3) Write the final SELECT statement to execute 
the recursive table and sort or group the results. In the example, root level is de-
fined by choosing the owner who does not report to anyone (ManagerID=0). You 
might need to examine the data to know how to define the root level—it might 
be set by title, or by a Null value in some column. The second step is the one that 
does most of the work. You retrieve data from the Employee table, but the JOIN 
statement is the key. Notice that you join the Employee.ManagerID column to 
the higher-level DirectReports.EmployeeID table. The DirectReports table repre-
sents the parent level entry, and this SELECT statement will always have a similar 
JOIN condition. The third step is the easiest, because now you can treat the Di-
rectReports entity as just another table. Open the pet store’s Employee table and 
work through the results given here to see how the organization structure chart is 
created.

The Level column is also a useful trick. You define it with the root-level SE-
LECT statement, and increment it with the recursive SELECT. It provides an easy 
way to specify the distance from the root. Picture the organizational chart with 
Smith at the top, followed by Reeves at Level 1, and Gibson and Reasoner at 
Level 2 because both report to Reeves. The recursive query is a powerful state-
ment. Without it, you need to write substantial code to accomplish the same task.

Note that many lower-end systems (such as Microsoft Access) do not support 
recursive joins. In these cases, you will have to write programming code to iterate 
through each employee to build the tree. Also be cautious when building recursive 
queries—it is possibly to accidentally create an infinite loop. You might want to 
set time limits on queries when testing recursive designs.

CASE Function
SQL 92 added the CASE function to simplify certain types of queries. However, 
many database systems have not yet implemented all the features of SQL 92. The 
CASE function evaluates a set of conditions and returns a single value. Similar to 
the Oracle decode function, the conditions can be simple (R=1) or complex.

Perhaps the managers want to classify the animals in Sally’s Pet Store based on 
their age. Figure 5.29 shows the SQL statement that would create four categories 
based on different ages. Note the use of date arithmetic using today’s date—Date( 
)—and DateBorn. Whenever this query is executed, it will use the current day to 
assign each animal to the appropriate category. Of course, the next logical step is 
to run a GROUP BY query against this view to count the number of animals fall-
ing within each age category.



276Chapter  5: Advanced Queries and Subqueries

Inequality Joins
A JOIN statement is actually just a condition. Most problems are straightforward 
and use a simple equality condition or equi-join. For example, the following 
statement joins the Customer and Order tables: FROM Customer INNER JOIN 
Order ON (Customer.CustomerID = Order.CustomerID).

SQL supports complex conditions including inequality joins, where the com-
parison is made with inequality operators (less than, greater than) instead of an 
equals sign. The generic name for any inequality or equality join is a theta join.

This type of join can be useful in some tricky situations. For example, con-
sider a common business problem. You have a table for AccountsReceivable( 
TransactionID, CustomerID, Amount, DateDue). Managers would like to catego-
rize the customer accounts and determine how many transactions are past due by 
30, 90, and 120 or more days. This query can be built in a couple of ways. For 
instance, you could write three separate queries, or you could build a complex 

Classify	payments	by	number	of	days	late.
AR(TransactionID, CustomerID, Amount, DateDue)
LateCategory(Category, MinDays, MaxDays, Charge, …)

Month 30 90 3%
Quarter 90 120 5%
Overdue 120 9999 10%

SELECT *
FROM AR INNER JOIN LateCategory
ON ((Date( ) – AR.DateDue) >= LateCategory.MinDays)
AND ((Date( ) – AR.DateDue) < LateCategory.MaxDays)

Figure 5.30
Inequality join. Managers want to classify the AccountsReceivable (AR) data into 
three categories of overdue payments. First, store the business rules/categories in a 
new table. Then join the table to the AR data through inequality joins.

Figure 5.29
CASE function to convert DateBorn into age categories. Note the use of date 
arithmetic to generate descriptions that are always current.

Convert age ranges into categories.
Select AnimalID,
 CASE
  WHEN Date()-DateBorn < 90 Then ‘Baby’
  WHEN Date()-DateBorn >= 90
     AND Date()-DateBorn < 270 Then ‘Young’
  WHEN Date()-DateBorn >= 270
     AND Date()-DateBorn < 365 Then ‘Grown’
  ELSE ‘Experienced’
 END
FROM Animal;



277Chapter  5: Advanced Queries and Subqueries

CASE statement. However, what happens if managers decide to change the busi-
ness rules or add a new category? Then someone has to find your three queries 
and modify them. A more useful trick is to create a new table to hold the busi-
ness rules or categories. In the example shown in Figure 5.30, create the table 
LateCategory(Category, MinDays, MaxDays, Charge). This table defines the late 
categories based on the number of days past due. Now use inequality conditions to 
join the two tables. First, compute the number of days late using the current date 
(Date( ) – AR.DateDue). Finally, compare the number of days late to minimum 
and maximum values specified in the LateCategory table.

The ultimate value of this approach is that the business rules are now stored in 
a simple table (LateCategory). If managers want to change the conditions or add 
new criteria, they simply alter the data in the table. You can even build a form that 
makes it easy for managers to see the rules and quickly make the needed changes. 
With any other approach, a programmer needs to rewrite the code for the queries.

Exists and Crosstabs
Some queries need the EXISTS condition. Consider the business question: Which 
employees have sold merchandise in every category? The word every is the key 
here. Think about how you would answer that question if you did not have a com-
puter. For each employee you would make a list of merchandise categories (Bird, 
Cat, Dog, etc.). Then you would go through the list of ItemSales and cross off 
each merchandise category sold by the employee. When finished, you would look 
at the employee list to see which people have every category crossed off (or an 
empty list). You will do the same thing using queries.

Remember, if this query returns any rows at all, then the selected employee has 
not sold every one of the categories. What you really want then is a list of employ-
ees for whom this query returns no rows of data. In other words, the rows from 
this query should NOT EXIST.

The next step is to examine the entire list of employees and see which ones 
do not retrieve any rows from the query in Figure 5.31. The final query is shown 
in Figure 5.32. Note that the specific EmployeeID 5 has been replaced with the 
EmployeeID matching the value in the outer loop, which creates a correlated sub-
query. Unfortunately, you cannot avoid the correlated subquery in this type of 

List the Animal categories where merchandise has not been sold by an 
employee (#5).

SELECT Category
FROM Category
    WHERE (Category <> N'Other') And Category NOT IN
       (SELECT Merchandise.Category
        FROM Merchandise INNER JOIN (Sale INNER JOIN SaleItem 
             ON Sale.SaleID = SaleItem.SaleID) 
             ON Merchandise.ItemID = SaleItem.ItemID
        WHERE Sale.EmployeeID = 5)

Figure 5.31
List the animal categories that have not been sold by EmployeeID 5. Use a basic 
NOT IN query.



278Chapter  5: Advanced Queries and Subqueries

problem. This query returns four employees who have sold every type of animal 
merchandise. Observe that categories for Other, Reptile, and Spider have been re-
moved from the list because the shortened product list does not contain any items 
for these categories. Another way to handle this problem would be to select the 
Distinct Category from the Merchandise table instead of the Category table.

The type of query in Figure 5.32 is commonly used to answer questions that 
include some reference to “every” item. In some cases, a simpler solution is to 

Which	employees	have	sold	merchandise	from	every	category?
SELECT Employee.EmployeeID,Employee.LastName,
 Count(CASE Category WHEN 'Bird' THEN 1 END) As Bird,
 Count(CASE Category WHEN 'Cat' THEN 1 END) As Cat,
 Count(CASE Category WHEN 'Dog' THEN 1 END) As Dog,
 Count(CASE Category WHEN 'Fish' THEN 1 END) As Fish,
 Count(CASE Category WHEN 'Mammal' THEN 1 END) As Mammal,
 Count(CASE Category WHEN 'Reptile' THEN 1 END) As Reptile,
 Count(CASE Category WHEN 'Spider' THEN 1 END) As Spider
FROM Employee 
INNER JOIN Sale ON Sale.EmployeeID=Employee.EmployeeID
INNER JOIN SaleAnimal ON Sale.SaleID=SaleAnimal.SaleID
INNER JOIN Animal ON Animal.AnimalID=SaleAnimal.AnimalID
GROUP BY Employee.EmployeeID, Employee.LastName
ORDER BY Employee.LastName;

Figure 5.33
Using CASE to count items. The hard way to count items in each category. It works, 
but needs to be edited if categories are added.

Which	employees	have	sold	merchandise	from	every	category?
SELECT Employee.EmployeeID, Employee.LastName
FROM Employee
WHERE Not Exists
 (SELECT Category
    FROM Category
    WHERE (Category NOT IN (N'Other', N’Reptile’, N’Spider’) 
 And Category NOT IN
       (SELECT Merchandise.Category
        FROM Merchandise INNER JOIN (Sale INNER JOIN SaleItem 
             ON Sale.SaleID = SaleItem.SaleID) 
             ON Merchandise.ItemID = SaleItem.ItemID
        WHERE Sale.EmployeeID = Employee.EmployeeID)  
  );

Figure 5.32
Example of NOT EXISTS clause. List the employees who have sold merchandise 
from every category (except “Other”). 



279Chapter  5: Advanced Queries and Subqueries

just count the number of categories for each employee. One catch to this approach 
is that the DBMS must support the Count(DISTINCT) format. In general, these 
complex questions are probably better answered with multiple queries, or with 
tools provided by a data warehouse approach.

The query in Figure 5.32 is an interesting application of the EXISTS clause. 
However, there is an easier way to answer the question. You should build a cross-
tab or pivot query that counts the number of items sold by each employee and by 
each category. Notice that this question contains two “by each” statements. You 
could write a simple query that contains both of those variables (Employee and 
Category) in the GROUP BY section. However, most people find it easier to read 
the results if they are presented in a table, with one Group By variable (Employee) 
as the rows and the other (Category) as the columns. Then each cell can contain 
the count of the number of items sold for a specific employee in a given category.

Figure 5.33 shows the basic query. Microsoft Access has a simpler crosstab 
query, but with traditional SQL, you need to compute each column separately. 
Hence, you have to use the CASE function to select each category of animal—
which means you have to know the categories ahead of time. Essentially, you 
compute each column separately by using a CASE statement to select only rows 
that match the group condition you want for the column.

Figure 5.34 shows the result of the crosstab query. It is relatively easy to see the 
types of animals sold by each employee. To answer the overall question of who 
sold items from each category, you simply look for a row with no zeros. With this 
sample data, four employees have sold at least one item from each category. Tech-
nically, this query contains more information that required to answer the question. 
However, additional data is often useful. If you write the EXISTS query to return 
exactly the information requested, it will return no names. Oftentimes, it is pref-
erable to see that several other employees come close to meeting the conditions, 
instead of simply saying that no one meets them exactly.

Figure 5.34
Crosstab query. The columns are built using the CASE statement to select each 
specific category. The rows are formed by the GROUP BY clause. Note that Oracle 
uses the DECODE function instead of the CASE statement.

EID LastName Bird Cat Dog Fish Mammal
1 Reeves 4 15 6
2 Gibson 1 25 24 9 2
3 Reasoner 2 9 26 5 2
4 Hopkins 3 21 33
5 James 3 7 8 11 2
6 Eaton 1 2 8 1
7 Farris 1 4 24 1 1
8 Carpenter 3 1 11 5
9 O'Connor 5 10 3 1
10 Shields 1 5
11 Smith 1



280Chapter  5: Advanced Queries and Subqueries

SQL SELECT Summary
The SQL SELECT command is powerful and has many options. To help you re-
member the various options, they are presented in Figure 5.35. Each DBMS has 
a similar listing for the SELECT command, and you should consult the relevant 
Help system for details to see if there are implementation differences. Remember 
that the WHERE clause can have subqueries. Also remember that you can use the 
SELECT line to perform computations, both in-line and aggregations across the 
rows.

Most database systems are picky about the sequence of the various components 
of the SELECT statement. For example, the WHERE statement should come be-
fore the GROUP BY statement. Sometimes these errors can be hard to spot, so if 
you receive an enigmatic error message, verify that the segments are in the proper 
order. Figure 5.36 presents a mnemonic that may help you remember the proper 
sequence. Also, you should always build a query in pieces, so you can test each 
piece. For example, if you use a GROUP BY statement, first check the results 
without it to be sure that the proper rows are being selected.

SQL Data Definition Commands
What are the SQL data definition commands? Everything to this point has 
focused on only one aspect of a database: retrieving data. Clearly, you need to 
perform many more operations with a database. SQL was designed to handle all 
common operations. One set of commands is described in this section: data defini-
tion commands to create and modify the database and its tables. Note that the SQL 
commands can be cumbersome for these tasks. Hence, most modern database sys-

Someone SELECT
From FROM
Ireland INNER JOIN
Will WHERE
Grow GROUP BY
Horseradish and HAVING
Onions ORDER BY

Figure 5.36
Mnemonic to help remember the proper sequence of the SELECT operators.

SELECT DISTINCT Table.Column {AS Alias}, …
FROM Table/Query
INNER JOIN Table/Query ON T1.ColA = T2.ColB
WHERE (Condition)
GROUP BY Column
HAVING (Group Condition)
ORDER BY Table.Column
{UNION  Second Select }

Figure 5.35
SQL SELECT options. Remember that WHERE statements can have subqueries.



281Chapter  5: Advanced Queries and Subqueries

tems provide a visual or menu-driven system to assist with these tasks. The SQL 
commands are generally used when you need to automate some of these tasks and 
set up or make changes to a database from within a separate program.

The five most common data definition commands are listed in Figure 5.37. In 
building a new database, the first step is to CREATE a SCHEMA. A schema is 
a collection of tables. In some systems, the command is equivalent to creating a 
new database. In other systems, it simply defines a logical area where each user 
can store tables, which might or might not be in one physical database. The Au-
thorization component describes the user and sets a password for security. Most 
DBMSs also have visually-oriented tools to perform these basic tasks. However, 
the SQL commands can be scripted and stored in a file that can be run whenever 
you need to recreate the database.

CREATE TABLE is one of the main SQL data definition commands. It is used 
to define a completely new table. The basic command lists the name of the table 
along with the names and data types for all of the columns. Figure 5.38 shows the 
format for the data definition commands. Additional options include the ability to 
assign default values with the DEFAULT command.

SQL 92 provides several standard data types, but system vendors do not yet 
implement all of them. SQL 92 also enables you to create your own data types 
with the CREATE DOMAIN command. For example, to ensure consistency you 

CREATE TABLE Customer
( CustomerID INTEGER NOT NULL,
 LastName NVARCHAR(10),
 …
);

ALTER TABLE Customer
 DROP COLUMN ZIPCode;

ALTER TABLE Customer
 ADD COLUMN CellPhone NVARCHAR(15);

Figure 5.37
Primary SQL data definition commands. In most cases you will avoid these 
commands and use a visual or menu-driven system to define and modify tables.

CREATE SCHEMA AUTHORIZATION DBName Password
CREATE TABLE TableName (Column Type, …)
ALTER TABLE Table {Add, Column, Constraint, Drop}
DROP {Table TableName | Index IndexName ON TableName}
CREATE INDEX IndexName ON TableName (Column ASC/DESC)

Figure 5.38
The CREATE TABLE command defines a new table and all of the columns that 
it will contain. The NOT NULL command typically is used to identify the key 
column(s) for the table. The ALTER TABLE command enables you to add and delete 
entire columns from an existing table.



282Chapter  5: Advanced Queries and Subqueries

could create a domain called DomAddress that consists of CHAR (35). Then any 
table that used an address column would refer to the DomAddress.

With SQL 92, you identify the primary key and foreign key relationships with 
constraints. SQL constraints are rules that are enforced by the database system. 
Figure 5.39 illustrates the syntax for defining both a primary key and a foreign 
key for an Order table. First, notice that each constraint is given a name (e.g., 
pkOrder). You can choose any name, but you should pick one that you will recog-
nize later if problems arise. The primary key constraint simply lists the column or 
columns that make up the primary key. Note that each column in the primary key 
should also be marked as NOT NULL.

The foreign key constraint is easier to understand if you examine the relevant 
class diagram. Here you want to place orders only to customers who have data 
in the Customer table. That is, the CustomerID in the Order table must already 
exist in the Customer table. Hence, the constraint lists the column in the origi-
nal Order table and then specifies a REFERENCE to the Customer table and the 
CustomerID.

The ALTER TABLE and DROP TABLE commands enable you to modify 
the structure of an existing table. Be careful with the DROP command, as it will 
remove the entire table from the database, including its data and structural defini-
tion. The ALTER TABLE command is less drastic. It can be used to ADD or DE-
LETE columns from a table. Obviously, when you drop an entire column, all the 
data stored in that column will be deleted. Similarly, when you add a new column, 
it will contain NULL values for any existing rows.

You can use the CREATE INDEX and DROP INDEX commands to improve 
the performance of the database. Indexes can improve performance when re-

CREATE TABLE Order
 (OrderID  INTEGER NOT NULL,
  OrderDate  DATE,
  CustomerID  INTEGER,

 CONSTRAINT pkOrder PRIMARY KEY (OrderID),
	 CONSTRAINT	fkOrderCustomer	FOREIGN	KEY	(CustomerID)
    REFERENCES Customer (CustomerID)
);

OrderID
OrderDate
CustomerID

CustomerID
LastName
FirstName
Address
… 

Order Customer

*

Figure 5.39
Identifying primary and foreign keys in SQL. Keys are defined as constraints that are 
enforced by the DBMS. The primary key constraint lists the columns that make up 
the primary key. The foreign key lists the column (CustomerID) in the current table 
(Order) that is linked to a column (CustomerID) in a second table (Customer). 



283Chapter  5: Advanced Queries and Subqueries

trieving data, but they can cause problems when many transactions take place in 
a short period of time. In general, these commands are issued once for a table. 
Typically, indexes are built for primary key columns. Most DBMSs automatically 
build those indexes. 

Finally, as described in Chapter 4, the CREATE VIEW creates and saves a 
new query. The basic syntax is straightforward: CREATE VIEW myview AS SE-
LECT…. The command simply gives a name and saves any SELECT statement. 
Again, these commands are almost always easier to create and execute from a 
menu-driven interface. However, because you may have to create SQL data defi-
nition statements by hand sometime, so it is good to know how to do so.

SQL Data Manipulation Commands
What SQL commands alter the data stored in tables? A third set of SQL com-
mands demonstrates the true power of SQL. The SELECT command retrieves 
data, whereas data manipulation commands are used to change the data within the 
tables. The basic commands and their syntax are displayed in Figure 5.40. These 
commands are used to insert data, delete rows, and update (change) the values of 
specific cells. Remember two points when using these commands: (1) They oper-
ate on sets of data at one time—avoid thinking in terms of individual rows, and (2) 
they utilize the power of the SELECT and WHERE statements you already know.

INSERT and DELETE
As you can tell from Figure 5.40, the INSERT command has two variations. The 
first version (VALUES) is used to insert one row of data at a time. Except for 
some programming implementations, it is not very interesting. Most database sys-
tems provide a visual or tabular data entry system that makes it easy to enter or 
edit single rows of data. Generally, you will build forms to make it easy for users 
to enter and edit single rows of data. These tools automatically build the single-
row INSERT command. On most systems, the data will be inserted directly to the 
tables. In a few cases, you might have to write your own INSERT statement.

The second version of the INSERT command is particularly useful at copy-
ing data from one table into a second (target) table. Note that it accepts any SE-

INSERT INTO target (column1, column2, …)
 VALUES (value1, value2, …)

INSERT INTO target (column1, column2, …)
 SELECT … FROM …

DELETE FROM table WHERE condition

UPDATE table
 SET Column1=Value1, Column2=Value2, …
 WHERE condition 

Figure 5.40
Common SQL commands to add, delete, and change data within existing tables. The 
commands operate on entire sets of data, and they utilize the power of the SELECT 
and WHERE statements, including subqueries.



284Chapter  5: Advanced Queries and Subqueries

LECT statement, including one with subqueries, making it far more powerful than 
it looks. For example, in the Pet Store database, you might decide to move older 
Customer data to a different computer. To move records for customers who have 
not purchased anything since the start of July, you would issue the INSERT com-
mand displayed in Figure 5.41. Notice that the subquery selects the customers 
based on the date they placed their latest sale. The INSERT command then copies 
the associated rows in the Customer table into an existing OldCustomers table.

The query in Figure 5.41 just copies the specified rows to a new table. The next 
step is to delete them from the main Customer table to save space and improve 
performance. The DELETE command performs this function easily. As Figure 
5.42 illustrates, you simply replace the first two rows of the query (INSERT and 
SELECT) with DELETE. Be careful not to alter the subquery. You can use the 
cut-and-paste feature to delete only rows that have already been copied to the 
backup table. Be sure you recognize the difference between the DROP and DE-
LETE commands. The DROP command removes an entire table. The DELETE 
command deletes rows within a table.

UPDATE
The syntax of the UPDATE command is similar to the INSERT and DELETE 
commands. It, too, makes full use of the WHERE clause, including subqueries. 
The key to the UPDATE command is to remember that it acts on an entire collec-

INSERT INTO OldCustomers
SELECT *
FROM Customer
WHERE CustomerID IN
(SELECT Sale.CustomerID
 FROM Customerr INNER JOIN Sale
 ON Customer.CustomerID=Sale.CustomerID
 GROUP BY Sale.CustomerID
 HAVING Max(Sale.SaleDate) < '01-Jul-2013')  );

Figure 5.41
INSERT command to copy older data rows. Note the use of the subquery to identify 
the rows to be copied.

DELETE
FROM Customer
WHERE CustomerID IN
 (SELECT FROM Customerr INNER JOIN Sale
 ON Customer.CustomerID=Sale.CustomerID
 GROUP BY Sale.CustomerID
 HAVING (Max(Sale.SaleDate) < '01-Jul-2013')  );

Figure 5.42
DELETE command to remove the older data. Use cut and paste to make sure the 
subquery is exactly the same as the previous query.



285Chapter  5: Advanced Queries and Subqueries

tion of rows at one time. You use the WHERE clause to specify which set of rows 
need to be changed.

In the example in Figure 5.43, managers wish to increase the ListPrice of the 
merchandise for cats and dogs. The price for cat merchandise should increase by 
10 percent and the price for dog merchandise by 20 percent. Because these are 
two different categories, you will often use two separate UPDATE statements. 
However, this operation provides a good use for the CASE function. You can re-
duce the operation to one UPDATE statement by replacing the 1.10 and 1.20 val-
ues with a CASE statement that selects 1.10 for Cats and 1.20 for Dogs. 

The UPDATE statement has some additional features. For example, you can 
change several columns at the same time. Just separate the calculations with a 
comma. You can also build calculations from any row within the table or query. 
For example, merchandise list price could take into consideration the quantity on 
hand with the command SET ListPrice = ListPrice*(1 - 0.001*QuantityOnHand). 
This command takes 1/10 of 1 percent off the price for extra items in inventory.

Notice the use of the internal Date( ) function to provide today’s date in the 
last example. Most database systems provide several internal functions that can 
be used within any calculation. These functions are not standardized, but you can 
generally get a list (and the syntax chart) from the system’s Help commands. The 
Date, String, and Format functions are particularly useful.

When using the UPDATE command, remember that all the data in the calcula-
tion must exist on one row within the query. There is no way to refer to a previous 
or next row within the table. If you need data from other rows or tables, you can 
build a query to join tables. However, you can update data in only a single table 
at a time.

Quality: Testing Queries
How do you know if your query is correct? The greatest challenge with com-
plex queries is that even if you make a mistake, you usually get results. The prob-
lem is that the results are not the answer to the question you wanted to ask. The 
only way to ensure the results are correct is to thoroughly understand SQL, to 
build your queries carefully, and to test your queries.

Figure 5.44 outlines the basic steps for dealing with complex queries. The first 
step is to break complex queries into smaller pieces, particularly when the query 
involves subqueries. You need to examine and test each subquery separately. You 
can do the same thing with complex Boolean conditions. Start with a simple con-
dition, check the results, and then add new conditions. When the subqueries are 

Figure 5.43
Sample UPDATE command. If the CASE function is not available, use two separate 
statements to increase the list price by 10 percent for cats and 20 percent for dogs.

UPDATE Merchandise
SET ListPrice = ListPrice * 1.10
WHERE Category = ‘Cat’;
UPDATE Merchandise
SET ListPrice = ListPrice * 1.20
WHERE Category = ‘Dog’;



286Chapter  5: Advanced Queries and Subqueries

correct, use cut-and-paste techniques to combine them into one main query. If 
necessary, save the initial queries as views, and use a completely new query to 
combine the results from the views. The third step is to create sample data to test 
the queries. Find or create data that represents the different possible cases. Opti-
mize queries that will become part of an application and run multiple times. Most 
DBMSs have an optimizer that will suggest performance improvements. You 
should also look for alternate ways to write the query to find a faster approach.

SELECT  DISTINCT Animal.Category, Sale.CustomerID
FROM Sale INNER JOIN Animal 
 ON Animal.SaleID = Sale.SaleID
WHERE (Animal.Category=N'Dog')

 AND Sale.CustomerID IN (

 SELECT DISTINCT Sale.CustomerID
 FROM Sale INNER JOIN (Merchandise INNER JOIN 
SaleItem
  ON Merchandise.ItemID = SaleItem.ItemID)
  ON Sale.SaleID = SaleItem.SaleID
 WHERE (Merchandise.Category=N'Cat')
);

Figure 5.45
Sample query: Which customers who adopted dogs also bought cat products (at any 
time)? Build each query separately. Then paste them together in SQL and add the 
connecting link. Use sample data to test the results.

Break questions into smaller pieces.
Test each query.
 Check the SQL.
 Look at the data.
 Check computations.
Combine into subqueries.
	 Use	the	cut-and-paste	features	to	reduce	errors.
	 Check	for	correlated	subqueries.
Test sample data.
	 Identify	different	cases.
	 Check	final	query	and	subqueries.
	 Verify	calculations.
Test	SELECT	queries	before	executing	UPDATE	queries.
Optimize queries that run multiple times.
 Run a query optimizer.
 Think about new ways to structure the query.

Figure 5.44
Steps to building quality queries. Be sure there are recent backups of the database 
before you execute UPDATE or DELETE queries.



287Chapter  5: Advanced Queries and Subqueries

In terms of quality issues, consider the example in Figure 5.45: List custom-
ers who adopted dogs and also bought cat products. The query consists of four 
situations:

1. Customers adopted dogs and cat products on the same sale.
2. Customers adopted dogs and then cat products at a different time.
3. Customers adopted dogs and never bought cat products.
4. Customers never adopted dogs but did buy cat products.
Because there are only four cases, you should create data and test each one. If 

there were thousands of possible cases, you might have to limit your testing to the 
major possibilities. 

The final step in building queries involves data manipulation queries (such as 
UPDATE). You should first create a SELECT query that retrieves the rows you 
plan to change. Examine and test the rows to make sure they are the ones you 
want to alter. When you are satisfied that the query is correct, make sure you have 
a recent backup of the database—or at least a recent copy of the tables you want 
to change. Now you can convert the SELECT query to an UPDATE or DELETE 
statement and execute it.

Summary
Always remember that SQL operates on sets of data. The SELECT command re-
turns a set of data that matches some criteria. The UPDATE command changes 
values of data, and the DELETE command deletes rows of data that are in a speci-
fied set. Sets can be defined in terms of a simple WHERE clause. The key to un-
derstanding SQL is to think of the WHERE clause as defining a set of data.

To create queries to answer complex business questions, break the question 
into pieces and build simple queries to retrieve data for each piece. Then combine 
the sets of data using inner joins, outer joins, subqueries, or set operators. Subque-
ries are powerful, but be careful to ensure that the query accurately represents the 
business questions. You must test subqueries in pieces and make sure you under-
stand exactly what each piece is returning.

In everyday situations, data can exist in one table but not another. For example, 
you might need a list of customers who have not placed orders recently. The prob-
lem can also arise if the DBMS does not maintain referential integrity—and you 
need to find which orders have customers with no matching data in the customer 
table. Outer joins (or the NOT IN subquery) are useful in these situations.

The most important thing to remember when building queries is that if you 
make a mistake, most likely the query will still execute. Unfortunately, it will not 
give you the results you wanted. That means you have to build your queries care-
fully and always check your work. Begin with a smaller query and then add ele-
ments until you get the query you want. To build an UPDATE or DELETE query, 
always start with a SELECT statement and check the results. Then change it to 
UPDATE or DELETE.



288Chapter  5: Advanced Queries and Subqueries

Key Terms

ALL
ALTER TABLE
ANY
CASE
constraint
correlated subquery
CREATE DOMAIN
CREATE SCHEMA
CREATE TABLE
CREATE VIEW
DELETE
DROP TABLE
equi-join
EXCEPT 
EXISTS

FULL JOIN
IN
inequality join
INSERT
INTERSECT
LEFT JOIN
nested query
outer join
reflexive join
RIGHT JOIN
schema
self join
subquery
UNION
UPDATE

A Developer’s View
Miranda saw that some business questions are more complex than others. SQL 
subqueries and outer joins are often used to answer these questions. Practice the 
SQL subqueries until you thoroughly understand them. They will save you hun-
dreds of hours of work. Think about how long it would take to write code to 
answer some of the questions in this chapter! For your class project, you should 
create several queries to test your skills, including subqueries and outer joins. 
You should build and test some SQL UPDATE queries to change sets of data. You 
should be able to use SQL to create and modify tables.



289Chapter  5: Advanced Queries and Subqueries

Review Questions
1. What is a subquery and in what situations is it useful?
2. What is a correlated subquery and why does it present problems?
3. How do you find items that are not in a list, such as customers who have not 

placed orders recently?
4. How do you join tables when the JOIN column for one table contains data 

that is not in the related column of the second table?
5. How do you join a column in one table to a related column in the same table?
6. What are inequality joins and when are they useful?
7. What is the SQL UNION command and when is it useful?
8. What is the purpose of the SQL CASE function?
9. What are the basic SQL data definition commands?
10. What are the basic SQL data manipulation commands?
11. How are UPDATE and DELETE commands similar to the SELECT 

statement?



290Chapter  5: Advanced Queries and Subqueries

Exercises

Sally’s Pet Store
Write the SQL statements that will answer questions 1 through 16 based on the 
tables in the Pet Store database. Test your queries in the database. Hint: Many are 
easier if you split the question into multiple queries.

1. Which suppliers did not deliver any items in September?
2. Which employees did not sell any items in June?
3. Which categories of merchandise were not sold during May?
4. Which breed of Cat has never been adopted through the store?
5. What was the percentage of sales value by merchandise category in March?
6. Which category of animal was most likely (percent) to be adopted in the first 

three months?
7. Which employee had the highest percent of the number of sales (not value) in 

January?
8. Which supplier has the highest average percentage of shipping cost to total 

order value?
9. List the total adoptions and percentage by adoption group in April.

SupplierID
Name
ContactName
Phone
Address
ZIPCode
CityID

Supplier

AnimalID
Name
Category
Breed
DateBorn
Gender
Registered
Color
Photo
ImageFile
Imageheight
ImageWidth
AdoptionID
SaleID
Donation

Animal

PONumber
OrderDate
ReceiveDate
SupplierID
EmployeeID
ShippingCost

MerchandiseOrder

AdoptionID
AdoptionSource
ContactName
ContactPhone

AdoptionGroup

CityID
ZIPCode
City
State
AreaCode
Population1990
Population1980
Country
Latitude
Longitude

City

PONumber
ItemID
Quantity
Cost

OrderItem

ItemID
Description
QuantityOnHand
ListPrice
Category

Merchandise

EmployeeID
LastName
FirstName
Phone
Address
ZIPCode
CityID
TaxPayerID
DateHired
DateReleased
ManagerID
EmployeeLevel
Title

Employee

SaleID
SaleDate
EmployeeID
CustomerID
SalesTax

Sale

SaleID
ItemID
Quantity
SalePrice

SaleItem

CustomerID
Phone
FirstName
LastName
Address
ZIPCode
CityID

Customer

Category
Registration

Category

Category
Breed

Breed



291Chapter  5: Advanced Queries and Subqueries

10. Which employee has been the top monthly seller the most number of times?
11. What is the amount of money customers spent on cat products after they 

adopted a cat?
12. List customers who purchased Cat merchandise in January and March?
13. List employees who ordered items from the same supplier in March and April 

(could be different products).

Make a backup copy before attempting the remaining Pet Store queries.
14. Write the SQL CREATE TABLE command to create a new Employee table 

with no data.
15. Write the SQL command to copy the data to the new Employee table for 

employees who did not sell anything in December.
16. Write the SQL command to delete the employees from the original Employee 

table who did not sell anything in December—except for Ms. Smith, the 
owner.

17. Write a query to increase the list price of Dog merchandise by 5 percent.



292Chapter  5: Advanced Queries and Subqueries

Rolling Thunder Bicycles
Write the SQL statements that will answer questions 17 through 32 based on the 
tables in the Rolling Thunder database. Build your queries in Access.

18. Which employee has been #1 in monthly sales value for the most number of 
months in 2010-2011?

19. Which paint colors were not used in 2012?
20. What percent of race bikes sold in 2012 used Shimano, Campy, and SRAM 

cranks? (Give the percent of the total for each manufacturer.) 
21. List customers who bought a full suspension mountain bike after they had 

purchased a regular mountain bike.
22. List all of the people who are managed by Roland Venetiaan.
23. In 2012, which employees who took an order for a bicycle also shipped that 

same bicycle? Hint: Connect the Employee table to ShipEmployee.
24. Compute the percentage of value of sales by model type for each year 2010 – 

2013.
25. Using a UNION query, list the employees who painted bicycles on March 

15, 2012 or framed them on that date (StartDate) (or both). Hint: Join the 
Employee table to Painter and then to FrameAssembler.

CustomerID
Phone
FirstName
LastName
Gender
Address
ZIPCode
CityID
BalanceDue

Customer

SerialNumber
CustomerID
ModelType
PaintID
FrameSize
OrderDate
StartDate
ShipDate
ShipEmployee
FrameAssembler
Painter
Construction
WaterBottleBrazeOn
CustomerName
LetterStyleID
StoreID
EmployeeID
TopTube
ChainStay
HeadTubeAngle
SeatTubeAngle
ListPrice
SalePrice
SalesTax
SaleState
ShipPrice
FramePrice
ComponentList

Bicycle

CustomerID
TransactionDate
EmployeeID
Amount
Description
Reference

CustomerTrans

StoreID
StoreName
Phone
ContactFirstName
ContactLastName
Address
ZIPCode
CityID

RetailStore

State
TaxRate

StateTaxRate

ModelType
Description
ComponentID

ModelType

PaintID
ColorName
ColorStyle
ColorList
DateIntroduced
DateDiscontinued

Paint

EmployeeID
TaxpayerID
LastName
FirstName
HomePhone
Address
ZIPCode
CityID
DateHired
DateReleased
CurrentManager
SalaryGrade
Salary
Title
WorkArea

Employee

WorkArea
Description

WorkArea

CityID
ZIPCode
City
State
AreaCode
Population2000
Population1990
Population1980
Country
Latitude
Longitude
SelectionCDF
FIPS
Income2004
Division
StateCode
MSACMSA
MASC
CMSA
<more>

City

SerialNumber
TubeID
Quantity

BicycleTubeUsae

ModelType
Msize
TopTube
ChainStay
TotalLength
GroundClearance
HeadTubeAngle
SeatTubeAngle

ModelType

LetterStyleID
Description

LetterStyle

PurchaseID
EmployeeID
ManufacturerID
TotalList
ShippingCost
Discount
OrderDate
ReceiveDate
AmountDue

PurchaseOrder

ManufacturerID
ManufacturerName
ContactName
Phone
Address
ZIPCode
CityID
BalanceDue

Manufacturer

ManufacturerID
TransactionDate
EmployeeID
Amount
Description
Reference

ManufacturerTrans

PurchaseID
ComponentID
PricePaid
Quantity
QuantityReceived

PurchaseItem

SerialNumber
ComponentID
SubstituteID
Location
Quantity
DateInstalled
EmployeeID

BikeParts

SerialNumber
TubeName
TubeID
Length

BikeTubes

ComponentGroupID
GroupName
BikeType
Year
EndYear
Weight

Groupo

ComponentID
ManufacturerID
ProductNumber
Road
Category
Length
Height
Width
Weight
Year
EndYear
Description
ListPrice
EstimatedCost
QuantityOnHand

Component

TubeID
Material
Description
Diameter
Thickness
Roundness
Weight
Stiffness
ListPrice
Construction
IsActive

TubeMaterial

GroupID
ComponentID

GroupComponent

ComponentName
AssemblyOrder
Description

ComponentName



293Chapter  5: Advanced Queries and Subqueries

26. In 2012, what percent of bicycle sales (by count) were made without the help 
of a retail store (StoreID=1 or 2).

27. Which manufacturers did not sell any items to Rolling Thunder Bicycles in 
2012?

28. For Road component groups in 2012 (Component.Year), what is the average 
percent of the total group weight contributed by the crank?

29. How has the percent share of sales value for Race bikes (to total) changed 
over time (by year)?

30. Use SQL to create a new SalesRanking table as shown.

Category SalesLow SalesHigh
Top 0.10 1.0
Acceptable 0.05 0.10
Weak 0.0 0.05

31. Write the query to insert the rows of data row into the table shown in the 
previous exercise.

32. Create a query to compute sales by employee by month and the employee’s 
percent of total monthly sales. Combine the table data from the table in the 
previous exercise to assign the appropriate category to each employee for 
each month.

33. Write a query to delete the last row (Weak) in the new SalesRanking table.
34. Write a query to delete the entire SalesRanking table.



294Chapter  5: Advanced Queries and Subqueries

Corner Med 
35. List the physicians and the percentage of patients/visits seen by each one for 

the month of May. Do not include non-physicians in the computations.
36. For the year, list the top 10 diagnoses and the percentage of times each was 

applied.
37. For the month of March, list the percentage of visits covered by each type of 

insurance company.
38. For each month, compute the percentage of the number of visits by patient 

gender.
39. List the patients who returned for at least one visit after being diagnosed with 

J069 (respiratory infection).
40. Which two-letter procedures have not been performed?
41. What is the average number of medications prescribed per visit for each 

physician?
42. Which patients who have been diagnosed with ICD10 code E784 have also 

been diagnosed (at any time) with code E039?
43. Which patients have been seen by all three physicians (at any time)?
44. Create a summarization of patients that show the percentage by gender and 

tobacco use.
45. Use SQL to create a table (VisitCategory) that can be used to categorize 

patients by the number of visits in a year:
Category MinVisits MaxVisits
Many 2 20
Seldom 1 2
Rare 0 1

PatientID
LastName
FirstName
DateOfBirth
Gender
Telephone
Address
City
State
ZIPCode
Race
TobaccoUse

Patient

SeqNo
LabelCode
ProdCode
Strength
Units
Rx_OTC
TradeName

DrugListings

VisitID
PatientID
VisitDate
InsuranceCompany
InsuranceGroupCode
InsuranceMemberCode
PatientAmountPaid
DateBillsubmitted
DateInsurancePaid
AmountInsurancePaid
Diastolic
Systolic

Visit VisitID
ICD10CM
ICD9Diagnosis
Comments

VisitDiagnoses

VisitProcedureID
VisitID
ICD10PCS
Comment
EmployeeID
AmountCharged
ICD9Procedure

VisitProcedures

VisitID
DrugSeqNo
DrugCode
Comments

VisitMedications

ICD10CM
Description

ICD10DiagnosisCodes

ICD10PCS
Description
BaseCost
PhysicianRole
TechnicianRole
PhysicianAssistant

ICD10ProcedureCodes

EmployeeID
LastName
FirstName
EmployeeCategory
DateHired
DateLeft
EmergencyPhone

Employee EmployeeID
VacationStart
VacationEnd

EmployeeVacation

EmployeeCategory

EmployeeCategory

1
*

1

*

*

*

1

1

1

1

*

*

*

*

*

1

*

1

Corner
Med

Corner
Med



295Chapter  5: Advanced Queries and Subqueries

46. Write the INSERT commands to add the rows in the table for the previous 
exercise.

47. Write a query using the table in the previous query to categorize the patients 
by number of visits for one year.

48. Write the SQL command to change the MaxVisits value in the “Many” row 
to 30.

49. Write the SQL command to remove the table.
50. The GEMICD9xICD10_CM crosswalk table matches the older ICD9 

diagnostic codes to the newer ICD10 codes. Create a query that ignores the 
NoDx entries. Create a second query to find the older ICD9 codes in the 
VisitDiagnoses table that do not have an official match in the new ICD10 
code. (Ignore the ICD10 values in the VisitDiagnoses table—which were 
created using this process.) Bonus: How would you find codes for the ICD9 
entries that are missing cross matches?

51. The GEMICD9xICD10_PCS crosswalk table matches procedure codes 
between the older ICD9 and newer ICD10 classifications. Assume that 
the VisitProcedures table has only the older ICD9 procedure code and 
blank values for the ICD10 codes. Write the query to use the crosswalk 
table to match the values and transfer the correct ICD10 entry into the 
VisitProcedures table. Note: If you run the query, make a backup copy of the 
table and database.

52. The GEMICD9xICD10_PCS crosswalk table maps older ICD9 procedure 
codes to the newer ICD10 codes. Are any of the ICD9 codes mapped to more 
than one ICD10 code? If so, in the process used in the previous exercise, 
what will happen? Which codes will be transferred?

Web Site References

http://www.sigmod.org/ Association	for	Computing	Machinery—
Special	Interest	Group:	Management	of	Data.

http://www.acm.org/dl ACM	digital	library	containing	thousands	of	
searchable	full-text	articles.	Check	library.

http://www.oracle.com/technetwork/indexes/
documentation/index.html

Oracle online documentation library, including 
SQL	Reference.	(Version	db102	will	change.)

http://msdn.microsoft.com/en-us/library/
ms130214.aspx 

Microsoft	SQL	Server	Books	Online	
reference.

http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/
index.jsp	

IBM	DB2	reference.

http://dev.mysql.com/doc/ MySQL	Reference.

Additional Reading
Celko, J., Joe Celko’s SQL Puzzles and Answers, 2e, San Mateo: Morgan 

Kaufmann, 2006. [Challenging SQL problems with solutions.]
Faroult, Stephane, The Art of SQL, O’Reilly, 2006. [Strategy and performance in 

building queries.]

http://www.acm.org/dl


296Chapter  5: Advanced Queries and Subqueries

Appendix: Introduction to Programming
Many books will help you learn to write computer programs. The purpose of this 
appendix is to review the highlights of programming and to point out some of the 
features that are important to programming within a DBMS. If you are new to pro-
gramming, you should consider reading several other books to explain the details 
and logic behind programming.

Variables and Data
One of the most important consequences of programming in a database environ-
ment is that there can be three categories of data: (1) data stored in a table, (2) 
data held in a control on a form or report, and (3) traditional data variables that are 
used to hold temporary results. Chapter 3 focuses on storing data within tables. 
Chapter 6 describes how to create forms and the role of data controls. Chapter 8 
provides more details of how the three types of variables interact when building 
applications. For now, you must learn details about basic programming variables.

Any procedure can create variables to hold data. A program variable is like a 
small box: it can hold values that will be used or transferred later. Variables have 
unique names. More importantly, variables can hold a certain data type. Common 
types of variables are displayed in Figure 5.1A. They can generally be classified 
into three categories: integers (1, 2, -10, …); reals (1.55, 3.14, … ); and strings 
("123 Main Street", "Jose Rojas", …).

Each type of variable takes up a defined amount of storage space. This space af-
fects the size of the data that the variable can hold. The exact size depends on the 
particular DBMS and the operating system. For example, a short integer typically 
takes 2 bytes of storage, which is 16 bits. Hence it can hold 216 values or numbers 
between –32,768 and 32,767. Real numbers can have fractional values. There are 
usually two sizes: single and double precision. If you do not need many variables, 
it is often wise to choose the larger variables (integers and double-precision re-
als). Although double-precision variables require more space and take longer to 
process, they provide room for expansion. If you choose too small of a variable, a 
user might crash your application or get invalid results. For example, it would be 
a mistake to use a 2-byte integer to count the number of customers—since a firm 
could generally anticipate having more than 65,000 customers. Along the same 

Type Bytes Range
Short
Integer
Long

Float
Double
Decimal

String

2
4
8

4
8
16

any

-32,768 to 32,767
+/- 2,147,483,647
+/- 9,223,372,036,854,775,807

+/- 1.5 10e45 (7 digits)
+/- 5.0 10e324 (15 digits)
+/- 1.0 10e28 (28 digits)

any

Figure 5.1A
Program variable types. Ranges are approximate but supported by most vendors. 
Note that decimal variables help prevent round-off errors



297Chapter  5: Advanced Queries and Subqueries

lines, you should use the Currency data type for monetary values. In addition to 
handling large numbers, it avoids round-off errors that are common to floating-
point numbers.

Variable Scope
The scope and lifetime of a variable are crucial elements of programming, particu-
larly in an event-driven environment. Variable scope refers to where the variable 
is accessible, that is, which procedures or code can access the data in that variable. 
The lifetime identifies when the variable is created and when it is destroyed. The 
two properties are related and are generally automatic. However, you can override 
the standard procedures by changing the way you declare the variable. In most 
systems, the scope and lifetime are based on where the variable is declared. 

All data variables should be explicitly declared: they should be identified be-
fore they are used. The Basic language uses a Dim statement to declare variables. 
Many other languages declare variables by specifying the data type first. Most 
commonly, the variable is created within the event procedure and is a local vari-
able. When the procedure starts, the local variable is created. Any code within that 
procedure can use the variable. Code in other procedures cannot see the variable. 
When the procedure ends, the local variable and its data are destroyed.

Figure 5.2A shows two buttons on a form. Each button responds to a Click 
event, so two procedures are defined. Each procedure can have a variable called 
i1, but these two variables are completely separate. In fact, the variables are not 
created until the button is clicked. Think of the procedures as two different rooms. 
When you are in one room, you can see the data for that room only. When you 
leave the room, the data is destroyed.

However, what if you do not want the data to be destroyed when the code ends, 
or you want to access the variable from other procedures? You have two choices: 
(1) Change the lifetime of the variable by declaring it static, or (2) Change the 
scope of the variable by declaring it in a different location. You should avoid de-
claring a static variable unless it is absolutely necessary (which is rare). If the vari-
able is static, it keeps its value from the previous time the procedure was called. In 
the example, each time the button is clicked, the value for i3 will remain from the 
prior click. You might use this trick if you need to count the number of times the 
button is clicked.

Module Code

Sub	Button1_Click()
Dim i1 As Integer
i1 = 3

End Sub

Sub	Button2_Click()
Dim i1 As Integer
i1 = 7

End Sub

Figure 5.2A
Variable scope and lifetime. Each event has its own procedure with independent 
variables that are created and destroyed each time a routine is executed.



298Chapter  5: Advanced Queries and Subqueries

A more useful technique is to change where the variable is defined. Figure 5.3A 
shows that event procedures are defined within a form or a module, which is a 
collection of related procedures. The variable i2 is defined for the entire form or 
module. The lifetime of the variable is established by the form, that is, the variable 
is created and destroyed as the form is opened and closed. The scope of the vari-
able is that all procedures in the form can see and change the value. On the other 
hand, procedures in other forms or modules do not know that this variable exists.

Procedures or functions also have a scope. Any procedure that you define on a 
form can be used by other procedures on that form. If you need to access a vari-
able or a procedure from many different forms or reports, you should define it on 
a separate module and then declare it as global (or public).

Be careful with global or public variables. A programmer who tries to revise 
your code might not know that the variable is used in other procedures and might 
accidentally destroy an important value. On forms the main purpose of a global 
variable is to transfer a value from one event to another one. For example, you 
might need to keep the original value of a text control—before it is changed by a 
user—and compare it to the new value. You need a global variable because two 
separate events examine the text control: (1) The user first enters the control, and 
(2) The user changes the data. It is sometimes difficult to create global or shared 
variables in certain systems. In these cases, you might need to store the global 
variables within a special database table.

Computations
One of the main purposes of variables is to perform calculations. Keep in mind 
that these computations apply to individual variables—one piece of data at a time. 
If you need to manipulate data in an entire table, it is usually best to use the SQL 
commands described in Chapter 5. Nonetheless, there are times when you need 
more complex calculations.

Form--Module Code

Sub	Button2_Click()
i2 = i2 + 7
End Sub

Form
Button1
Button2

Dim i2 As Integer

Sub	Button1_Click()
i2 = 20
End Sub

Figure 5.3A
Global variables. Variables that are defined in the form’s General section are 
accessible by any function on that form (or module).



299Chapter  5: Advanced Queries and Subqueries

Standard arithmetic operations (add, subtract, multiply, and divide) are shown 
in Figure 5.4A. These operators are common to most programming languages. 
Some nonstandard, but useful operators include exponentiation (raise to a power, 
e.g., 2^3 = 2*2*2 = 8), and integer divide (e.g., 9 \ 2 = 4), which always returns 
an integer value. The mod function returns the modulus or remainder of an integer 
division (e.g., 15 mod 4 = 3, since 15 - 12 = 3). These last two functions are use-
ful when you need to know how many of some objects will fit into a fixed space. 
For example, if there are 50 possible lines on a page and you need to print a re-
port with 185 lines, then 185 \ 50 = 3 pages, and 185 Mod 50 leaves 35 lines on a 
fourth page.

Most languages support string variables, which are used to hold basic text data, 
such as names, addresses, or short messages. A string is a collection (or array) 
of characters. Sometimes you will need to perform computations on string vari-
ables. How can you perform computations on text data? The most common tech-
nique is to concatenate (or add) two strings together. For example, if FirstName 
is  “George” and LastName is “Jones”, then FirstName & LastName is “George-
Jones”. Notice that if you want a space to appear between the names, you have to 
add one: FirstName & " " & LastName.

Figure 5.5A lists some of the common string functions. You can learn more 
about the functions and their syntax from the Help system. Commonly used func-
tions include the Left, Right, and Mid, which examine portions of the string. For 

Concatenation (& or +)
Left,	Right,	Mid,	or	SubStr
Trim, LTrim, RTrim
LCase, UCase
InStr	or	IndexOf
“Frank”	+	“Rose”	→	“Frank	Rose”
Left(“Jackson”,	5)	→		“Jacks”
Trim(“			Maria		“)	→		“Maria”
Len(“Ramanujan”)	→		9
“8764	Main”.IndexOf(“	“)	→		5

Figure 5.5A
Common string functions to add strings, extract portions, examine characters, convert 
case, compare two strings, and format numerical data into a string variable.

Operation Common Syntax
Arithmetic
Exponentiation
Integer Divide
Modulus

+ - * /
^ or Power
\
mod

Figure 5.4A
Common arithmetic operators. Add (+), subtract (-), multiply (*), and divide (/). 
Exponentiation and integer arithmetic are often used for special tasks. For example, 
integer arithmetic is useful for dividing objects into groups.



300Chapter  5: Advanced Queries and Subqueries

example, you might want to see only the first five characters on the left side of a 
string.

Standard Internal Functions
As you may recall from courses in mathematics, several common functions are 
used in a variety of situations. As shown in Figure 5.6A, these functions include 
the standard trigonometric and logarithmic functions, which can be useful in map-
ping and procedures involving measurements. You also will need a function to 
compute the square root and absolute value of numbers. The Int (integer) function 
is useful for dropping the fractional portion of a number. Most languages also pro-
vide a random number generator, which will randomly create numbers between 0 
and 1. If you need another range of numbers, you can get them with a simple con-
version. For example, to generate numbers between 40 and 90, use the following 
function: y = 40 + (90 - 40)*Rnd. 

In a database environment, you will often need to evaluate and modify dates. 
It is also useful to have functions that provide the current date (Date) and time 
(Now). Two functions that are useful in business are the DateAdd and DateDiff 
functions. As illustrated in Figure 5.7A, the DateAdd function adds days to a giv-
en date to find some date in the future. The DateDiff function computes the dif-
ference between two dates. Usually, you will want to compute the number of days 
between various dates. However, the functions can often compute the number of 
months, weeks, years and so on. 

Input and Output
Handling input and output were crucial topics in traditional programming. These 
topics are still important, but the DBMS now performs most data-handling rou-

Date, Now, Time
DateAdd,	DateDiff

Current date and time
Date arithmetic: 
DateDue = DateAdd(“d”, 30, Date())

Figure 5.7A
Date and time functions. Business problems often require computing the number of 
days between two dates or adding days to a date to determine when payments are 
due.

Exp, Log
Atn, Cos, Sin, Tan
Sqr or Sqrt
Abs
Sgn
Int
Rnd

x = loge(ex)
Trigonometric	functions
Square root
Absolute	value:	Abs(-35)	→	35
Signum:	Sgn(-35)	→	-1
Integer:	Int(2.718)	→	2
Random number

Figure 5.6A
Standard mathematical functions. Even in business applications, you often need basic 
mathematical functions.



301Chapter  5: Advanced Queries and Subqueries

tines and the operating system or Web browser handles most of the user interface. 
Common forms and reports (Chapters 6 and 7) are used for most input and output 
tasks.

Remember that an important feature of a Windows interface is that users con-
trol the flow of data entry; that is, the designer provides a form, and users work 
at their own pace without interruption. Occasionally, you might choose to inter-
rupt the user—either to provide information or to get a specific piece of data. One 
common reason is to display error messages. Two basic functions serve this pur-
pose: MsgBox and InputBox. As shown in Figure 5.8A, a message box can con-
tain buttons. The buttons are often used to indicate how the user wants to respond 
to some problem or error. 

An InputBox is a special form that can be used to enter very small amounts of 
text or a single number. Neither the user nor the developer has much control over 
the form. In most cases you would be better off creating your own blank form. 
Then you can have more than one text box, and you can specify and control the 
buttons. The InputBox is usually for temporary use when development time is 
extremely limited.

Conditions
The ability to test and respond to conditions is one of the most common reasons 
for writing your own procedures. The basic conditional statement (if …then … 
else) is relatively easy to understand. The structure is shown in Figure 5.9A. A 

If	(Condition1)	Then
			Statements	for	true
Else
			Statements	for	false
			If	(Condition2)	Then
						Statements	for	true
			End	If
End	If

Figure 5.9A
Conditions. Basic conditions are straightforward. Indenting conditions  highlights the 
relationships.

Figure 5.8A
Sample message box. The message box interrupts the user and displays a few limited 
choices. It often handles errors or problems.



302Chapter  5: Advanced Queries and Subqueries

condition is evaluated to be true or false. If it is true, then one set of statements is 
executed; otherwise, the second set is performed.

Conditions can be complex, particularly when the condition contains several 
AND, and OR connectors. Some developers use a NOT statement to reverse the 
value of a condition. Be careful when writing conditions. Your goals are to make 
sure that the condition evaluates to the correct value and to make sure that other 
developers can understand the code.

You should always include parentheses to specify the order of evaluation and, 
for complex conditions, create sample data and test the conditions. Also, indent 
your code. Indenting is particularly important for nested conditions, in which the 
statements for one condition contain another conditional statement.

The Select Case statement is a special type of conditional statement. Many pro-
cedures will need to evaluate a set of related conditions. As a simple example, 
consider what happens if you use a message box with three buttons (Yes, No, 
and Cancel). You will have to test the user’s choice for each option. Figure 5.10A 
shows how the code might look when you use nested conditions.

Response = 1, 2, 3, 4, 5
Select Case response
   Case 1
      ‘ Statements for 1
   Case 2
      ‘ Statements for 2
   Case 3
      ‘ More Case statements
   Default
End Case

Figure 5.11A
The Select statement. The select statement tests the response variable against several 
conditions. If the response matches a case in the list, the corresponding code is 
executed.

response = 1, 2, 3, 4, 5
If (response = 1) Then
   ‘ Statements for 1
Else
   If (response = 2) Then
      ‘ Statements for 2
   Else
      If (response = 3) Then
         ‘ More If statements
      End If
   End If
End If

Figure 5.10A
Nested conditions to test for a user response. The code becomes harder to read as 
more conditions are added.



303Chapter  5: Advanced Queries and Subqueries

Figure 5.11A shows the same problem written with the Select Case statement. 
Note that this code is much easier to read. Now think about what will happen if 
you have 10 choices. The If-Then code gets much worse, but the Select Case code 
just adds new lines to the bottom of the list.

Loops
Iteration or loops are another common feature in procedures. Although you 
should use SQL statements (UPDATE, INSERT, etc.) as much as possible, 
sometimes you will need to loop through a table or query to examine each row 
individually. 

 Some of the basic loop formats are illustrated in Figure 5.12A. The For/Next 
loop is generally used only if you need a fixed number of iterations. The Do loop 
is more common. An important feature of loops is the ability to test the condition 
at the top or the bottom of the loop. Consider the example in which the condition 
says to execute the statements if (x <= 10). What happens when the starting value 
of x is 15? If you test the condition at the top of the loop, then the statements in 
the loop will never be executed. On the other hand, if you test the condition at the 
bottom, then the statements in the loop will be executed exactly one time—before 
the condition is tested.

Just as with conditions, it is good programming practice to indent the state-
ments of the loop. Indents help others to read your code and to understand the 
logic. If there are no problems within a loop, your eye can easily find the end of 
the loop.

Be careful with loops: if you make a mistake, the computer may execute the 
statements of your loop forever. (On most personal computers, Ctrl+Break will 
usually stop a runaway loop.) A common mistake occurs when you forget to 
change the conditional variable (x in the examples). In tracking through a data 
query, you might forget to get the next row of data, in which case your code will 
perform the same operations forever on one row of data. A good programming 
practice is to always write loops in four steps: (1) Write the initial condition, (2) 
Write the ending statement, (3) Write a statement to update the conditional vari-
able, and (4) Write the interior code. The first three statements give you the struc-
ture. By writing and testing them first, you know that you will be using the correct 
data. 

Do Until (x > 10)
   ‘ Statements
   x = x + 1
Loop

Do While (x <= 10)
   ‘ Statements
   x = x + 1
Loop

Do
   ‘ Statements
   x = x + 1
Loop Until (x > 10)

For x = 1 to 10
   ‘ Statements
Next x

Figure 5.12A
Iteration. All versions of loops follow a common format: initialize a counter value, 
perform statements, increment the counter, and test the exit condition. You can test 
the condition at the start or end of the loop.



304Chapter  5: Advanced Queries and Subqueries

Subroutines
An important concept in programming is the ability to break the program into 
smaller pieces as subroutines or functions. A subroutine is a portion of code that 
can be called from other routines. When the subroutine is finished, control re-
turns to the program code that called it. The goal of using subroutines is to break 
the program into smaller pieces that are relatively easy to understand, test, and 
modify.

A subroutine is essentially a self-contained program that can be used by many 
other parts of the program. For example, you might create a subroutine that dis-
plays a status message on the screen. As illustrated in Figure 5.13A, you would 
write the basic routine once. Then anytime you need to display a status message, 
your program calls this routine. By passing the message to the subroutine, the ac-
tual message can change each time. The advantage of using the subroutine is that 
you have to write it only once. In addition, your status messages can be standard-
ized because the subroutine specifies the location, style, and color. To change the 
format, you simply modify the few lines of code in the one subroutine. Without 
the subroutine, you would have to find and modify code in every location that dis-
played a status message.

A data variable that is passed to a function or a subroutine is known as a pa-
rameter. There are two basic ways to pass a parameter: by reference and by 
value. The default method used by Microsoft Access is pass-by-reference. In this 
case the variable in the subroutine is essentially the same variable as in the origi-
nal program. Any changes made to the data in the subroutine will automatically be 
returned to the calling program. For example, consider the two examples in Figure 
5.14A. Changes to the variable j2 in the subroutine will automatically be passed 
back to the calling program. However, when only the value is passed, a copy is 
made in the subroutine. Changes made to the data in the subroutine will not be 
returned to the calling program. Unless you are absolutely certain that you want to 
alter the original value in the calling program, you should always pass variables 
by value. Subroutines that use pass-by-reference can cause errors that are difficult 
to find in programs. Some other programmer might not realize that your subrou-
tine changed the value of a parameter. 

Main program
…
StatusMessage “Trying to connect.”
…
StatusMessage “Verifying	access.”
…
End main program

Sub StatusMessage (Msg As String)
‘ Display Msg, location, color

End Sub

Figure 5.13A
Subroutine. The StatusMessge subroutine can be called from any location. When the 
subroutine is finished, it returns to the calling program.



305Chapter  5: Advanced Queries and Subqueries

Most languages also enable you to create new functions. There is a slight tech-
nical difference between functions and subroutines. Although subroutines and 
functions can receive or return data through pass-by-reference parameters, a func-
tion can return a result or a single value directly to the calling program. For in-
stance, your main program might have a statement such as v1 = Min(x, y). The 
function would choose the smaller of the two values and return it to the main 
program, where it is assigned to the variable v1.

Summary
The only way to learn how to program is to write your own programs. Reading 
books, syntax documentation, and studying code written by others will help, but 
the only way to become a programmer is through experience.

As you write programs, remember that you (or someone else) might have to 
modify your code later. Choose descriptive variable names. Document your state-
ments with comments that explain tricky sections and outline the purpose of each 
section of code. Write in small sections and subroutines. Test each section, and 
keep the test data and results in the documentation. Keep revision notes so that 
you know when each section was changed and why you changed it.

Main:
j	=	3
DoSum(j)
			‘	j	is	now	equal	to	8
…

Sub	DoSum(By	Ref	j2	As	
Integer)
			j2	=	8
End Sub

By	Reference
Changes to data in the 
subroutine are passed back to 
the calling program.

Main:
j	=	3
DoSum(j)
			‘j	is	still	equal	to	3
…

Sub	DoSum(By	Val	j2	As	
Integer)
   J2 = 8
End Sub

By Value
Creates	a	copy	of	the	variable,	
so changes are not returned.

Figure 5.14A
Two methods to pass data to a subroutine. Pass parameters by value as much as 
possible to avoid unwanted changes to data.



3Part

Applications

Building business applications in a database environment begins 
with creating forms and reports. Most database management sys-
tems have tools to help you construct the basic forms and reports. 
However, Chapter 6 shows you that you have to design and modi-
fy forms and reports to make them useful and user-friendly. 

Chapter 7 focuses on the concepts of database integrity and 
transactions. It explores ways of maintaining data quality and 
preventing common problems that arise with multiple users in a 
large database.

Chapter 8 shows the additional steps needed to turn forms and 
reports into a cohesive application. Applications are integrated 
collections of consistent forms and reports to accomplish specific 
tasks. They include startup forms, menus, and help systems. 

Chapter 9 shows the conflicts between transaction-processing 
databases and systems designed for analysis. It introduces the is-
sues of transferring data to data warehouses and explores some 
of the modern techniques for interactive data analysis in large 
databases.

Chapter 6: Forms and Reports

Chapter 7: Database Integrity and Transactions

Chapter 8: Applications

Chapter 9: Data Warehouses and Data Mining



307

What You Will Learn in This Chapter
•	 How do users interact with the database?
•	 What	is	the	difference	between	a	good	form	and	a	bad	form?
•	 What	common	structures	are	used	in	forms?
•	 What	are	the	main	steps	used	to	create	forms?
•	 Can	form	usability	be	improved?
•	 What	are	the	basic	roles	of	reports?

Chapter Outline

Forms and Reports
6Chapter

Introduction, 308
Two-Minute Chapter, 310
Effective	Design	of	Reports	and	Forms,	
310

Human Factors Design, 311
Standard Form Controls, 313
User Interface—Events, 316
User Interface—Accessibility Issues, 
316
User Interface—International 
Environment, 317
Style Sheets and Templates, 320

Form Layout, 320
Tabular Forms, 321
Single-Row or Columnar-Forms, 322
Subform Forms, 322
Startup Forms, 324

Creating Forms, 325
Updateable Queries, 326
Linked Forms, 327
Properties and Controls, 327
Controls on Forms, 328
Multiple Forms, 332

Direct	Manipulation	of	Graphical	Objects,	
333

Sally’s Pet Store Example, 334
The Internet, 335
Complications and Limitations of a 
Graphical Approach, 335

Database Design Revisited, 336
Reports, 337

Report Design, 338
Terminology, 339
Basic Report Types, 340
Charts, 346

Summary, 346
Key Terms, 348
Review Questions, 348
Exercises, 349
Web	Site	References,	352
Additional Reading, 352



308Chapter  6: Forms and Reports

A Developer’s View

Introduction
How do users interact with the database? The true power of databases lies in 
the ability to create business applications. Applications provide a way for users 
to do their jobs more efficiently—storing and retrieving data through forms and 
reports. You never want to give users direct access to tables. Imagine the chaos 
that would result if you ask a user to enter an OrderID, ItemID, price and quantity 
directly into a SaleItem table. Stop for a second and think about the applications 
you already use—particularly Web-based that run on browsers, cell phones, and 
tablets. Almost all of those applications rely on a database to store data. But users 
are never directly aware of that relationship. They simply focus on the applica-
tion. Business data is often more complex than simple consumer applications, so 
the underlying database is more complex, but the principle of emphasizing the 
user interaction and hiding the actual database is still important.

Forms and reports are an important part of the database application. Designers 
use them to create an integrated application, making it easier for users to perform 
their tasks. Decision makers and clerical workers use forms and reports on a daily 
basis. Years ago forms were used primarily as input devices, and reports were 
used to display results. Today, forms and reports can be distributed electronically, 
display data interactively, and can display a variety of outputs. The Internet, and 
specifically the World Wide Web, is becoming an increasingly popular means of 

 Ariel: Why the concerned look?

 Miranda: Well, I finally figured out how to 
answer those hard questions. But 
I’m a little worried. Lots of times I 
got answers, but they were wrong. I 
have to be really careful with SQL.

 Ariel: Oh, I’m sure you’ll do fine. You’re 
always careful about testing your 
work.

 Miranda: I suppose it’ll get easier.

 Ariel: That’s the spirit. Now, are you 
finally ready to start building the 
application?

 Miranda: I sure am. I looked at some of 
the information about forms and 
reports. This is going to be easy.

 Ariel: Really?

 Miranda: Sure. And you know the best part? 
All the forms and reports are based 
on SQL. To get the initial forms 
and reports, all I have to do is build 
queries to get the data I want. There 
are even wizards that will help 
create the basic forms and reports.

 Ariel: I always knew that someday people 
would call on spirits again.

Getting Started
Users should never see the underlying tables. Instead, data is entered 
through forms that match the business processes and managers explore 
data through reports and interactive forms. It is a challenge to build 
forms and reports that match users’ needs, are easy to use, and are nice 
to look at. This is the stage where you get to start building the applica-
tion.



309Chapter  6: Forms and Reports

distributing data as electronic forms and reports. The same design principles used 
for database forms also apply to the Web. 

As summarized in Figure 6.1, forms are used to collect data, display results of 
queries, display analysis, and perform computations. They are also used as menus, 
or connectors, to other forms and reports. With the proper devices, forms can used 
for drag-and-drop or touch-based interactions. With this type of form, users inter-
act visually with a model of the firm.

Reports are often printed on paper, but they are increasingly being created 
as Web pages for display on the screen. Reports are used to format the data and 
present results from complex analysis. Reports can be detailed and cover several 
pages, such as a detailed inventory report. Alternatively, reports can present sum-
mary data, incorporating graphs and totals. A common business example would 
be a weekly sales report comparing sales by division for the past few weeks. The 
report would generally be presented graphically and would occupy one page.

At this stage in the project, you need to create all of the forms and reports need-
ed by the users. Fortunately, most systems have tools or wizards to help you create 
rough drafts of forms and reports. You will still spend considerable time improv-
ing the layout, formatting data, and establishing a consistent design scheme. But, 
it is relatively easy to come back later and modify the forms and reports. In many 
cases, you will want to take an interactive or prototyping approach where you 
obtain feedback from the user several times and improve the layout and design at 
each iteration.

This chapter looks at some basic issues in designing forms and reports in terms 
of human factor elements. It then discusses the most common types or layouts of 
forms used in business. Common report layouts are covered. The most common 
form layouts are: (1) Single-row showing one row on a page with detailed layout 
control, (1) Tabular showing multiple rows at a time in simple columns, (3) Main/
subform that combines the first two types for parent-child relationships, and (4) 
menu forms with buttons and controls to support navigation and connect forms.

The chapter also looks at the basic elements of reports. Most report writers con-
tain an innermost detail section to display rows of data, and then use headers and 
footers to display column headings and subtotals.

The details of creating forms and reports for a specific DBMS are covered in 
the associated workbooks, because these tools can be quite different across the 
various systems. Dealing with local desktop applications, mobile apps, and brows-
er-based Web apps, quickly leads to even greater differences across the tools. The 

Collect data
Display query results
Display analyses and computations
Startup	for	other	forms	and	reports
Direct	manipulation	of	objects
 Graphics
 Drag-and-drop

Figure 6.1
Basic uses of database forms. It is important to understand the use of a form, since 
forms designed for data collection will be different from those designed to analyze 
data.



310Chapter  6: Forms and Reports

chapter in this book focuses on the overall concepts which provide a powerful 
structure for understanding the overall goals. The workbooks show how to build 
actual forms and reports using specific tools.

Two-Minute Chapter
By itself, a database is a useful way to store data, but business users really need 
applications. Users should never deal directly with tables and queries. Instead, 
you create forms that are used to enter data in a layout that makes it easy for users 
to understand. Reports are used to display standard information, including subto-
tals and charts.  

Think about how the process started with design questions. User forms and 
reports were collected to identify the data needed. These were subdivided into 
separate tables that can efficiently store and retrieve data. But split data is difficult 
for users to work with, so now you need to create electronic versions of the forms 
and reports that put everything back together. Users will enter data into the forms 
and it will be stored in the appropriate underlying tables.

Four main layouts are commonly used for forms: tabular, single row, main/sub-
forms, and menu forms. Report writers typically define sections including page 
headers/footers, and grouping sections: header, detail, footer. Controls, such as 
text boxes, checkboxes, and drop-down lists, are placed on forms and reports to 
display or collect data for tables. Forms and controls use properties to set visual 
attributes. They also support events that can activate custom programming code. 
For instance, when data is entered into a text box, a program might check the data 
for proper format or compare it to other values. The overriding goal of forms and 
reports is to make it easier for users to perform their tasks.

Effective Design of Reports and Forms
What is the difference between a good form and a bad form? Designing forms 
and reports has much in common with creating art. You start with a blank page 
and choose layout, colors, and design elements. In fact, you might want to take a 
graphics design class or consult a graphics designer to help with the artistic side. 
However, you have the additional burden of making the forms and reports easy 
to use. You also have to ensure that they convey correct and useful information. 
The most important concept to remember when designing forms and reports is to 
understand that they are the primary contact with the users. Each form and report 
must be tailored to specific situations and business uses. For example, some forms 
will be used for heads-down data entry—where touch typists concentrate on en-
tering data without looking at the screen. Other forms present exploratory analy-
ses, and the decision maker will want to examine various scenarios. The features, 
layout, and capabilities of these two types of forms are radically different. If you 
choose the wrong design for the user, the form (or report) will be virtually useless. 
Keep in mind that these forms and reports will be used every day. Good design 
and attractive forms are critical.

The key to effective design is to determine the needs of the user. The catch is 
that users often do not know what they need (or want). In particular, they may not 
be aware of the capabilities and limitations of a modern DBMS. As a designer, 
you talk with the users to learn what they want to accomplish. Then you use your 
experience to provide features that make the form more useful. Just be careful to 
find the fine line between helping the user and trying to sell users an application 
they do not need.



311Chapter  6: Forms and Reports

Researchers in human factors have developed several guidelines to help you 
design forms. To begin, all forms and reports within an application (or even within 
an organization) should be as consistent as possible. Keystrokes, commands, and 
icons should be used for the same purposes throughout the application. Color, lay-
out, and structure should be coordinated so users can understand the data and con-
text on any form or report. Basing applications on a set of common tasks reduces 
the time it takes for users to learn new applications. The increasing importance of 
Web-based applications simplifies design to some extent, because you now have a 
limited set of tools that are understood by almost all users. Research into human 
factors design has also led to several hints and guidelines that designers should 
follow when building forms and reports.

Human Factors Design
Figure 6.2 summarizes some human factors design elements that system design-
ers should incorporate in their applications. With current operating systems, the 
primary factor is that the users—not the programmer and not the application—
should always have control. For example, do not expect (or force) users to enter 
data in a particular sequence. Instead, set up the base forms and let users choose 

Human Factors Examples
User Control Match user tasks

Respond to user control and events
User customization

Consistency Layout, design, and colors
Actions

Clarity Organization
Purpose
Terminology

Aesthetics Art to enhance
Graphics
Sound

Feedback Methods
 Visual
 Text
 Audio
Uses
	 Acceptance	of	input
 Changes to data
	 Completion	of	tasks
 Events / Activation

Forgiveness Anticipation	and	correction	of	errors
Confirmation	on	delete	and	updates
Backup and recovery

Figure 6.2
Basic human factors design elements. All designs should be evaluated in terms of 
these basic features.



312Chapter  6: Forms and Reports

the data entry order that is easiest for them. In this approach, the user’s choices 
trigger various events. Your application responds to these events or triggers by 
performing calculations, retrieving or storing data, and offering new choices.

Also, whenever possible, provide options for user customization. Many users 
want to change display features such as color, typeface, or size. Similarly, users 
have their own preferences in terms of sorting results and the data to be included. 
Today, most development tools can automatically pick up the color scheme de-
fined on the user’s computer. The key is to use those color choices and not over-
ride them. 

Both the layout (design and color) and the required actions should be consistent 
across an application. In terms of user actions, be careful to ensure consistency in 
basic features, such as whether the user must press the Enter key at the end of an 
input, which function key invokes the Help system, how the tab and arrow keys 
are used, and the role of each icon. These actions should be consistent across the 
entire application. This concept seems obvious, but it can be challenging to imple-
ment—particularly when many designers and programmers are creating the appli-
cation. Two practices help ensure consistency: (1) At the start establish a design 
standard and basic templates for all designers to use, and (2) toward the end of the 
application development always go back and check for consistency.

Always strive for clarity. In many cases clarity means keeping the applica-
tion simple and well organized. If the application has multiple forms and reports, 
organize them according to user tasks. It helps to have a clear purpose for an ap-
plication and to make sure the design enhances that purpose. Use precise termi-
nology, avoid jargon, and stick with terms that are used within the organization. 
If a company refers to its employees as “Associates,” use that term, instead of 
“Employees.”

Aesthetics also play an important role in the user interface. The goal is to use 
color and design (and sometimes sound) to enhance the forms and reports. Avoid 
the beginner’s mistake of using different colors for every form or placing 10 dif-
ferent fonts on a page. Although design and art are highly subjective, bad designs 
are immediately obvious to others. If you have minimal experience in design aes-
thetics, consider taking a course or two in art or design. If nothing else, study 
work done by others to gain ideas, to train your artistic sensibility, and to stay 
abreast of current trends. Remember that graphics and art are important, and they 
provide an attractive and familiar environment for users.

Feedback is crucial to most human-computer interactions. People want to 
know that when they press a key, choose an option, or select an icon the computer 
recognized their action and is responding. Typical uses of feedback include ac-
cepting input, acknowledging changes of data, highlighting completion of a task, 
or signifying the start or completion of some event. Several options can be used to 
provide feedback. Visually, the cursor can be changed, text can be highlighted, a 
button can be “pushed in,” or a box may change color. More direct forms of feed-
back, such as displaying messages on the screen, can be used in more complicated 
cases. Some systems use audio feedback, playing a musical theme or sound when 
the user selects a task or when the computer finishes an operation. If you decide to 
use audio feedback, be sure that you give users a choice—some people do not like 
“noisy” computers. On the other hand, do not be hasty to discard the use of audio 
feedback—it is particularly effective for people with low vision. Similarly, audio 
responses are useful when users need to focus their vision on an external task and 
cannot look at the computer screen. 



313Chapter  6: Forms and Reports

Humans occasionally make mistakes or change their minds. As a designer, you 
need to understand these possibilities and provide for them within your applica-
tion. In particular, your application should anticipate and provide for correction of 
errors. You should confirm deletions and major updates—giving users a chance 
to verify the changes, or even undo them. Finally, your overall application should 
include mechanisms for backup and recovery of data—both in case of natural di-
sasters and in case of accidental deletions or loss of data.

Standard Form Controls
Most systems use an object-oriented approach to building forms. The standard 
form is drawn in a window or Web page that controls the size and provides scroll 
bars to display sections of the form that do not fit on the page. Some systems al-
low you to control these page features, but you should almost always leave them 
alone, so they continue to work the way the users expect. Today, most form-build-
er tools have adopted a relatively standard approach. Although the tools and op-
tions are different, the basic concepts are the same.

Figure 6.3 shows the most common form controls that exist. Labels are fixed 
text that is displayed on the form. Some systems attach the label to the data con-
trol, but you can generally set its font properties and move it around on the page. 
A text box displays data from a table cell. Generally, the displayed value can be 
edited or new data can be entered. The text box is a data-bound control, which 
means that you specify the table and column in the database. The form processor 
automatically retrieves the data from a row and displays the value in the text box. 
Any changes or new data entered is transferred back to the specified database col-
umn. You can set format properties to control the way the data is displayed. You 
can also specify an input mask to limit the type of data that can be entered by 
the user. For instance, you could specify that only numbers can be entered, or you 
can automatically format data to a fixed layout. Most systems have sample input 
masks to handle phone numbers and ZIP codes. However, be careful with input 
masks. Restricting the user to entering data a certain way might cause problems. 

Last Name

City London

Individual Corporate

Animal Interests
Bird
Cat
Dog
Reptile

x
x

Label Text box

Drop down list
ComboBoxOption or

Radio button

Check box

Figure 6.3
Common form controls. All DBMSs have these basic controls. Labels and text boxes 
are used the most. Round option buttons are used for mutually exclusive items.



314Chapter  6: Forms and Reports

Postal codes present a classic example. If your data is going to contain interna-
tional addresses, you cannot use an input mask. Postal codes outside of America 
include letters and hyphens as well as digits. Similar problems arise with phone 
numbers. When you have to include country codes and other extensions, the stan-
dard American formatting will not work.

Figure 6.4 shows examples of a simple form to edit Animal data. A basic form 
has a title and some method to select the data record to be displayed. The data-
bound controls then display the data for the specified record and authorized users 
can edit the data on the form and update the changes to the database. Most forms 
also have scroll bars when the form is too large to display on one screen window. 
There is also a mechanism to close the edit form or use a menu to switch to a dif-
ferent view 

Commonly used controls include option buttons and check boxes. Option but-
tons are sometimes called radio buttons because on many systems they are drawn 
as filled circles that look like the knobs on old radios. Check boxes are almost 
always displayed as square boxes using some type of check mark to indicate se-
lection. You need to be careful when choosing between option buttons or check 
boxes. Most systems are flexible and allow you to use either one for any type of 
problem. However, the design convention is that option buttons should be used 
for mutually exclusive events. Users know when they see the round buttons that 
they can select only one of the items. They also know that they can select multiple 
items if the square check boxes are used. Follow this convention to avoid confus-
ing users. Option buttons and check boxes are usually data bound controls. Usu-
ally, they are bound to columns with yes/no or bit data types. On some systems, 
they are bound to integer data, where a zero represents the unchecked state.

Figure 6.4
Form structure. A basic form has a title and some method of selecting new records. 
The data-bound controls retrieve data from the table and enable users to change and 
update the database.



315Chapter  6: Forms and Reports

The drop down list is sometimes called a combo box because it is a combina-
tion of a text box and a list box. It is one of the more complicated form controls, 
but it is extremely useful in relational databases. It retrieves lists of items from a 
table or query. When the user picks an item from the list, the chosen value (usually 
an ID) is entered into the main form field. This approach can be useful for lookup 
lists. For instance, users can pick a city from a preset list and store the CityID val-
ue as a link. In addition to saving user time, lookup lists ensure that data is always 
entered consistently—without abbreviations and typographical errors. 

Drop down lists are also commonly used on referential links across tables. Fig-
ure 6.5 illustrates the process for a typical sales form. Recall that the Sales table 
contains the CustomerID column, and has a foreign key relationship to the Cus-
tomer table. You cannot expect the sales clerks or customers to memorize ID val-
ues. So, you add a drop down list that displays a list of customers retrieved from 
the customer table. When the clerk chooses a customer, the matching ID value is 
placed into the underlying Sales table. To define the drop down list, you have to 
specify the table or query that will provide the list of data. You have to specify a 
display column and a key (ID) column. You often create a query to generate the 
display column, such as appending first and last names. You also have to data bind 
the drop down list to the CustomerID column in the target Sales table. This step 
ensures that the chosen value is stored in the proper column. 

Because relational databases tend to have many foreign keys, you will find 
many opportunities to use drop down lists. However, in a Web environment with 

Figure 6.5
Drop down list for foreign key link. The values displayed in the list come from the 
Customer table. When the user selects one customer, the matching ID value is stored 
in the Sales table that underlies the Sales form.

CID Last First Phone

113 Brown Sue 2223

115 Jones Mary 0394

116 Sanchez David 3958

Sales Form

Customer Table

SaleID SaleDate CID
298 6/1/… 115

Sales Table
Selected value

Sale ID

Sale Date

Customer

298

6/1/…

Jones, Mary

113 Brown, Sue
115 Jones, Mary
116 Sanchez, David

Query: display list



316Chapter  6: Forms and Reports

relatively slow network links, drop down lists can cause problems. It could take 
a long time to transfer thousands of rows of data to display in the list. Even with 
a fast network, a drop down list with thousands of entries can be difficult to use. 
Users may find it difficult to scroll through thousands of entries in the list. You 
might need to implement some type of pop-up box to fill the list. Users can enter 
a simple search condition—such as the first letter of the name—to restrict the dis-
play list to a smaller set of entries that is faster to load and easier to scroll through.

Most systems have several other controls. For example, you can add command 
buttons and write code to open other forms or reports or perform some custom 
action. You can add background images, icons, or draw lines, rectangles, and cir-
cles. These items are generally decorations placed on the form and not bound to 
the database. Most systems have a control that stores and displays images or other 
binary objects in a data table. For example, you could store a photograph of each 
employee or product directly in the database.

User Interface—Events
Most systems treat forms using an event model. Each form (and control) can gen-
erate different events. You can write code to perform a custom action when some 
event is triggered. For example, opening and closing a form are basic events for 
every form. You can control how the form operates by creating actions that are 
taken when each event occurs. Many of the events involve the individual controls. 
One of the most common events to control is the click event when a button is 
clicked or submitted.

Although a form can have multiple controls (e.g., text boxes) on it, only one 
control at a time has the focus. The control that has the focus will receive key-
strokes entered by the user. This control is often highlighted with an outline or a 
different color. The same concept applies when an application displays multiple 
forms on a screen. Only one form has the focus at a time. Within a form, users can 
usually use the Tab key to move to the next control in a sequence, which is known 
as the tab order. You must be sure to check the tab order on all forms so that it 
visually matches the layout of the form. In some cases, you might even want to 
handle the tab or exit event. When a user leaves a control, your code can perform 
additional calculations or assign default values.

By handling the events with custom code, you can make the form respond to 
user requests and to handle common tasks automatically. With dozens of controls 
and dozens of possible events per control, the challenge is to choose exactly which 
event is needed to perform a specific task.

User Interface—Accessibility Issues
One of the greatest strengths of the Windows and Web interfaces is its graphical 
orientation—which makes it easy for people to perform complex operations with 
a few moves of the mouse or selections on the screen. One of the drawbacks to 
this type of interface is that it is more difficult to make a system that is accessible 
to users facing some physical challenges. As a designer you can make your ap-
plications accessible to a wider base of users. To begin, your application should 
accept multiple sources of inputs. Do not rely on just a mouse or a pointer but 
also use the keyboard, and increasingly, the user’s voice. Similarly, it is helpful 
if your application can provide multiple types of output. Increasingly, you should 
consider how to integrate sound and voice output. The user must also be able to 
set the color and size of the output.



317Chapter  6: Forms and Reports

Microsoft guidelines provide some suggestions for making your applications 
accessible to more users. Detailed ideas and current developments can be found 
on its Web site. Human factors experience with other applications has generated 
some specific suggestions. For example, do not use red-green color combinations. 
Approximately 10 percent of the U.S. male population experiences some diffi-
culty distinguishing between red and green. Try to pick high-contrast colors that 
most people can distinguish (e.g., black and white, yellow, blue, and red). When 
in doubt, ask people to test your color combinations. Better yet, let users select 
their own colors, or use the system color scheme that is configured on the user’s 
computer.

Second, avoid requiring rapid user responses. Do not put time limits on input. 
Although it might be fun in a game, many users have slower data entry skills. 
Some designers include pop-up messages to check on user progress after a delay 
in data entry. These messages are usually pointless and can be annoying. With 
modern screen-saver security systems, users can set their own delay controls and 
messages.

Third, avoid controls that flash rapidly on the screen. They tend to annoy most 
users. Worse, certain flash rates have been known to trigger epileptic seizures in 
some people. An interesting situation arose in Japan at the end of 1997 when a se-
quence of flashing graphics on an animated television show (Pokemon) sent about 
700 children to the hospital.

Fourth, as much as possible, enable users to customize their screens. Let them 
choose typefaces, font sizes, and screen colors. That way, users can adjust the 
screen to compensate for any vision problems they may have. And if you use 
sound, let people control the volume, even pitch, if possible. In many cases, the 
Windows environment provides much of this functionality, so the key point is 
to avoid overriding that functionality. Also, you should test your applications on 
various computers. Some video systems may distort your choice of colors or will 
be incapable of displaying your forms at the desired resolution.

User Interface—International Environment
Today, you must build your forms and reports with the understanding that people 
from around the world will use them. Figure 6.6 summarizes some of the com-
mon issues you have to consider when building forms and reports. Language is 
the most obvious, and it can be the most difficult. First, all of your text data needs 
to be stored using Unicode characters. With many DBMSs, you need to specify 

•	 Language and characters
•	 Currency
•	 Time zones
•	 Time	and	date	formats
•	 Number	formats
•	 Country names and maps
•	 National	ID	numbers—privacy

Figure 6.6
Common internationalization issues. Applications that will be used by people in 
different nations need to adapt to national conventions as much as possible.



318Chapter  6: Forms and Reports

nvarchar instead of varchar. With Unicode characters, names, addresses, and other 
data elements can be stored in any language.

Dealing with multiple languages on forms and reports is more challenging, but 
most development systems have methods to simplify the task. Your first thought 
might be to create every form multiple times: once for each desired language. 
Abandon that thought early. It would be extremely painful to alter a form if you 
had to change it for every different language. Instead, you specify the layout and 
design of the form once. Then you make all the text items (titles, labels, buttons, 
and so on) dynamic. The actual method depends on the tools you are using. As 
shown in Figure 6.7, generally, you give each item a name and declare it in a re-
source file. You then create a resource file for each supported language for each 
form or report. For example, the Sales form might have resource files for English, 
Spanish, French, German, and Japanese. The resource file contains simple pairs: 
the item name and the text translated to the desired language. Of course, you have 
to find someone to translate all of the items. When the form is generated for the 
user, the system chooses the appropriate language resource file and displays each 
text item in the user’s chosen language. You create a form only once, but it can 
display the text in any language with a matching resource file. You can simply 
ship the resource file to a translator, and all of the work is stored in one location. 
You will probably want to include copies of the forms so the translators can see 
the context to create a better translation. You also have to test the form with each 
language, particularly non-Latin languages, to ensure the translated words still fit 
correctly on the form and do not overlap other controls. Once you have developed 
the dynamic form page and set up the resource files, it is relatively easy to sup-

Figure 6.7
Multiple languages. All text on a form is dynamically stored as a resource variable. 
A resource file is created for each language and it holds the translated entry for every 
control.

LastNameLabel

CityLabel

BirdLabel

CorporateLabel

AnimalInterestsLabel

CatLabel
DogLabel
ReptileLabel

x

x
Save 
Button

IndividualLabel

LastNameLabel Last Name
CityLabel City
IndividualLabel Individual
CorporateLabel Corporate
BirdLabel Bird
CatLabel Cat
…

LastNameLabel Nombre de Familia
CityLabel Ciudad
IndividualLabel Individuo
CorporateLabel Corporativo
BirdLabel Pájaro
CatLabel Gato
…

English

Español

Resource	file	for	each	language



319Chapter  6: Forms and Reports

port additional languages—simply have each resource file translated to the new 
language.

Data formats for currency, dates, and numbers also vary by region or nation. 
For instance, the U.S. uses commas to separate thousands, and a decimal point to 
separate fractional values in a number. Most European nations reverse these two, 
using dots to separate thousands. Dates can cause serious confusion if you use the 
shortened numeric format. In the United States, 1/5/2008 represents January 5, 
2008; while the same short date in Europe indicates May 1, 2008. With Windows-
based applications, you can query the regional settings on the user’s computer to 
find the appropriate format for numbers and dates. However, it is probably safest 
to avoid the short-date format and use a format such as 05-Jan-2008, which is 
clearly understood by almost everyone. If you do retrieve local settings from the 
user’s computer, be extremely careful about currency values. Picking up a local 
currency symbol does not convert the values. Serious problems could result if an 
American enters $100.00 into the database, but the system displays it as £100.00 
to someone in England.

The issue of country names can become a problem, or even an international 
incident, if you are using a geographic information system or mapping program. 
Several areas around the globe are politically disputed or face different claims 
(sometimes even calling an area “disputed” might anger the participants). You 
need to have the correct map for each region. Country names also vary by lan-
guage, but you can generally pick one language and use the names defined by the 
International Organization for Standardization (ISO) or the United Nations.

Figure 6.8
Style sheets and templates. Templates or master pages define the basic page 
layout and common controls. The style sheet sets colors, backgrounds, fonts, 
and so on for all items on the form. Ideally, style sheets are dynamic, so 
changes to a style are automatically picked up on every existing form.

Title
Menu … … … Help

Labels
Controls…

Template: Page Layout

MenuText
Black, 10 point, …

Help icon
Help.jpg

TitleText
Black, 12 point, bold

LabelText
Blue, 9 point, …

Style sheet: Fonts+Colors

Find Edit Delete ?
Animal

AnimalID
Name
…



320Chapter  6: Forms and Reports

Finally, be careful to abide by all national laws with respect to security and 
access to the data. For example, many European nations have strong privacy stat-
utes—particularly with respect to customer data and national ID numbers. In some 
cases, it may be illegal to transfer data collected in Europe to the United States.

Style Sheets and Templates
Consistency quickly becomes an issue for large projects—particularly when mul-
tiple developers are working on the forms and reports. It is important that all of 
the forms and reports use the same color schemes and as much as possible, place 
common items in the same location. For instance, links for help, search, or close 
should be the same across all forms and reports. Clearly, designers need to specify 
the layout details before forms and reports are built. But even then, it is difficult 
for developers to remember the exact specifications. Consequently, two tools are 
useful to help with consistency: style sheets and templates. Some systems com-
bine the two topics, some give them different names (such as master pages), and 
others do not support them at all.

Figure 6.8 shows how style sheets and templates influence form development. 
Templates or master pages define the page layout and hold the controls that are 
common to every form. In the example, the template defines the location for the 
main menu, a Help icon, and the page title. The style sheet defines the colors, 
fonts, icons and so on that set the image for the page. Ideally, every item appear-
ing on a form will be named and defined in the style sheet. Developers simply 
select the appropriate style when a page is created.  

With some systems the style sheet is dynamically attached to each page. For 
example, Web browsers use the page definition and the style sheet to determine 
how to display a page. If the style sheet is changed, the Web browser automati-
cally uses the latest values when displaying a form or report. Consequently, de-
signers can alter the page style and colors at any time—even after the application 
has been completed and deployed.

Form Layout
What common structures are used in forms? Individual forms are your primary 
means of communicating with people who use your application. Forms are used 
to collect data, display results, and organize the overall system. From a database 
perspective, your application is built from several standard types of forms. As you 
begin working with these basic layouts, keep in mind that you can create complex 
forms that use features from several different form types. However, you should 
understand the layout and uses of each individual form type first.

As summarized in Figure 6.9, you will be working with four basic types of 
forms: (1) tabular forms, which display data in rows and columns, (2) single-
row forms, which show data for one row at a time and in which the designer can 
arrange the values in any format on the screen; (3) subform forms, which display 
data from two tables that have a one-to-many relationship; and (4) startup forms, 
or menus, which direct the user to other forms and reports in the application.

You can think of a subform as a combination of a single row form and a tabular 
form. The Sales form is a classic example. The Sales table forms the foundation 
of the main form, and the SaleItems table data is handled in the subform. Because 
each sale can contain many items being sold, you need the subform to handle the 
repeating section.



321Chapter  6: Forms and Reports

Tabular Forms
As shown in Figure 6.10, one of the simplest forms is the tabular form, which 
displays the columns and rows from a table or query. Some systems provide varia-
tions on the tabular form, such as the datasheet in Microsoft Access. The tabular 
form is used as the main form with a limited number of columns, and when users 
need to see multiple rows at the same time. It is particularly useful for administra-
tive forms, such as editing values in a lookup table.

The primary feature of the form is that it displays multiple rows of data for 
editing. Consequently, users can see and compare data across several items. It is 
useful for short lists of data. It can cause problems when the table to be edited is 

Figure 6.9
Form layout. Once you understand the single row and tabular (repeating) forms, you 
can create more complex forms by creating subforms. The startup form is similar to a 
menu that links the forms and reports together.

Form Type Common uses
Tabular
	 Multiple	rows	of	data.

Lookup	lists	or	tables	with	a	limited	number	of	
columns	when	it	is	useful	to	see	several	rows	of	
data at a time.

Single row
	 One	row	of	data	at	a	time.

The most common type. Provides complete control 
over	page	layout	and	space	for	many	columns	and	
links.

Subforms
 Combine row and details. 

One-to-many relationships. Repeating section 
shows	data	related	to	main	form.	The	items	section	
of	a	sales	form	is	a	typical	example.

Switchboard or startup
 Customized with buttons.

A	designed	form	that	is	used	as	the	main	menu	or	
switchboard	to	the	other	forms	and	reports.

Figure 6.10
Sample tabular form. You define the controls for one row, and the DBMS displays 
data for all of the rows in the query. Scroll bars enable the user to see more rows (or 
columns of data).



322Chapter  6: Forms and Reports

too large—both in terms of number of rows and too many columns. If the user has 
to scroll repeatedly to find a specific entry, a tabular form will not work very well. 

Tabular forms are commonly used as subforms, where they collect and display 
a limited list of data that is related to the main form. For example, an order form 
often contains a subform tied to the OrderItem table to display the list of items be-
ing purchased on the currently displayed order.

Single-Row or Columnar-Forms
A single-row form displays data for one row at a time. The goal is to display every 
column on one screen. Its greatest feature is that the designer can display the data 
at any location on the form. It is useful for designing a form that looks like a tra-
ditional paper form. The designer can also use color, graphics, and command but-
tons to make the form easier to use. As illustrated in Figure 6.11, this form design 
requires navigation controls that enable the user to scroll backward and forward 
through the rows of data. Common navigation controls also include buttons to go 
to the first and last rows and to go to a particular row of data.

In general, you will want to include a Find command that enables the user to 
locate a particular row of data—based on the values in some row. For example, 
a form displaying customer data should have a search option based on customer 
name. Similarly, the user will often want to sort the rows in different orders. 

The single-row form is generally the most-used form layout. With careful de-
sign you can use it to display substantial amounts of data. By including subforms, 
you can highlight relationships among various pieces of data and make it easy for 
users to enter data. You can also include charts to help users make decisions.

Subform Forms
A subform is usually a tabular form embedded on the main form. A subform gen-
erally shows a one-to-many relationship. In the example in Figure 6.12, a sale 
could include many adopted animals, so you need a subform to display this re-

Figure 6.11
A simple single-row form. This form displays data for one row at a time. You have 
substantial control over layout through color, graphics, and command buttons. The 
navigation buttons on the bottom enable the user to display different rows.



323Chapter  6: Forms and Reports

peating list. The main form must be a single-row form, and the subform should be 
a tabular view. The Sale example for the Pet Store is more complex than for other 
companies because it uses two subforms. Animals are treated as separate objects 
from merchandise, so each is recorded in a separate subform.

If you look at the underlying tables, you will see that SaleID links the main 
form (based on Sale) and merchandise subform (based on SaleItem) to each other. 
You will rarely display the linking column on the subform. In general, doing so 
would be pointless, since the linking column would always display the same value 
as the related column on the main form. Think about what that means for a min-
ute. The Sale table has a SaleID that is generated by the DBMS when a new sale is 
created. The SaleItem table also has a SaleID column, and every animal sold must 
contain the same SaleID value from the main form. Yet it would be painful for the 
clerk to reenter the SaleID on the subform for each animal that is sold. By using 
the subform and specifying the SaleID as the link (Master and Child property), the 
DBMS automatically enters the main SaleID into the table for the subform. 

Most database systems enable you to create forms that have multiple subforms. 
The subforms can be either independent—as separate boxes on the main form—or 
nested—where each subform lies inside another. In most cases, you will want the 
parent forms to be single-row forms. However, some systems support tabular lists 
for both the main and the subforms. In most applications, users would find this 

Figure 6.12
Subform example. The main form is based on the Sale table, which has a one-
to-many relationship with the SaleAnimal table used on the subform. The 
subform contents are linked via the SaleID. The two subforms in this example are 
independent.



324Chapter  6: Forms and Reports

approach disconcerting: They would first have to select a single row in the parent 
form and then deal with the matching list in the subform.

Startup Forms
Startup or menu forms provide the overall structure to an application. They are 
straightforward to create, although you may want the assistance of a graphics de-
signer. The startup form often contains images, and the design reflects the style of 
the company. Startup forms are not required in all applications—in many cases 
the same functions can be provided through menus or the newer ribbon bars.

You begin with a blank form and remove any scroll bars and navigation con-
trols. Pictures can be inserted as background images or as individual controls that 
can be used as buttons to open another form. As shown in Figure 6.13, command 
buttons or links are the most important feature of the startup form. When the user 
selects a button, a corresponding form or report is opened. The main startup form 
will be used quite often, so you should pay careful attention to its design. In Web-
based applications, the buttons are usually replaced with hyperlinks to the desired 
form or report.

The key to a successful application begins with the startup form—not just its 
design but also its content. The startup form and links on other forms create the 
application flow which should match the user’s tasks. One approach is to first 
identify the user and then provide a selection of buttons that matches his or her 
tasks. Consider a simple example. A manager needs to print a daily sales report 
of best-selling items. Every week the DBMS must print out a list of total sales by 
employee. The firm also sends letters to the best customers every month offering 
them additional discounts. A secretary will be in charge of printing these reports, 
so you create a simple menu that lists each report. The secretary chooses the de-
sired report from the list. Some reports might ask questions, such as which week 
to use. The secretary enters the answers, and the report is printed.

The first step in creating an application is to think about the people who will 
use it. How do they perform their jobs? How do the database inputs and reports 
fit into their job? In object-oriented design terminology, each situation is called a 
use case.  The goal is to devise a menu system that reflects the way they work. 

Figure 6.13
Sample startup form. The buttons match the user’s tasks.



325Chapter  6: Forms and Reports

Two examples of a first menu are shown in Figure 6.14. Which menu is easier 
for a clerk to understand? Answer: The one that best relates to the job. Once you 
understand the basic tasks, write down a set of related menus. Some menu options 
call up other menus, some print reports, and others activate the input screens you 
created.

Creating Forms
What are the main steps used to create forms? The first step in creating a form 
is to be sure that you understand its purpose and how it will be used. Its usage dic-
tates the specific data that needs to be displayed. Once you know the data needed, 
you can identify the database tables that hold that data. One important point to 
remember: A form should only attempt to update data to one table at a time. For 
example, a common sales form might display data about the Sale, the Customer, 
the SaleItems selected, and perhaps detailed data about the individual Products. 
Through the design process, this data needs to be stored in four related tables, so 
how can you create a form that updates only one table?

The answer to this question actually determines the characteristics of many da-
tabase systems. The reason you can put only one table on a form is that multiple 
tables make it difficult for the form to understand exactly what the user is attempt-
ing to do. For instance, if the main Sales form contained all columns from the 
Sales table as well as the Customer table, what does it mean to add a new row? 
Should that row be added to the Sales table or the Customer table? 

The process is complicated when you want to display data from multiple tables. 
For instance, you probably want to display a customer’s name and phone number 
on a sale form. Depending on the DBMS you are using, you could have several 
options. You might be able to display the customer data on the sale form without 
needing to edit it. In this case, you could add a button or hyperlink to open the 
customer form with the corresponding data available for editing. Alternatively, 
you might be able to create sections within a form, where each section can hold 
data for a new, linked table. One of these sections could be a subform that con-
tains repeating rows of data linked to the main form. Depending on the database 
system, you might be able to use an updateable query to display data from mul-
tiple tables.

Figure 6.14
Designing menus for users. Which menu is easier for a secretary to understand? 
When designing applications, you should organize the application to match the 
processes users perform.

Main Menu
1. Setup Choices
2. Data Input
3. Print Reports
4. DOS Utilities
5. Backups

Customer	Information
Daily Sales Reports
Friday Sales Meeting
Monthly Customer Letters

Quit



326Chapter  6: Forms and Reports

Updateable Queries
The issue of multiple tables on a form is related to the problem of updateable que-
ries. If a system can support queries that use multiple tables as updateable, then 
it is possible to put carefully selected columns from multiple tables on a single 
form. Figure 6.15 shows a common Sales Order main form. The Sale table holds 
the CustomerID as a foreign key. To record a sale, a salesperson simply needs to 
enter the ID number of the appropriate customer. But it is not easy to remember 
numbers, and it would be nice to display the matching customer data on the main 
form to verify the name and address.

Technically, a query could be built that includes all of the columns from the 
Sale Order table along with some of the descriptive columns from the Customer 
table. To remain updateable, the query must not include the primary key (Custom-
erID) from the Customer table. Figure 6.16 shows the basic query. One potential 

Figure 6.15
Basing the Order form on a query. The query contains all the columns from the Sale 
table and some columns from the Customer table. The query must never include the 
CustomerID column from the Customer table, which is the column used to join the 
two tables.

Figure 6.16
Updateable query for Sales form. New rows will be entered into the Sale table, but 
some systems will also support updates to the three columns from the Customer 
table. Note that you should never include the Customer.CustomerID column in the 
SELECT statement.

SELECT Sale.SaleID, Sale.SaleDate, Sale.CustomerID,
  Customer.LastName, Customer.FirstName, Customer.Phone
FROM Sale
INNER JOIN Customer 
ON Sale.CustomerID=Customer.CustomerID;



327Chapter  6: Forms and Reports

drawback to this approach is that whenever a new CustomerID is entered into a 
sale, the form must make a trip to the database to look up the matching customer 
data. Consequently, some forms systems do not support this approach. In particu-
lar, it can cause problems on Web-based forms because of the delay in sending 
data to the server and waiting for a reply.

Linked Forms
Another approach to the problem is to use linked forms. As shown in Figure 6.17, 
these forms might be displayed separately, or they might be separate sections dis-
played on a single form. This latter approach is used for parent/child forms, where 
the child form contains data from a second table that has a one-to-many link to the 
parent form. Conceptually, displaying a related table on one form versus in a sepa-
rate window is equivalent. The main difference lies in the amount of screen space 
needed. If you put several sections on one form, users will need large screens to 
see all of the data. By using multiple windows, the user will not be able to see all 
of the data at one time but can switch between the windows to see and edit the 
data. 

Linked forms work by using a query to match the data displayed in the second-
ary form to a key value from the original form. For instance, from the main Sale 
Order form, the CustomerID can be used to display the matching customer data in 
a linked form. Similarly, a SaleItem subform can display the rows that match the 
SaleID from the main form. Each related portion of the data can be displayed in a 
separate form or region. Ideally, the forms system will have a method to automati-
cally perform the linking and retrieve the matching data; otherwise, you will have 
to write customized code to modify the underlying query and refresh the data as 
needed.

Properties and Controls
Most software packages are built using an object-oriented approach. With an OO 
design, each object has properties that describe it and methods or functions that it 
can perform. Objects are also closely tied to an event-driven system, where user 
actions and changes can trigger various events. Most database forms follow this 
methodology and contain dozens of objects to create and enhance forms. Your job 
is to assign properties and write short programs to respond to various events to 
make the application easier for users.

Figure 6.17
Linked forms. The Edit button opens the Customer form and loads the data that 
matches the current value of CustomerID on the Sale Form.

Sale Form
CustomerID 15 Edit

Customer

CustomerID
Last Name
First Name
Phone

15
Connie
Fisher
(409) 116-3589



328Chapter  6: Forms and Reports

As highlighted by the abbreviated list of properties in Figure 6.18, form and 
control properties can be grouped into primary categories. The first category 
(data) relates to the source of the data, where you set the base table or query. You 
can set filters to display only the data rows that meet a specific condition. You can 
also specify the sort order and a WHERE clause directly in the underlying query, 
which normally would be a more efficient approach. This step essentially binds 
the control element to the database.

A second set of properties refers to data integrity to help you control the type 
of editing and changes allowed on the form. For example, you might set the prop-
erties for individual users so that some users cannot add or delete data using a 
particular form. However, keep in mind that it is generally safer to set these con-
ditions in SQL so that they apply throughout the database, and not just on one 
form. For example, sales clerks should probably be prevented from adding new 
suppliers.

A third level of properties controls the display of the form. Everything from 
the caption to scroll bars, form size, and background are set by display properties. 
Again, remember that consistency is a virtue. Before beginning a project, choose 
a design template and standards; then set all form and control properties to meet 
that standard.

Controls on Forms
The standard form controls are supported by every forms-development tool. Fig-
ure 6.19 shows some of the controls available in Visual Studio (2010). Many sys-
tems have wizards that quickly create standard labels and text box controls for 

Figure 6.18
Basic properties for forms. At a minimum, set the data source and basic format 
properties. Additional properties ensure consistency, protect data, and make the form 
easier to use. 

Category Sample Properties
Data Base table / query

Filters
Sort

Integrity Edits
Additions, deletions
Locks

Format Caption
Scroll bars
Record selectors
Navigation buttons
Size and centering
Background/pictures
Colors
Tab order

Other Pop-up menus
Menu bar
Help



329Chapter  6: Forms and Reports

desired columns. Each control needs to be given a name and bound to the appro-
priate data column. Be careful with the name; once you have set it, it is difficult to 
change. You need to pick a meaningful name when you first create the control. If 
you try to change it later, you will have to find every control or program that refers 
to that control—which can be a time-consuming and error-prone task. The name 
is used by other controls and program code (much like a variable name) to retrieve 
and store data on the form.

Some people name controls based on the type of control. For example, the 
name of a label control would end with the word Label, such as AddressLabel. 
Alternatively, some developers precede the name of the control with its type, such 
as lblAddress. The difference affects the sort order of the controls. If you end with 
the “Label” notation, control names sorted alphabetically will group by the data 
name (AddressLabel, AddressTextBox). If you start with the “lbl” notation, all of 
the labels will be listed together (lblAddress, lblPhone). You need to decide at the 
start how you want to locate and remember the control names. 

Once the base controls are set, you will have to set formatting, and rearrange 
the controls on the page. You will also have to pay attention to the layout of con-
trols on the page. Generally, you can drag the controls and labels to new positions, 
but be sure to use the alignment tools to match the edges. 

Figure 6.19
Some controls in Visual Studio. The controls are grouped into categories to 
make them slightly easier to find. You drag a control onto the form and assign its 
properties. You can buy additional controls or write your own.



330Chapter  6: Forms and Reports

Graphics Features
Occasionally you will want to add graphics features to your form. There are con-
trols to add pictures, as well as simple lines and boxes. Lines and boxes are often 
used to create a three-dimensional effect for other controls by adding shading or 
highlighting.

To display an image from a table as shown in Figure 6.20, you must first define 
an Object or image column within that table. Then the bound object frame is used 
like a text box to position and display the image on the form.

To use an image or texture as a background, first use a graphics package to 
make sure the image is light enough to not interfere with the readability of the 
other boxes. Then set the Picture property of the form to the name of the image 
file. In most cases, you want to embed the image on the form so the picture is in-
cluded directly with the database.

For Web-based applications, it is easier to store images as files on the server—
instead of trying to store them within the database itself. Web pages ultimately 
use HTML controls to display pages to the user. Web servers and browsers know 
how to retrieve and display images from files. Hence, it is straightforward to store 
the image filename in the database and embed that name in the HTML so it is 
retrieved automatically. If you store the actual image within an object control in 
the table, you need a special program to convert the page HTML request into a da-
tabase query to retrieve the image and deliver it to the browser. Besides the extra 
work, storing images in a database table quickly eats up storage space. And if you 
want to use the free versions of the commercial DBMSs, you need to hold down 
the size of the database.

Figure 6.20
Image bound to a data column. Employee photo is scanned and stored in the database 
column.

Employee
Name: Sue Zhang

ID: 3354

Phone: 222-111-1524

. . .

Photo:



331Chapter  6: Forms and Reports

Complex Controls
Additional control objects can be created using a variety of computer languages or 
purchased from commercial vendors.

A few additional controls are shown in Figure 6.21. The Tab and Calendar con-
trols are particularly useful in business applications. There is also a Grid control 
that enables you to display data in a spreadsheet layout. These types of controls 
are not as easy to use as the standard bound controls. The developer has to write 
short programs to load data into the control and to respond to the control’s events. 
Note that the Calendar control was removed from Microsoft Office 2010. The date 
picker is available for text boxes that are formatted as dates. If you want calendars 
for other purposes, you will have to find or build a new one—or switch to Visual 
Studio.
Charts
Database applications used for making decisions often contain charts or graphs. 
Charts are another type of control that can be placed on a form (or report). The 
first step in creating a useful chart is to discuss with the user exactly what type 
of data and what type of chart will be needed. Then you usually build a new SQL 
query that will collect the data to be displayed on the chart. The chart control 
places the chart on the form and specifies the individual attributes (like type of 
chart, axis scale, and colors).

Two basic types of charts are used on database forms and reports: (1) graphs 
that show detail from the currently displayed row and (2) graphs that display sum-
mary data across all (or several) of the rows. The difference between the two ap-
proaches lies in the level of data displayed. Detail graphs change with each row 
of data displayed. Summary graphs are usually generated from totals or averages.

Figure 6.22 illustrates the two types of graphs as they might be used in the Pet 
Store database. Each chart shows the amount of money spent on animals versus 
the amount spent on merchandise. However, the top set of charts shows the split 

Figure 6.21
Additional controls. Thousands of controls are available to improve the user interface 
or perform specialized tasks. Common controls include tabs, grid, calendar, gauges, 
sliders, and the spin box.  You can also create custom controls. 

Tab

Grid

Gauge Slider Spin box

Calendar



332Chapter  6: Forms and Reports

for each individual sale, so the graphs vary with each row in the Sale query. The 
bottom chart shows the overall total for the store—even if it is placed on a Sales 
form that shows each row of data, it will not change (except over time). To cre-
ate the two types of charts, the main difference is in the query. The query for the 
detail charts contains a column (SaleID) that is linked to the row of data being 
displayed on the form (based on its SaledID). The summary graph computes the 
totals across all of the sales and is not linked to any particular sale.

Multiple Forms
As you can guess, an application will quickly spawn many different forms. Of 
course, the forms should be linked to each other so users can quickly move be-
tween the forms by clicking a button, data value, or image. Startup menu forms 
play an important role in tying forms together. However, you can also connect 
forms directly. The most common example is the use of subforms placed on a 
main form. In this situation the forms are linked by setting the Master and Child 
properties of the subform. Then the database system keeps the data synchronized 
so that when the user selects a new row in the main form, the matching rows in the 
subform are located and displayed automatically.

When the forms contain related data, another approach is to build a link that 
opens the second form based on the ID value in the first form. For example, if the 
Order form contains customer data, when the user clicks an Edit button (or dou-
ble-clicks on the customer name), the application should open the Customer form. 
The Customer form should display the data that corresponds to the customer on 
the Order form. The technique for linking forms varies by DBMS. The accompa-
nying workbooks provide the syntax and examples needed for each DBMS. In the 

Figure 6.22
Charts on forms or reports. The top charts show the split in sales for each individual 
sale and will change with each row of data. The bottom graph shows the sales split 
for all sales and is not bound to an individual row.

Sale 1

Sale 2

Sale 3

Merchandise

Merchandise

Merchandise

Animal

Animal

Animal

Total Sales

Merchandise

Animals



333Chapter  6: Forms and Reports

Sale form example, the link criteria specifies that the CustomerID in the Customer 
form must match the CustomerID from the Sales form.

In most cases, the user would close the Customer form and return to the main 
Sale form. But what if users commonly keep both forms open at the same time? 
Then they would expect the data between the two forms to be synchronized so 
that when a new row is displayed on the Sale form, the matching data would be 
displayed on the Customer form. You might have to write a couple of lines of code 
to enable this synchronization to work. Essentially, whenever the Sale is changed, 
your code grabs the new CustomerID, passes it to the Customer form, requeries 
the database, and redisplays the form with the matching data.

A third, related situation is shown in Figure 6.23. Perhaps while looking at ani-
mal data, the customer decides to adopt that animal. An adoption button on the 
Animal form could quickly bring up the Sale form. It would be convenient if the 
button then copied the AnimalID into the appropriate space on the Sale form.

Again, you need to write a couple of lines of code to insert the AnimalID into 
the appropriate control on the Sale form. In some situations, you might want the 
Sales form to refer back to the ID value on the Animal table.

Business applications commonly need to compute subtotals from subforms. As 
shown in Figure 6.23, some systems treat subforms as entirely separate forms, so 
you must first do the subtotal calculation on the subform, and then copy its value 
back to the main form.

Direct Manipulation of Graphical Objects
Can form usability be improved? In the last few years, the user interface to ap-
plications has been changing. The heavy use of graphics has led to an emphasis 
on direct manipulation of objects. Instead of typing in commands, the user can 

Figure 6.23
Copying data from a different form. The default AnimalID is copied into the Sale 
form from the Animal table. Likewise, the subtotal is first computed on the subform 
and then copied to the main form.

Animal

AnimalID

Sale
=AnimalID from	Animal	form

- - - - - - -
- - - - - - -

Subtotal=Sum(Price*Quantity)

=Forms!Sale!ItemsSold.Form!Subtotal

ItemsSold

=Subtotal*[TaxRate]
Subtotal

Tax
=Subtotal+TaxOrderTotal



334Chapter  6: Forms and Reports

drag an item from one location on the screen to another to indicate a change. Most 
people have seen this approach used with basic operating system commands. For 
example, in the days of command-line operating systems you had to type a com-
mand such as: COPY MYFILE.DOC A:MYFILE.DOC to copy a file. Today you 
click on the file icon and drag it to a disk drive icon.

More recently, direct manipulation has been expanded with the adoption of 
multi-touch screens. These devices provide options beyond the simple mouse-
move commands. To date, most of the innovations have been in relatively simple 
actions such as the “pinch” move to contract or expand the size of an object. How-
ever, some opportunities exist to use this hardware for handling data. For instance, 
drilling down to see more detailed data or following referential links could be 
handled with a gesture. For ideas, see portions of the movie Minority Report. Ul-
timately, these gestures need to be standardized so they can be used on multiple 
devices and applications. Hopefully, standards groups will work on these concepts 
before some lawyer attempts to patent a gesture.

Sally’s Pet Store Example
A graphical approach can make your applications easier to use. However, it re-
quires changing the way you think about applications, and a good dose of creativ-
ity. Consider the Pet Store example. The basic forms designed earlier in this chap-
ter were easy to create, and they will perform adequately. However, you could 
change the entire approach to the application.

Figure 6.24 shows a partial screen for the Pet Store example. Compare this 
form to the traditional data entry form shown in Figure 6.12. The traditional ap-
proach requires users to enter text into a box and perhaps select an item from 
a drop-down list. With the graphical approach the user sees photos of the indi-
vidual animals or merchandise and drags them to the customer to indicate a sale. 
Double-clicking on an item provides more pictures or additional details. A similar 
approach would be used to special-order items, using drag-and-drop techniques 

Figure 6.24
Direct manipulation of graphical objects at the Pet Store. Instead of entering an 
AnimalID into a box, you drag the picture of the animal to the customer to indicate a 
sale. Double-clicking on an item brings up more detail or related graphics screens.

Tabby

Lab

Current Choices





Group/
Adoptions
Bird

Cat

Dog

Spider

Fish

Mammal

Reptile

Customer



335Chapter  6: Forms and Reports

to create search conditions such as category and price to narrow down the list of 
products.

Note that you cannot entirely eliminate data entry. At some point, you need to 
collect basic data on customers (name, address, phone number, etc.). This data 
could be entered on a traditional form that is activated when the clerk double-
clicks the customer icon or photo. That is, the form in Figure 6.24 replaces the tra-
ditional sales form but does not replace the basic customer form. Of course, once 
the customer data is on file, it can be dragged back to this main form whenever the 
customer returns.

The Internet
The emphasis on graphics and a direct manipulation of objects can be particularly 
valuable for forms used with the Internet. For starters, most of the users will have 
little experience with databases and only limited knowledge of your company. 
Creating a graphical model of the company and its processes achieves two impor-
tant objectives: (1) It makes the site easier to use because it matches the physical 
purchase methods users already know, and (2) it limits the actions of the users to 
those that you have defined.

Many Web forms use an approach similar to the direct objects, except that 
drag-and-drop is rarely implemented because of browser limitations. Most of the 
time, users browse or search a catalog of items. Selected items are added to a 
shopping cart. At checkout, the items are shown in a listing similar to a traditional 
sales form—but users generally must return to the catalog listing to edit the list to 
change or select new items. Perhaps as HTML5 gains popularity and developer 
experience, graphical ideas will expand into Web forms and applications.

One of the goals of the graphical approach is to hide the use of the database. 
Yes, all basic product information, figures, and sales data are stored in the data-
base. The database system provides search capabilities and stores user selections. 
It also provides reports and data analysis for managers. However, users never 
need to know about the database itself. Users simply see an image of a store and 
its products. They manipulate the objects to learn more or to place orders. One 
difficulty of the Internet is that you are limited by the capabilities of the user’s 
browser. Browsers handle most simple data entry controls, but rarely have the 
ability to perform drag-and-drop operations. Nonetheless, searching for graphical 
approaches can help you find ways to make the forms more intuitive and easier to 
use.

Complications and Limitations of a Graphical Approach
Several potential drawbacks exist to basing a form on the direct manipulation of 
graphical objects. The most important is that it can be an inefficient way to enter 
data. For example, you would not expect workers at a receiving dock to use a 
drag-and-drop form to record the receipt of several hundred boxes. A bar-code 
scanner would be considerably more efficient. Likewise, a quality control techni-
cian would prefer a simple keystroke (or voice) system so he or she could enter 
data without looking away from the task.

Even the Pet Store sales form is a debatable use of the drag-and-drop approach 
for in-store use. Think about the operations at a typical large pet store. Consider 
what would happen when dozens of customers bring shopping carts full of mer-
chandise to the checkout counter. If a clerk has to use a drag-and-drop screen, 
the checkout process would take forever. Again, bar-code scanners would speed 



336Chapter  6: Forms and Reports

up the process. On the other hand, perhaps the operations of the store could be 
improved by eliminating the checkout clerk. Think about how the store would 
function if shoppers used the store’s drag-and-drop Web site to select products, 
which were then delivered, or bagged and stacked for drive-through pickup. The 
difference in the value of the approach depends on the operations of the business 
and on who will be using the application.

A second difficulty with the graphics approach is that each application requires 
a considerable amount of custom programming. The traditional approach is rea-
sonably straightforward. Common tools exist for entering data with forms made 
up of text boxes, combo boxes, and subforms. These tools can be used for virtu-
ally any database application. On the other hand, direct manipulation of objects 
requires that individual business objects be drawn on the screen and associated 
with data. Then each user action (double-click and drag-and-drop) has to be de-
fined specifically for that application. In the future tools may be created to assist 
in this programming. However, today, a graphical approach requires considerably 
more programming effort than other approaches.

Building graphical database applications across the Internet carries similar 
problems. There are two primary limitations: transmission speed and limitations 
of software tools. However, a huge amount of money and effort is being directed 
toward the Web. Many firms in several industries are working on solutions to both 
limitations.

Database Design Revisited
What problems arise if a design always uses one-to-many relationships? It is 
helpful to see how database design decisions affect the layout of a form. The key 
element to remember is that one-to-many relationships are built on forms as either 
a subform or a linked form. The “many” side of the relationship is repeating, so 
the form needs some mechanism for collecting multiple rows of data. Remember 
when you design a database you often have to decide if a relationship is one-to-
one or one-to-many. If you take the lazy way out and make everything one-to-one, 
users will yell because it will not be possible to record the important data. For 
example, in the standard sales form, think about what would happen if the design 
allowed only one item to be sold at a time, instead of many. You would no longer 
need the SaleItems table and its corresponding subform. Instead, the Sales form 
would contain a single spot to select one product being sold. In some fields (such 
as real estate), this approach is reasonable. But, what happens when someone 
wants to purchase five items at the same time? The clerk could turn away the cus-
tomer (which is really bad). Or, the clerk could initiate five different Sales transac-
tions—each with a single item. It would work, but the clerk would be unhappy, 
and the customer would decide you had no clue how to build an information sys-
tem, or run a store. So, you created the SaleItems table and added the subform to 
the Sales form to handle multiple items (rows) per sale.

Now look at the other extreme. You might opt for flexibility in your design and 
build every relationship as one-to-many. Again, consider the sales example. Most 
organizations assume that any given sale is processed by one employee for one 
customer. To handle a wider variety of situations, you decide to model both of 
those as one-to-many relationships: (1) Any sale can be made to many customers, 
and (2) Any sale can involve multiple employees. The catch is that you now need 
to add two tables to the design (SaleCustomers and SaleEmployees). Figure 6.25 



337Chapter  6: Forms and Reports

shows the two new tables. Observe that both SaleID and CustomerID (or Employ-
eeID) need to be part of the primary key.

More importantly, you need to add two repeating sections to the Sales form. 
Figure 6.26 shows a version of the new form. Notice the addition of the two 
scrolling regions for entering customers and employees. A traditional sales form 
would contain only a single entry for customer and for employee. If the organiza-
tion often needs to record multiple customers and employees for each sale, there 
is nothing wrong with this version of the form. However, if the company almost 
always records only one entry for each, then this form is overkill. It takes up more 
screen space and is more difficult to understand. It will probably require more 
training to use—just to explain to clerks that most of the time, they will simply 
enter one customer and one employee.

The point is that you need to think about the usability of the forms when you 
design the database. You cannot just randomly choose one-to-one or one-to-many 
relationships. They must match the true needs of the organization.

Reports
What are the basic roles of reports? When you understand forms, reports are 
straightforward. Increasingly, the main difference between forms and reports is 
that forms are used to enter data and reports tend to have a set of fixed formats—
with an emphasis on subtotals. Increasingly, reports are delivered electronically 
and sometimes have interactive elements, so the line between forms and reports is 
blurry. Some reports are still designed to be printed—such as receipts or invoices. 
However, report writers are increasingly Web based and managers use them to 
evaluate and summarize data using Web browsers. It is possible to create reports 
using traditional forms tools, but a report writer has two main strengths: 

Figure 6.25
Database design variation. If there can be many customers and many employees per 
sale, the database design needs two new tables: SaleCustomers and SaleEmployees.

CustomerID
LastName
FirstName
Phone
Address
City
State
ZIPCode

Customers

EmployeeID
LastName
FirstName
Phone
Address
City
State
ZIPCode

Employees

SaleID
CustomerID

SaleCustomers

SaleID
EmployeeID

SaleEmployees

SaleID
SaleDate

Sales

SaleID
ItemID
Quantity
SalePrice

SaleItems

ItemID
Description
ListPrice

Items

1

*

1

*

1

*

*

1 *
*

1



338Chapter  6: Forms and Reports

(1) It can easily handle multiple pages of output (with consistent page headers and 
page numbering) and (2) It can combine both detailed and summary data. Chap-
ter 5 illustrates how SQL queries can produce relatively complex results with the 
GROUP BY clause. However, a single SQL query can be used to display either 
detail rows of data or the summaries—not both. A good DBMS report writer also 
provides additional control over the output, such as printing negative values in 
red.

Report Design
As summarized in Figure 6.27, several issues are involved in designing reports. 
As in the development of forms, you and the users need to determine the content 
and layout. You must also identify the typical size of the report (number of pages 
and number of copies), along with noting how often it must be printed. Because 
of the physical steps involved, printing reports can be a time-consuming process. 
A report of a few dozen pages is no problem. However, when a report blooms 
into hundreds of pages with thousands of copies, you have to plan more carefully. 
First, you need a fast, heavy-duty printer. Then you need machines and people to 
assemble and distribute the report copies. You generally have to schedule time to 
use the printer for large reports.

Paper reports also present a different challenge to security. Paper reports re-
quire the use of more traditional security controls, such as written distribution 
lists, numbered copies, and control data. If security is an important issue in an or-
ganization, then these controls should be established when the report is designed.

Several physical and artistic aspects are involved in designing reports. The size 
of the page, the typeface used, and overall design of the page all must be deter-
mined. Newer DBMS report writers are relatively flexible, which is good and bad. 

Figure 6.26
Database design variation. To handle many customers and many employees, two new 
subforms need to be added to the sales form. This form is more complex and more 
difficult to use than the standard sales form, so it should be avoided unless the users 
truly do need to record many customers and many employees.



339Chapter  6: Forms and Reports

The good part is that designers have greater control over the report. The bad part is 
that designers need to understand more about design—including the terminology.

Artistic design and a thorough treatment of design issues are beyond the scope 
of this book. If you are serious about design (for paper reports, forms, or Web 
pages), you should take a course in graphic design. In any case, it helps if you 
learn a few basic terms.

Terminology
Many of the basic terms come from typesetting and graphics design. The terms 
shown in Figure 6.28 will help you understand report writers and produce better 
reports. The first step is to choose the page layout, in terms of paper size; orien-
tation (portrait versus landscape); and margins. The type of binding system will 
affect the margins, and you might have to leave an extra gutter margin to accom-
modate binding.

The next step is to choose the typeface and font size. In general, serif typefaces 
are easier to read, but sans serif faces have more white space, making them easier 
to read at larger and smaller sizes. Avoid ornamental typefaces except for covers 
and some headings. Columns of numbers are generally printed at a fixed width 
to keep columns aligned. Special fixed-width typefaces (e.g., Courier), in which 
all of the characters use exactly the same width, are especially appropriate if you 
need to align columns of nonnumeric data without the use of tab stops.

Font size is generally specified in terms of points. Most common printed mate-
rial ranges from 10- to 12-point fonts. A useful rule of thumb is that a capitalized 
letter in a 72-point font is approximately 1 inch tall. Some report systems mea-
sure sizes and distance in picas. A pica is 1/6 of an inch, or the same height as a 
12-point font (72/6 = 12).

If your reports include graphs and images, the terminology becomes more com-
plex. Be aware that the quality of bitmap images depends on the resolution of 
the original image and the resolution of the output device. Common laser print-
ers have a 1200-dots-per-inch (dpi) resolution. Typesetters typically achieve about 

Figure 6.27
Fundamentals of report design. Determine content and layout with users. Estimate 
size and printing times. Identify security controls. Check typefaces and sizing for 
user readability.

Report usage/user needs
Report layout choices
 Tabular
 Columns/subgroups
 Charts/graphs
Paper sizes
Printer constraints
How	often	is	it	generated?
Events that trigger report
Size	of	the	report
Number	of	copies
Availability	of	color

Security controls
 Distribution list
 Unique numbering
 Concealed/nonprinted data
 Secured printers
 Transmission limits
 Print queue controls
Output concerns
	 Typefaces
 Readability
 Size
 User disabilities
 OCR needs



340Chapter  6: Forms and Reports

2,400-dpi resolution. An image that looks good on a 1200-dpi laser may be too 
small or too jagged on a 2,400-dpi typesetter.

If your reports are in color, you quickly encounter additional problems. In par-
ticular, colors on your screen may not be the same as on the printer. Similarly, 
a sample report printed on a color ink jet might look completely different when 
submitted to a typesetter. The Pantone® color standard is designed to minimize 
these problems by providing numbers for many standard colors. Advanced soft-
ware also supports gamma correction that you can apply to your monitor so that 
colors displayed on your monitor will match those from the printer. The related 
issue you will encounter in color printing is the need to create color separations 
for all of your reports. For full-color submissions to print shops, each report page 
will need four separate color sheets. Denoted CMYK for each of the three primary 
colors—cyan (blue), magenta (red), and yellow—and the key color (black). In this 
case, each page will need high-resolution alignment marks so the colors can be 
reassembled properly.

One of the first elements of design that you must learn is to keep your reports 
simple and elegant. For instance, stick to one typeface and one or two font sizes 
on a page. Use plenty of white space to highlight columns and features. Look at 
the entire layout to observe where the eyes will be attracted and how they will 
move. Most important, since design style continually changes, examine newspa-
per and magazine layouts regularly for new ideas and patterns.

Basic Report Types
From the perspective of data layout, there are essentially three types of report 
designs: tabular, groups or subtotals, and labels. The choice you make depends on 
the type of data and use of the report. All report writers support these three basic 
formats. Many provide options to combine various elements.

Page layout
 Landscape vs. portrait
 Margins
 Gutter
 Trim
Typefaces
	 Serif	(Times New Roman)
	 Sans	serif	(Arial)
 Ornamental (Script)
 Fixed width (Courier)
Font size
 Common: 10-12 point
 72 points approximately 1 inch
 Pica: 1/6 inch, 12 points

Facing pages (portrait)

gutter
margins

Landscape

Alignment	marks	for	
color separations.

Trim 
area

Figure 6.28
Basic publishing terminology. Understanding the basic design terms helps you design 
better reports and communicate with publishers and typesetters.



341Chapter  6: Forms and Reports

Tabular and Label Reports
The tabular layout shown in Figure 6.29 is the simplest report design. It basically 
prints columns of data, much like the output of a query. The advantage over a 
simple query is that the tabular report can print page headings and page num-
bers on every page. You also have a little more control over font size and column 
width. Tabular reports are generally used for detail item listings, such as inventory 
reports. Note that the sort order becomes crucial, since these reports will be used 
to search for specific items. On the other hand, these reports do not contain much 
information for making decisions. In general, printed versions of these reports 
should no longer be needed. It is generally easier to use a form or report to lookup 
the specific items needed instead of carrying them around on paper.

As shown in Figure 6.30, labels are also straightforward. The essence of a la-
bel report is that all output for one row of data is printed in one “column” on the 
page. Then the next row is printed in the following column. The name label report 
comes from the use of preprinted or precut pages used for labels. These reports 
are sometimes named based on the number of physical columns. The example in 
Figure 6.30 has three labels across a page, so it is a three-up report. Before report 
writers, printing a label report was quite challenging, since the printer could only 
work from the top of the page. Hence, you had to write a program that printed the 
top line for three different rows of data, then return and print the second line, and 
so on. Today’s printers are more flexible, and report writers make the job easy. 

Keep in mind that label reports can be useful for other tasks—whenever you 
want to group data for one row into separate locations on a page. For instance, by 
inserting blank rows and changing the label size, you might create a tic-tac-toe 
pattern of data. It could be an interesting effect for a cover page or advertising 
sheet, but avoid using such patterns for hundreds of pages of data.
Groups or Subtotals
The most common type of report is based on groups and computes subtotals. It 
also provides the most flexibility over the layout of items on the report. Com-
mon examples include printing a receipt or a bill. Many times the report will print 
several rows of data, like the order form shown in Figure 6.31. Each order for the 

Customer

CID Phone First Name Last Name Address ZIP
1  Walkin Walkin 
2 (808) 801-9830 Brent Cummings 9197 Hatchet 96815
3 (817) 843-8488 Dwight Logan 1760 Clearview 02109
4 (502) 007-0907 Shatika Gilbert 4407 Green 40342
5 (701) 384-5623 Charlotte Anderson 4333 Highland 58102
6 (606) 740-3304 Seeroba Hopkins 3183 Highland 40330
7 (408) 104-9807 Anita Robinson 8177 Horse Park 95035
8 (606) 688-8141 Cora Reid 8351 Locust 41073
9 (702) 533-3419 Elwood Henson 4042 West 89125
10 (302) 701-7398 Kaye Maynard 5095 Sugar 19901

Figure 6.29
Tabular report layout. Tabular reports have few options but are good for detailed data 
listings. They are used for itemized listings of data.



342Chapter  6: Forms and Reports

month is printed in one report, but the items are grouped together to show the indi-
vidual order subtotals. Many people refer to these reports as control break reports.

Some Web-based reporting tools support a level of interactivity with group re-
ports. For example, Microsoft SQL Server Reporting Services supports icons for 
each subtotal level that enable the user to roll-up the details and show just the 
subtotals or drill-down to see the details in one section only. The process is a sim-
plified version of data cube browsers presented in Chapter 9.

The key to the subtotal report is to note that it includes both detail item listings 
(item ordered, quantity, cost, etc.), and group or total data (order date, customer, 
and order total). To create this report, you first build a query that contains the data 
that will be displayed. The example would probably include the Order, OrderItem, 
Merchandise, Customer, Employee, and Supplier tables. Be careful: If you want 
to see the detail, do not include a GROUP BY statement in the query. If you ex-
amine the raw data from this huge query, you will see a large number of rows 
and columns—many with repeating data. That is fine at this point, but not exactly 

Figure 6.30
Tabular report layout. Tabular reports have few options but are good for detailed data 
listings. They are used for itemized listings of data.

Dwight Parrish
9904 Plum Springs Road
Worcester, MA  01613

Dwight Logan
1760 Clearview Street
Boston, MA  0210

David Sims
6623 Glenview Drive
Boston, MA  02216

Hershel Keen
8124 Industrial Drive
Nashua, NH  03080

Reva Kidel
5594 Halltown Road
Bangor, ME  04401

Dan Kennedy
3108 Troon Court
Burlington, VT  05401

Sharon Sexton
2551 Elementary Drive
Barre, VT  05641

Kelly Moore
6116 Clearview Street
Middlebury, VT  05753

Cassy Tuck
7977 Fairways Drive
Clifton,	NJ		07015

Figure 6.31
Group or subtotal report. Note that several orders are being printed. Each order is 
a group and has a detailed repeating section of items being ordered. The report can 
compute subtotals for each order and a total for the entire report.



343Chapter  6: Forms and Reports

what the user wants to see. The objective of the report is to clean up the display of 
the data.

To create a grouped report, examine the report design shown in Figure 6.32. 
This layout page shows the group breaks in the data and specifies the layout of 
each element on the page. Again, layout is set by the individual controls. The con-
trols have properties that can be changed to alter the appearance of the data dis-
played by that control. For example, you can set basic typeface and font attributes.

The basic elements of a report are headers, footers, group breaks and detail 
areas. The report header contains data that is displayed only when the report is 
first printed, such as a cover page. Similarly, the report footer is used to display 
data at the end of the report, for example, summary statistics or graphs. The page 
header and page footer are displayed on every page that is printed, except for the 
report header and footer pages. Page headers and footers can be used to display 
column headings, page numbers, corporate logos, or security identifiers.

The report features that define this type of report are the groups. The example 
shown in Figure 6.32 has one group defined: MerchandiseOrder.PONumber. The 
report will break, or create a new group of data, for each PONumber in the query. 
Notice that each Order can contain many items ordered. The report design speci-
fies that these rows will be sorted by the ItemID number (within each order). Each 
grouping can have a group header and a group footer. The group header displays 
data that applies to the entire order (e.g., Date, Customer, Employee, and Sup-
plier). It also holds the column labels for the detail (repeating) section. The group 
footer displays the subtotal for each group.

 The common uses of each report element are summarized in Figure 6.33. Note 
that all of the elements (except detail) can work in pairs—headers and footers. 
You are not required to use both. For instance, you might choose to display page 
numbers in a page header and delete the page footer to provide additional space 
on the page.

Report Header
Page Header
Group Header1
 Group Header2
  … 
  Detail
  …
 Group Footer2
Group Footer1
Page Footer
Report Footer

Figure 6.32
Report layout for groups. Note the basic report elements (report header, etc.). Also 
notice that the page layout is set by the position and properties of the data controls. 
In the sample report for Merchandise Orders, only one group is defined (on the Order 
number).



344Chapter  6: Forms and Reports

For comparison, Figure 6.34 shows a similar report created using Oracle’s 10g 
report writer. Notice that the overall structure is the same. Shading, boldface, and 
a highlight color have been used to improve the appearance of the report. Howev-
er, it is still a little cramped, and could benefit from more white space. Ultimately, 
you would ask the users to focus the report on a specific item, and then improve 
the layout to highlight that item. In this version, the detail listing is highlighted, 

Report Section Usage
Report header Title	pages	that	are	printed	one	time	for	entire	report.
Page header Title	lines	or	page	notes	that	are	printed	at	the	top	of	every	

page.
Group header Data	for	a	group	(e.g.	Order)	and	headings	for	the	detail	

section.
Detail Innermost data.
Group	footer Subtotals	for	the	group.
Page	footer Printed	at	the	bottom	of	every	page—page	totals	or	page	

numbers and notes.
Report	footer Printed	one	time	at	the	end	of	the	report.	Summary	notes,	

overall	totals,	and	graphs	for	entire	data	set.

Figure 6.34
Group report created and previewed with the report writer in Oracle. Shading is used 
to show the group headers and a highlight color draws attention to the detail heading.

Figure 6.33
Common uses for report layout elements. Most elements are available in pairs, but 
you are free to delete any components you do not need.



345Chapter  6: Forms and Reports

but if the total value of the order is more important to the users, you would need to 
reorganize this report.

Figure 6.35 shows the design view for the Oracle report. First, notice the over-
all structure is controlled by the sections, which are shaded in the design view. 
Second, observe that the individual data elements are displayed using text box 
controls. These controls are similar to the text boxes on a form, but only display 
data. You can set properties to change the format, font, or layout of the data. Fi-
nally, check out the hierarchical tree listing on the left side. It shows the complete 
structure of the report and makes it easy to find and select individual sections and 
controls.

Groups represent one-to-many relationships. For example, each order can have 
many items in the detail section. If there are several one-to-many (or many-to-
many) relationships in the data, you might want to use multiple levels of groups. 
As illustrated in Figure 6.36, each group is nested inside another group, with the 
detail at the innermost level.

To create this report, you must build a query that contains every item that will 
be displayed. Begin by focusing on the detail level and then join additional tables 
until you have all the columns you need. You can use computed columns for mi-
nor computations such as Price * Quantity. Be careful to avoid aggregate func-
tions (e.g., Sum) and avoid the use of GROUP BY statements. The only time you 
might include these two features is if your “detail” row is actually a subtotal (or 
average) itself.

Group reports are generally used for computations—particularly subtotals. In 
general, computations on one row of data should be performed with the query. On 
the other hand, aggregations (Sum, Average, etc.) are handled by the report writer. 
Report writers have different methods of defining the scope of the operation—that 
is, what data should be included in the total.

Figure 6.35
Group report design in Oracle. Shading is used to show the group headers and a 
highlight color draws attention to the detail heading.



346Chapter  6: Forms and Reports

Charts
Reports are increasingly used for analysis and to identify patterns and trends in 
the data. As a result, users want charts to help them visualize the data. Charts on 
reports are similar to graphs on forms. The first step is to decide with the user what 
type of graph will best illustrate the data. The second step is to determine where 
the chart should be positioned within the report elements. If you are graphing de-
tail items, then the graph belongs in the detail section, where it will be redrawn for 
every row of data. If it is a summary graph, it belongs in a group footer, or perhaps 
in the report footer if it summarizes data across the entire report.

Once you have determined the type and location of the graph, you build a query 
to collect the data. This query can be different from the query used to produce the 
overall report. In particular, when the graph is in a group footer, you might need 
to use aggregation functions in the query for the graph. Be sure to include a col-
umn that links the graph to the data in the report—even if that column will not be 
displayed on the graph. Figure 6.37 shows one sale on the Sales report for the Pet 
Store. The totals for the graph are computed by a separate query.

Summary
Forms must be designed to match the user’s tasks and make your application easy 
to use. To meet this goal, you need to pay attention to design principles, operating 
system guidelines, and human limitations. Where possible, you should build the 
form to use direct manipulation of objects, such as dragging items from one loca-
tion to another to signify shipment.

Forms are based on tables or queries. Each form has a single purpose and can 
store data in one table. More complex forms can be created by placing subforms 
onto the main form. Controls on the form are used to enter data into the tables, 
perform lookup functions, and manipulate data. Several standard controls are 
available for a Windows environment (e.g., text boxes, combo boxes, and option 

Figure 6.36
Nested groups. For example, each customer can place many orders, and each order 
has many detail lines. Two groups are used: (1) to show the total orders for each 
customer and (2) to show the total value of each order.

Report of Orders

Rpt footer:  graph orders by customer

Group1: Customer
H1:  Customer name, address, …

F1:   Customer total orders:

Group2:  Order
H2:  Order#, Odate, Salesperson.

F2:  Order total:  Sum(Extended)

Detail:  Item#, Qty, Extended



347Chapter  6: Forms and Reports

buttons). Additional controls can be purchased to handle more complex tasks, 
such as calendars for scheduling and three-dimensional imaging.

Reports are generally printed and differ from forms because reports are de-
signed only to present data, not to collect it. There are several types of forms, but 
many business forms rely on subtotals or groupings to display different levels of 
data. For example, a sales report might be grouped by sales division or salesper-
son or both. You use a query to combine all data items needed for a report. There 
are two benefits to using a report writer: (1) It is a straightforward way to set data 
formats and alignment, and (2) The report can include detail listings as well as 
subtotals and totals.

A Developer’s View
As Miranda noted, the database wizards can create basic forms for you. However, 
before you crank up the form wizard and generate hundreds of small forms, think 
about the tasks of the users and the overall design. Try to put the most important 
information on one central form with a few secondary forms to help. Strive for a 
clean, well-organized screen and use colors and graphics sparingly to enhance the 
appearance. You should also develop a design standard and layout for the applica-
tion to ensure consistency. Just be sure to leave room for creativity. For your class 
project, you should begin creating the basic forms and reports.

Figure 6.37
Sample graph on the sales report. It illustrates the portion of the sale spent on animals 
versus merchandise. Note that the graph appears on the same level as the Sale table—
not on the detail level and not on the report footer.



348Chapter  6: Forms and Reports

Key Terms

Review Questions
1. Which human factors are important to consider when designing forms?
2. How can you make your applications accessible to a wider group of workers?
3. How are international issues handled on forms?
4. What are the primary form types?
5. What are the main controls you can use on forms?
6. Why are updateable queries an issue with forms?
7. What is the purpose of subforms?
8. What is the purpose of linked forms?
9. What are the main report types?
10. What are the primary sections of reports?

accessibility
aesthetics
check box
clarity
command button
consistency
controls
data-bound controls
direct manipulation of objects
drag-and-drop
event
feedback
focus
group break
heads-down data entry
human factors design

input mask
label
option button
page footer
page header
report footer
report header
resource file
single-row form
startup form
subform form
tab order
tabular form
text box
Unicode
use case



349Chapter  6: Forms and Reports

Exercises
1. Research and report on the steps needed to create a multi-language version 

of a form using Microsoft .NET (Web version). Or use Java if your instructor 
prefers.

2. Review the documentation for the DBMS you are using and identify the 
features that it provides to support accessibility for all users.

3. Review the documentation for the DBMS you are using and identify the main 
forms controls that it provides.

4. Review the documentation for the DBMS you are using and describe how 
reports can be accessed via the Web.

 For the following questions, create the databases and build the forms for the 
exercises from chapters 2 and 3. Note: Make initial forms. They do not have 
to be perfect matches to the drawings.

5. Medical test results, Chapter 2, Exercise 1.
6. Household appliance sales, Chapter 2, Exercise 2.
7. Repair service, Chapter 2, Exercise 3.
8. Day spa, Chapter 2, Exercise 4.
9. Glove manufacturer, Chapter 2, Exercise 5.
10. Custom ear bud manufacturer, Chapter 2, Exercise 6.
11. Automobile maintenance, Chapter 2, Exercise 7.
12. Farmer’s market sales, Chapter 3, Exercise 1.
13. Exercise records, Chapter 3, Exercise 2.
14. Basketball league, Chapter 3, Exercise 3.
15. Network tracking, Chapter 3, Exercise 4.
16. Custom cell phone cases, Chapter 3, Exercise 5.
17. Vintage clothing sales, Chapter 3, Exercise 6.
18. Voter contacts, Chapter 3, Exercise 7.



350Chapter  6: Forms and Reports

Sally’s Pet Store
19. Create basic forms to handle administrative tasks such as editing Breed, 

Category, AdoptionGroup, and Supplier data.
20. Create a form to edit Merchandise information. Eventually, this table will 

contain thousands of entries so provide features to enable users to sort and 
filter the data by category and description.

21. Create a form that makes it easy for adoption groups to enter new animal 
information. The group should only be able to edit data for their own animals 
that have not yet been adopted. (Assume they will eventually log in, but 
initially just use a drop-down list to have them set the Adoption Group.)

22. Create a form with a drop-down list to select a year/month and then display 
the total merchandise sales for that month by category. Include a chart.

23. Create a form that enables managers to select a starting and ending date and 
then display a chart showing total merchandise purchases over that time 
period for each supplier.

24. Create a report showing merchandise sales by category over time (monthly). 
Include a line chart.

25. Create a report showing total sales of merchandise by month for each 
supplier compared to monthly purchases from those manufacturers. Include a 
chart.

26.  Create a report with a chart showing a count of the number of sales by 
employee by month.

27. Create a report showing total merchandise purchases by category for 
customers who have adopted at least one cat and one dog. (Hint: First build a 
query to get the list of customers who have adopted a cat and a dog.) 

Rolling Thunder Bicycles
28. Create a form with a drop-down list for year that then displays a list of the 

top 10 customers for the year in terms of total sales. Hint: Use parameters in 
the query to refer to the control values.

29. Create a form that enables a manager to choose an employee, starting 
date, and ending date and display a chart of sales by model type for those 
conditions. Hint: Use parameters in the query to refer to the control values.

30. Create a form that enables employees to select a component and see the 
current quantity in stock along with a chart of sales (installations) by year/
month.

31. Create a form that enables a manager to enter a start date and ending date and 
display a chart of sales by model type by month for that date range.

32. Create a sales report that shows total sales by employee by month.
33. Create a report that enables a manager to specify a start and end date and 

show total sales organized by model type between those dates. Hint: Use 
parameters in the query.



351Chapter  6: Forms and Reports

34. Create a sales report that shows total sales by model type for each month, 
organized by year.

35. Create a report to show total purchases and total payments to manufacturers 
by year.

Corner Med
36. Create a form that lets a physician select a diagnosis code and see all patients 

(sorted from the most recent) with that diagnosis..
37. Create a report that prints a bill for a patient visit.
38. Create a form that enables a physician to enter keywords and then search for 

ICD10 diagnosis codes that match those keywords. Note: You probably have 
to stick with relatively simple search methods.

39. Create a report that displays a chart for a specified patient. It should include 
all visits in chronological order and lists symptoms and treatments at each 
visit.

40. Create a report that displays the Bills (visits) that have been overpaid. Hint: 
First create a query to compute the total amount owed by visit.

41. Create a report that lists the count of the number of patients by month under 
the primary ICD diagnosis categories. The major groupings are based on the 
following table.

ICD10 Code Category
A00-B99
C00-D48
D50-D89
E00-E90
F00-F99
G00-G99
H00-H59
H60-H95
I00-I99
J00-J99
K00-K93
L00-L99
M00-M99
N00-N99
O00-O99
P00-P96
Q00-Q99
R00-R99
S00-T98
V01-Y98
Z00-Z99
U00-U99

1.	Infectious	and	Parasitic	Diseases
2. Neoplasms
3.	Diseases	of	the	blood	and	blood-forming	organs…
4. Endocrine, nutritional and metabolic diseases
5. Mental and behavioral disorders
6.	Diseases	of	the	nervous	system
7.	Diseases	of	the	eye	and	adnexa
8.	Diseases	of	the	ear	and	mastoid	process
9.	Diseases	of	the	circulatory	system
10.	Diseases	of	the	respiratory	system
11.	Diseases	of	the	digestive	system
12.	Diseases	of	the	skin	and	subcutaneous	tissue
13.	Diseases	of	the	musculoskeletal	system	and	connective	tissue
14.	Diseases	of	the	genitourinary	system
15. Pregnancy, childbirth and puerperium
16. Certain conditions originating in the perinatal period
17.	Congenital	malformations,	…	and	chromosomal	abnormalities
18.	Symptoms,	signs	and	abnormal	clinical	and	lab	findings,	not	elsewhere
19.	Injury,	poisoning	and	certain	other	consequences	of	external	causes
20.	External	causes	of	morbidity	and	mortality
21.	Factors	influencing	health	status	and	contact	with	health	services
22.	Codes	for	special	purposes

Corner
Med

Corner
Med



352Chapter  6: Forms and Reports

Web Site References

http://www.microsoft.com/enable Accessibility guidelines.
http://www.unicode.org Primary	site	for	Unicode	information.
http://www.sigchi.org/ Association	for	Computing	Machinery—

Special Interest Group: Computer and Human 
Interaction.

http://www.sigaccess.org/ Association	for	Computing	Machinery—Special	
Interest Group: Computers and the Physically 
Handicapped.

Additional Reading
Cooper, A. About Face: The Essentials of User Interface Design. Foster City, 

CA: IDG Books, 1997. [A good discussion of various design issues.]
Ivory, M. and M. Hearst, The State of the Art in Automating Usability, 

Communications of the ACM, 33(4), December 2001, 470-516. [General 
discussion on evaluating system usability.]

Koletzke, P. Oracle Developer Advanced Forms and Reports, Berkeley: Osborne/
McGraw-Hill, 2000.

O’Reilly, Inc, Ed, The Oracle PL/SQL CD Bookshelf: 7 Best Selling Books on 
CD ROM, Cambridge, MA: O’Reilly & Associates, 2000. [A collection of 
several useful Oracle reference books on CD-ROM.]

Raskin, J. Humane Interface, The: New Directions for Designing Interactive 
Systems, Reading, MA: Addison-Wesley, 2000. [The need for a new interface 
as explained by the creator of the Apple Macintosh project.]

Tsichritzis, D. Form Management, Communications of the ACM, 25(7), July 
1982. [Basic concepts of database forms.]

http://www.microsoft.com/enable
http://www.unicode.org


353

What You Will Learn in This Chapter
•	 Why	would	you	need	to	use	procedural	code	when	SQL	is	so	powerful?
•	 How are SQL commands integrated into more traditional programming structures?
•	 What capabilities exist in procedural code?
•	 How are business rules added to the database?
•	 How does a DBMS handle multiple transaction events?
•	 How do you prevent problems arising when two processes change the same data?
•	 What	are	the	primary	rules	to	ensure	integrity	of	transactions?
•	 How are key values generated?
•	 How can procedural code track row-by-row through a query?
•	 What issues arise when maintaining totals in the database?

Chapter Outline

Database Integrity and 
Transactions

7Chapter

Introduction, 354
Two-Minute Chapter, 355
Procedural Languages, 355

Where Should Code Be Located?, 356
User-Defined Functions, 357
Looking Up Data, 358

Programming Tools, 359
Data Triggers, 360

Statement versus Row Triggers, 361
Canceling Data Changes in Triggers, 
362
Cascading Triggers, 363
INSTEAD OF Triggers, 364
Trigger Summary, 365

Transactions, 366
A Transaction Example, 366
Starting and Ending Transactions, 367
SAVEPOINT, 368

Multiple Users and Concurrent Access, 369
Optimistic Locks, 370
Pessimistic Locks: Serialization, 373
Multiuser Databases: Concurrent 
Access and Deadlock, 373

ACID Transactions, 375
Key Generation, 377

Database Cursors, 378
Cursor Basics, 379
Scrollable Cursors, 380
Changing or Deleting Data with Cursors, 
381
Cursors with Parameters, 383

Merchandise Inventory at Sally’s Pet Store, 
384
Summary, 388
Key Terms, 389
Review Questions, 389
Exercises, 390
Web	Site	References,	394
Additional Reading, 394



354Chapter  7: Database Integrity and Transactions

A Developer’s View
 Ariel: Well, is the application finished?

 Miranda: No. The basic forms and reports 
are done. But I’m still running into 
some problems.

 Ariel: I guess there is always more to do. 
What kinds of problems? 

 Miranda: Well, the numbers are sometimes 
wrong. It seems to happen when 
several people are working on the 
same data at the same time. And 
the application seems a little slow 
sometimes. And…

 Ariel: Whoa. I get the picture. But these 
seem like common problems. Does 
the database system have any tools 
to help?

 Miranda: I think so. I’m going to start by 
looking at some programming 
topics and data triggers. Then, I 
think indexes will help me with 
performance. 

Introduction
Why would you need to use procedural code when SQL is so powerful? Busi-
ness applications often exhibit several common problems. For example, multiple 
users might try to change the same data at the same time, or multiple changes need 
to be made together, or you need to generate new ID numbers for a table. These 
situations must be handled correctly to ensure the integrity of the data. SQL com-
mands are powerful tools, but in many of these situations, you need the ability to 
execute multiple statements or to choose which command should be run.  Data-
base systems have evolved procedural languages to handle these situations.

Although there are diverse methods to implement procedural languages, it is 
helpful when the language is embedded into the query system. With this approach, 
all of the code and conditions remain within the database definition and constraints 
are enforced automatically for all applications. These conditions are often written 
as data triggers—code that is executed when some data element is modified.

The issues of transactions, concurrent access, and key generation appear in al-
most every business application. This chapter explains the issues involved and 
provides the common solutions. Performance is a tricky issue as databases ex-
pand into huge datasets. Complex queries across many large tables could take a 
long time to run. But, transaction-based applications need to process data quickly. 
Vendors have invested considerable money and time into improving performance. 

Getting Started
Procedural code (programming) is used to handle transactions and other 
operations that must be performed in a specific order. Currently, every 
DBMS has its own proprietary programming language. Although the 
features are similar, the syntax varies. So you need to learn how to write 
some fundamental programs in the DBMS you want to use. Procedur-
al code is needed for tasks such as custom functions, transactions that 
require multiple changes, handling concurrency issues, and generating 
key values.



355Chapter  7: Database Integrity and Transactions

One common solution is to create indexes on the tables. You need to understand 
the basic index technologies to make informed choices to improve your applica-
tion’s performance.

Two-Minute Chapter
SQL is powerful but sometimes it is necessary to use traditional procedural pro-
gramming languages to accomplish tasks. Procedural code executes one operation 
at a time and includes loops and conditional statements. It is often used to exam-
ine one row of data at a time. The large DBMSs integrate procedural statements 
with SQL commands. Many also support writing code in external languages (such 
as C and Java) that can submit SQL statements to store and retrieve data.

Writing procedural code requires several steps. (1) Learning the overall func-
tions and syntax of the commands. (2) Understanding where to place the code 
so that it is executed at the proper time. (3) Testing and debugging. (4) Learning 
when to use procedural code.

The challenge with Step 1 is that the SQL standard has begun defining proce-
dural elements but most systems still rely on their proprietary commands. The 
overall structures are similar but the details are different, which are explained in 
the workbooks. Primary structures include the ability to define Functions, Condi-
tions, and Loops. SQL commands are integrated with programming code by defin-
ing parameters (or variables) within the SQL command that hold values assigned 
from the code.

Step 2 is critical because most systems today are event-driven and code is ex-
ecuted in response to some defined event. Within a database, you typically attach 
code to common data triggers including data UPDATE, INSERT, and DELETE 
events. For example, when a row of data in a table is changed, the DBMS can ex-
ecute your custom code to check various conditions. So you have to first think in 
terms of when your code should be executed.

Step 3 is important with any development method. DBMSs rarely provide ad-
ditional support for testing, so it is critical for programmers to break things into 
small pieces and thoroughly test all of the pieces during development.

In terms of Step 4, several common business situations require the support of 
procedural code. Support for transactions is the most important: Several opera-
tions that must be performed (or failed) together. The classic example is transfer-
ring money from one bank account to another. Handling errors, including issues 
with concurrent access, is another common situation. Some systems (particularly 
Oracle) also require support for generating key values. Other situations arise when 
dealing with creating forms and making them more usable. 

Procedural Languages
How are SQL commands integrated into more traditional programming 
structures? A procedural language is a traditional programming language such 
as C or Java, where you specify the sequence of a set of commands. Common 
SQL commands are not procedural because you tell the DBMS only what you 
want done, not how to do it. Although SQL commands are powerful, sometimes 
you need the more precise control of a procedural language. For example, you 
might want to specify that a group of commands must be executed in a particular 
order and all must be completed for the transaction to succeed. Or, you might 
want to execute some commands only if certain external conditions are true. In 



356Chapter  7: Database Integrity and Transactions

more complex cases, you might need to step through each row in a table to per-
form some difficult computation.

Many varieties of procedural languages exist, but they have elements in com-
mon. All of them have variables, conditional statements (if), loops, and subrou-
tines. Each language has its own syntax, which includes details such as command 
and function names, statement terminators, assignment operators, and whether 
you use parentheses or square brackets for arrays. The syntax is important when 
you write code, but integrated editors help by prompting for various items and 
compilers will pinpoint most syntax errors.

This chapter focuses on the logic needed to handle common database opera-
tions. The main text is generally language neutral, so you can see how the ideas 
apply to any database situation. The workbooks provide specific examples using 
the syntax and structure of individual database systems.

Where Should Code Be Located?
One of the first major questions you face is where the code should be written, 
stored, and executed. Figure 7.1 shows that procedural code can be placed in three 
locations: (1) within the DBMS engine as queries or database triggers, (2) within 
forms and reports, or (3) in external programs. Large, commercial systems, such 
as Oracle, SQL Server, and DB2 have a procedural language embedded in the 
DBMS itself. You write code just as you would write any other query and can mix 
procedural commands with SQL statements. The SQL standard has slowly been 
adding procedural capabilities. But each vendor supports the concepts using a dif-
ferent syntax.

In general, code that relates directly to the data should be created as a database 
trigger inside the DBMS. Placing the code inside the DBMS means it is written 
only once and can be called automatically, regardless of how the data is accessed. 

DBMSTables

Forms &
Reports

Queries & 
Triggers

If	(Click)	Then
SELECT . . .

End	If

If	(	.	.	)	Then 
SELECT . . .

Else . . .
UPDATE . . .

End	If

C++
if	(.	.	.)			{

// embed SQL
SELECT …

}

External
Program

(2)

(1)

(3)

Figure 7.1
Location of procedural code. Code can usually be written in the query system, within 
a database form, or in an external program. When possible, code should be placed 
within the query system so that it cannot be by passed.



357Chapter  7: Database Integrity and Transactions

The DBMS will ensure that the code is always executed and not bypassed. Think 
about a security situation where you want to write a note to a log table every time 
someone changes an employee salary. If you rely on programmers to implement 
this code in their forms, they might forget to do it or even do it incorrectly. Ad-
ditionally, someone could create an entirely new form or use a query to change the 
data directly, without executing the security code. Placing the code within the da-
tabase provides a mechanism to ensure that it is run anytime the data is changed, 
regardless of how the modification is generated. In the SQL standard, procedural 
code stored within the database is called a persistent stored module (PSM), and 
related procedures and functions can be stored in developer-defined modules. 
With the release of Office 2010, Microsoft added some rudimentary data macros 
that can be assigned to tables to handle these types of tasks.

Code within forms should concentrate on handling events or custom problems 
within the specific form. On the other hand, placing the code into a separate ex-
ternal file is a technique often used in n-tier client/server systems described in 
Chapter 11. It has the advantage of consolidating the business logic into one loca-
tion. Separating the business logic from the DBMS makes it easier to replace the 
DBMS if desired. Database code in external software also arises on Web sites and 
other situations where data is exchanged with external devices, such as bar code 
scanners or other sensors.

User-Defined Functions
User-defined functions are a good illustration of procedural code. Occasionally 
you need a calculation that will be used by several different queries, reports or 
forms. Even if the computation is relatively simple, placing the code in one loca-
tion makes it substantially easier to find and change later. You can define your own 
function name and perform almost any computation you need using procedural 
code. Figure 7.2 provides an example of a simple function to estimate item costs. 
In practice, this function would be more complex and include tables and queries, 
but keeping it simple focuses on the basic elements of a user-defined function. 

A function is just a set of code designed to perform a defined task. Typically 
this function and task need to be called from multiple locations. Functions are 
passed values and perform computations on these parameters. A value is returned 
to the calling routine. You can also create procedures, which are different from 

Figure 7.2
User-defined function. Placing the business logic in a central location makes it easy 
to modify later. The function can be used in code segments or SELECT statements.

CREATE FUNCTION EstimateCosts 
 (ListPrice Currency, ItemCategory VarChar) 
RETURNS Currency
BEGIN
 IF (ItemCategory = ‘Clothing’) THEN
  RETURN ListPrice * 0.5
 ELSE
  RETURN ListPrice * 0.75
 END IF
END



358Chapter  7: Database Integrity and Transactions

functions in that they do not return a value. However, in almost all cases, you will 
want to use functions—if only to return error codes. A key feature is that you can 
include procedural statements such as “if” conditions to handle complex logic.

Figure 7.3 shows a function that uses input parameters to update the database. 
Almost all functions and procedures use parameters to pass in values to be used in 
calculations. You can also create local variables to modify the parameters and then 
use them in the SQL statement. Functions can be as complex as you need. The 
procedural language system contains the standard elements of any programming 
language: variables, conditions, loops, and subroutines.

The specific syntax of the module language and parameters depends on the 
DBMS. The versions shown here reflect the most recent SQL standard, which 
is only partially supported by DBMS vendors. Although Microsoft Access does 
not support the CREATE FUNCTION statement, you can build functions in VBA 
code modules.

Looking Up Data
Procedures and functions often need to be able to use data from tables or que-
ries. Obtaining data from a single row is straightforward with the SELECT INTO 
statement. It behaves the same as a standard SELECT statement, but instead of 
displaying the values, it places them into local variables. However, you have to 
be careful to ensure that the SELECT statement returns only a single row of data. 
If you make a mistake in the WHERE condition and return multiple rows, it will 
generate an error.

Figure 7.4 shows how the SELECT INTO statement is used to retrieve a single 
value. The statement can be used to retrieve data from multiple columns. Just add 
another COLUMN INTO VARIABLE on the SELECT line and separate it with 
a comma from the existing line. Notice the difference between the overall ob-
jectives in Figures 7.3 and 7.4: The first hard-codes a maximum value (50000), 
whereas the new approach looks up the maximum raise in a table. This approach 
is better than using a fixed value because you can create a form that enables an 
administrator to change this value quickly. If you leave fixed numbers in your pro-
gram code, a programmer would have to wade through all of the modules to find 
the magic number. In addition, anytime someone has to change program code, 

CREATE FUNCTION IncreaseSalary
 (EmpID INTEGER, Amt CURRENCY)
RETURNS CURRENCY
BEGIN
 IF (Amt > 50000) THEN
	 	 RETURN	-1	 	 --	error	flag
 END
 UPDATE Employee SET Salary = Salary + Amt
 WHERE EmployeeID = EmpID;
 RETURN Amt;
END

Figure 7.3
Function to update the database. The input parameters are used to specify values in 
the SQL statement. Additional computations can be performed and the parameters 
modified if needed.



359Chapter  7: Database Integrity and Transactions

there is a large risk that additional errors will be introduced. Whenever possible, 
you should place important values into a table and use the lookup process to get 
the current value when it is needed.

Programming Tools
What capabilities exist in procedural code? Ideally, you already know how to 
write program code in a separate language such as Basic, C#, Java, or C++. In 
most situations, you can use these tools to write any level of code you need and 
then embed database calls within that program. Typically, the database calls con-
sist of SQL statements to insert or retrieve data. However, sometimes you will 
have to use the database language built into the DBMS. For instance, when you 
need to examine large amounts of data, it is usually faster to handle the data sole-
ly within the DBMS and return simpler results to other programs. Transferring 
data—even within the same computer—takes time and processing resources. The 
DBMS is already optimized for handling data internally.

The main concepts you need to know with any procedural language are: (1) 
Sequence, (2) Variables, (3) Conditions, (4) Loops, (5) Input and Output, and (6) 
Procedures and functions (subroutines). These are the building blocks or tools that 
are available to build programs.

One. The primary difference between SQL queries and programming languag-
es is the concept of sequence. A procedural language executes one command line 
at a time and then moves to the next one. This process controls the order in which 
commands or steps are executed. In contrast, note that the SQL SELECT com-
mand provides minimal control over sequence. Rows are operated on in any order 
determined by the query optimizer. You can specify the sorting of the final result, 
but not the order in which rows are operated on. Hence, it is relatively easy to see 
situations where a procedural language is necessary, such as when two or more 

CREATE FUNCTION IncreaseSalary
 (EmpID INTEGER, Amt CURRENCY)
RETURNS CURRENCY
DECLARE
 CURRENCY MaxAmount;
BEGIN
 SELECT MaxRaise INTO MaxAmount
 FROM CompanyLimits
 WHERE LimitName = ‘Raise’;

 IF (Amt > MaxAmount) THEN
	 	 RETURN	-1	 	 --	error	flag
 END
 UPDATE Employee SET Salary = Salary + Amt
 WHERE EmployeeID = EmpID;
 RETURN Amt;
END

Figure 7.4
Looking up single data elements. The SELECT INTO statement can be used to return 
data from exactly one row in a table or query. The result is stored in a local variable 
(MaxAmount) that you can use in subsequent code or SQL statements.



360Chapter  7: Database Integrity and Transactions

commands need to be executed in a specific sequence. A simple program might 
consist of two INSERT commands—where data is added to one table and then 
referenced by the second INSERT command.

Two. Variables are temporary locations in memory to hold data. They usually 
have a defined data type. Within a DBMS procedural language, the data types 
available match those used within tables, such as integer, float, and date. When 
code is written in more traditional languages such as Basic, C#, and Java, the da-
tabase connector needs to transfer DBMS data types into local variable data types. 
This process is complicated when the database can hold Null values. External pro-
gram code often needs special functions to translate data—watching for problems 
with Null values. One key to understanding variables is to recognize their scope. 
Scope refers to the context or location where a variable is defined. For instance, 
variables declared within a function only exist within that function. The values are 
hidden from code written in other functions.

Three. Conditions. The most common form is IF (condition) THEN … ELSE 
… END IF. Sometimes a CASE or ELSE IF block is available to test multiple val-
ues in one setting. The purpose is to define multiple code sections so that only one 
is executed depending on the value of the condition being tested. The action state-
ments within the conditional element are indented to make them easier to read by 
separating them from the conditional logic.

Four. Loops. Loops define a block of code that is to be executed multiple 
times. The number of times can be fixed; determined by the amount of data such 
as the number of rows in a table; or determined dynamically within the loop. In 
a database environment, the most common use of loops is to define a SELECT 
query on a table to retrieve a set of rows—then execute the code for each row of 
data. This approach is used only when SQL cannot handle the problem. SQL is 
almost always faster at working with sets of rows, but sometimes, procedural code 
is needed when computations must be performed in a specific order.

Five. Input and Output. Code within the database typically needs to retrieve or 
store data in tables. SQL statements are used to handle these operations (SELECT, 
INSERT, UPDATE, and DELETE). The commands can be modified by adding 
parameters created from variables defined in the code. Code that is written on 
forms (or reports) can also access data entered onto the form by users.

Six. Procedures and Functions. These subroutines are used to split the code into 
manageable pieces that are easier to read and to debug. Procedures and functions 
contain code that can be called from multiple locations—so any code that needs to 
be used in more than one location should always be written as a function or proce-
dure. But, even if the code is called only one time, it can be useful to write it as a 
separate function. Smaller functions are easier to debug and they reduce the com-
plexity of the overall program. For example, perhaps you need to write a proce-
dure that performs five different steps. Each step takes 10 lines of code to create. 
Instead of writing one procedure consisting of 50 lines of code, it is better to write 
a main procedure that calls five other procedures—each with the 10 lines of code.

Data Triggers
How are business rules added to the database? Data triggers are procedures 
that are executed when some event arises within the database. The code is written 
in the query system and is saved as a procedure or function within the database. 
By binding the code to the database tables, the DBMS ensures the code is always 
executed when changes are made to the data. The common events that can host 



361Chapter  7: Database Integrity and Transactions

triggers are Update, Insert, and Delete, but some systems enable you to attach 
code to events related to users or the database instance. To understand the role of 
triggers, consider a procedure that is run whenever someone changes the Salary 
column in the Employee table. When the data is changed, your trigger procedure 
is fired to record the person who made the change. With the log, auditors can go 
back and see who made changes to this critical data. The salary example is a com-
mon use of data triggers, which is to add specific security or auditing features to 
the database. They can also be used to handle business events, such as monitoring 
when quantity on hand drops below some level and generating an e-mail message 
or an EDI order to a supplier.

Figure 7.5 lists the basic SQL commands that support triggers. The main data 
triggers on the rows and columns each have two attributes: BEFORE and AFTER. 
For example, you can specify a procedure for BEFORE UPDATE and a different 
procedure for AFTER UPDATE. The BEFORE UPDATE event is triggered when 
a user attempts to change data, but before the data is actually written to the data-
base. The AFTER UPDATE trigger is fired once the data has been written. You 
choose the event based on what you want to do with your application. If you need 
to check data before it is written to the database, you need to use a BEFORE trig-
ger. For instance, you might want to perform a complicated validation test before 
saving data. On the other hand, if you want to record when data was changed or 
need to alter a second piece of data, you can use an AFTER trigger.

Statement versus Row Triggers
The SQL standard defines two levels of triggers: (1) triggers may be assigned to 
the overall table or (2) they may be assigned to fire for each row of data being 
modified. Figure 7.6 shows the timing of the various triggers for an UPDATE 
command. Triggers created to the overall table are fired first (BEFORE UPDATE) 
or at the very end (AFTER UPDATE). Then individual row triggers are fired be-
fore or after each row being examined. For row-level triggers, you can also add 
conditions that examine the row data to decide if the trigger should be fired or ig-
nored. For instance, you might add a row trigger in the Salary case that fires only 
for employees in a certain division. Note that this condition is completely separate 
from the original UPDATE WHERE statement. The trigger condition is used only 
to decide whether or not to fire the trigger.

Figure 7.7 shows a sample trigger that fires whenever a row is changed in the 
Employee table. Notice that it is a row-level trigger because of the FOR EACH 
ROW statement. The example also illustrates that triggers can examine and use 
the data stored in the target table before it is changed (OLD ROW) and after it has 
been changed (NEW ROW). In this situation, the original salary and new salary 
are both recorded to the log table. With this information, security managers and 
auditors can quickly query the log table to identify major changes to salary and 

 INSERT
BEFORE DELETE AFTER
 UPDATE

Figure 7.5
Data triggers. You can set procedures to execute whenever one of these actions 
occurs. Row events can be triggered before or after the specified event occurs.



362Chapter  7: Database Integrity and Transactions

then investigate further to ensure the changes were legitimate. You do have to be 
careful with the OLD and NEW data. For example, the NEW data has not yet been 
created in a BEFORE UPDATE trigger, so it cannot be accessed. Also, you cannot 
alter the OLD data within your trigger code.

Canceling Data Changes in Triggers
One of the uses of triggers is to examine changes in detail before they are writ-
ten to the database. The BEFORE UPDATE and BEFORE INSERT triggers are 
often used to validate complex conditions. You also might want to provide more 
cautious checks before deleting data. In these cases, the structure of the trigger is 
straightforward. The key element is that you need a way to stop the original SQL 
statement from executing. The WHEN condition is used to examine the row that 
is scheduled to be deleted. As shown in Figure 7.8, the SIGNAL statement raises 

UPDATE Employee
SET Salary = Salary + 10000
WHERE EmployeeID=442 
OR EmployeeID=558

time

Before	Update
On table

After	Update
On table

Before	Update
Row 442

After	Update
Row 442

Update
Row 442

… other rows

Triggers for overall table

Triggers for each row

Figure 7.6
Update triggers can be assigned to the overall table and fire once for the entire 
command, or they can be assigned to fire for each row being updated.

CREATE TRIGGER LogSalaryChanges
AFTER UPDATE OF Salary ON Employee
REFERENCING OLD ROW as oldrow
 NEW ROW AS newrow
FOR EACH ROW
 INSERT INTO SalaryChanges 
 (EmpID, ChangeDate, User, OldValue, NewValue)
 VALUES 
	 (newrow.EmployeeID,	CURRENT_TIMESTAMP,
	 CURRENT_USER,	oldrow.Salary,	newrow.Salary);

Figure 7.7
Trigger to log the users who change an employee salary. The trigger fires any time 
the salary is updated, regardless of the method used to alter the data. It is a useful 
security tracing technique for sensitive data because it cannot be circumvented, 
except by the owner of the trigger. 



363Chapter  7: Database Integrity and Transactions

an error condition that prevents the row from actually being deleted. The actual 
signal condition (CANNOT_DELETE_PRESIDENT) can be almost anything, 
but it must be defined as a constant in the overall module. Note that most database 
system vendors have not yet adopted the SIGNAL keyword, so the actual syntax 
you need will depend on the system (and version) that you are using. The work-
books give the actual cancel method and syntax needed for each specific DBMS. 
For instance, Oracle uses the function: Raise_Application_Error, whereas Micro-
soft SQL Server uses Raiserror.

In general, you should try to avoid using triggers for simple check conditions. 
Instead, use the standard SQL conditions (e.g., PRIMARY KEY, FOREIGN KEY, 
and CHECK) because they are more efficient and are less likely to cause addi-
tional problems. But sometimes you need to create complex conditions that are 
difficult to handle with simple conditions.

Cascading Triggers
A serious complication with triggers is that a database can have many triggers 
on each table. Cascading triggers arise when a change that fires a trigger on one 
table causes a change in a second table, that triggers a change in a third table, and 
so on. Figure 7.9 shows a common inventory situation. When an item is sold, a 
new row is added to the SaleItem table that contains the quantity sold. Because 
the item has been sold, the quantity on hand is updated in the Inventory table. A 
trigger on the Inventory table then checks to see if the QOH is below the reorder 
point. If it is, a new order is generated and sent electronically to a supplier, result-
ing in inserts on the Order and OrderItem tables. 

There is nothing inherently wrong with cascading triggers. However, long 
chains of updates can slow down the system. They also make it difficult to debug 
the system and find problems. In the example, you might be looking at a problem 
in the OrderItem table, but it could have been caused by an error in the trigger 
code for the SaleItem table. The longer the chain, the more challenging it is to 
identify the source of problems.

A more difficult problem can potentially arise with cascading triggers. What 
happens when the chain loops on itself? Figure 7.10 shows an example of the 
problem. A company has embedded several rules about the methods of paying 
employees. When the salary reaches a certain level, the employee is eligible for 
bonuses. When the employee has already received substantial bonuses, the bonus 
amount is limited and the employee is granted additional stock options. If the lev-

CREATE TRIGGER TestDeletePresident
BEFORE DELETE ON Employee
REFERENCING OLD ROW AS oldrow
FOR EACH ROW
 WHEN (oldrow.Title = ‘President’)
	 	 SIGNAL	CANNOT_DELETE_PRESIDENT;

Figure 7.8
Canceling the underlying SQL command. This trigger examines the data for the 
employee row being deleted. The company always wants to keep data on any 
employee with the president title. The WHEN condition evaluates each row. The 
SIGNAL statement raises an error to prevent the underlying delete from executing. 



364Chapter  7: Database Integrity and Transactions

el of stock options is substantial, the original salary is reduced. But that takes the 
system back to the beginning, and the salary change could trigger another round 
of updates. Depending on the computations, this loop could diverge so that the 
numbers get larger and larger (or increasingly negative), and the computations 
never end. For this reason, the SQL standard is defined to forbid trigger loops. 
Systems that follow the standard are supposed to monitor the entire chain of up-
dates, and if it encounters a loop, it should cancel changes and issue a warning. 
Even if the system is supposed to identify these loops, you should always check 
the system yourself to make sure that these problems will not arise. Obviously, the 
system is easier to check if there are only a limited number of triggers. If you can 
list the triggers in the order shown here, it is fairly easy to see the loop. However, 
systems rarely provide this option. Instead, you have to look through all of the 
database triggers and draw your own charts.

INSTEAD OF Triggers
Some database systems support the INSTEAD OF option as an even stronger type 
of trigger. A standard trigger runs your code in addition to performing the underly-
ing function (DELETE, INSERT, or UPDATE). The INSTEAD OF option com-
pletely replaces the underlying command with your code. So, even if the change 
should be written to the database, you will have to write the additional SQL state-
ments to take the appropriate action. Although this process seems more complicat-
ed, it is a useful trick for making queries updateable. Recall that a query that joins 
multiple tables generally is not updateable; data cannot be added to the query be-
cause the system does not always know which table gets the new row. To solve the 
problem, you can add an INSTEAD OF trigger to the query. Then, changes that 
are needed can be written to the individual tables with separate SQL statements

Tables Triggers and Timing
Sale(SaleID, SaleDate, …)
SaleItems(SaleID, ItemID, Quantity, …)

AFTER INSERT ON SaleItems
 UPDATE Inventory
 SET QOH = QOH – newrow.Quantity

Inventory(ItemID, QOH, …)
AFTER UPDATE ON Inventory
 WHEN newrow.QOH < newrow.Reorder
  INSERT {new Order}
  INSERT {new OrderItem}

Order(OrderID, OrderDate, …)
OrderItem(OrderID, ItemID, Quantity, …)

Figure 7.9
Cascading triggers. With triggers defined on multiple tables, a change in one table 
(SaleItem) can cascade into changes in other tables. Here, when an item is sold, 
quantity on hand is updated. If QOH is below the reorder point, a new order is 
generated and sent. 



365Chapter  7: Database Integrity and Transactions

Trigger Summary
Your first look at database triggers might seem overwhelming. Any table can 
contain trigger code before and after three different events. You can even write 
multiple triggers for each event. Do you really need to write database triggers? 
How do you determine which event to use? The first answer is that you should be 
conservative in using triggers. Use them to establish critical business rules and 
monitoring that need to be centralized. Database triggers are convenient and pow-
erful, making it easy to ensure that relatively complex tasks are handled correctly. 
However, they are difficult to debug and explain to other developers.

The answer to the second question is trickier. You first need to understand the 
detailed nature of the business rule. Choose the database trigger that provides 
the most direct application of the rule. For example, if you need a rule related to 
changing inventory levels, add the trigger to the Items table; not the SaleItems 
table. When in doubt, write the rule in several locations and test each version. One 
of the main indicators of success is when your rule fires exactly one time. If the 
rule does not fire during a test run, it is probably too far away from the desired 
table. If it fires repeatedly for one business operation, the rule is at too detailed of 
a level (such as on the SaleItems table instead of the Sale table).

Tables Triggers and Timing
1 Employee(EID, Salary)

AFTER UPDATE
 IF newrow.Salary > 100000 THEN
  Add BonusPaid
 END

2 BonusPaid(EID, BonusDate, Amount)
AFTER UPDATE or INSERT
 IF newrow.Bonus > 50000 THEN
  Reduce Bonus
  Add StockOptions
 END

3 StockOptions(EID, OptionDate,	Amount,	SalaryAdj)
AFTER UPDATE Or INSERT
 IF newrow.Amount > 100000 THEN
  Reduce Employee Salary
 END

4 Return to Step 1

Figure 7.10
Trigger loop. Consider what happens when cascading triggers create a loop, where 
one trigger returns to alter a table that generated the original change. This loop would 
set up iterations that might converge or diverge. Even if the loop converges, it will 
eat up considerable resources. 



366Chapter  7: Database Integrity and Transactions

Transactions
How does a DBMS handle multiple transaction events? When building appli-
cations, it is tempting to believe that components will always work and that prob-
lems will never occur. Tempting, but wrong. Even if your code is correct, prob-
lems can develop. You might face a power failure, a hardware crash, or perhaps 
someone accidentally unplugs a cable. You can minimize some of these problems 
by implementing backup and recovery procedures, storing duplicate data to differ-
ent drives, and installing an uninterruptible power supply (UPS). Nevertheless, no 
matter how hard you try, failures happen.

A Transaction Example
An error that occurs at the wrong time can have serious consequences. In particu-
lar, many business operations require multiple changes to the database. A trans-
action is defined as a set of changes that must all be made together. Consider the 
example in Figure 7.11. You are working on a system for a bank. A customer goes 
to an online banking application and instructs it to transfer $1,000 from savings to 
a checking account. This simple transaction requires two steps: (1) subtracting the 
money from the savings account balance and (2) adding the money to the check-
ing account balance. The code to create this transaction will require two updates 
to the database. For example, there will be two SQL statements: one UPDATE 
command to decrease the balance in savings and a second UPDATE command to 
increase the balance in the checking account.

You have to consider what would happen if a machine crashed in between these 
two operations. The money has already been subtracted from the savings account, 
but it will not be added to the checking account. It is lost. You might consider 
performing the addition to checking first, but then the customer ends up with extra 
money, and the bank loses. The point is that both changes must be made success-
fully. The other option is that both operations can fail—leaving the customer and 
the bank at the starting point. If you have a choice, you want all operations to suc-
ceed, but keep in mind that total failure is better than partial success in these cases.

Steps Savings Balance Checking Balance
0. Start 5,340.92 1,424.27
1. Subtract 1,000 4,340.92 1,424.27
2. Add 1,000 4,340.92 2,424.27

Problem	arises	if	transaction	is	not	completed
1. Subtract 1,000 4,340.92 1,424.27
2. Machine crashes 1,000 is gone

Figure 7.11
Transactions involve multiple changes to the database. To transfer money from a 
savings account to a checking account, the system must subtract money from savings 
and add it to the checking balance. If the machine crashes after subtracting the money 
but before adding it to checking, the money will be lost.



367Chapter  7: Database Integrity and Transactions

Starting and Ending Transactions
How do you know that both operations are part of the same transaction? It is a 
business rule—or the definition of a transfer of funds. The real problem is: How 
does the computer know that both operations must be completed together? As the 
application developer, you must tell the computer system which operations be-
long to a transaction. To do that you need to create procedural code and mark the 
start and the end of all transactions inside your code. When the computer sees 
the starting mark, it starts writing all the changes to a log file. When it reaches 
the end mark, it makes the actual changes to the data tables. If something goes 
wrong before the changes are complete, when the DBMS restarts, it examines the 
log file and completes any transactions that were incomplete. From a developer’s 
perspective, the nice part is that the DBMS handles the problem automatically. All 
you have to do is mark the start and the end of the transaction.

Transactions illustrate the need for procedural languages. As shown in Figure 
7.12, the multiple UPDATE statements need to be stored in a module function 
or procedure. In this example, the two UPDATE statements must be completed 
together or fail together. The START TRANSACTION statement is optional (in 
the SQL standard) but highlights the beginning of the transaction. If both updates 
complete successfully, the COMMIT statement executes, which tells the DBMS 

CREATE	FUNCTION	TransferMoney(Amount	Currency,	
  AccountFrom Number,AccountTo Number) 
 RETURNS NUMBER
curBalance Currency;
BEGIN
 DECLARE HANDLER FOR SQLEXCEPTION
 BEGIN
  ROLLBACK;
	 	 Return	-2;	 	 --	flag	for	completion	error
 END;
 START TRANSACTION; -- optional
 SELECT CurrentBalance INTO curBalance 
 FROM Accounts WHERE (AccountID = AccountFrom);
 IF (curBalance < Amount) THEN
	 	 RETURN	-1;	 --	flag	for	insufficient	funds
 END IF
 UPDATE Accounts 
 SET CurrentBalance = CurrentBalance – Amount
 WHERE AccountID = AccountFrom;
 UPDATE Accounts
 SET CurrentBalance = CurrentBalance + Amount
 WHERE AccountID = AccountTo;
 COMMIT;
	 RETURN	0;	 	 	 --	flag	for	success
END;

Figure 7.12
Transaction to transfer money. If the system crashes before the end of the transactions 
(Commit), none of the changes are written to the database. On restart, the changes 
may all be rolled back, or the transaction restarted. 



368Chapter  7: Database Integrity and Transactions

to save all of the changes. If an unexpected error arises, the ROLLBACK state-
ment executes so none of the changes are saved. Most systems handle the transac-
tion requirement by writing all changes to an intermediate log file. If something 
goes wrong with the transaction, the system can recover the log file and rollback 
or complete the transaction.

Notice that the START TRANSACTION line comes before the initial SELECT 
statement. This might seem unnecessary, since it appears that only the UPDATE 
commands need to be within the transaction. There is a syntax reason for placing 
this statement first: Any SELECT statement automatically initiates a new transac-
tion. However, as will be explained in the section on concurrency, there is a good 
reason for starting the transaction before this SELECT statement. Think about 
things that can go wrong if another process tries to modify the data retrieved by 
the SELECT statement, before this transaction is finished.

SAVEPOINT
Sometimes, you need intermediate points in a transaction. Some steps are more 
critical than others. You might have some optional changes that would be useful 
to save, but if they fail, you still need to ensure that the critical updates are com-
mitted. The SAVEPOINT technique divides transaction procedures into multiple 
pieces. You can roll back a transaction to the beginning, or to a specific SAVE-
POINT. Figure 7.13 illustrates the process and shows the syntax to set a SAVE-
POINT and rollback to it. As indicated, it can be used to mark a set of risky steps 
that you would like to include in the update but are not required to use. Conse-
quently, if the updates fail for the risky section, you can discard those changes and 
still keep the required elements that were defined at the beginning of the transac-
tion. Generally, you could accomplish the same thing by using multiple COMMIT 
statements, but sometimes the optional code might include a calculation that you 
want to include in the final result. Without the SAVEPOINT option, you might 
have to write the final value more than once.

START TRANSACTION;
SELECT …
UPDATE …
SAVEPOINT StartOptional;
UPDATE …
UPDATE …
If	error	THEN

ROLLBACK TO SAVEPOINT StartOptional;
END IF
COMMIT;

time

start
Required elements

SAVEPOINT
StartOptional

Risky steps
commit

Partial 
rollback

Figure 7.13
SAVEPOINT. A SAVEPOINT enables you to rollback to an intermediate point in the 
procedure. You can set multiple SAVEPOINTS and choose how far back you want to 
rollback the changes.



369Chapter  7: Database Integrity and Transactions

Multiple Users and Concurrent Access
How do you prevent problems arising when two processes change the same 
data? One of the most important features of a database is the ability to share 
data with many users or different processes. This concept is crucial in any modern 
business application: Many people need to use the application at the same time. 
However, it does create a potential problem with database integrity: What happens 
when two people try to change the same data at the same time? This situation is 
known as concurrent access.  Consider the example of an Internet order sys-
tem shown in Figure 7.14. The company records basic customer data and tracks 
charges and receipts from customers. Customers can have an outstanding balance, 
which is money they currently owe. In the example, Jones owes the company 
$800. When Jones makes a payment, a clerk receives the payment and checks for 
the current balance ($800). The clerk enters the amount paid ($200), and the com-
puter subtracts to find the new balance due ($600). This new value is written to 
the customer table, replacing the old value. So far, no problem. A similar process 
occurs if Jones makes a new purchase. As long as these two events take place at 
different times, there is no problem.

However, what happens if the two transactions do occur together? Consider 
the following intermingling: (1) The payments clerk receives the payment, and 
the computer retrieves the current amount owed by Jones ($800).  (2) The clerk 
enters the $200 payment. Before the transaction can be completed, Jones places a 
new order on the Internet for $150 of new merchandise. (3) The Web server also 
reads the current balance owed ($800) and adds the new purchases. Now, before 
this transaction can be completed, the first one finishes. (4) The payments clerk’s 
computer determines that Jones now owes $600 and saves the balance due. (5) 
Finally, the Web server adds the new purchases to the balance due. (6) The order 
computer saves the new amount due ($950). Customer Jones is going to be justifi-
ably upset when the next bill is sent. What happened to the $200 payment? The 
answer is that it was overwritten (and lost) when the new order change was mixed 
in with the receipt of the payment.

Receive Payment Balance Place New Order
1. Read balance 800 800
2. Subtract Pmt. -200

3. Read balance 800
4. Save balance 600 600

5. Add order 150
950 6. Write balance 950

Figure 7.14
Concurrent access.  If two processes try to change the same data at the same time, the 
result will be wrong. In this example the changes made when the payment is received 
are overwritten when a new order is placed at the same time. 



370Chapter  7: Database Integrity and Transactions

Optimistic Locks
Two common methods exist to solve the problem of concurrent changes (opti-
mistic and pessimistic). Today, with fast computer speeds the DBMS can process 
transactions quickly so there is a lower probability of concurrency problems. An 
optimistic lock begins with the assumption that collisions are rare and unlikely 
to arise. If they do arise, it is easier to handle the situation at that time. Han-
dling problems is straightforward and takes less DBMS overhead. Particularly in 
distributed database environments, it is often easier and faster to use optimistic 
locking. 

The key to understanding optimistic locks is to realize that they are not really 
locks; the DBMS lets your program read any piece of data needed. When your 
program attempts to change the data, the DBMS rereads the database and com-
pares the currently stored value to the one it gave you earlier. If there is a differ-
ence between the two values, it signifies a concurrency problem because someone 
else changed the data before you were able to finish your task. The DBMS then 
raises an error and expects your program to deal with it. In summary, optimistic 
locking can improve performance, but it requires you to deal with potential colli-
sions. Figure 7.15 outlines the basic process. The key to the process lies in modi-
fying the UPDATE command by adding a WHERE clause similar to: WHERE 
Amount = oldAmount. The “oldAmount” value is the original value stored in a 
variable when the transaction begins.

The preferred solution to collisions using optimistic locks is to rollback any 
changes you have already made, and restart your code to read the current value 
from the database, re-compute your changes, and write the new value to the data-
base. Consider the example of the orders in Figure 7.16. The function first reads 
the current value of the balance into memory. After completing some other tasks 
(slow code), it attempts the UPDATE command, with one twist. It specifies that 
the UPDATE command only applies to the row with the given Account Num-
ber and with the original Amount value. If the value was changed by a second 
transaction, this UPDATE command will not alter any rows. The error test fol-
lowing the UPDATE command will recognize if the changes were successful or 
not. If successful, the routine is done and it exits. If the changes failed, you have 

Receive Payment Balance Place New Order
1. Read balance 800 800
2. Subtract Pmt. -200

3. Read balance 800
4. Save balance 600 600 Error: Blocked

3. Read balance 600
4. Add order 150

950 5. Write balance 750

Figure 7.15
Serialization. The first process locks the data so that the second process cannot even 
read it. Concurrent changes are prevented by forcing each process to wait for the 
earlier ones to be completed.



371Chapter  7: Database Integrity and Transactions

complete control over what to do. In this case, it makes sense to go back and pick 
up the newly revised Amount and try again. To be safe, you should add a counter 
to the number of retries. If the count reaches too large of a number, this routine 
should simply give up and produce an error code indicating that it is not possible 
to update the data at this time. 

One catch with the UPDATE command is that you have to be careful with Null 
values. Recall from queries that a condition of the form Amount = Null will not 
work correctly. Instead, you have to write Amount Is Null. Consequently, if the 
original value might be missing, the comparison test is more complicated:

((Amount = oldAmount) OR (Amount IS Null AND oldAmount IS Null))

One of the strengths of the optimistic approach is that it works with any DBMS, 
even if multiple distributed databases are involved in the transactions. However, it 
does require that programmers write and validate the proper code for every single 
update. Consequently, it makes sense to create a code library that contains a gener-
ic version of the UPDATE command that can be called for almost any transaction.

The other powerful feature of this approach is that the program code can con-
tain relatively sophisticated analysis to automatically handle common update 
problems. The other optiona of a pessimistic lock usually just blocks or delays a 
transaction which forces users to slow down or solve problems themselves. On the 
other hand, the optimistic lock realized that it simply had to get the new balance 
and use it to compute the final amount. No intervention and almost no delay were 
involved.

Today it is possible to reduce the collisions and concurrent access issues. Focus 
on using the DBMS to handle all updates. Avoid computing values in code or on 
forms. Consider Web-based forms which are notoriously slow. The form shows 
customer account data to a clerk. The clerk enters a value for a payment receipt. 
If this value is added to the current balance on the form or on the Web server, it 
runs the risk of a collision when the total is written back to the DBMS. This col-

CREATE FUNCTION ReceivePayment (
 AccountID NUMBER, Amount Currency) RETURNS NUMBER
BEGIN
 DECLARE HANDLER FOR SQLEXCEPTION
 BEGIN
  ROLLBACK;
  RETURN -2;
 END
 SET TRANSACTION SERIALIZABLE, READ WRITE;
 UPDATE Accounts
 SET AccountBalance = AccountBalance - Amount
 WHERE AccountNumber = AccountID;
 COMMIT;
 RETURN 0;
END

Figure 7.16
Transaction to transfer money. If the system crashes before the end of the transactions 
(Commit), none of the changes are written to the database. On restart, the changes 
may all be rolled back, or the transaction restarted. 



372Chapter  7: Database Integrity and Transactions

lision can be avoided by computing the total within the DBMS using the update 
statement:
UPDATE Customer
SET Balance = Balance + NewValue
WHERE CustomerID=@CustomerID;

 The DBMS simply adds the new value to whatever total currently exists in the 
table. Your code does not need to test for concurrency issues. Of course, a DBMS 
running parallel processors (and multithreading) would have to internally monitor 
concurrency issues when running multiple update commands at the same time. 
But that work is handled by the DBMS vendor.

The other way to minimize concurrency issues is to avoid storing any totals. 
Transaction changes are simply written to a table along with time stamps. Totals 
are computed from this log table whenever they are needed. However, in some 

Process 1 Data A Data B Process 2
1. Lock Data A

Locked By 1 2. Lock Data B
3.	Wait	for	Data	B Locked By 2

4.	Wait	for	Data	A

Figure 7.17
Deadlock. Process 1 has locked Data A and is waiting for Data B. Process 2 has 
locked Data B and is waiting for Data A. To solve the problem, one of the processes 
has to back down and release its lock.

WaitWaitProcess 7

LockWaitProcess 6

WaitProcess 5

WaitLockProcess 4

LockProcess 3

LockWaitProcess 2

WaitLockProcess 1

Resource EResource DResource CResource BResource A

WaitWaitProcess 7

LockWaitProcess 6

WaitProcess 5

WaitLockProcess 4

LockProcess 3

LockWaitProcess 2

WaitLockProcess 1

Resource EResource DResource CResource BResource A

Figure 7.18
Lock manager. A global lock manager tracks all locked resources and associated 
processes. If it detects a cycle, then a deadlock exists, and the lock manager instructs 
processes to release locks until the problem is solved.



373Chapter  7: Database Integrity and Transactions

situations you still want to monitor concurrency. For instance, you do not want 
two people to buy the last seat on an airplane. 

Pessimistic Locks: Serialization
A second solution to the problem of concurrent access is to prevent collisions by 
forcing transactions to be completely isolated. As shown in Figure 7.17, the se-
rialization process forces transactions to run separately so that a second process 
cannot even read the data being modified by the first process. The first process 
requests a lock on the balance. Any process that attempts to read that data before 
the lock is released will receive an error message. A key feature in this approach is 
the ability of the DBMS to set row-level locks to minimize interference with other 
processes. Some early systems used table-level locks, so no one could read the 
data while one balance was being updated!

The method of invoking this type of lock mechanism depends heavily on the 
DBMS. SQL 99 defined a standard method of specifying the transaction lock, but 
it has not been widely implemented yet. Figure 7.18 shows the basic logic, but 
keep in mind that the syntax will be different for each DBMS. The main step is 
to specify the isolation level to SERIALIZABLE in the SET TRANSACTION 
statement. The DBMS then knows to lock each data element you will be using 
so that other transactions will be prevented from reading the data until the first 
changes have been committed. However, it is important that all of the transaction 
procedures contain error-handling code. Otherwise, when the second transaction 
(RecordPurchase is almost identical to this one) runs, it will crash and display a 
cryptic error message when it tries to update or read the data.

The concept of serialization is logical, and it emphasizes the importance of 
forcing each transaction to complete separately. However, it is based on the tech-
nique of a pessimistic lock—where each transaction assumes that concurrent in-
terference will always occur. Every time the transaction runs, it places locks on 
all of the resources that will be needed. This technique slows down the processing 
and can result in another serious problem described in the following section.

Multiuser Databases: Concurrent Access and Deadlock
Concurrent access is a problem that arises when two processes attempt to alter the 
same data at the same time. When the two processes intermingle, generally one 
of the transactions is lost and the data becomes incorrect. For most database op-
erations the DBMS handles the problem automatically. For example, if two users 
open forms and try to modify the same data, the DBMS will provide appropriate 
warnings and prevent the second user from making changes until the first one is 

1. Read the balance.
2. Add the new order value.
3. Write the new balance.
4.	Check	for	errors.
5.	If	errors	exist,	return	to	step	1.

Figure 7.19
Optimistic locking process. The steps assume that concurrency problems will not 
arise. If another transaction does change the data before this transaction finishes, the 
code receives an error message and must restart.



374Chapter  7: Database Integrity and Transactions

finished. Similarly, two SQL operations (e.g., UPDATE) will not be allowed to 
change the same data at the same time.

Even if you write program code, the DBMS will not allow two processes to 
change the same data at the same time. However, your code has to understand 
that sometimes a change to the data will not be allowed. This condition is often 
handled as an error.

The solution to the concurrency problem is to force changes to each piece of 
data to occur one at a time. If two processes attempt to make a change, the second 
one is stopped and must wait until the first process finishes. The catch is that this 
forced delay can cause a second problem: deadlock. Deadlock arises when two 
(or more) processes have placed locks on data and are waiting for the other’s data. 
An example is presented in Figure 7.19. Process 1 has locked data item A. Process 
2 has locked item B. Unfortunately, Process 1 is waiting for B to become free, and 
Process 2 is waiting for A to be released. Unless something changes, it could be a 
long wait.

Two common solutions exist for the deadlock problem. First, when a process 
receives a message that it must wait for a resource, the process should wait for 
a random length of time, try again, release all existing locks, and start over if it 
still cannot obtain the resource. This method works because of the random wait. 
Of the two deadlocked processes, one of them will try first, give up, and release 
all locks with a ROLLBACK statement. The release clears the way for the other 
process to complete its tasks. This solution is popular because it is relatively easy 
to program. However, it has the drawback of causing the computer to spend a lot 

CREATE FUNCTION ReceivePayment (
 AccountID NUMBER, Amount Currency) RETURNS NUMBER
oldAmount Currency;
testEnd Boolean = FALSE;
BEGIN
 DO UNTIL testEnd = TRUE
 BEGIN
  SELECT Amount INTO oldAmount
  WHERE AccountNumber = AccountID;
  …
  UPDATE Accounts
  SET AccountBalance = AccountBalance - Amount
  WHERE AccountNumber = AccountID
  AND Amount = oldAmount;
  COMMIT;
  IF SQLCODE = 0  And nrows > 0 THEN
   testEnd = TRUE;
   RETURN 0;
  END IF
	 	 --	keep	a	counter	to	avoid	infinite	loops
 END
END

Figure 7.20
Optimistic concurrency with SQL. Keep the starting value within memory and then 
only do the update if that value is unchanged. If another transaction changed the data 
before this one completes, go back and get the new value and start over.



375Chapter  7: Database Integrity and Transactions

of time waiting—particularly when there are many active processes, leading to 
many collisions.

A better solution is for the DBMS to establish a global lock manager as shown 
in Figure 7.20. A lock manager monitors every lock and request for a lock (wait). 
If the lock manager detects a potential deadlock, it will tell some of the processes 
to release their locks, allow the other processes to proceed, and then restart the 
other processes. It is a more efficient solution, because processes do not spend 
any time waiting. On the other hand, this solution can be implemented only within 
the DBMS itself. The lock manager must be able to monitor every process and its 
locks.

For typical database operations with forms and queries, the DBMS handles 
concurrent access and deadlock resolution automatically. When you write code 
to change data, the DBMS still tries to 
handle the situation automatically. How-
ever, the DBMS may rely on you to back 
out your transaction. Some systems may 
simply generate an error when the second 
process attempts to access the data, and 
it is your responsibility to catch the error 
and handle the problem.

ACID Transactions
What are the primary rules to ensure integrity of transactions? The concept 
of integrity is fundamental to databases. One of the strengths of the database ap-
proach is that the DBMS has tools to handle the common problems. In terms of 
transactions, many of these concepts can be summarized in the acronym ACID. 
Figure 7.21 shows the meaning of the term. Atomicity represents the central issue 
that all parts of a transaction must succeed or fail together. Consistency means 
that all data in the database ultimately must be consistent. Even though there 
might be temporary inconsistencies while a transaction is being processed, in the 
end, the database must be returned to a consistent state. This status should be able 
to be tested with application-defined code. For example, referential integrity must 
be maintained after a transaction is completed. Isolation means that concurrent 
access problems are prevented. Changes by one transaction do not result in er-
rors in other transactions. Note that transactions are rarely completely isolated: 

This section focuses on terms used 
in computer science and the SQL 
standards. They are not critical for 
beginning students.

•	 Atomicity:	All	changes	succeed	or	fail	together.

•	 Consistency: All data remain internally consistent (when committed) 
and can be validated by application checks.

•	 Isolation: The system gives each transaction the perception that it is 
running in isolation. There are no concurrent access issues.

•	 Durability: When a transaction is committed, all changes are 
permanently	saved	even	if	there	is	a	hardware	or	system	failure.

Figure 7.21
ACID transactions. The acronym highlights four of the main integrity features 
required of transactions.



376Chapter  7: Database Integrity and Transactions

they might encounter pessimistic or optimistic locking messages that need to be 
handled. Durability indicates that committed transactions are lasting. Once the 
transaction commits a change, it stays changed. This concept is critical in the face 
of hardware and software failures and is more difficult to maintain in a distributed 
database environment. Most systems ensure durability by writing changes to a 
log file. Then, even if a hardware failure interrupts an update, the changes will be 
finished when the system is restarted. Importantly, once the COMMIT statement 
is accepted, the DBMS cannot rollback the changes.

With SQL 99, the START TRANSACTION and SET TRANSACTION com-
mands can be used to set the isolation level. In increasing isolation order, the four 
choices are READ UNCOMMITTED, READ COMMITTED, REPEATABLE 
READ, and SERIALIZABLE. These levels are supposed to be used to prevent 
different types of concurrency problems, but rarely is there a need for the interme-
diate levels, so many systems provide only the first and last. 

The READ UNCOMMITTED level provides almost no isolation. It enables 
your routine to read data that another transaction has altered but not yet commit-
ted. This problem is sometimes called dirty read because the value you receive 
might be rolled back and the value ultimately may be inaccurate. If you select this 
level, SQL will not allow your transaction to update any data, because it might 
spread a false number throughout the database. The READ COMMITTED level 
is similar to optimistic concurrency. It will prevent your transaction from reading 
uncommitted data, but the data might still be changed or deleted by another trans-
action before the first transaction completes.

The REPEATABLE READ level prevents specific data you are using from be-
ing changed or deleted, but does not resolve the problem of phantom data. As 
shown in Figure 7.22, consider a transaction that computes the sum of quantity on 
hand if the price of an item falls within a specified range. Now, a second transac-
tion is started before the first one completes. This command inserts rows of data 

ItemID QOH Price
→ 111 5 15

113 6 7
117 12 30

→ 118 4 12
119 7 22

→ 120 8 17
→ 121 7 16
→ 122 3 14

SELECT SUM(QOH)
FROM Inventory
WHERE Price Between 10 And 20

Result: 5 + 4 + 8 = 17
INSERT INTO Inventory
VALUES (121, 7, 16)
INSERT INTO Inventory
VALUES (122, 3, 14)
SELECT SUM(QOH)
FROM Inventory
WHERE Price Between 10 And 20

Result: 5 + 4 + 8 + 7 + 3 = 27

Figure 7.22
Phantom rows. The first SELECT statement will select only three rows of data. When 
the second transaction runs, additional rows will match the criteria, so that the second 
time the query runs, it will return a different result, because it includes the phantom 
rows.



377Chapter  7: Database Integrity and Transactions

(or alters the prices). These new rows are phantom rows that are not included in 
the first query because they did not exist when the query began. After the first two 
queries have finished, if you repeat the first query, the phantom rows will be com-
mitted and you will see new results. 

Are phantom rows bad? In many ways, no; they simply arise because a data-
base has constantly changing data. You (and managers) must always remember 
that the results of a query are accurate only at a specific point in time. On the 
other hand, if you are writing procedural code, you might be surprised by the 
results when your queries do not finish in the order you expected—particularly if 
the DBMS is running on a multiprocessor system. In these situations, you might 
have to add semaphores or repeat queries to ensue your code follows a specific 
sequence. Alternatively, you can specify a higher level of isolation.

The SERIALIZABLE isolation level prevents the phantom row problem by en-
suring that all transactions behave as if they were run in sequence. However, keep 
in mind that this result is usually accomplished through the use of locks, so it re-
quires database resources, and it does not guarantee that your transaction will be 
able to finish on the first try. You still need error handling to catch and resolve the 
problem when your transaction is blocked by another one.

Key Generation
How are key values generated? As you know by now, the relational database re-
lies heavily on primary keys, which must be unique. It can be difficult in business 
to guarantee that these keys are always created correctly. Hence, most relational 
databases have a mechanism to generate numeric keys that are unique. Although 
these methods work reasonably well for simple projects, you will eventually learn 
that generated key values present some challenges that must be handled with pro-
gramming. Also, bear in mind that each DBMS uses a different mechanism to 
generate keys.

The main problem you encounter with generated keys is when you want to add 
a row to one table and then insert the matching key value into a second table. For 
example, when you add a new Customer, the system generates a CustomerID, 
which you need to insert into the Order table. Figure 7.23 shows the basic prob-
lem: the CustomerID key generated to create the new customer must be kept by 
the transaction procedure so that the key can be inserted into the Order table. The 
diverse ways of handling the number creation make the problem more difficult.

Logically, generated keys could be created through two primary methods: (1) 
by an automatic method when a new row is added to a table, and (2) by a separate 

1.	Generate	key	for	CustomerID.
2. INSERT row into Customer.

Customer Table
CustomerID, Name, …

3.	Generate	key	for	OrderID.
4. INSERT row into Order, using new 

OrderID and CustomerID.

Order Table
OrderID, CustomerID, …

Figure 7.23
Generated keys. Creating an order for a new customer requires generating a 
CustomerID key that is used in the Customer table and must be stored so it can be 
used in the Order table.



378Chapter  7: Database Integrity and Transactions

key generation routine. The advantage of the first method is that the process of 
adding a row to the initial (Customer) table is relatively simple. The drawback is 
that it is tricky to make sure you get the correct generated key to use in a second 
table. The second method solves the second problem, but makes it more difficult 
to create keys and requires programmers to ensure that the process is followed for 
every table and insertion operation.

As shown in Figure 7.24, if the DBMS automatically generates key values for 
each table, the code seems relatively simple. Microsoft Access and SQL Server 
use this approach. The complication is that problems arise when two transactions 
generate new key values on the same table at almost the same time. Or, when one 
transaction triggers inserts into multiple tables. You need to be careful that your 
code retrieves the correct key value. With some systems, it is difficult to verify the 
value is correct. You might have to use a SELECT INTO statement to retrieve the 
customer data and double-check the name and phone number.

Because of the difficulties in obtaining an auto-generated key value, the second 
approach of calling a key generation routine has some benefits. This approach 
is primarily used by Oracle. Figure 7.25 shows the basic steps needed to create 
an order for a new customer. Notice that there is no uncertainty about the key 
value generated. The generation routine ensures that values are unique—even if 
two transactions request values at the same time. The drawback to this approach 
is that it is not automatic. However, it is straightforward to write trigger code for 
the main table (Customer) to generate a new ID for use whenever an INSERT is 
performed on the table.

Database Cursors
How can procedural code track row-by-row through a query? To this point, 
all of the procedures and functions have dealt with either DML statements or 
single-row SELECT statements. These statements either do not return values or 
they return only one row of data. This restriction simplifies the program logic and 

1. Generate	a	key	for	CustomerID
2. INSERT row into Customer
3. Generate	a	key	for	OrderID
4. INSERT row into Order

Figure 7.24
Auto-generated keys. The process seems relatively easy when the DBMS 
automatically generates keys. However, what happens at step 2 if two transactions 
generate a new key value on the same table at almost the same time?

1. INSERT row into Customer.
2. Get the key value that was generated.
3. Verify	the	key	value	is	correct.
4. INSERT row into Order.

Figure 7.25
Key-generation routine. The steps are not difficult, but programmers must add them 
for every table and every routine that inserts data.



379Chapter  7: Database Integrity and Transactions

makes it easier to learn the foundations of SQL procedures. However, some ap-
plications will require more sophisticated queries: SELECT statements that return 
multiple rows of data.

Remember that SQL commands operate on sets of data—multiple rows at one 
time. What if you want more precise control? Perhaps you need to examine one 
row at a time to perform a complex calculation, compare some data from an ex-
ternal device, or display the row to the user and get a response. Or perhaps you 
need to compare one row of data to a second row. For example, you might want 
to subtract values across two rows. It is difficult to accomplish these tasks with 
standard SQL commands. As noted in Chapter 9, newer versions of SQL are add-
ing features to perform even these tasks with straight SQL commands. However, 
you will still find times where you want to track through query results one row at 
a time.

Cursor Basics
SQL has a process that enables you to track through a set of data one row at a 
time. You create a database cursor that defines a SELECT statement and then 
points to one row at a time. A loop statement enables you to move the cursor to 
the next row and repeat your code to examine each row returned by the query. You 
can also move the cursor back to previous rows, but this process requires more 
overhead and is rarely needed.

Figure 7.26 shows the basic structure of a procedure to create a cursor and 
loop through the Customer table to calculate the total amount of money owed. Of 
course, this particular calculation can be done easier and faster with a simple SE-
LECT statement. The goal here is to show the main structure of the code needed 
to implement a database cursor. The DECLARE CURSOR statement defines the 
SELECT statement that retrieves the rows to be examined. Although the example 

DECLARE cursor1 CURSOR FOR
 SELECT AccountBalance
 FROM Customer;
sumAccount, balance Currency;
SQLSTATE Char(5);
BEGIN
 sumAccount = 0;
 OPEN cursor1;
 WHILE (SQLSTATE = ‘00000’)
 BEGIN
  FETCH cursor1 INTO balance;
  IF (SQLSTATE = ‘00000’) THEN
   sumAccount = sumAccount + balance;
  END IF
 END
 CLOSE cursor1;
 -- display the sumAccount or do a calculation
END

Figure 7.26
SQL cursor structure. DECLARE, OPEN, FETCH, and CLOSE are the main 
statements in the SQL standard.



380Chapter  7: Database Integrity and Transactions

uses only one column, you can use any common SELECT statement including 
multiple columns, WHERE conditions, and ORDER BY lines. You must OPEN 
the cursor to use it, and eventually should CLOSE the cursor to free up database 
resources. When a cursor is first opened, it points to a location immediately before 
the first row of data. The FETCH statement retrieves one row of data and places 
the columns of data for that row into program variables. A loop is necessary to 
track through each row that matches the selection conditions.

Scrollable Cursors
By default, the FETCH command picks up the next row. If the FETCH command 
pushes the cursor past the end of the dataset, an error condition is created. You can 
use the WHENEVER statement to catch the specific error, or you can examine the 
SQLSTATE variable to see if an error was generated with the last SQL statement. 
A string value of five zeros indicates that the last command was successful.

Several options are available for the FETCH command to move the cursor to a 
different row. The common options are NEXT, PRIOR, FIRST, and LAST. These 
retrieve the indicated row. Figure 7.27 outlines the cursor procedure that begins at 
the last row and moves up to the first row. Note that you must declare the cursor 
as scrollable with the SCROLL keyword. Of course, it would be more efficient to 
simply sort the data in reverse order and then move forward; but the objective is 

Original Data Cursor Modified	Data Insert
Name Sales
Alice 444,321
Carl 254,998
Donna 652,004
Ed 411,736

1. Read Alice
2. Read Carl

4. Move Prior 
but get Bob 
instead	of	Alice

Name Sales
Alice 444,321
Bob 333,229
Carl 254,998
Donna 652,004
Ed 411,736

3. Bob inserted by 
second process

Figure 7.28
Transaction concurrency in cursor code. Your cursor code has tracked down through 
the data to Carl. It then tries to go back to the prior row with FETCH PRIOR. But, 
if another transaction has inserted a new row (Bob) in the meantime, your code will 
pick up that one instead of the original (Alice).

DECLARE cursor2 SCROLL CURSOR FOR
SELECT …
OPEN cursor2;
FETCH LAST FROM cursor2 INTO …
Loop…
 FETCH PRIOR FROM cursor2 INTO …
End loop
CLOSE cursor2;

Figure 7.27
FETCH options. A scrollable cursor can move in either direction. This code moves 
to the last row and then moves backward through the table. Other FETCH options 
include FIRST, ABSOLUTE, and RELATIVE. 



381Chapter  7: Database Integrity and Transactions

to show that you can move in either direction. Additional FETCH scroll options 
include the ability to move to the first row (FETCH FIRST) and to jump to a spe-
cific row in the dataset. For example, FETCH ABSOLUTE 5 will retrieve the fifth 
row in the dataset. Since you rarely know the exact row number to retrieve, the 
relative scroll option is more useful. For instance, FETCH RELATIVE -3 skips 
back three rows from the current position.

The ability to move backward in the list of rows highlights another transaction 
concurrency issue. What happens if you work your way down a set of rows and 
issue the FETCH PRIOR command? Most of the time, you would simply retrieve 
the row before the current one. But what happens if another transaction inserts a 
new row immediately before the FETCH PRIOR command is executed? Figure 
7.28 shows the problem. Your code has tracked down to Carl, but a second process 
has inserted Bob into your list. The FETCH PRIOR command will return data for 
Bob instead of the data for Alice that you expected to see. The SQL standard solu-
tion to this problem is to make the dataset insensitive to other changes. You sim-
ply add a keyword to the cursor declaration (DECLARE cursor3 INSENSITIVE 
CURSOR FOR …). Effectively, the DBMS copies the results of the query into a 
temporary table that is not affected by other commands. Although this approach 
will work, it can be an expensive use of database resources. Instead, be sure to ask 
yourself why you need to move backward. In most cases, you will find that it is 
unnecessary. For example, if you want to calculate differences by subtracting the 
value on the current row from the value on the prior row, simply store the “prior” 
value in memory, then fetch the next row and perform the subtraction. There is no 
need to move backwards and risk getting the wrong value.

You might notice that there is no procedure to find a row within the retrieved 
dataset and move the cursor to that row (such as a SEEK command). Although 
some systems provide this feature, it is rarely needed. Instead, you should create 
the WHERE condition to only retrieve exactly the rows you want.

Changing or Deleting Data with Cursors
A common situation that a cursor-based application encounters is the need to 
change or delete the data at the current row. For example, Figure 7.29 shows a 
table created to hold sales data for analysis. A standard SELECT command with a 
GROUP BY clause can compute the sales totals by year. You need to write a cur-
sor-based procedure to compute the increase (or decrease) in sales for each year. 

Year Sales Gain
2000 151,039
2001 179,332
2002 195,453
2003 221,883
2004 223,748

Figure 7.29
Sales analysis table. A standard SELECT query can compute and save the sales total 
by year. You now need to write a cursor-based procedure to compute the sales gain 
from the prior year.



382Chapter  7: Database Integrity and Transactions

DECLARE cursor1 CURSOR FOR
SELECT Year, Sales, Gain
FROM SalesTotal
ORDER BY Year
FOR UPDATE OF Gain;
priorSales, curYear, curSales, curGain
BEGIN
 priorSales = 0;
 OPEN cursor1;
 Loop:
  FETCH cursor1 INTO curYear, curSales, curGain
  UPDATE SalesTotal
  SET Gain = Sales – priorSales
  WHERE CURRENT OF cursor1;
  priorSales = curSales;
	 Until	end	of	rows	 	
 CLOSE cursor1;
 COMMIT;
END

Figure 7.30
Cursor code for update. The FOR UPDATE option in the declaration enables the 
Gain column to be changed. The WHERE CURRENT OF statement specifies the row 
pointed to by the cursor. 

DECLARE cursor2 CURSOR FOR
SELECT ItemID, Description, Price
FROM Inventory
WHERE Price < :maxPrice;
maxPrice Currency;
BEGIN
	 maxPrice	=	…	 --	from	user	or	other	query
 OPEN cursor2; -- runs query with current value
 Loop:
  -- Do something with the rows retrieved
	 Until	end	of	rows
 CLOSE cursor2;
END

Figure 7.31
Parameterized cursor query. Your code sets the value of maxPrice through user input 
or calculation or another query. When this cursor is opened, the value is applied to 
the SELECT statement and only the matching rows are returned.



383Chapter  7: Database Integrity and Transactions

The catch is that you need to store this computed value back into the table. To do 
that, you need to specify that the cursor is updateable, and then write an UPDATE 
statement that stores the calculation in the row currently pointed to by the cursor. 
Figure 7.30 shows the main code needed to perform the calculations.

Notice that the cursor declaration states that only the Gain column is update-
able. This option protects the database slightly. If you make a mistake or someone 
else modifies your code later, the DBMS will allow only the Gain column to be 
changed. An attempt to change the Year or Sales column will generate an error. 
The other important element is the WHERE CURRENT OF cursor1 statement. 
This condition states that the row currently fetched, or pointed to by the cursor, 
is the one to be changed. The UPDATE statement will apply only to this row. An 
almost identical statement can be used to delete the current row (DELETE FROM 
SalesTable WHERE CURRENT OF cursor1).

Cursors with Parameters
Occasionally, you need a more dynamic query, where you want to pick the spe-
cific rows based on some variable within your procedure. For example, a user 
might enter a price, or your program compute a price based on some other query. 
Then, you want to retrieve only the rows that are less than the specified price and 
perform some computation on those rows. You can enter local variables as param-
eters in the cursor query. Figure 7.31 shows the basic elements of the parameter-
ized cursor. You enter the name of a variable within the cursor’s SELECT state-
ment. Within the procedure, you assign a value to this variable. The value might 
be computed from other variables, input by the user, or even retrieved from a dif-
ferent cursor or query. When the parameterized cursor is opened, the current value 
is substituted into the query, so that it returns only the rows that match the request. 
Parameterized queries in the cursor provide powerful tools to dynamically evalu-
ate data automatically in response to other changes.

Be aware that each DBMS uses a different notation to indicate parameters. The 
standard uses a colon in front of the variable name (:MyVar). SQL Server uses an 
“at” sign (@MyVar). Oracle does not use any characters in front of the parameter 
variable, but requires a colon in assignment statements (MyVar := 100). Microsoft 
Access does not require any special notation. The benefit to marking parameters is 
that it makes them easier to spot when reading code written by others. When you 
work in systems without the notation, you might want to adopt a policy of naming 
parameters and variables to make them easier to recognize (such as v_MyVar).

SaleItem Table Event Code Merchandise
SaleID
ItemID
Quantity
SalePrice

1. Item is sold by adding 
row to SaleItem.

2. Quantity is subtracted 
from	QuantityOnHand.

ItemID
Description
QuantityOnHand
ListPrice
Category

Figure 7.32
Processing inventory changes. When an item is sold, the quantity sold is entered into 
the SaleItem table. This value has to be subtracted from the QuantityOnHand in the 
Merchandise table.



384Chapter  7: Database Integrity and Transactions

Merchandise Inventory at Sally’s Pet Store
What issues arise when maintaining totals in the database? ? To understand 
the value of procedural code, it helps to look at an example. Handling inventory 
updates is often a tricky procedure in business database applications. In many sit-
uations, employees need to know the quantity on hand for a particular item. An 
employee may be looking at items to reorder, or a manager might want to know 
which items are overstocked and have not been selling fast enough. Two basic 
methods exist to determine the quantity on hand in a database system. First, you 
could write a procedure that computes the current total on hand whenever it is 
needed. The routine would add every purchase and subtract every sale of the item 
to reach the current inventory level. In a large application, this process might be 
slow. The second approach is to keep a running total of the quantity on hand in the 
inventory table. This value must then be updated whenever an item is purchased 
or sold. This second process provides the total very quickly, but faces the draw-
back of some slightly complicated programming. Keep in mind that both methods 
also need an adjustment mechanism for “inventory shrink,” to use the accoun-
tant’s euphemistic term for inventory items that have disappeared.

Looking at the Merchandise table from Sally’s Pet Store, shown in Figure 7.32, 
you will notice that it contains a column for QuantityOnHand, so the plan is to 
use the second inventory approach and keep an updated total for each item. Ulti-
mately, you will need three sets of procedures: One to handle item purchases, one 
for item sales, and one to adjust for inventory shrinkage identified from physically 
counting the stock. The adjustment procedure is straightforward, but you have to 
work on the user interface to make it easy to use. The purchase and sale processes 
are similar to each other, so the discussion here will examine only the sale of an 
item.

Whenever something changes in the SaleItem table, the total in the Merchan-
dise table has to be adjusted. Figure 7.33 shows the four basic changes that can 
arise in the SaleItem table. For instance, when an item is sold, a new row is added 
to the SaleItem table keyed by the SaleID and ItemID. The row includes the quan-
tity of the item being purchased, such as 10 cans of dog food. This quantity is 
used to adjust the QuantityOnHand in the Merchandise table. These events might 

SaleItem
SaleID
ItemID
Quantity
SalePrice

1. Add a row.
2. Delete a row.
3. Update Quantity.
4. Update ItemID.

Figure 7.33
SaleItem events. Driven by business operations, four major events can arise in the 
SaleItem table. The QuantityOnHand must be altered in the Merchandise table for 
each of these events.



385Chapter  7: Database Integrity and Transactions

not be immediately obvious, so consider the following business actions that drive 
them.

1. A new sale results in adding a row to the SaleItem table, so 
QuantityOnHand must be decreased by the quantity sold. 

2. A clerical error or a customer changing his or her mind could result 
in the cancellation of a sale or of an item, so a row is removed from 
the SaleItem table. Any quantity that was already subtracted from the 
QuantityOnHand must be restored to the total. 

3. An item could be returned, or the clerk might change the Quantity 
because of an error. The quantity adjustment must be applied to the 
QuantityOnHand total. 

4. An item might have been entered incorrectly, so the clerk changes the 
ItemID. The QuantityOnHand for the original ItemID has to be restored, 
and the QuantityOnHand for the new ItemID has to be reduced. 

You can use database triggers to make the process easier by writing code for 
each specific event. If you are working with a DBMS without database triggers, 
the corresponding code has to be written into the forms; this process is similar, but 
you need to validate each form to make sure it has the necessary code.

The first situation of adding a new row is straightforward. Figure 7.34 shows 
the logic needed for the database trigger. Only one UPDATE statement is needed: 
subtract the newly entered Quantity from the QuantityOnHand in the Merchan-
dise table. If you are responsible for reviewing or fixing code in an existing appli-
cation, you should find that this event is usually handled correctly. The problem is 
that many developers forget about the other events.

CREATE TRIGGER DeleteSaleItem
AFTER DELETE ON SaleItem
REFERENCING OLD ROW AS oldrow
FOR EACH ROW
 UPDATE Merchandise
 SET QuantityOnHand = QuantityOnHand + oldrow.Quantity
 WHERE ItemID = oldrow.ItemID;

Figure 7.35
Delete Row trigger. This trigger reverses the original subtraction by adding the 
Quantity back in.

CREATE TRIGGER NewSaleItem
AFTER INSERT ON SaleItem
REFERENCING NEW ROW AS newrow
FOR EACH ROW
 UPDATE Merchandise
 SET QuantityOnHand = QuantityOnHand – newrow.Quantity
 WHERE ItemID = newrow.ItemID;

Figure 7.34
New Sale trigger. Inserting a new row triggers the event to subtract the newly entered 
quantity sold from the quantity on hand.



386Chapter  7: Database Integrity and Transactions

The second event of handling deleted rows is no more difficult than the code 
for inserting a row. Figure 7.35 shows the new trigger that is needed. Deleting 
a row from SaleItem indicates that the item was not really sold. Consequent-
ly, the trigger reverses the effect of the sale by adding the Quantity back to the 
QuantityOnHand.

As shown in Figure 7.36, the situation for changing data is more complex. You 
need to think about what it means when the Quantity value is changed. Say that 
the QuantityOnHand for the specified item begins at 50 units. Then, a SaleItem 
row was inserted with a Quantity of 10. The insert trigger fired and subtracted 
those 10 units, leaving the QuantityOnHand at 40 units. The clerk now changes 
the Quantity from 10 to 8. Since 2 fewer units were sold, the QuantityOnHand 
needs to be adjusted. 

CREATE TRIGGER UpdateSaleItem
AFTER UPDATE ON SaleItem
REFERENCING OLD ROW AS oldrow
 NEW ROW AS newrow
FOR EACH ROW
 UPDATE Merchandise
 SET QuantityOnHand = QuantityOnHand 
  + oldrow.Quantity – newrow.Quantity
 WHERE ItemID = oldrow.ItemID;

Figure 7.37
Update Quantity trigger. If Quantity is changed, you must add back the old value and 
then subtract the new value.

Figure 7.36
Errors arise if you do not handle changes in quantity. If Quantity is changed, you 
must add back the old value and then subtract the new value. The top steps show the 
error in QOH if you do not handle changes.

SaleItem Clerk Event Code Merchandise
SaleID 101
ItemID 15
Quantity 10

Quantity 8

1. Enter new sale item, 
enter	Quantity	of	10.

3. Change Quantity to 8.

2. Subtract Quantity 10 
from	QOH.

4.	Subtract	Quantity	8	from	
QOH.

ItemID 15
QOH 50

QOH 40

QOH 32

Solution	that	Corrects	for	Change
SaleID 101
ItemID 15
Quantity 10

Quantity 8

1. Enter new sale item, 
enter	Quantity	of	10.

3. Change Quantity to 8.

2. Subtract Quantity 10 
from	QOH.

4. Add original Quantity 
10 back and subtract 
Quantity	8	from	QOH.

ItemID 15
QOH 50

QOH 40

QOH 42



387Chapter  7: Database Integrity and Transactions

As shown in Figure 7.37, the easiest way to understand the adjustment code 
is to think of it as adding the original 10 units back and then subtracting the new 
Quantity of 8 units. The net result will leave QuantityOnHand at 42 units. Notice 
that you need access to the old row value (10). All trigger-based systems have a 
way to obtain this value. If you have to build the inventory code on a form, it is 
slightly more complicated to obtain this value; but it can be done.

The fourth change to the code is more difficult to portray. What happens if a 
clerk changes the ItemID value? Ultimately, you have to restore the QuantityOn-
Hand for the original ItemID, then subtract it for the new ItemID. The first com-
plication is that database triggers might not have separate events for each column 
being changed. So you have to integrate the changes due to the ItemID into the 
previous code written to handle Quantity changes. Again, you need to think about 
the individual steps. Start with a QuantityOnHand of 50 for ItemID 1, then enter 
a sale of 10 items. The Insert trigger reduces QuantityOnHand to 40 units. Now 
the clerk changes the ItemID from 1 to 11. That means that no units of ItemID 1 
were actually sold, so the 10 units have to be added back to its QuantityOnHand. 
Additionally, the 10 units have to be subtracted from the QuantityOnHand for 
ItemID 11. As shown in Figure 7.38, this trigger requires two separate UPDATE 
statements. Notice that the WHERE clause in the first statement uses the oldrow.
ItemID and the second one uses the newrow.ItemID. Also, look more closely at 
the two SET statements. The first one adds the oldRow.Quantity, the second one 
subtracts the newRow.Quantity. Why is this difference important? First, it is pos-
sible that the clerk changed the Quantity along with the ItemID, and you need to 
make sure the old Quantity is used for the old ItemID. Second, and more impor-
tantly, this trigger also handles the simple change in Quantity, even if the ItemID 
is not changed. Assume the ItemID is set at 1 and is not changed. Start with a 
QuantityOnHand of 50 units, and an initial Quantity sold of 10, leaving a current 
QuantityOnHand of 40 units. Read through the code to see how it works if only 

CREATE TRIGGER UpdateSaleItem
AFTER UPDATE ON SaleItem
REFERENCING OLD ROW AS oldrow
  NEW ROW AS newrow
FOR EACH ROW
BEGIN
 UPDATE Merchandise
 SET QuantityOnHand = QuantityOnHand + oldRow.Quantity
 WHERE ItemID = oldrow.ItemID;

 UPDATE Merchandise
 SET QuantityOnHand = QuantityOnHand – newRow.Quantity
 WHERE ItemID = newrow.ItemID;
 COMMIT;
END

Figure 7.38
Final update trigger. If the ItemID is changed, you must restore the total for the 
original item and subtract the new quantity from the new ItemID.



388Chapter  7: Database Integrity and Transactions

the Quantity is changed from 10 to 8 units. First, the old Quantity (10) is added 
back to the QuantityOnHand. Second, the new Quantity (8) is subtracted, leaving 
42 units on hand. This process is the same as that shown in Figure 7.37, but it is 
accomplished in two steps instead of one.

The same code must be written for the purchase table (OrderItem) with the 
same logic. However, for business reasons, you might want to wait to update the 
QuantityOnHand until the items actually arrive. If you do decide to wait, your 
primary initial trigger is not on the OrderItem INSERT event, but on the UPDATE 
event on the MerchandiseOrder table. Have the trigger look for an entry in the 
ReceiveDate column, and then do the QuantityOnHand updates.

Summary
Although SQL commands are powerful, you sometimes need a procedural lan-
guage to gain detailed control over updates or to connect to other devices or ap-
plications. Depending on the DBMS, procedural code can exist within modules, 
within forms, or in external applications. Database triggers are an important appli-
cation of procedural code. These procedures are triggered or exectued in response 
to some database event, such as inserting, updating, or deleting data. Triggers can 
be used to enforce complex conditions or to execute business rules. For instance, 
a trigger might be attached to QuantityOnHand within an Inventory table to auto-
matically notify a supplier when the value falls below a certain level. Cascading 
triggers arise when a change in one table fires a trigger that causes changes in ad-
ditional tables, that might trigger even more events. Long cascades can be difficult 
to debug and use substantial server resources.

Transactions are critical applications in most business operations. They repre-
sent a collection of changes that must succeed or fail together. Setting start and 
ending points for transactions is an important step in application development to 
protect the integrity of the data. Concurrent access where multiple users attempt 
to modify the same data at the same time is another substantial threat to database 
integrity. Pessimistic locks have often been used to protect data through serializa-
tion so that only one transaction can see data at a time. However, multiple locks 
eat up resources and can lead to deadlock issues. Optimistic locks assume that 
collisions are unlikely, but code must be added to handle the situations when they 
do arise. The ACID acronym (atomicity, consistency, isolation, and durability) is a 
useful way to remember the main features desired of a DBMS to protect transac-
tion integrity. 

Generating keys is an important step in many relational databases, since it is 
difficult to trust humans to create unique identifiers. Two common methods are 
used to generate keys: (1) automatically create them when a row is added to a 
table, or (2) provide a separate function that generates keys on demand. Both 
methods create complications. The automatically generated keys are difficult to 
obtain and use in secondary tables. The generation functions require programmers 
to write code for every table and every insertion procedure. 

Database cursors provide a method for procedural code to retrieve multiple 
rows of data from a query to step through the rows one at a time. The cursor points 
to one current row that can be examined, modified, or deleted by your code. Scrol-
lable cursors move forward or backward through the rows, but whenever possible, 
you should try to move only in one direction. With updateable cursors, code can 
change or delete the data in the current row. With a parameterized query, code can 
dynamically choose the rows to be retrieved in response to other conditions.



389Chapter  7: Database Integrity and Transactions

Key Terms

Review Questions
1. Why would you need a procedural language when SQL is available?
2. What is the purpose of data triggers?
3. What is the purpose of form events?
4. What is a transaction and why do they have to be defined by developers?
5. How do you start and finish a transaction?
6. How is pessimistic locking different from optimistic locks?
7. What code do you need to add to handle conflicts with optimistic locks?
8. What is an ACID transaction?
9. What are the most common methods used to generate keys?
10. How do you obtain the most recently generated key in the DBMS you are 

using?
11. What is a database cursor and why is it important?
12. What is the program logic to using a database cursor to alter data?

atomicity
cascading triggers
concurrent access
consistency
database cursor
deadlock
durability
isolation 
isolation level 

optimistic lock
persistent stored module (PSM)
pessimistic lock
procedural language
scope
serialization
syntax
transaction
trigger

A Developer’s View
Miranda learned that even a good DBMS often requires programming to handle 
some complex issues. In developing your application, you should examine all of 
the business processes and identify transaction elements. Also, be sure that your 
UPDATE and DELETE procedures can handle concurrency issues. Remember 
that a professional application anticipates and handles errors gracefully. Write 
data triggers or module code to automate basic processes and perform all needed 
calculations. Write additional cursor-based code if needed to perform advanced 
calculations.



390Chapter  7: Database Integrity and Transactions

Exercises
1. Create a small database with tables for Customers and Employees. In 

addition to name and phone number, each table should hold a date column 
for when the person first started (as either a customer or hire date). Write 
a function that returns a percentage discount that uses a phone number to 
decide if the buyer is a customer or employee. Customers for less than one 
year get no discount, 1-3 years (2%), 4-7 years (4%), 8 or more years (5%). 
Employees for less than one year get no discount, 1-2 years (5%), 3-5 years 
(7%), 6 or more years (10%). 

2. Create a database table of Employees that includes the maximum number of 
vacation days and number of sick days allowed each year. 
Employees(EmployeeID, LastName, FirstName, Phone, 
VacationDays, SickDays, DateHired, Dateborn)

Create a second table with keys for EmployeeID and Year that has values for 
number of vacation days and sick days taken that year. 
 EmployeeDays(EmployeeID, EYear, NVacation, NSick)

 Write a function that has input parameters for Year, EmployeeID, number 
of days off, and whether they should be recorded as sick or vacation days. 
If the employee exceeds the number of allotted sick days, assign the days as 
vacation time instead. Excess vacation days do not get counted as sick days. 

3. Using the same two tables as the prior exercise (Employees and 
EmployeeDays), write a database trigger that prevents anyone from entering 
a value for vacation days taken that exceeds the maximum allowed.

4. Create a table that lists item category and the level of tax on that category. 
For example, food (0 percent), clothing (3 percent), entertainment (10 
percent). Write a function with category and price as parameters. Compute 
and return the appropriate tax. Normally, you would use an SQL statement 
for this computation, but if the tax table is provided on a separate system, you 
might need to write code. 

5. Create a data trigger that writes a row in a new table whenever employee 
salary is changed. Store the date changed, the employee, the old salary and 
the new value.

6. Create a data trigger that will prevent anyone from increasing an employee 
salary by more than 75 percent.

7. Create a data trigger (or form code if triggers are not available) that adjusts 
inventory quantity on hand whenever an item is sold. You need a SaleItem 
and Item table. 

8. A Web site sells custom components for cell phones. The site often offers 
daily deals which consist of “packages” of related items for a specific phone. 
Table: PackageItems(PackageID, ItemID, SalePrice) For example, one deal 
might contain a case, screen protector, and color-matched earphones. Each 
item is listed separately in the Items table of the database which includes 



391Chapter  7: Database Integrity and Transactions

the Quantity On Hand value. Table: Items(ItemID, Category, Description, 
ListPrice, QOH) Write a transaction function to safely handle the sale of one 
package that updates all of the QOH values as part of a transaction. 

9. Using the basic Items table that contains a QOH column, create a form that 
lets users edit the data directly. (Normally, you would use a Sale form but 
keep it simple for now.) Using default settings, determine what happens if 
two people change the same data at the same time. Adjust the settings to 
check for optimistic and pessimistic locking if they are available. Hint: You 
might want to create two separate forms connected to the same table for 
testing purposes.

10. Assume you are building a database for a Web-based form where a manager 
loads and displays all of the employee data for editing. At the end of the 
session, the changes made to the data are sent back to the database. Write 
the SQL command to safely update the table using optimistic concurrency. 
Assume you have an array that holds (a) the original values read from the 
database and (b) the new/changed values.

11. Create a table for LoanPayments(LoanID, PaymentNo, DateDue, Amount).  
Write a function that is called whenever a new loan is created, to load the 
payments table with the scheduled payments and amount due.

12. Given the following table, write a cursor-based procedure to loop through 
the table and compute the percent change from the prior month and store that 
value in the current row.

SalesMonth Sales PercentChange
01 25,123
02 24,331
03 32,992
04 37,102
05 42,474
06 46,551

13. Using the table in the previous exercise, write a cursor-based procedure to 
compute the average monthly sales (without using the SQL AVG statement).

Sally’s Pet Store
14. Where would you put the code (which Event) in each of the following 

situations? Note if you are using Access or SQL. You do not have to create 
the code for this exercise.
A. Notify a purchasing manager whenever inventory drops below a 

specified amount.
B. Compute the Sales Tax owed on a Sale.
C. Notify a supplier when an order is received.
D. Notify adoption groups of the total amount of donations they received for 

the day.
E. Validate a new employee’s Taxpayer ID with an online company.



392Chapter  7: Database Integrity and Transactions

15. Write a function to compute the average purchase cost of an item over the 
prior year and provide a warning if the ListPrice of the merchandise is lower 
than that value.

16. Write a function to insert a new Customer and return the generated key value. 
Inputs to the function include the LastName, FirstName, and Phone number.

17. Create a table to hold totals of merchandise sales by month and a percentage 
increase in sales from the prior month. Write a (SQL) function to compute 
the monthly totals and transfer them into the table. Add code to compute the 
percentage changes. 

18. Write the code to increase quantity on hand when an item is purchased—
specifically when the receive date is set. Be sure to handle it as a transaction, 
since quantity on hand can also be affected by sales.

19. The Pet Store is thinking about purchasing scanners to use at checkout. These 
scanners will pick up the ItemID of each merchandise item scanned. Assume 
that this data will trigger an event when an item is scanned. Write a function 
that can be called by this event. This function should create a new sale, and 
store the data for the items sold. You can emulate the scanner trigger by 
creating a form with a control to select an ItemID and a button to fire the 
trigger.

Rolling Thunder Bicycles
20. Create a function to compute the great circle route (shortest) distance 

between two geographic locations. 
21. Where would you put the code (which Event) in each of the following 

situations? Specify if you are using Access or SQL. You do not have to create 
the code for this exercise.
A. Send an e-mail message to a customer when a bicycle is shipped.
B. Send an e-mail message to a supplier to order more components when 

quantity on hand drops below a preset level.
C. Notify a manager when an employee is involved with purchases of more 

than $50,000 in a month.
D. Notify (e-mail) a manager if the daily sales value of bicycles exceeds a 

preset level (both high and low) in terms of percentage change from the 
prior year. 

E. Notify a purchasing manager of all items that were ordered within the 
last month but not yet received.

22. Create a table to log changes to Employee salaries (SalaryChange(ChangeID, 
ChangeDate, EmployeeID, OldSalary, NewSalary, User). Write trigger code 
on the Employee table to record any changes to the salary into the log table.

23. Create a function that estimates the time to build a new bicycle. It should use 
the average number of days for the same model type but adjust the days by 
the number of orders of all bikes made in the past 14 days.



393Chapter  7: Database Integrity and Transactions

24. Create a form or a function that lets the finance manager safely record 
payments to manufacturers. 

25. Write a function to update the BalanceDue column in the Customer table 
while avoiding concurrency issues. The function needs input parameters for 
CustomerID and ChangeAmount which can be positive or negative. 

26. Create a query to compute sales by month for each model type. Create a 
temporary table to hold that data and to hold the percentage change. Write a 
program that executes the query, placing the data into the table. Then cursor-
based code computes the percentage change in sales. The function should 
return the new balance value.

27. Write a procedure to add an interest charge to customer accounts with a 
balance due. Make sure to handle concurrency/locking problems.

28. Write a program to automatically generate a new purchase order when 
quantity on hand falls below a specified level. Add the ReorderPoint column 
to the Component table and enter sample data.

Corner Med 
29. Where would you put the code (which Event) in each of the following 

situations? Specify if you are using Access or SQL. You do not have to create 
the code for this exercise.
A. Two physicians sign up for vacation on the same days.
B. E-mail notices sent to the director physician whenever a patient is 

diagnosed with a set list of codes/diseases (particularly some contagious 
diseases).

C. A warning message sent to the physician and business manager whenever 
the AmountCharged for a Visit Procedure is below 50 percent of the base 
cost.

D. An e-mail sent to the business manager whenever the amount paid by the 
insurance company plus the amount paid by the patient differs from the 
total amount charged for a visit.

E. A warning notice sent to the physician when the Systolic pressure for 
a visit is greater than 140 and the patient is prescribed a drug from a 
certain list. 

30. Write a function that reduces the amount charged for a procedure for a 
specific patient (VisitProcedureID) and reduces the patient amount owed/
paid.

31. Create a table to hold revenue earned per week, using a date format of 
yyyy-ww. Include a column to hold percentage change from the prior week. 
Write a query to compute the totals and a routine to compute and store the 
percentage change.

32. To facilitate loading data from the company’s older system, write a function 
that creates a new patient record given LastName, FirstName, Gender, 
DateOfBirth as input parameters, and creates a new visit record for that 
patient for a VisitDate parameter. The function should return the newly 
generated VisitID.

Corner
Med

Corner
Med



394Chapter  7: Database Integrity and Transactions

33. Write a database trigger to record the date, user, and patient name any time a 
patient row is deleted.

34. Change the tables so that patients can make multiple payments. Include 
the date, amount of payment, and visit. Write a function to return the total 
amount paid by a patient for a given VisitID. Briefly explain why this method 
is better than the current tables.

Web Site References

http://www.sigplan.org/ Association	for	Computing	Machinery—
Special Interest Group on Programming 
Languages (advanced).

http://support.microsoft.com/kb/115986	
http://speckyboy.com/2012/05/13/six-common-web-
programming-mistakes-and-how-to-avoid-them/

Avoiding common database programming 
mistakes.

Additional Reading
Baralis, E. and J.Widom, An Algebraic Approach to Static Analysis of Active 

Database Rules, ACM Transactions on Database Systems (TODS), 25(3) 
September 2000, 269-332. [Issues in database triggers and sequencing, but 
plenty of algebra.]

Ben-Gan, I., L. Kollar, and D. Sarka, Inside Microsoft SQL Server 2005: T-SQL 
Querying, Microsoft Press: 2006. [Discussion and examples of advanced 
topics for SQL Server.]

Gray, Jim and Andreas Reuter, Transaction Processing: Concepts and 
Techniques, San Francisco: Morgan Kaufmann Publishers, 1993. [A classic 
reference on all aspects of transaction processing.]

ISO/IEC 14834:1996, Information Technology—Distributed Transaction 
Processing—The XA Specification, 1996. [A discussion of the common 
method of handling transactions across multiple systems.]

Sanders, R. and J. Perna, DB2 Universal Database SQL Developer’s Guide, Burr 
Ridge, IL: McGraw-Hill, 1999. [Using embedded SQL with IBM’s DB2 
database.]

Urman, S., R. Hardman, and M. McLaughlin, Oracle Database 10g PL/SQL 
Programming, Oracle Press: 2005. [One of many references providing an 
introduction to SQL Server programming.]

Vossen, G., G. Weikum and  J. Gray, Fundamentals of Transactional Information 
Systems : Theory, Algorithms, and Practice of Concurrency Control 
and Recovery, San Mateo, CA: Morgan Kaufmann, 2001. [Detailed 
programmer’s perspective of transaction details.] 



395

What You Will Learn in This Chapter
•	 What	features	need	to	be	included	in	finished	applications?
•	 How do you create a consistent application design?
•	 How	are	forms	and	reports	integrated	and	organized?
•	 How can users gain easy access to standard operations across the application?
•	 How	can	a	computer	application	be	modified	for	people	with	disabilities?
•	 How	do	you	create	custom	help	files?
•	 What does your application do when something goes wrong?
•	 How do you know your application works correctly?
•	 How will your application be installed?

Chapter Outline

Application Development
8Chapter

Introduction, 396
Two-Minute Chapter, 397
Design Consistency, 398

Page Design Templates, 398
Usability , 399
Fonts and Customization, 400
Mobile Devices, 401

Application Structure, 402
Designing Applications, 403
The Startup Form, 403
Sally’s Pet Store: Application 
Organization, 404
Administrative Tasks, 407

Menus and Toolbars, 407
Purpose of the Menu, 408
Toolbars, 409
Creating Menus and Toolbars, 409

Accessibility, 410
Custom Help, 412

Creating a Help File for Windows, 413
Context-Sensitive Help, 415
Windows Help 3/Help Viewer, 417

Handling Errors, 419
Catching Errors, 419

Logging Errors, 420
Debugging, 420

Testing, 420
Form and Module Testing, 421
Integrated Application Testing, 422
Stress or Performance Testing, 422
Usability Testing, 422
Security Testing, 423

Deploying an Application, 424
Packaging Files, 424
Installation Programs, 425
Server and Database Configuration, 425

Summary, 425
Key Terms, 426
Review Questions, 427
Exercises, 427
Web	Site	References,	429
Additional Reading, 429



396Chapter 8: Application Development

A Developer’s View
 Miranda: Finally. I think I see the end of this 

project.

 Ariel: That’s terrific. What’s left?

 Miranda: Well, everyone is happy with the 
forms and reports. All I have to do 
now is tie them together into an 
application. I have a few details to 
add to make the forms a little easier 
to use. The salespeople complained 
about having to enter customer 
numbers twice, and they say the 
order lists are too long. They want 
to pick from a list of orders just for 
the given customer.

 Ariel: That’s it? Let’s celebrate!

 Miranda: Well, not quite yet. I also have to 
write some help files. Then I have to 
create a set of installation disks so 
they can install the system on all the 
computers.

 Ariel: Sounds like a lot of details. Will it 
take long?

 Miranda: I don’t think so. But it will make 
the application more attractive and 
easier to use, so I really need to 
finish the details.

Introduction
What features need to be included in finished applications? As a database de-
veloper, it is your responsibility to create systems that help users in their jobs. You 
accomplish this task by building an application to perform a specific task. The 
task is defined by the user, and your application needs to be easy to use. The goal 
of the application is to collect data and provide information to help users make 
decisions. You define tables to hold the data, but you never want users to see the 
underlying tables. Instead, you create forms to collect data and reports to help us-
ers visualize and analyze the data.

An application is more than a collection of forms and reports. It is a set of 
forms and reports that work together. More specifically, an application has (1) an 
internal consistency to the user interface, (2) a structure or layout that supports 
the flow of user tasks, (3) menus to make it easy to find things, (4) a help system 
to provide documentation and assistance, (5) error handling to catch anticipated 
problems and protect the user, and (6) a method to deploy the application. At this 
stage in the design, you also have to perform considerable testing and evaluation 
of the application.

The first two items (consistency and structure) are the defining elements of an 
application. The others are features that are added at this stage to make the sys-
tem more reliable and easier to use. The look and feel of the forms is the major 

Getting Started
Applications are more than just forms and reports. You need to ensure 
all forms and reports have the same look and feel. You build an inte-
grated application by linking everything with menus. You also need to 
add help files, add error handling, and test the entire application. Part 
of the testing includes ensuring that the application is accessible to all 
potential users. You also have to build administrative tools and deploy 
the application. 



397Chapter 8: Application Development

element of consistency and design. Every form in an application should have the 
same look and same approach to entering data. Otherwise users will get confused 
and become frustrated because your application makes it harder to perform their 
jobs. The topic of structure entails connecting forms and reports together. Users 
entering data on one form should be able to click a button, or double-click an entry 
to see more detail. Figure 8.1 shows a simple example. Users entering data on the 
Order form will probably want to open the Customer form to edit the data about 
the customer. As a developer, you have to learn what connections are needed on 
each form. These connections help create the structure of the application.

Two-Minute Chapter
Applications begin with forms and reports but require consistency, structure, and 
supporting details including menus, custom help topics, and the ability to handle 
errors. Unless you have been exceedingly careful from the start, be prepared to 
spend time to rebuild all forms and reports to ensure they have the same “look and 
feel.”  

Applications need to have consistent colors, fonts, layouts, menus, and usabil-
ity features. When possible, build templates that serve as the foundation for forms 
and reports. These templates usually set the page structure as well as the styles 
to be used in each component. Applications might need different templates and 
styles for different devices—particularly if mobile phones are going to be used 
with smaller screens. To improve accessibility, try to use system fonts and colors 
to support user control. Whenever possible, support multiple input methods, in-
cluding keyboards.

The structure of an application is important—particularly where components 
are stored and run, as well as how pieces connect together. Most applications re-
quire some type of menu or toolbar along with buttons and links to help connect 
forms and reports and make it easier to find various elements and explore the ap-
plication capabilities.

Applications also need custom help pages to answer user questions—particu-
larly by providing the ability to search for keywords. Help topics are usually writ-
ten as individual HTML topic pages. Keywords can be added to those pages along 
with using heading levels to indicate the table of contents or structure. Windows 
help files are created by compiling the HTML files into a single CHM file using 
the HTML help compiler from Microsoft or (expensive) third-party compilers. 
Context-sensitive help is provided by assigning a number to every page using the 
topics.h file, then entering the help file name and topic number into the application 
properties; such as the form properties in Microsoft Access.

Order
Customer: 1592
Jane Doe

Customer
CID:  1592
First: Jane
Last: Doe
Address: 123 Oak

Edit

Figure 8.1
Application structure. Forms are connected so users can click a button or link to get 
more detail, open other forms, or display reports.



398Chapter 8: Application Development

Applications also need extensive testing, including module, integration, stress/
performance, usability, and security testing. Special attention should be paid to 
check for SQL Injection attacks. At a minimum, all user inputs should be cleaned 
and SQL queries should use parameters instead of string concatenation. Even with 
extensive testing, errors can still arise, so the application should have error han-
dling code that can automatically recover from errors whenever possible. It should 
also have the ability to log errors so developers can examine the log to look for 
common issues and find improvements for the next versions. 

Applications also need a deployment method. Server-based systems are 
straightforward and might be deployed using basic script files. Client-based ap-
plications should be packaged and installable from a simple start command.

Design Consistency
How do you create a consistent application design? This question is particu-
larly important to answer when several developers are working on the same proj-
ect. The application design consists of several levels. Some are easier to configure 
and observe. At the most basic level, all forms should use the same color scheme. 
Likewise, reports should use the same fonts and follow a similar layout. But, de-
sign also includes usability issues such as the page layout and selecting items 
from a list instead of memorizing ID numbers. Consistency in design also applies 
to the links between forms and the use of menus and toolbars. The primary issues 
discussed in this section are related to design and usability.

Page Design Templates
Look through a book, magazine, or well-designed application or Web site and you 
will see that all of the pages have a consistent appearance. Only a few fonts are 
used, headings are aligned the same, margins match, and colors blend and match 
across all of the pages. This consistency does not happen by accident. Graphics 
designers first create a template and then apply the template to all of the pages. A 
template defines the style features of a page. The capabilities depend on the sys-
tem and tools available, but you can usually define the overall page layout, fonts, 
and colors.

Figure 8.2 illustrates the effect of a form template. Take a look through the 
forms you have created for your assignments and projects to this point. Do they 
look like the first form? When you look at a collection, do they all look the same, 
or are they all different? Eventually, developers learn to pay attention to detail and 
consistency. Even so, it is easy to make mistakes. A template makes it easier for 
everyone to be consistent and to reduce errors. Ultimately, someone still has to 
examine every form and report to double-check consistency, but with templates, 
you can come very close on the first pass. 

Each development tool has different methods to create and apply templates. A 
few systems do not support templates at all, and some have predefined templates 
that you cannot change. The most common approach to templates is to apply the 
template at design time. If the template is changed later, there is no way to push 
the changes onto all of the forms based on the template. In other words: Be sure 
your template is complete and accurate before you create the forms and reports. 
If you have already created complex forms, it is difficult to apply a template. In 
some cases, you can create a new blank form based on the template and copy the 
controls from the original form. In extreme cases, you might have to rebuild the 
entire form from scratch if you need to apply a template later.



399Chapter 8: Application Development

Application design is something that needs to be established early in the devel-
opment process. Even if your system does not support templates, you can define a 
style sheet that defines the overall page layout, the common elements to include, 
and the styles of each major element (titles, labels, text, and so on). Each devel-
oper is responsible for following the guidelines on the style sheet. This process is 
harder to use than a template, but it works for every system. 

Templates are not the final answer to design questions. For instance, some 
forms or reports may need to add other features, or change margins to make some-
thing fit on a page. Fortunately, once the template is applied, you can override a 
setting and coerce the page to get the layout you want. However, you need to be 
careful with this power. As a developer, you have to make decisions. It is best to 
maintain consistency, but ultimately, you have to keep the users happy. If a man-
ager insists on squeezing an extra column onto a report, you will have to reduce 
the margins or change the font size. On large projects, you should establish a coor-
dinator who can be consulted when you need to override a template specification. 

Usability 
Beyond layout, fonts, and colors, you need to establish a consistent set of usability 
standards for an application. For instance, consider the issue of foreign keys such 
as using CustomerID in the SalesOrder table. When a clerk is entering data into 
the SalesOrder table, it would be painful to require the clerk to memorize the Cus-
tomerID values. Instead, the form will have some type of drop-down list or list-of-
values option that enables the clerk to pick the appropriate customer from a list. In 
terms of your application, you need to be sure that all foreign key references use 
the same approach to solve the problem. Consider the situation shown in Figure 
8.3, where the Sales form uses a drop-down list to pick customers based on phone 
numbers. Imagine how annoying it would be to use a pop-up box to search for 
customers by name on the Receipts form.

When the same users are going to work with multiple forms, the forms need to 
use a consistent data-entry method. In general it is better to be consistent across all 
of the forms. In a few cases, one group of users might insist on a unique lookup 
approach that more closely matches its needs, but these variations should be dis-
cussed and approved separately. 

Menu Main  Print  Help
Customer

ID 1523

First Mary

Last Jones

Phone 123-4444

Initial Form

Title
Label Input

Template

Customer
ID 1523
First Mary
Last Jones
Phone 123-4444

Consistent Form

Figure 8.2
Template. The template defines the structure of the form and the attributes of the 
various elements. It can also include common features such as menus and navigation 
buttons.



400Chapter 8: Application Development

The idea of consistency also applies to the tab order, choice of related data to 
display on a form, subform layout, and similar topics. For example, when the user 
selects a customer, you might choose to display additional information, such as 
phone number, on the form. As much as possible, this same data should be dis-
played on all forms involving customer lookups. 

Fonts and Customization
Selecting fonts and color schemes for an application is always a challenge. You 
face conflicting goals. On the one hand, you want to choose a pleasing design that 
displays all of the relevant information in one place. On the other hand, you need 
to give users control over the displays. Why do users need control? Users often 
configure their systems to support the way they work or to compensate for vision 
issues.

Users can configure the Windows environment through various settings in the 
Control Panel—including font sizes, color schemes, and regional settings such 
as date displays. Your application needs to support these settings. You provide 
this support by choosing system-defined fonts and colors. Windows development 
tools, such as Visual Studio, provide font settings for choosing system fonts. Use 
these choices instead of picking a fixed typeface and font size. Likewise, you 
should choose the Windows palette colors instead of forcing a fixed color. When 
your application runs, it will pick up the currently-defined fonts and colors. If the 
user changes those values, your application will adapt and use those colors. Yes, 
in some cases, the user might pick strange color combinations, but the decision 
belongs to the user—not to you.

Web applications are somewhat trickier—and the capabilities are heavily de-
pendent on the development tools you use. At the moment, most systems do not 
provide user control over color schemes. Some default schemes are commonly 
used (e.g., white background, black text, and blue highlights), and you should fol-
low these schemes when possible. On the other hand, font sizes are more flexible, 
and more interesting. Take a look at your browser options and you will find an 
option to control the font size (try Page/Text Size). However, if your Web form 
specifies fonts in terms of points, this option will not work for the users. Also, if 
you specify page layout sizes (e.g., tables) in terms of fixed measures such as pix-

Sales Order

209-111-2222 Jones
218-232-3938 Smith
306-335-3048 Jackson
415-209-0398 Sanchez

Customer
Receipts

Jones, Mary
Jackson Joe 218-232-3938
Jamison Lisa 601-193-4841
Johnson Sam 502-203-8383
Jones Mary 209-111-2222

Customer
Search: J% 

Figure 8.3
Consistent usability. Both forms require the selection of a customer since you cannot 
expect people to memorize ID numbers. It would be annoying to select customer by 
phone number in a drop down list on the Sales form but by a pop-up list organized by 
name on the Receipts form.



401Chapter 8: Application Development

els, changes in text size will not work very well as the font changes but the con-
tainer remains the same size. Consequently, you have to use font and size settings 
based on relative terms instead of absolute point values. A relatively new way to 
define sizes is to use ems, where one em is defined as the width of the letter M in 
the current font. With relative sizes, the font and layout values will be rescaled 
automatically when the user changes the font size.

Mobile Devices
Increasingly, users want to access data from anywhere—using mobile devices 
connected to internal applications or Web sites. Providing users with greater ac-
cess to applications and data is good. However, cell phones and other portable 
devices generally have smaller screens. Many wireless plans also have limitations 
on the data transfer speed or monthly caps (or high prices) on the amount of data 
transfer. Figure 8.4 shows approximate sizes and pixel counts for a handful of de-
vices. Keep in mind that technology continues to evolve, so you need to research 
current values when you build an application. The main key is that the cell phones 
(Apple and Samsung) are considerably smaller and use fewer pixels. Although 
starting with the Apple iPhone 4 released in 2010, resolutions have improved—no 
one will be able to read the text if it is drawn pixel-for-pixel. Instead, the newer 
phones and tablets use those pixels to display better-formed characters—shown at 
readable size but with better resolution and clarity. Compare an iPhone screen at 3 
x 2 inches with a desktop monitor at about 13 x 8 inches. Physically, the desktop 
screen can hold 16 iPhone screens. The pixel count works to about the same ratio 
with the 3S, but not the version 5. The point is that even if your application uses 
only half of the desktop monitor, only a small fraction of that page could be dis-
played on a mobile screen at one time. 

Pages that work on larger screens can become unusable at smaller sizes—either 
the fonts are too small to read, or the user has to scroll vertically and horizontally 
to see the entire form. Unfortunately, there is no good answer to creating pages 
for different sizes of screens. Often, it is necessary to create two versions of the 
application—one for “regular” screens and one for smaller mobile screens. Creat-
ing different versions is also useful because mobile devices often have slower (or 

Figure 8.4
Sample device resolution. Fewer pixels means less information can be displayed. 
Smaller size means text and images might be too small to read, or less information 
can be displayed at readable fonts sizes.

Device Size (Diagonal in.) Pixels
Desktop 24 1920 x 1200
Laptop 15 1440 x 800

1920 x 1080
Apple iPad 11 2048 x 1536
Google Nexus 10 10 2560 x 1600
Apple iPhone 3S 3.5 480 x 320
Apple iPhone 5 4 1136 x 640
Samsung S4 5 1920 x 1080



402Chapter 8: Application Development

more expensive) network connections, so you have to be more cautious in using 
graphics and limiting the amount of data sent to the page. But developing two 
versions of an application takes more time--hopefully less than twice as much—
because you already have the tables, functions, and calculations. And you have to 
plan for more people to handle maintenance and upgrades.

Application Structure
How are forms and reports integrated and organized? The overall structure 
is an important feature of any application. The structure or layout defines how 
the user will deal with the application. Most database applications will use forms 
and reports as individual components. The first step in designing the structure or 
architecture of the application is to design each form. The objective of application 
structure is to organize all of the forms and reports to produce a complete appli-
cation. In some applications, this purpose can be achieved with a central startup 
form, which contains buttons to direct users to the appropriate form. More com-
monly, you will also need to add interconnection buttons on individual forms. For 
example, a user entering data on an order form might want to look up additional 
information on the customer form.

Today, it is common to separate a database application into two or three major 
sections. As shown in Figure 8.5, the front end consists of the forms and reports 
that the user sees. The back end consists of the database tables. Sometimes a 
middle tier is added that consists of program code to define and enforce business 
rules. With a network, this separation can be physical, and each component can 
run on separate computers. Even if all of the elements will run on a single ma-
chine, it often makes sense to separate them logically. This separation enables you 
to change each part independently. It also makes it easier to choose different tools 

Oracle
SQL Server
DB2
Access

Visual Basic
Internet
Oracle Forms

Back end: 
Database

Front end: 
Forms and 
Reports

If	QOH	<	100	Then
Else
End	If

Middle Tier: 
Business Logic

Optional.
Programming code

Figure 8.5
Application structure. It is common to use different tools for the back-end database 
and front-end forms. The use of the middle tier to handle business rules depends on 
the size of the application and the management details of the firm.



403Chapter 8: Application Development

for each purpose. For example, you could write the front end forms and reports 
with Visual Studio, store the data in an Oracle database, and write custom code to 
evaluate business rules. If the business changes, you could transfer the business 
rules to an enterprise resource planning system, or change the back-end DBMS 
with only minor changes on the front end.

Choosing the overall architecture of the application is the first step to designing 
the application. The choice of tools and structure will depend on the organization’s 
needs and capabilities. Some companies have a formal process for designing and 
approving applications. This process is important when applications need to work 
together and fit into the overall structure of the company’s information system.

Designing Applications
The first step in designing the application structure is to identify the various users 
and outline the tasks that will be performed with the application. The application 
must reflect the needs and working habits of the user. If several users have differ-
ent needs, the application can be divided into sections for each group. A central 
startup form can be used to identify the user and direct him or her to the appropri-
ate section.

This segmentation reduces complexity for the users and simplifies their tasks. 
However, it has two potential drawbacks. First, if the application has too many 
layers, users will have trouble finding the forms and reports they need. Second, 
poor organization confuses users and requires additional support and training. In 
other words, you must find an application structure that provides the functionality 
each user needs but is still easy to understand. The inherent conflict in these goals 
is what makes it so difficult to design a good application structure.

Even experienced programmers rarely design a “perfect” application the first 
time. In most cases you need to develop several ideas and test them. You can build 
prototypes by creating sample forms and including command buttons to tie them 
together. These prototypes can be given to users to test. You then incorporate user 
suggestions and modify the prototypes. By testing different structures, you can 
quickly learn which technique will work best.

In building a complex application structure, it is best to start with the core con-
cepts. Once you have tested them with users, you can add features. Each revision 
constitutes a new application version. Keep track of the version number; record 
the date, the reason for the change, and the changes that were made. Most com-
mercial software vendors follow this development process. No one tries to visual-
ize a complete, massive application and create it up front. Instead, developers start 
with a basic concept and build a system that works and implements the fundamen-
tal concepts. Then developers expand the capabilities by adding new features.

The two most important aspects in this type of development are (1) getting 
the overall structure correct up front and (2) using a flexible design that is easy 
to modify later. For example, it is critical that your data tables be normalized, 
because normalized tables can be easily expanded later to provide new features.

The Startup Form
Designing an overall structure and appearance often requires artistic sensibility as 
well as logic and research. Each application is different and can require a unique 
approach. Yet, over time, designers have learned that some common elements can 
be used in many applications. The main menu or startup form is an element that 
many developers like to use. However, it is not really the ultimate answer to every 
problem.



404Chapter 8: Application Development

The main purposes of the startup form are shown in Figure 8.6. The startup 
form is generally the first form of the application. It provides a centralized direc-
tory to the rest of the application. It often contains an image or picture and usually 
consists entirely of command buttons. Clicking a button brings the user to another 
menu form or to a specific form or report.

Because the startup form is the starting point for the application, it is a good 
place to identify the user. If possible, you should identify the user from the net-
work login data. Otherwise, you will have to maintain a separate login for each 
user. The two primary reasons for identifying each user are (1) to maintain appro-
priate security controls and (2) to customize the application for each user group.

The startup form can be customized through layout and the use of color. For 
example, options primarily intended for different managers (marketing, finance, 
etc.) can be displayed in different colors. If additional customization is needed, 
individual options can be made invisible and disabled so that users see only but-
tons that are designed for their use. This approach simplifies the screen layout and 
reduces confusion. However, it is less useful if managers need to share their tasks.

Keep in mind that some applications will work better without a startup form. 
Think about the applications you use on a daily basis: word processing, spread-
sheets, and so on. None of these require startup forms. Instead, they jump right to 
the primary user task and rely on menus to provide access to the functions. You 
could use this same approach for users who have a limited view of the applica-
tion—such as front line clerks. Once a clerk logs in, the application jumps imme-
diately to the primary data-entry form. The point is that you should not try to force 
a startup form into every application. Look at the jobs and talk with the users to 
find the best way to organize the forms and reports for each task.

Sally’s Pet Store: Application Organization
In many ways the startup form is a table of contents into the application. It pres-
ents the organization of the application. Before building the startup form, you 
must decide how the application will be organized. That is, you must learn which 
forms are most important to users, how they will switch between forms, and how 
often they use each form.

Although there are many useful ways to organize any application, consider two 
different approaches to the Pet Store application. The first approach is shown in 
Figure 8.7. At first glance this approach seems reasonable. Items are ordered, then 
received and then sold to customers. Hence the store managers might want to start 
with orders and enter data by following each item from purchase through sale.

•	Directory	for	the	application.
•	Identify	users.
•	Startup and shutdown code.

 ○Preload	forms	in	background.
 ○Initiate transaction and security logs.
 ○Establish network connections.

•	Copyright and usage notes.

Figure 8.6
Uses of startup forms. As the initial form for an application, the main menu can be 
used to control tasks that apply to the complete session.



405Chapter 8: Application Development

Although this approach might sound reasonable at first, it has several flaws. 
First, managers rarely want to track individual items. Perhaps they want to follow 
individual animals, but rarely merchandise. Second, when an order is placed, the 
item has not been received yet, so there is no point in linking an order to the re-
ceipt of the shipment. More important, there is no way to connect individual items 
to a sale. For example, you might know that a customer bought three cans of a 
particular dog food, but there is no way to tell exactly which cans. Hence, manag-
ers rarely need a link from receipt of shipments to individual sales.

An improved approach appears in Figure 8.8. First, notice that it has more 
links—including bidirectional links. For example, when a shipment arrives, work-
ers need to pull up the matching order to see whether the proper items were deliv-
ered. Hence an Orders button is placed on the Shipping Receipt form. Once in a 
while, a manager might want to check on the shipment of a particular order, so the 
link is bidirectional. Notice that Sales are connected to Orders and Receipts—but 
only through the Inventory items. Inventory QOH can be displayed directly on 
the Sale form. The Sale form also has a connection to Orders—to create special 

Order
Merchandise

Item

Receive
Merchandise

Item

Sell
Merchandise

Item

Get
Customer

Data

Figure 8.7
Poor organization of the Pet Store application. The links are at the wrong level (item 
instead of order). Managers rarely need to track individual items from order to receipt 
to sale. 

Orders Receipt

Sale

Supplier
Customer

Inventory
Items

special
orders

Figure 8.8
Improved organization for the Pet Store. The lines represent links from one form to a 
second form. The links are usually created through buttons placed on the form.



406Chapter 8: Application Development

orders. If an item is out of stock, a salesperson might want to check on recent or-
ders to see when the item might arrive. The designer should talk with users to de-
termine how often this situation arises and how it should be handled on the form.

Eventually the Pet Store application will contain many forms and reports. Most 
of them are linked to a startup form. Many of them are linked to each other. But-
tons or events on one form lead the user to a related form. Some of the forms 
are simple and affect one table, but most display data from several related tables. 
Each individual form represents specific business events and tasks. Figure 8.9 
shows the primary forms used by the sales clerk role. This diagram is a simplified 
version of a UML collaboration diagram. The main point here is that it identifies 
the initial forms needed by this group of users. Consequently, you should put links 
to Sales, Animals, and Customers on the startup for this user. You will need to cre-
ate a similar diagram for the other roles at the Pet Store, such as purchasing and 
management.

Figure 8.10 shows one version of a startup form for Sally’s Pet Store. The but-
tons on this form match the primary tasks identified for the groups of users. The 
buttons are color coded to highlight the three groups. You could go further and set 
the visibility of the buttons based on the category of the user. When each person 
logs in, the form displays the buttons or forms most relevant to that person’s tasks. 
With some additional coding, you could write the form so each user could select 
a set of buttons to personalize the main screen. However, customization is usually 
easier on tool bars instead of the main menu. In general, you should avoid putting 
too many buttons on the main menu. An old rule of thumb states that the average 
person can handle seven, plus or minus three, items at a time, so four to ten but-
tons on a form is a good target. Obviously, a complex application ultimately has 
many more than 10 forms and reports. With large applications, you can extend the 
startup form to additional forms or submenus. You can also add drop-down menus 
to make it easier to find commonly used items. 

Remember that you also need to connect forms to other forms. Depending on 
the user interface you choose, you might add buttons to forms or use double-clicks 
to trigger the second form to open. These links are commonly created with foreign 
key relationships, such as adding an Edit button to the SalesOrder form to open 

Sales

Customers

Animals

Sales Clerk

Animal Health

Genealogy

Receipts

Merchandise

Figure 8.9
Collaboration diagram for sales clerk section. Diagramming the forms and reports 
used by an actor (employee) makes it easier to identify the overall structure and menu 
for this role.



407Chapter 8: Application Development

the Customer form. Similarly, you can add links to print or preview reports from 
various forms, such as printing a sales receipt from the SalesOrder form. The spe-
cific links depend on the needs of the users.

Administrative Tasks
When you build the application, you also need to think about the administrative 
tasks that will need to be performed. Administrative tasks consist of jobs that 
need to be performed to keep the application running, such as updating data in 
lookup tables, backing up the database, and assigning users to groups. Depending 
on the DBMS, some of these tasks are handled outside of your application. If your 
system needs routine maintenance or tasks performed on a specified schedule, you 
should incorporate a set of administrative forms to automate the tasks. If nothing 
else, collecting the tasks into one location makes them easier to handle and in-
creases the probability that they will actually be done. Tasks that require external 
steps could at least be documented within the application. Ultimately, you can 
hide the administrative tasks from the common users and use the security system 
to make them accessible to a few administrators

Administrative forms are particularly important for Web-based applications. 
You will find that it is convenient to handle administrative tasks using a Web 
browser so the administrators can support the application from almost any loca-
tion. This step is particularly critical when the application will be hosted by an ex-
ternal Internet service provider. On the other hand, it sometimes takes more work 
to create the administrative pages than it does to build the original application.

Menus and Toolbars
How can users gain easy access to standard operations across the application? 
Contemporary applications have several features that are designed to standardize 
the look and feel of applications and to make your applications relatively easy to 
use. Menus or toolbars and the Help system are common elements in most ap-
plications. Menus and toolbars are similar to each other and often created using 
the same techniques. A toolbar is a collection of items that perform some action 

Figure 8.10
Sample startup form. The buttons match the user’s tasks.



408Chapter 8: Application Development

when clicked. The items can be icons or text. Text items can be opened to provide 
drop-down lists of additional items. This submenu makes it easier to organize the 
many choices. A toolbar that primarily consists of text items is often referred to as 
a menu, but the distinction is minor. Most systems enable you to create multiple 
toolbars or menus. Generally, you can modify them on the fly in response to user 
actions. With some systems, it is relatively easy to enable the toolbars so users can 
configure their own icons and selections on a custom toolbar.

A main menu is generally the same across the application. Hence, the menu 
centralizes choices that can be activated at any time. Menus are also useful for 
visually challenged workers and those who prefer to use the keyboard instead of 
a pointing device (mouse), because choices can be activated with the keyboard. 
Toolbars usually consist of a set of icons or buttons that perform common tasks. 
Some applications enable users to customize the toolbar with specific buttons and 
users often reposition toolbars. 

Most menus are hierarchical: that is, detailed choices are presented under a 
few keywords. The Windows interface standard specifies that menus should be 
displayed at the top of the application. However, users may want to move menus 
to a different location. Most applications use similar commands on their menus. 
For example, the menu in Figure 8.11 contains top-level links for the main startup 
form, customer information, and help. Ultimately, entries would be added to cover 
the other main objects such as suppliers and animals. Whenever you create text 
items on a menu, you should define an access key so that users can select the entry 
directly from the keyboard. In a Windows environment, items are activated with 
the Alt key combination, such as Alt+C to open the main customers menu.

Purpose of the Menu
You might consider using the basic DBMS menu within your application. Then 
users will have full control over the database. In most cases, however, you will be 
better off building a custom menu for your application. A custom menu has sev-
eral benefits. First, it can limit user actions. For instnace, if users do not need to 
delete data, the menu should not have the delete commands. You still have to set 
the appropriate security conditions to prevent them from using other methods to 
delete data, but removing a command from the menu helps to restrict user choices. 
A second advantage of a custom menu is that it simplifies the user interface. If en-

Figure 8.11
Sample menu. Note the hierarchical structure. Also, the underlined letter represents 
the access key, which can be activated from the keyboard.  You can add shortcut keys 
(e.g., Ctrl+D), to activate a choice without going through the menu.



409Chapter 8: Application Development

try-level users need only four or five commands, display only those options on the 
menu to make them easier to find. Third, you can add special functions to a cus-
tom menu. For example, you might add a special Help command to send e-mail 
to your support desk. Fourth, menu choices can be activated by keystrokes. Hence 
touch typists and visually challenged workers can use your application without 
looking at the screen.

Toolbars
Custom menus are usually implemented on toolbars. A toolbar contains a collec-
tion of buttons and menu items. When the user clicks a toolbar button, a pre-
defined operation is executed. A toolbar can contain traditional buttons and textual 
menus. Most toolbars are dockable, which means that users can drag them to any 
place on the application window. Web-based forms rarely support dockable tool-
bars, but you can put menu options in a separate browser window or frame.

The purpose of a toolbar is to provide single-click access to complex actions 
or to commands that are used frequently. For example, many toolbars have an 
icon to immediately save the current work. As shown in Figure 8.12, you can put 
virtually any icon and any command on a toolbar. You can set different toolbars 
and menus for each form. You can even have multiple toolbars. For example, one 
toolbar might contain commands that apply to the entire application. Then special 
toolbars can be added as each form is opened.

Creating Menus and Toolbars
To support standardization and to simplify creating menus, most application de-
velopment environments have a menu-generation feature. The exact steps depend 
on the system you are using; however, three basic procedures are used to create a 
menu: (1) Choose the layout or structure, (2) Give each option a name and an ac-
cess key, and (3) Define the action to be taken when each option is selected. The 
main steps for creating a toolbar are similar except that you often create small 
graphical icons instead of text (step 2). When you create an icon, never assume 

Figure 8.12
Sample toolbar. Toolbars can contain buttons and menus. Buttons generally display 
icons. When the pointer moves over them, a tooltip is displayed that briefly describes 
the button. When the button is clicked, an action is performed or a menu is displayed.

Print

·Identify	report

·Ask	for	single	or	
multiple pages.

·Preview or print.Startup

Weekly Sales Analysis
Build graphs
Print reports
Export data to spreadsheet 



410Chapter 8: Application Development

that users will recognize an icon or understand what it represents. Most systems 
enable you to define a tooltip for each option. When the user moves the pointer 
over the icon, the tooltip, or short comment, is displayed. Every toolbar button 
must have a tooltip.

Creating toolbars and menus is straightforward with recent application devel-
opment systems. You can customize an existing toolbar by adding or deleting op-
tions. Similarly, you can create a new toolbar. Button icons and menus can be 
dragged to the toolbar. The main step is to set the properties of each item. Menu 
names should be short and descriptive. You should also try to follow the standard 
names used in commercial software. To specify the access key, precede the key 
letter with an ampersand. For example, the &File text will appear as File, and 
the Alt plus F keys will activate that option. Shortcut keys (e.g., Ctrl + D) can be 
specified in the property settings of the detail menu item or the button command.

Most systems enable you to create multiple toolbars and then activate or deac-
tivate toolbars for different users or in different areas within the application. You 
generally have to create a couple lines of code to activate or deactivate a specific 
toolbar.

Accessibility
How can a computer application be modified for people with disabilities? Ac-
cessibility is an important question, and it is also required for any application 
purchased by the U.S. Federal government. With the widespread adoption of 
graphical user interfaces in the 1990s, many people with disabilities encountered 
problems using the new applications. People with good vision might see value in 
dragging an object from one location to another, but many operations that rely 
on vision are unusable by other users. Certainly users with vision challenges will 
have problems, but it can also be difficult for other people to control a mouse or 
touch screen with enough detail to select and move items on a screen.

The most common methods to improving accessibility are:
1. Support multiple input methods (keyboard as well as mouse).
2. Do not put text into graphics, and use the Alt text tag to describe all images.
3. Use default and scalable fonts, do not use fixed sizes.
4. Select user-chosen colors instead of picking your own. In Windows,use de-

fined values such as System.ControlText.
5. If you must pick your own colors on Web sites, use a style sheet and stick 

with high-contrast colors.
The goal is to ensure that your forms and applications accept multiple input 

methods. In particular, users should be able to navigate the application by using 
just the keyboard. Menu and toolbar selections should include keystroke options. 
Typically, these selections are made by using the Alt key along with other mne-
monic keys. Short-cuts to specific actions are usually defined by Ctrl key combi-
nations. The Tab key should move the selection point within a form to different 
fields with Back-Tab (Shift-Tab) moving in reverse. Of course, all of these keys 
need to be defined—preferably in one location with a list that can be read and 
memorized by users.

Along the same lines, use system-defined fonts and colors within your appli-
cation. Avoid hard-coding a font size (such as 11 points) or color. With existing 
operating systems, users can define font sizes and colors that work best for them. 
When you hard-code sizes and colors in your application, your choices override 
those of the user. They might look good to you, but they could be invisible or 



411Chapter 8: Application Development

highly annoying to the users. Remember that many people (as much as ten per-
cent of the U.S. male population) can be red-green color blind. Most systems en-
able you to select colors based on the system-defined palette. For example, choose 
System.Text instead of “Black” and your application will pick up the values de-
fined by the user.

In addition to input issues, your application needs to be conservative with 
graphics and images. Vision-impaired users often rely on screen readers to pick 
up the text from the page and read it aloud. In general, the screen readers cannot 
read text or interpret figures or directions written into images. When images are 
needed, be sure to enter text in the ALT tag that specifies in text what the image 
represents or critical information that it contains.

Most development systems today include tools to provide these standard fea-
tures. However, typically you need to activate them and assign the keystrokes to 
them. As shown in Figure 8.13, menu and toolbars are often activated by adding 
an ampersand (&) in front of the hot key for that item. For instance an entry of 
&Help would generally be displayed with an underscore under the H as Help. The 
inclusion of the ampersand tells the menu system to watch for the Alt-H combina-
tion to trigger that selection. All of the necessary tools are built into the platform, 
but as a developer, you must enter the ampersand every time you define a menu, 
button, or toolbar option.

These secondary input methods are also useful for people without vision prob-
lems. Because they are triggered from the keyboard, they can improve data en-
try speed for almost everyone. For example, practice with Word and Excel, using 
keyboard combinations to select menu items and you will find that many tasks 
become easier and faster because you do not have to move your hands from the 
keyboard to move the mouse.

One of the more interesting sources of ideas for accessibility is the U.S. gov-
ernment. The U.S. government has been required to implement accessibility op-
tions for several years. The ruling is known as “Section508” from the number of 

Figure 8.13
Specify Alt-letter combination with ampersand. Every button, menu, and toolbar 
option should have a keyboard definition. Many systems use the ampersand (&) 
method before the key letter.

Ampersand (&) Adds underline and Alt-letter trigger



412Chapter 8: Application Development

the original statement. Government agencies have built an official Web site to dis-
cuss the topic: http://www.section508.gov/. A commercial site has similar notes: 
http://www.ada508.com. 

In 2013, some discussion in the Federal government suggested that Congress 
might apply the same rules to commercial Web sites. The Americans with Dis-
abilities Act (ADA) was written to require physical stores to provide access to 
everyone. So a few people have suggested that those with disabilities should also 
have equal access to any online site. It is not clear if the legislation has enough 
support to pass. It is also not clear that such a requirement is necessary. Presum-
ably, some sites will find it useful to provide accessibility features. Is it truly nec-
essary that all sites provide the same features? At the cost of opening up all Web 
sites to potential lawsuits. (The ADA has resulted in several nuisance lawsuits in 
the physical world.) But, some of the basic tenets of accessibility are straightfor-
ward and can be helpful to many users. Many of the suggestions for Web-based 
forms can be implemented on each page, such as including text descriptions of all 
functional images.

Custom Help
How do you create custom Help files? Online Help systems have grown to re-
place paper manuals. The goal is to provide the background information and the 
specific instructions that a user might need to effectively use the application sys-
tem. Help files can contain text-based descriptions, figures, and hypertext links to 
related topics. As much as possible, the help messages should be context sensi-
tive. The users should be presented with information that is designed to help with 
the specific task they are working on at the time. For instance, a user might want 
a definition of some term or more details about what actions can be performed on 
a specific page. Yet the Help system must also have an extensive search engine so 
that users can find information on any topic. Figure 8.14 illustrates a sample page 
from a Help system.

Microsoft has embedded a Help system within Windows for several years. This 
product has progressed through several versions. Most software developers use 
this system so users get a consistent Help system across all products. The Win-
dows Help system displays the files, handles the links, table of contents, indexes, 
and searches almost automatically. As a developer, you can concentrate on creat-
ing the files that contain the basic information and the necessary links. Then the 
help compiler converts your data into a special file that the Windows Help system 
can display and search. Once you learn the basic elements of creating a page, the 
hard part is writing the hundreds of pages needed for a complete Help system. 
Most directors of large development projects hire workers just to write the Help 
files.

Help files built for the Windows system can be used with any application that 
runs on the Windows operating system. However, these compiled files do not 
work on the Web. If you are building an Internet-based application, you generally 
need to create a separate set of Help pages. The Oracle system provides its own 
Help compiler that you can use instead of the Windows system.

Most help systems today use HTML-based pages to display the text. Conse-
quently, the help pages can also be used as support files for Web-based applica-
tions. However, the Windows-based systems always require some form of cus-
tomization, so it is never as simple as just copying files.



413Chapter 8: Application Development

Creating a Help File for Windows
The first and most important step in creating a Help file is to understand what 
information a user will need. Then you must write individual pages that explain 
the purpose of the system and how to use it. As with any communication project, 
you must first understand your audience. What types of people will use the ap-
plication? What is their reading level? How much experience and training do they 
have with computers in general? Do they understand the business operations? 
The goal is to provide concise help information in a format that users can quickly 
understand. Usability studies show that most users do not want to use the Help 
system—they prefer systems that are easy to use. When users turn to the Help sys-
tem, they are generally in a hurry and want a simple answer to a specific question.

Once you understand the needs of the users, you can write the individual Help 
pages. Five basic components are used to create a Help system: (1) text messages, 
(2) images, (3) hypertext links between topics, (4) keywords that describe each 
page, and (5) a topic name and a number for each page.

Microsoft currently supports two Help systems and is developing a third. But 
the company has experimented with several versions and it is not clear if newer 
versions are going to be carried forward. The original system generated HLP files. 
The second and most common one generates CHM files. A new system was de-
signed for use with Visual Studio 2010. Its files are ZIP archives with a suffix of 
mshc. It is an improvement over Microsoft Help 2, which was used for Visual Stu-
dio 2003/2005 and Office 2007 (and 2010); but has been discontinued. The newer 
Microsoft Help Viewer (mshc) version has some useful features, but it might be a 
while before it is more widely implemented.

Figure 8.14
Sample help screen. The Windows help system handles all of the display and 
searches. You just have to write the HTML topic pages and specify keywords.



414Chapter 8: Application Development

The discussion in this section focuses on the CHM approach because it uses 
hypertext markup language (HTML) files—which are relatively easy to con-
vert to Web based help. The newer Help Viewer system also relies on HTML files 
(technically well-formed XHTML pages), so the base concept is the same. Writ-
ing help files in HTML is relatively easy and many good tools exist for creating 
Web pages. However, be careful with the tools: Some of them, such as Microsoft 
Word, create complex code that might not work well with the Help compiler. You 
want to use an HTML editor that produces basic HTML code without relying on 
XML or JavaScript.

From a design perspective, it is crucial that you first design a style for your 
Help system and define that style using a cascading style sheet. A style sheet sets 
the typeface, font size, colors, and margins. The power of a style sheet is that you 
define all of the layout options in one place. Each page linked to the style sheet 
picks up those styles. So when you want to change the entire layout of your Help 
file, you make a few changes to the style sheet and every page uses that style. 

Every topic is created as a separate HTML page. Users will be shown one page 
of material at a time. Try to keep topics short so they fit on one screen. Each Help 
page will contain links to other topics. Figure 8.15 shows part of a basic Help 
topic. Each page should have a title (marked with the <title> tag). Pages generally 
have links to other topics (using the HTML standard <a href> tag). Images can 

<object	type=”application/x-oleobject”	
classid=”clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e”>
    <param name=”Keyword” value=”Contents”>
    < param name=”Keyword” value=”Introduction”>
    < param name=”Keyword” value=”Sally’s Pet Store”>
    < param name=”Keyword” value=”Management”>
</object>
<html><head>
<title>Sally’s Pet Store Introduction</title>
<link	rel=”stylesheet”	type=”text/css”	href=”PetHelpStyle.css”	/>
</head><body>
<h1>Introduction to Sally’s Pet Store</h1>
<table><tr>
<td><img	src=’PetStoreLogo2.gif’	border=’0’></td>
<td>Sally’s	Pet	Store	is	a	sample	database	project	for	use	with	the	
Database Management Systems textbook by Jerry Post. The database 
is	designed	to	be	a	work	in	progress	to	highlight	specific	elements.</td>
</tr></table>
<h2>The Pet Store</h2>
<ul>
<li><a	href=’FirmIntroduction.html’>Introduction	to	the	Firm</a></li>
<li><a	href=’FirmProcesses.html’>Processes</a></li>
</ul>
</body></html>

Figure 8.15
Partial sample Help page. Create each topic as a separate Web page using HTML. 
The anchor <a> tag links to other pages. The <img> tag loads images. Use style 
sheets to set fonts and design. Use a table or a style to control layout. Place keywords 
for the page in the <object> tag.



415Chapter 8: Application Development

be in one of two formats: joint photographic experts group (JPEG) and graphics 
interchange file (GIF). Most Help images will be line-art drawings and should 
be in the GIF format. Most graphics packages can create and store files in these 
formats. When you save the file, use only letters and numbers in the filename—do 
not include spaces. Because you will eventually have hundreds of pages, it is a 
good idea to keep a separate list of the pages along with a short description of the 
topic and when it was last modified. 

Keywords are an important part of every Help page. They are used to create 
an index for the user. An index lists the keywords alphabetically, when a user 
double-clicks a word, the corresponding Help page is displayed. The best way to 
create keywords is to enter them on each topic page. The easiest method is to copy 
the code from Figure 8.15 with the <object> tags and  then change the keywords 
within that list for each page. Each keyword is listed with a separate <param> tag. 
If you want multiple levels, you can use a comma to list the hierarchy. For ex-
ample, the three entries: (1) Sales; (2) Sales, Merchandise; and (3) Sales, Animal 
will create an index entry of Sales, followed by two indented lines for Animal and 
Merchandise.

Context-Sensitive Help
Consider an example of using help. Users working on the Sales form in your ap-
plication do not want to wade through several Help pages or try to think of search 
terms. Instead, when they press the Help key, they expect to see information on 
that particular form. At a minimum, you need to create different Help pages for 
each form in your application. But now you need some method in your database 

Figure 8.16
Setting context-sensitive help. In every form, enter the name of the Help file in the 
Help File property. Then enter the topic number for that form in the Help Context ID 
property. Every control or subform can also have a different Help topic—just enter 
the corresponding topic number.

Set	the	help	file	name	in	the	form	properties.

Set	the	topic	number	(Context	Id)	for	each	form	or	control.



416Chapter 8: Application Development

application to specify which Help page should be displayed for each form. As 
shown in Figure 8.16, each form has properties for Help File and Help Context 
ID. Oracle and Visual Basic forms have similar properties. You enter the name 
of the file (e.g., PetStore.chm) in the Help File property. The Help Context ID re-
quires a number. This number is a long integer and can range from 1 to more than 
2 billion.

It is crucial to note that applications require a topic number, but your Help file 
refers to pages by their filename—not by numbers. To get these two systems to 
match, you must assign a unique number to every topic page. With HTML Help, 
you create a separate text file (usually called Topics.h) that maps this relationship. 
A sample file is shown in Figure 8.17. You can choose any number, but it is easier 
to remember them if you assign the numbers in groups. Also, with 2 billion num-
bers available, you can leave large gaps between the group numbers. For example, 
it is better to number by hundred thousands or millions instead of by ones (1, 2, 
3, and so on). A useful technique is to assign numbers by business object (e.g., all 
Customer Help files might be numbered from 1,000,000 to 2,000,000). Once you 
have created the file, use the HtmlHelp API Information button (left side, fourth 
from the top) to tell the Help Workshop to include the file. Now, go through every 
form in your application and specify the file name and topic number for that form. 
Avoid changing the topic numbers in the Help file; they are hard to find in your 
application. 

After you have created all of the files, you need to run the HTML Help com-
piler to combine everything into a single CHM file. A version of this tool can be 
downloaded free from Microsoft. Search for the htmlhelp.exe file. However, it is 
a relatively limited tool that can be cumbersome to use. Most development teams 
purchase a commercial product to gain more features including support for mul-
tiple writers. Several commercial tools exist at varying prices, and they generally 
include features such as support for multiple file types and version control.

#define	PetStoreIntro	 100
#define	Accounting	 10000
#define	Animal	 20000
#define	AnimalDonation	 30000
#define	ClassDiagram	 40000
#define	Copyright	 50000
#define	Customer	 60000
#define	DatabaseDesign	 70000
#define	Employee	 80000
#define	FirmIntroduction	 90000
#define	FirmProcesses	 100000
#define	Inventory	 110000
#define	Marketing	 120000
#define	MerchandisePurchases	 130000
#define	MerchandiseReceipt	 140000
#define	Sale	 150000

Figure 8.17
Map file. Applications refer to topics by number, but the help system uses the 
filename. The map file (Topics.h) is a simple text file that assigns a number to each 
page.



417Chapter 8: Application Development

Windows Help 3/Help Viewer
Microsoft might be changing the Windows Help system. Keep in mind that the 
company has tried at least at least two other times to create a new help system. 
The current version, loosely known as Help Viewer or Help 3 is an improvement 
over Help 2. Currently, the tool is only used to create help files that work within 
the Microsoft Visual Studio tool. However, there is a chance that the tool could be 
applied to other products in the future.

In terms of writing Help files for Help Viewer, the process is similar to the 
existing HTML Help: Begin by writing each topic in a separate HTML file. One 
important catch is that the HTML file actually needs to be XHTML—which is 
a more precise version of HTML that is compatible with XML. The headers are 
slightly different, and all tags must be complete. For example, a paragraph must 
have both a beginning and ending tag: <p>My paragraph</p>.  

The other big difference is that all metadata is stored in the same file. There are 
no separate files for topics, keywords, table of content lists, or keywords. Every-
thing is marked in the page using special tags. Figure 8.18 shows the basic format 
of a simple XHMTL help page. Note the use of meta tags to specify the items 

Figure 8.18
Sample HTML Help 3. Meta tags within the file are used to define the basic features 
such as title, ID, table of contents location, and key words. Links use an ms-xhelp 
format to specify the ID of the link page. 

<?xml	version=”1.0”	encoding=”utf-8”?>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
    <title>My  Page Title</title>
				<meta	name=”Microsoft.Help.TopicLocale”	content=”en-us”	/>
				<meta	name=”Microsoft.Help.TopicVersion”	content=”100”	/>
				<meta	name=”Microsoft.Help.Id”	content=”fadf1f04-77dd-43fb-81f6-72e5ae0bfc3d”	/>
				<meta	name=“SelfBranded	content=“true”	/>
				<meta	name=“Microsoft.Help.Locale”	content=“en-us”	/>
				<meta	name=“Microsoft.Help.Package”	content=“My_Help_Package_Pets_en-us_1”	/>
				<meta	name=“Microsoft.Help.F1”	content=“PetStore”	/>
				<meta	name=“Microsoft.TocParent”	content=“-1”	/>
				<meta	name=“Microsoft.Help.Category”	content=“Petstore::Introduction”	/>
				<meta	name=“Microsoft.Help.ContentType”	content=“Concepts”	/>
				<meta	name=“Microsoft.Help.Keywords”	content=“Introduction”	/>
				<meta	name=“Microsoft.Help.Keywords”	content=“Pet	Store”	/>
    <meta name=“Description” content=“Basic description goes here…” />
				<meta	name=“Microsoft.Help.tocOrder”	content=“1”	/>
</head>
<body	class=“primary-mtps-offline-document”>
    <div class=“topic”>
								<div	class=“majorTitle”>This	is	the	Page	Title</div>
        <p>Sally’s Pet Store …. </p>
								<p><a	href=“ms-xhelp:///?Id=	fadf1f04-77dd-43fb-81f6-433e3ae08ac22”>My	Link</a>

    </div>
</body>
</html>



418Chapter 8: Application Development

needed to create the help file—notably the TOC specification and the key words. 
Entering a TOC value of -1 indicates that the entry (title) will be placed at the top 
of the hierarchy. To place an item lower in the hierarchy, simply enter the Help.ID 
value specified in the parent.

The nice thing about the new format is that you no longer need a help compiler 
to create the final help file. Simply create a new ZIP archive and place all of the 
text and image files in that compressed folder. Add a manifest file (helpcontentset-
up.msha) and rename the archive from .ZIP to .MSHC. Figure 8.19 shows a sam-
ple manifest file with links for two “packages” or mshc files. Be sure to specify 
the names and locations correctly. For instance, the sample file refers to the pages 
stored within a “packages” subfolder.

At this point in time, your file will probably not open because Windows (and 
Office) are not set up for the new format. You might be able to use the HelpLib-
Manager.exe program to install your new file and test it. Eventually, either the 
new help system will be adopted and integrated into Windows, or discarded for 
something newer (again).  Either way, the hard part of creating Help files is identi-
fying the topics and writing text that will actually benefit the users. These HTML 
files can be used for either of the current versions of HTML Help as well as stand-
alone help files on Web sites.

Figure 8.19
Sample manifest file. A package is a single mshc help file. Name the entire manifest 
to: helpcontentsetup.msha and place it into the help archive folder.

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
  <title>An optional title.</title>
</head>
<body class=”vendor-book”>
  <div class=”details”>
    <span class=”vendor”>Pet Store</span>
    <span class=”locale”>en-us</span>
    <span class=”product”>Pet Store Sales </span>
    <span class=”name”>Pet Store</span>
  </div>
  <div class=”package-list”>
    <div class=”package”>
      <span class=”name”>package1</span>
      <a class=”current-link”
								href=”packages\package1.mshc”>package1.mshc</a>
    </div>
    <div class=”package”>
      <span class=”name”>package2</span>
      <a class=”current-link”
								href=”packages\package2.mshc”>package2.mshc</a>
    </div>
  </div>
</body>
</html>



419Chapter 8: Application Development

Handling Errors
What does your application do when something goes wrong? Error handling 
is a task that is often relegated to coding on individual forms. However, it is a crit-
ical step—particularly in terms of security—so you need to review it at this stage 
of development. Also, error handling should be consistent across the application 
to avoid confusing users. At the same time, you need to create a logging facility 
so that runtime errors in the application are recorded and reviewed periodically so 
the application can be improved.

In terms of security, it is critical that your application catch all errors. Without 
special handling error messages can crash the entire application. Worse, they can 
lead to overwritten code providing an opportunity for criminals to take control 
of a machine. Even relying on the system error handling is dangerous, because 
default error messages often provide information that can be used to attack your 
application.

Catching Errors
Most development languages provide commands to trap runtime errors. Most of 
them use a variation of the try/catch syntax. The code to be protected is run within 
a try section. If an error occurs, execution is transferred to the catch section. Your 
error-handling code can look at different types of errors and handle them separate-
ly, or simply treat all errors the same. You ultimate mission is to devise error han-
dling code that can automatically deal with common problems. The intelligence 
built into error-handling code is one way to tell the difference between amateurs 
and professional developers. Usually, you need users to help create errors so you 
know what to expect and the best way to handle them. The need for user testing is 
one of the reasons complex error handling is added at this stage of the application 
development.

Figure 8.20 shows the basic syntax for several programming systems. Most 
use a try/catch approach but the syntax varies. Note that Visual Basic is the same 
as C# but Basic does not use the braces. The basic structure includes a section 

Figure 8.20
Common error-handling structure. Most systems use a try/catch structure but use 
different syntax to define the sections. The SQL 2003 standard supports various 
conditions (SQLEXCEPTION) and can EXIT the existing code or return to it 
(CONTINUE) after processing the handler code.

Oracle SQL Server C# Access
BEGIN
   {code}
EXCEPTION
WHEN OTHERS THEN
   {code}
END

BEGIN TRY
   {code}
END TRY
BEGIN CATCH
   {code}
END CATCH

try 
{
   {code}
}
catch (exception e)
{
    {code}
}  

ON ERROR GOTO errX
   {code}
exitX:
   Exit Sub
errX:
   {code}
End Sub

SQL 2003 Standard DECLARE EXIT HANDLER FOR SQLEXCEPTION
			Sql_procedure_name	
{code}



420Chapter 8: Application Development

or routine that is executed when an error arises. You have to make sure that each 
procedural code section is covered by at least one statement that directs errors to 
a handler. Then you can write code to identify the specific error and find ways to 
solve the problem or send a message to the user and exit gracefully. 

One of the challenges of database programming is that procedural code can ex-
ist in two places: (1) Within procedures on the server, and (2) In routines such as 
C# that run on the client computer. You need to examine the application to be sure 
that both types of code are protected by error-handling routines. Errors that are 
trapped within database procedure code need to be returned to the client system to 
perform additional error handling, including displaying warnings to the user.

Logging Errors
An important step in trapping errors is to record them. Yes, it is helpful to display 
problems to the users; but users generally cannot do anything to solve the prob-
lem. You need to create a routine that inserts the error message, location, and date 
into a special table. Each error-handling routine should include a line of code to 
call this logging procedure. You might want to include additional data, such as 
values of key local variables, for complex procedures.

When the system has been running in production for a while, you can retrieve 
the values from the error-logging table. A simply query will show you which code 
sections cause the most problems and help identify the types of mistakes encoun-
tered by users. You use this information to fix code errors and write more intelli-
gent error-handling code. The ultimate goal is to prevent users from having to deal 
with run-time errors. Your code should be able to identify and handle the main 
issues automatically. Of course, you cannot solve every problem—such as hard-
ware or network failures—but you can identify them and give advice to the user.

Debugging
Once you know the approximate location of an error, you need to track down the 
cause. Fortunately, most contemporary systems have interactive debugging tools 
that enable you to set break points and step through the application code line by 
line. You can examine the values of local variables and even test queries.

The debugging process is more complicated when you have code running on a 
server, and considerably more difficult when code runs on multiple tiers includ-
ing servers, clients, and middle-tier systems. Adding multiple levels requires you 
to track down the true location of an error. Depending on your tools and the final 
configuration, it is more difficult to run debuggers on multiple levels.

In many cases, you will have to resort to older debugging methods, such as 
adding debugging print lines to your procedures that report the current values of 
key local variables. In multi-tier systems, pay particular attention to the timing of 
events including the code and when variables are initialized and assigned values.

Testing
How do you know your application works correctly? Every application needs 
to be tested before it is turned over to users in a production environment. As in-
dicated in Figure 8.21, many levels of tests can be performed, but ultimately, you 
can never catch all of the errors. Your goal is to find as many of the errors as pos-
sible with the time and money available. Keep in mind that errors caught earlier 
are easier and less expensive to fix, and it is better to catch errors before they 
cause expensive problems for users. Larger systems with multiple developers will 



421Chapter 8: Application Development

require special groups of testers dedicated to finding problems. In smaller sys-
tems, you might have to test your own work. In either case, you should enlist the 
assistance of actual users who will always try things that never occurred to you. In 
a twist, test-based development is a modern approach to development where test 
cases are created first. Then whenever code is written or changed, the test cases 
are automatically rerun to ensure the code still works correctly. Several tools have 
been developed to help automate the testing process, but it still requires consider-
able time to develop all of the test cases.

Form and Module Testing
The most basic level of testing occurs when you create modules and forms. Any 
query, report, procedure, or section of code that you create should be tested as 
it is written. When you first create an object, you should understand its primary 
purpose and have sample test data to ensure that it works correctly. In particular, 
if you need to perform complex calculations or logic, you need to work with users 
to develop suitable test cases. These test cases should be stored and reevaluated at 
each testing point. Some organizations use pairs of developers, where one person 
is responsible for collecting test cases and continually testing sections of the proj-
ect as it is being built.

You should also integrate the testing with form validation. Forms should re-
strict the data that users can enter to reduce the possibility of bad data, or even in-
tentional attacks on your application. Where possible, you should use drop down 
lists and option choices so users do not have to type in values. When users do 
enter values by hand, you should include validation rules on the form to provide 
immediate feedback to the users so the data can be correct as close to the source 
as possible.

If	(Sales	>	50)
bonus=10000

Else
bonus=5000

End If

Modules

Sales Customers

Receipt
Item  Qty   Price
112 2     10.50
178    1     27.85
251    4     21.17

Inventory

Company X

Integrated 
Application

Forms
Stress

Usability Security

Figure 8.21
Application testing. Testing usually begins at the detailed level of forms and 
modules. When the application is built, the integrated features are tested. You also 
test for usability and performance under stress. Security testing should occur at every 
level.



422Chapter 8: Application Development

Integrated Application Testing
Once the overall structure of the application has been created, it needs to be tested 
as a complete unit. In particular, you need to ensure that data is passed correctly 
across forms, modules, and reports. Any forms that contain links need to be tested. 
For instance, linking a Sales Order form to the Customer form should result in 
displaying the details for the customer currently selected on the Sales form. But 
you also need to test extreme conditions. What happens if no customer has been 
selected yet and a user clicks the link button? Likewise, what happens if the user 
tries to print a blank receipt report? Be sure that the application continues to run 
even if absurd choices are made. Verify that data is being stored properly, and that 
security conditions are being maintained.

Stress or Performance Testing
Many developers and companies have encountered problems when an application 
hits the real world. Forms and reports that run fine on the developer’s server die a 
slow death when pushed out to thousands of users with millions of rows of data. 
Unfortunately, systems performance is not always linear. For example, a task with 
10 users might require 2 seconds to run; but you cannot claim that moving to 100 
users will result in 20 seconds. More likely, instead of increasing by ten times, the 
time will increase exponentially, requiring 40, 50, or even 60 seconds. Some sys-
tems are more scalable than others—meaning that performance can be improved 
by adding hardware capacity and the process is close to linear. Other systems are 
more complex, but either way, you need to stress test the application to find out 
what will happen.

The challenge is that it is difficult to test big applications with thousands of us-
ers—without actually implementing the system. Where are you going to find the 
hardware and the thousands of users to test the system with sample data? Some 
companies sell tools that help stress test an application. The tools automatically 
generate transactions and send them through your application. You can increase 
the load on the servers by using only a few automated client computers. You can 
also test the servers and networks on a smaller scale by throttling down the hard-
ware and networks. Instead of pushing 1,000 transactions through a 100 mbps net-
work, you could test with 100 transactions across a 10 mbps network. It will not 
give exact results, but it will help you see what happens if a key connection gets 
overloaded. This test is particularly useful for connections from the Web server to 
the database server.

Usability Testing
In addition to testing for accuracy, errors, and performance, you also need to en-
sure that the system performs the tasks that users need. As part of the process, you 
need to have actual users work with the system. You need to be sure that users 
understand the forms and the process. The system needs to be easy enough to use 
so that it does not require huge amounts of training. It also needs to be efficient so 
that users do not waste time entering unnecessary data or searching for informa-
tion. A developer can spend hundreds of hours building forms and applications. At 
some point, everything seems easy. You need the fresh perspective of actual users 
to identify bottlenecks and other issues. At one level, development is much like 
artistic design. Developers make dozens of choices when building applications. 
How do you make the best choice? The answer is that usability needs to become 
a key component right from the start. And the application specifically needs to be 
tested for usability.



423Chapter 8: Application Development

Usability testing also needs to include testing the accessibility features. First, 
someone needs to go through the entire application and ensure all of the features 
are activated. It is too easy for a developer to forget to tag a button, menu, or 
toolbar so it is accessible with a keyboard. So someone needs to go through every 
item on every page and verify that accessibility is activated. Also, whenever pos-
sible, it would be useful to have someone with accessibility issues to actually use 
the application. A real-world test can provide valuable insight into the application 
flow, terminology issues, or other potential problems.

Security Testing
Security concepts are explored in other chapters, but companies have learned that 
security also needs to be addressed throughout the development process. It is not 
something that is added on at the end of the design. Testing for security issues 
includes some of the basic tests—particularly validation and module testing. It 
includes checking user input for common SQL injection attacks. A SQL injection 
attack consists of an attacker entering malicious SQL code into a text box in your 
application that replaces your intended SQL statement. The classic example is cre-
ating your own login screen and allowing users to enter any text as a username 
and password. The problem is compounded when you use string concatenation 
to build the SQL query. You should always use parameterized queries instead of 
string concatenation. More importantly, you should never trust anything entered 
by a user—and always restrict or validate what they are allowed to enter.

  Consider the simple login example, where your application retrieves a User-
nameText and PasswordText variable from the input screen. It is tempting to write 
the simple lookup query: “SELECT UserID FROM UserList WHERE User-

Customers Inventory

Receipt
Item  Qty   Price
112 2     10.50
178    1     27.85
251    4     21.17

Forms

Reports

Help

Compiling and Packaging Installation

Server and Database 
Configuration

Tables and 
Modules

Data

Figure 8.22
Deployment. The forms, reports, and help files are compiled and packaged into an 
installation file that is run on client computers. The DBMS is installed on a server 
and the tables and modules are installed and configured. Initial data is loaded and 
network connections are established. 



424Chapter 8: Application Development

name=΄ ” + UsernameText + “ ΄ AND Password=΄ ” + PasswordText + “ ΄ ”. Ig-
noring the fact that the password should be encrypted, this query will work fine 
as long as users enter legitimate values. However, what happens when an attacker 
enters a special SQL string for the UsernameText: ΄ OR 1=1 --. Plug this value in 
and write out the SELECT statement. The quotation mark closes the first one, the 
OR statement is always true, and the two dashes comment out the rest of the SQL 
command. As a result, the query will always return valid UserID and the attacker 
will be logged into your system. Worse, it is possible to write more complex SQL 
statements that do nastier things, such as retrieving all of the data from the UserL-
ist table, or even deleting tables in your database. However, all of the SQL injec-
tion attacks have a common element. They include the single quotation mark to 
close the required opening quote, and they use the double hyphen comment mark. 
The simplest solution is to test all input code and remove or change quotation 
marks and double hyphens to spaces. Whenever possible, you should restrict the 
length of data entered by users to prevent someone from writing long, dangerous 
code. Of course, restricting inputs can impact normal data entry, such as handling 
the name O’Brian which contains an apostrophe or single quote character.

Security testing also involves testing the entire application—including steps 
that might not be computerized. For example, how are passwords generated? 
What happens if a user loses a password—how is it reset? Is this process secure 
and logged?  When the integrated application is being tested, you should also in-
clude basic security tests—particularly bad data that includes excessively long 
values and SQL injection elements. For large projects, at least one person should 
be assigned to attack the application, listing potential threats and methods that 
might be used to obtain unauthorized access.

Deploying an Application
How will your application be installed? As shown in Figure 8.22, once you have 
developed an application, you must collect all of the associated files (e.g., data-
base, system, forms, reports, and help) and distribute them to users or install them 
on servers. You must also implement security precautions and assign user access 
rights. The details depend on the type of application system, whether the users are 
employees, and the size of the application. It is usually easiest to install applica-
tions on a server in one location. Even if you need a separate application (Web) 
server, installation and maintenance are relatively easy when the files and data-
bases are in one location. If your application needs to install elements on client 
computers, several additional steps are needed.

Packaging Files
One of the first steps is to identify and collect all of the files. These primarily 
consist of the forms, reports, and help files. With a small application, built by one 
or two developers, it is relatively easy to identify and collect all of the files. With 
large applications that include hundreds of forms and reports, you need a version 
control system to name each file and track the versions and changes.

Some systems store forms and reports internally, some treat them as separate 
files, and a few compile them into a set of executable files. The method of packag-
ing the files varies in each case, but it must still be done. You also need to test the 
resulting system to ensure all of the files are included and have the correct names. 
As much as possible, you need to automate the build process. Some systems in-
clude an automatic build, in other cases you will have to write script files. Either 



425Chapter 8: Application Development

way, it is important to automate the steps because you will have to rebuild the 
application many times, and it is too easy to forget something. Scripts are easy to 
modify to avoid mistakes.

Installation Programs
If you are going to put any portion of the application on client computers, you 
need to use an installation program to automate the installation. Several tools ex-
ist, some versions are included with the DBMS and other versions are sold by 
independent vendors. Installation programs bundle the various files, check the 
target system for prerequisite files, and handle all configuration changes. Most 
of the installation tools support packages delivered on CD or downloads from a 
Web server. Some of the newer tools, including the one with Visual Studio, can be 
installed directly from a Web site and check for updates. The installation system 
also has to configure the database connections so the client component can attach 
to the database server.

Microsoft Access adds more complications to the installation process. In its 
most common form, the client computers will each need a licensed copy of the 
Microsoft Access software. You will also want to encrypt the database forms and 
reports to prevent users from changing them. In most cases, you will want to split 
the database into two pieces. Details are provided in the Access Workbook. Mi-
crosoft provides another alternative if you do not want to install the full copy of 
Access on each client computer. You can purchase the Access Developer kit which 
includes a runtime module. The installation system can install the runtime module 
so that you application will run without requiring a full copy of Microsoft Access.

Server and Database Configuration
An application also needs the servers and databases configured. The best way to 
handle the database configuration and base data loading is to write SQL scripts. 
You can create the scripts as the application is developed and tested. The scripts 
make it easy to load a new copy onto a test server. More importantly, they can be 
used to create a backup server or to reinstall the application is something goes 
seriously wrong. The applications associated with these books use script files, and 
you can use them as a template for your own applications. Even if you believe 
an application will only be installed one time, you should create the server script 
files. You will be surprised at how many times you will need to delete and reinstall 
an application while it is being tested.

Summary
An application is a collection of forms and reports designed to function as a sys-
tem for a specific user task. Applications must be easy to use and designed to 
match the tasks of the users. Application design begins with the overall structure, 
which is often held together with startup forms. Menus and toolbars add structure 
to the application by providing commands that are common to the entire applica-
tion. Toolbars can also be created for specific tasks and individual forms. A con-
text-sensitive Help system with both general descriptions and detailed help notes 
is crucial to creating a useful application. Most applications also need to define 
individual transactions so that related changes will succeed or fail together.

You need to add error handling to all forms and modules and perform sev-
eral levels of tests, including performance and security testing. You need to create 
a relatively automated approach to deploying the application—particularly if it 



426Chapter 8: Application Development

needs to be installed on client computers. Several installation tools exist to pack-
age the files and support automated installation. For the database and server-based 
code, forms, and reports, you need to create SQL scripts that will create tables and 
load the basic data.

Key Terms

accessibility
administrative tasks
application
back end
cascading style sheet
context sensitive help
dockable
error handling
front end
help system

hypertext markup language (HTML)
menu
middle tier
prototype
SQL injection attack
style sheet
startup form
template
toolbars
tooltip

A Developer’s View
Miranda is learning that applications are useful only if they make the user’s job 
easier. A good application is more than just a collection of tables and forms. That 
means you have to organize the application by the tasks of the user. You also 
need to add help files and toolbars. You need to add error-handling code to your 
application. Once the application is fully tested, you need to create an installation 
package. For your class project, you should create the overall application struc-
ture (switchboard forms, interlocking forms, toolbars, help files, and so on). You 
should build and test the scripts and installation setup.



427Chapter 8: Application Development

Review Questions
1. What are the fundamental principles to follow when designing an 

application’s structure?
2. How does the purpose of an application (transaction processing, decision 

support, or expert system) affect the design?
3. How are startup forms commonly used?
4. What are the potential problems with startup forms?
5. What is the purpose of menus and toolbars in an application?
6. What features are needed to make an application more accessible?
7. What are the primary steps involved in creating a context-sensitive help file?
8. What are the major methods for handling runtime errors in an application?
9. What are the primary forms of testing?
10. What are the main steps in deploying an application?

Exercises
1. Find examples of two input forms—such as Web applications or business 

forms. Compare the applications on design and functionality. Explain the 
similarities and differences.

2. Find a Web site that has a separate mobile-based application. Explain the 
similarities and differences between the two types of forms. What features 
had to be sacrificed to make the mobile form? What choices would you have 
made differently?

3. HTML5 supports graphical actions, although the built-in capabilities are 
somewhat primitive. Assuming you have programmers to create them, design 
a new Web-based process to purchase items and handle shopping carts that 
use graphics and drag-and-drop elements. Just sketch the concepts—it is not 
necessary to create them.

4. Create a custom toolbar menu with at least two icons and two drop-down 
menus that include at least three options each.

5. Briefly explain how a touch-based menu would be different from a mouse-
based menu.

6. Application menus can have many options. Briefly explain how you would 
solve the question of identifying the structure and items on menus.

7. Create a small custom help file that contains three pages of help. Create a 
form and assign the help key to open one of the help topics.

8. Examine at least three Web sites and explore their help sections. Briefly 
compare similarities and differences among the three sites. Explain which 
features you would use in your own applications.



428Chapter 8: Application Development

9. Write a function to log runtime errors to a special database table or a file. 
Create a form with a button that contains error-handling code. When the 
button is pressed, it should trigger a runtime error (e.g., divide-by-zero), and 
call the logging function to save the error message. 

10. Research and briefly describe the test-based development methodology and 
explain how it could be used in database applications.

Sally’s Pet Store
11. Find at least two Web sites for pet stores and compare them. Select the 

primary features that you would want to use for a site for the Pet Store. 
Briefly explain how you would improve and differentiate your site.

12. Design and create a menu system and toolbars for the Pet Store database that 
would be used by clerks and managers in the store.

13. Design a template for the input forms. At a minimum, specify colors, fonts, 
and page layout. Rebuild at least two of the forms in the new template to test 
the styles. 

14. Create and write initial help files for the Pet Store. Include at least three new 
pages of help, the table of contents, and keywords.

15. Find a user (non-CS and non-IS) who can test the application. Observe the 
user’s progress and identify any problems or issues that arise. Describe 
changes you would make to improve the application.

16. Assuming the store is going to use the finished application, outline a plan to 
install and deploy it in the store on a single computer.

Rolling Thunder Bicycles
17. Examine the Rolling Thunder Bicycles application and outline the menu 

structure by checking the forms and reading the help file.
18. Explain how the list box is used to handle receipt of merchandise from 

suppliers. Outline the process that is used to tie the receipt to the purchase 
order.

19. Outline a plan for stress testing the application. Begin by identifying where 
the application will be used and how many people will likely use it at one 
time.

20. Design a new toolbar or menu that supports operations by categories of users: 
Managers, Order-clerks, Production, and Finance/Accounting. You can just 
sketch the toolbars/ribbons instead of actually building them. 

21. Work through the application and test it for accessibility. Identify any 
changes that need to be made.



429Chapter 8: Application Development

Corner Med 
22. Design a menu or toolbar for Corner Med to make it easy to use within the 

clinics.
23. Identify potential application problems and failures that might arise and 

outline a plan to handle them. (Focus on software, not hardware or networks.)
24. Write the deployment plan for the application, assuming there will be one 

workstation at the central check-in desk and one in each physician office. 
Typically, there are three to five offices per location. 

25. Design the Patient Visit form so it can be used on a mobile tablet with a 10-
inch screen.

Web Site References

http://www.microsoft.com/enable/ Microsoft	site	for	accessibility	issues.
http://msdn.microsoft.com/windowsvista/uxguide Microsoft	design	guide	for	Windows	Vista.
http://www.sigapp.org/ Association	for	Computing	Machinery:	

Special Interest Group on Applied 
Computing.

http://oraclea2z.blogspot.com/ Oracle application tips.
http://www.useit.com Web site run by Jakob Nielson (a 

researcher in usability).
http://www.helpwaregroup.com/ Help authoring utilities
http://www.section508.gov Federal government accessibility guidelines 

and blog.
http://www.w3.org/WAI W3C (Web governance group) on the Web 

Accessibility Initiative.

Additional Reading
Cooper, A. About Face: The Essentials of User Interface Design. Foster City, 

CA: IDG Books, 1997. [A good discussion of various design issues.]
Ivory, M. and M. Hearst, The State of the Art in Automating Usability, 

Communications of the ACM, 33(4), December 2001, 470-516. [General 
discussion on evaluating system usability.]

Raskin, J. Humane Interface, The: New Directions for Designing Interactive 
Systems, Reading, MA: Addison-Wesley, 2000. [The need for a new interface 
as explained by the creator of the Apple Macintosh project.]

Corner
Med

Corner
Med

http://www.microsoft.com/enable/
http://msdn.microsoft.com/windowsvista/uxguide
http://www.useit.com


430

What You Will Learn in This Chapter
•	 What	is	the	difference	between	transaction	processing	and	analysis?		
•	 How	do	indexes	improve	performance	for	retrievals	and	joins?
•	 Is	there	another	way	to	make	query	processing	more	efficient?
•	 How	is	OLAP	different	from	queries?
•	 How are OLAP databases designed?
•	 What tools are used to examine OLAP data?
•	 What	tools	exist	to	search	for	patterns	and	correlations	in	the	data?

Chapter Outline

Data Warehouses and Data 
Mining

9Chapter

Introduction, 431
Two-Minute Chapter, 432
Indexes, 433

Binary Search, 434
Pointers and Indexes, 435
Creating Indexes, 436
Problems with Indexes, 437

Data Warehouses and Online Analytical 
Processing, 437

Data Warehouse Goals, 438
Data Warehouse Issues, 439

Data	Extraction,	Tansformation,	and	
Transportation, 441
OLAP Concepts, 443
OLAP Database Design, 445

Snowflake Design, 446
Star Design, 447

OLAP Data Analysis, 448
Cube Browsers, 448
OLAP in SQL, 450
SQL Analytic Functions, 455
SQL OLAP Windows Partition, 456

Data Mining and Business Intelligence, 458
Data Configuration, 459
Classification, 460
Association Rules/Market Basket 
Analysis, 463
Cluster Analysis, 467
Geographic Analysis, 469

Summary, 472
Key Terms, 473
Review Questions, 473
Exercises, 474
Additional Reading, 477



431Chapter  9: Data Warehouses and Data Mining

A Developer’s View
 Miranda: Faster. Faster. Come on, run faster!

 Ariel: What? Are you training for a 
marathon?

 Miranda: No. It’s just these queries they want 
me to write are taking forever to 
run. They worked OK when I tested 
them with small amounts of data. 
But now, I don’t know.

 Ariel: Maybe you just need a faster 
computer?

 Miranda: No, I think I need a different 
system. These queries are retrieving 
data, but it is data from many 
different tables. And these managers 

want all of these strange subtotals. 

 Ariel: Wow! There are a lot of totals. How 
do you expect anyone to read those? 
I think I see four different levels of 
totals and that’s on one page!

 Miranda: Yes, and that’s only part of what 
the managers want. I’m happy they 
are using the system, but I don’t see 
how they can make any sense out of 
these reports. I think I might need 
a separate system to reorganize this 
data and create these reports for the 
managers. Then they want to do 
some type of statistical analysis as 
well!

Introduction
What is the difference between transaction processing and analysis? Rela-
tional database systems were designed to store large amounts of data efficiently. 
In particular, they are very good at quickly storing and retrieving basic transaction 
data. Look at the common Sale and SaleItem tables, and you will see data stored 
compactly. For example, the Pet Store SaleItem table has only four columns and 
they all contain simple numbers. An individual sale can be recorded or retrieved 
quickly. Each sale uses a different row, which separates transactions. Each new 
sale or item purchased can be entered into a new row without affecting any of the 
other rows or sales. However, this structure causes problems for other types of 
queries. Queries that involve multiple tables use joins that can require the DBMS 
to match data values from millions of rows. Think about the number of joins and 
subtotals required when someone asks the DBMS to analyze the data by comput-
ing subtotals on several different factors (such as employee, region, product cat-
egory, and month). Computing breaks and subtotals across many factors, multiple 
tables, and millions of rows of data can cause performance problems even on fast 
hardware.

Getting Started
Most companies have data and databases. What managers need are tools 
to organize and analyze the data. Relational databases are good for han-
dling transactions data, but it can be difficult to retrieve and analyze 
huge amounts of data quickly. So you create a data warehouse with a 
structure designed to retrieve data quickly. Add cube browsers to ex-
plore the data. Add statistical tools to analyze the data, and managers 
can make better decisions. 



432Chapter  9: Data Warehouses and Data Mining

Vendors of database systems attempted to solve some of these problems by cre-
ating indexes on the tables. The indexes make it substantially faster for the DBMS 
to find specific rows of data within a table, and particularly to improve join perfor-
mance. An index is a sorted list of the key data that can be searched quickly. How-
ever, there is a trade-off: Adding indexes to a table speeds retrieval queries but 
slows down data updates and transactions because the indexes continually have 
to be rebuilt. This conflict has led to focusing the existing relational systems for 
online transaction processing (OLTP); whereas different storage and retrieval 
systems are used for online analytical processing (OLAP). Data from the OLTP 
is extracted and cleaned, and then it is placed in a data warehouse. The data ware-
house is heavily indexed and optimized for data retrieval and analysis. Additional 
procedures and routines are available to analyze the data, support interactive ex-
ploration by managers, and statistically search it for meaningful correlations and 
information. This chapter looks at the basic concepts to explain why the differ-
ent approaches are needed. The data mining section defines some of the basic 
statistical tools available. The specific details of defining indexes and how to use 
the tools are covered in the workbooks because the details depend heavily on the 
specific DBMS. If you want more detailed explanations of the statistics and tools, 
check out the Data Mining book (http://www.JerryPost.com/Books/DMBook). It 
uses SQL Server and some open-source tools to examine common data mining 
applications.

Two-Minute Chapter
Relational databases are designed to efficiently store and protect transaction data. 
Splitting data into separate tables makes it faster and safer to add new rows. But, 
retrieving the data requires joining multiple tables on primary keys, which can 
be slow. Managers today need to analyze data—which can require retrieving and 
summarizing huge numbers of rows. Most systems add indexes to speed retrieval 
of data. An index is a separate sorted list of data with pointers into the actual 
tables. Adding indexes reduces retrieval time—which is good for data retrieval 
and analysis; but bad for data storage because every index requires time to update 
when data is added or changed. In many cases the best answer is to keep the rela-
tional database for transactions but create a new data warehouse that holds copies 
of the data optimized for data retrieval and analysis. In many cases, extracting and 
cleaning data from multiple sources is the hardest part of building a data ware-
house. The steps need to be automated so data can be extracted on a regular basis. 

A data warehouse is often organized in a star design with a fact table at the 
center, connected to dimension tables that contain attributes of interest to manag-
ers. Multi-dimensional cube browsers are useful for enabling managers to browse 
through data. The cubes display multiple levels of subtotals and managers can 
interactively select which dimensions and levels to display. Data is often orga-
nized in hierarchies (such as time) which managers can roll-up to view totals or 
drill down into for details. Be cautious when defining computed values—sums are 
usually fine but averages or computations requiring multiplication can be tricky 
because you need to specify whether multiplications should be computed first (use 
a query) or last (in the cube browser). The Microsoft PivotTable is an interactive 
cube browser that is easy to use and runs inside Excel and can also create interac-
tive charts.

The SQL standard includes modifications to the GROUP BY clauses to display 
grand totals (super-aggregate totals). The WITH ROLLUP and WITH CUBE op-



433Chapter  9: Data Warehouses and Data Mining

tions combined with the GROUPING function are useful to compute these addi-
tional totals within SQL. SQL also includes the RANK and DENSE_RANK func-
tions to assign sequential numbers to sorted data. For example, employees could 
be ranked by their total sales value for the month. RANK and DENSE_RANK 
treat ties differently, where DENSE RANK does not skip values so you would get 
values such as 1, 2, 3, 3 instead of 1, 2, 2, 4.

The SQL PARTITION command is used to create a “window” to examine a 
moving subset of data. It is particularly useful for computations such as mov-
ing averages such as averaging the three most recent data rows or for computing 
running subtotals. The LAG and LEAD functions provide access to data in rows 
behind or ahead of the current rows.

Reports are used to display data for common operations and transactions. Que-
ries are used for ad hoc questions, and transaction programming. OLAP functions 
are used for aggregates, comparisons, and drill-down operations. Data Mining 
tools are used for deeper analysis and statistical techniques to identify unknown 
relationships. Common methodologies include classification, association rules, 
cluster analysis, and geographic analysis. Classification tools include decision 
trees, Bayesian analysis, and neural networks which attempt to identify how di-
mensions influence fact measure variables. The classic application of association 
rules is market basket analysis to see which items are commonly purchased to-
gether. Cluster analysis is used to identify categories or groups of items such as 
grouping customers who have similar features. Geographic analysis is useful for 
data based on location and often uses mapping systems to display layers of data.

Indexes
How do indexes improve performance for retrievals and joins? Although ta-
bles are often pictured as simple lists of rows and columns, a DBMS cannot sim-
ply store all data in sequential files. Sequential files take too long to search and 

ID LastName FirstName DateHired
1 Reeves Keith 1/29/2013
2 Gibson Bill 3/31/2013
3 Reasoner Katy 2/17/2013
4 Hopkins Alan 2/8/2013
5 James Leisha 1/6/2013
6 Eaton Anissa 8/23/2013
7 Farris Dustin 3/28/2013
8 Carpenter Carlos 12/29/2013
9 O’Connor Jessica 7/23/2013
10 Shields Howard 7/13/2013

Figure 9.1
Find an item in a sequential table. Even if you know the primary key value, the 
system has to start at the first row and continue until it finds the desired match. On 
average, with N total rows, it takes N/2 row retrievals to find a particular item.



434Chapter  9: Data Warehouses and Data Mining

require huge operations to insert new rows of data. Examine the short table of 
employees in Figure 9.1, and consider the steps involved to find the row where 
EmployeeID is 7. The DBMS would have to read each row sequentially and check 
the ID until it found the proper match. In this case, it would have to read 7 rows. 
If there are N total rows, on average, it takes N/2 rows to find a match. If there 
are a million rows, a typical search would require reading 500,000 rows! Clearly, 
this method is not going to work for large datasets. The situation is even worse 
for inserting new rows of data—if you want to keep the list sorted. The system 
would have to read each row of data until it found the location for the new row, 
then continue reading every other row and copy it down by one row. Deletions are 
actually easy because the DBMS does not really remove the data. It simply marks 
a row as deleted. Later, the database can be reorganized or packed to remove these 
marked spaces.

Binary Search
Looking at the data, it is clear that the DBMS is not taking advantage of all of 
the information. In particular, if the data rows are sorted, a substantially faster 
search method can be used to find items. Figure 9.2 shows how to take advantage 
of the sorting. Think of the process as searching through a paper dictionary or 
a phone book. Instead of starting at the first page and checking each entry, you 
would open the book in the middle, then decide whether to search the first half or 
the second half of the book depending on what name you find in the middle. Find-
ing the middle entry of Goetz, you know that Jones falls in the latter half of the 
data. With that one retrieval, you instantly cut your search in half. Following the 
same process, you would divide the remaining entries in half and search only the 
appropriate section. In the example, only 4 attempts are needed to find the entry 
for Jones. This binary search process continues to divide the remaining data in 
half until the desired row is found. In general, with N total rows, a binary search 
will find the desired row in a maximum of m = log2(N) attempts. Another way to 

1		↓

Adams
Brown
Cadiz
Dorfmann
Eaton
Farris
Goetz

									3				↓
Hanson
Inez

               4 Jones
				2			↑ Kalida

Lomax
Miranda
Norman

Figure 9.2
Binary search. To find the entry for Jones, divide the list in half. Jones falls below 
that value (Goetz), so divide the second part in half again. Jones falls above Kalida. 
Continue dividing the remaining sections in half until you find the matching row. 



435Chapter  9: Data Warehouses and Data Mining

understand this formula is to realize that because you cut the list in half each time, 
you are looking for m, where 2m = N. Now consider a table with a million rows of 
data. What is the maximum number of rows you have to read to find an entry? The 
value for m is 20, which is considerably better than the average of 500,000 for the 
sequential approach!

Pointers and Indexes
A binary search is a relatively good way to search data tables that are sorted, so 
it makes sense when you want to search by primary key, which is common for 
table joins. But what if the primary key is a numeric CustomerID and you want to 
search by LastName instead? How can the table be sorted in multiple ways? The 
answer lies with indexes and pointers.

Data is not actually stored in physical tables. It is usually broken into pieces 
and stored within a special file. When it is stored, each piece (perhaps an entire 
row) is placed at an open location and given an address. The address is a pointer 
that tells the operating system exactly where the piece of data is stored. It might 
be as simple as an offset number that specifies the number of bytes from the start 
of the file. Figure 9.3 shows that indexes can be created using the column to be 
searched (ID or LastName) along with the address pointer. The indexes are in-
dependent and have been sorted so they can be accessed quickly. As soon as the 
appropriate entry is found, the address pointer is passed to the operating system 

Figure 9.3
Pointers and indexes. Each piece of data is stored in a location with a specific 
address. An index consists of the column value to be searched along with the pointer 
to the rest of the row. Multiple indexes can be assigned to a table and quickly 
searched.

ID Pointer
1 A11
2 A22
3 A32
4 A42
5 A47
6 A58
7 A63
8 A67
9 A78
10 A83

LastName Pointer
Carpenter A67
Eaton A58
Farris A63
Gibson A22
Hopkins A42
James A47
O'Connor A78
Reasoner A32
Reeves A11
Shields A83

ID Index

LastName Index 1 Reeves Keith 1/29/..A11

2 Gibson Bill 3/31/..A22

3 Reasoner Katy 2/17/..A32

4 Hopkins Alan 2/8/..A42

5 James Leisha 1/6/..A47

6 Eaton Anissa 8/23/..A58

7 Farris Dustin 3/28/..A63

8 Carpenter Carlos 12/29/..A67

9 O’Connor Jessica 7/23/..A78

10 Shields Howard 7/13/..A83

DataAddress



436Chapter  9: Data Warehouses and Data Mining

and the associated data is immediately retrieved. In practice, even the indexes are 
not stored sequentially. They are generally stored in pieces as B-trees. B-trees can 
be searched at least as quickly as can be done with a binary search, and they make 
it relatively easy to insert and delete key values. B-trees are explained in Chapter 
12, but you do not need to know the details to understand the benefits of indexes. 
You can create indexes in SQL using the CREATE INDEX command. Bear in 
mind that the reason for indexes is to substantially reduce the time it takes for the 
DBMS to find (or match) a particular row of data.

Creating Indexes
Most systems automatically create indexes for primary key columns, because 
these are typically used in JOIN statements. Figure 9.4 shows an example of an 
index created on the AnimalID primary key column of the Animal table in the pet 
store case. The example is from Microsoft SQL Server, but other systems, such 
as Oracle, are similar. Microsoft Access also generates primary key indexes auto-
matically, but it has fewer options.

Most DBMSs have a graphical interface tool to create and edit indexes. How-
ever, it is relatively easy to use the SQL CREATE INDEX command. Figure 9.5 
shows the basic format. The command is straightforward, since you just list the ta-
ble name and the columns you want in the index. The example shows a composite 

Figure 9.4
Index for primary key. SQL Server automatically generates and maintains indexes 
for primary key columns. Higher-end systems, such as SQL Server, provide several 
options to optimize the storage and use of indexes. These options can be used to 
improve the performance of your queries and applications.



437Chapter  9: Data Warehouses and Data Mining

index that uses multiple columns. Most systems support additional keywords that 
control the various options, such as whether the index is unique, how and where it 
should be stored, or how to handle columns with long data types. In this example, 
you could include options to specify that the index contains unique values, or to 
store the index on a separate disk drive partition. These options are different for 
each DBMS, so you will have to read the documentation carefully to decide which 
ones you need. Alternatively, most systems provide a query optimizer that will 
automatically suggest indexes for you to add, with the desired attributes.

Problems with Indexes
Consider a table in which 10 indexes (columns) are defined. When a new row 
of data is added to the table, every index has to be modified. At a minimum, the 
database has to insert a new row into each of the 10 indexes. In most cases, it will 
also have to reorganize each index and probably update the statistics tables for the 
indexes. An index substantially improves the ability to search a data table. But for 
every index you create, the DBMS will slow down every time new data is entered 
or modified because the indexes have to be rebuilt. So your big decision is which 
columns to index.

Adding more indexes speeds up data retrieval but slows down data entry and 
data updates. This conflict is the heart of the problem between data analysis and 
transaction processing. Transaction processing—collecting the data—needs to be 
fast to efficiently store and protect the data. On the other hand, data analysis fo-
cuses on retrieving existing data and often needs to retrieve huge amounts of data 
quickly. Building multiple indexes and duplicating data are two ways to vastly 
improve data retrieval speed, but at the cost of interfering with colleting the data. 
A common solution is to create a data warehouse—which holds a copy of the data 
used just for data analysis.

Data Warehouses and Online Analytical Processing
Is there another way to make query processing more efficient? Ultimately, the 
trade-offs with indexes can be insurmountable. To perform complex searches, you 
need many indexes on every table. But too many indexes slow down the trans-
action processing. Additionally, a typical organization has data stored in several 
different databases and sometimes other files. Obviously, the transaction systems 
need priority—without them, the business cannot operate. But managers increas-
ingly need to perform complex analyses of data. The solution: Keep the transac-
tion systems and create a new database for managers to perform online analytical 
processing.

CREATE	INDEX	ix_Animal_Category_Breed
ON Animal (Category, Breed)

Figure 9.5
SQL CREATE INDEX command. The basic syntax is straightforward. Give the 
index a unique name, then specify the table and columns to be used. Most systems 
support additional options to control the details such as storage and type of index.



438Chapter  9: Data Warehouses and Data Mining

Increasingly, managers want more than the traditional reports that are produced 
by OLTP systems. Managers want the ability to interactively examine the data. 
They do not always know what questions to ask or what they are looking for. 
They need the ability to quickly look at different views of the data. These types of 
queries can involve huge amounts of data and require joins across multiple tables. 
Fortunately, the access is almost always read-only—very little data is altered—
and read-only queries can be several times faster than updateable queries. Manag-
ers also want the ability to statistically analyze the data, and these tools generally 
need to know something about the layout and structure of the data. The answer is 
to put a copy of the data into a new fixed structure.

Data Warehouse Goals
Many organizations have chosen to avoid these conflicts by creating a second 
copy of the database. A data warehouse holds a copy of the transaction data in 
a special database that is dedicated to answering managerial queries. Data may 
come from various sources, but all of it has been cleaned so that it is consistent 
and meets referential integrity constraints. Data can be stored in pre-joined for-
mat, resulting in duplication of data. But, since this data is not updated directly, 
and since storage space is relatively inexpensive, the duplication is well worth 
the increased performance. A second option is to build multiple indexes on ev-
ery table. Again, since the data is not being continually updated, the indexes are 
rarely updated. In both cases, special functions and query controls are included to 
rapidly create different views of the data. Generally, data is transferred from the 
transaction system once or twice a day and moved in bulk to the data warehouse.

The basic concepts of a data warehouse are shown in Figure 9.6. The transac-
tion databases continually collect data and produce basic reports, such as inven-
tory and sales reports. The data warehouse represents a separate collection of the 

OLTP Database
3NF tables

Operations
data

Predefined
reports

Data warehouse
Star	configuration

Daily data
transfer

Interactive
data analysis

Flat	files
Figure 9.6
Data warehouse. Data from the OLTP system and other sources is cleaned and 
transferred into a data warehouse on a regular basis. The data warehouse is optimized 
for interactive data analysis.



439Chapter  9: Data Warehouses and Data Mining

data. Although it might use the same DBMS, it requires new tables. On a regular 
basis, data is extracted from the transaction databases and from other files. This 
data is checked to make sure it is consistent; for example, all of the key values 
must match for referential integrity. Then it is added to the data warehouse, which 
usually does not store data in normalized tables. Instead, it has special structures 
like the star configuration. In these cases, data is often duplicated. For example, 
the same city and state combination may show up in thousands of data records.

Online analytical processing is usually related to data warehouses, but techni-
cally, you can build OLAP systems on transaction databases without using the 
intermediate data warehouse. A bigger challenge is that each vendor offers differ-
ent technology and different implementations. In general terms, OLAP consists of 
a set of tools to browse the data and to analyze and compare data in the database.

Managers are also learning to use statistical tools to perform more formal anal-
yses of data. Data mining or business intelligence (BI) tools use automated or 
directed statistical methods to search the data for patterns and relationships. The 
statistical tools include regression, discriminant analysis, pattern recognition (e.g., 
neural networks), and database segmentation (e.g., clusters, k-means, mixture 
modeling, and deviation analysis). These tools generally require substantial com-
puting power and extremely high-speed data retrieval. Even with current high-
speed systems, many of the techniques would need days or weeks to analyze some 
of the large datasets that exist. The point is that if users want to work on this type 
of analysis, the databases will have to be configured and tuned to their specific 
needs.

Data Warehouse Issues
Despite advances in database management systems and improvements in com-
puter hardware, some queries take too long to run. Additionally, many companies 
have data stored in different databases with different names and formats, or even 
data stored in older files. The purpose of a data warehouse is to create a system 
that collects this data at regular intervals, cleans it up to make it consistent, and 
stores it in one location. A second primary goal of a data warehouse is to improve 
the performance of OLAP queries. In most cases, performance is improved by de-
normalizing the data. Joining tables is often the most time-consuming portion of a 
query, so new data structures are created that perform all of the joins ahead of time 
and store redundant data into fewer tables.

Three main challenges exist in creating a data warehouse: (1) Setting up a trans-
fer system that collects and cleans the data, (2) Designing the storage structure to 
obtain the best query performance when handling millions or billions of rows of 
data, and (3) Creating data analysis tools to statistically analyze the data. Most 
companies choose to purchase data mining software for the third step. Few orga-
nizations have programmers with experience writing detailed statistical analysis 
procedures, and several companies sell prepackaged tools that can be configured 
to search data for patterns. The second issue—OLAP design—is discussed in the 
next section.

Cleaning and transferring data is often the most difficult part of establishing a 
data warehouse. Figure 9.7 shows the process known as extraction, transforma-
tion, and transportation (ETT).  You will quickly find that most companies have 
many different databases, with different table and column names, and different 
formats for the same type of data. For instance, one database might have a column 
Customers.LastName declared at 20 characters, and a second database uses Cli-



440Chapter  9: Data Warehouses and Data Mining

ents.LName set at 15 characters. The process of extracting data from these sources 
needs to be automated as much as possible; it is too hard and too expensive to try 
to clean data by hand. Remember that the data has to be transferred on a regular 
basis—at least daily. So you often have to write complex queries to merge data 
from different sources. In this small example, you would probably import one 
table (e.g., Customers), and then run a NOT IN query to get the list of names that 
are in the Clients table but not in the Customers table. These new names would 
then be added to the data warehouse. Some of the DBMS vendors have created 
import tools that will help you automate these data comparisons, but ultimately, 
most companies end up writing custom code to handle this complex process. For 
instance, Microsoft uses SQL Server Integration Services (SSIS). A key element 
in the process is to extract the data from the OLTP systems without interfering 
with the ongoing operations. Specialized tools and queries utilizing parallel pro-
cessing on multiple-processor machines are often used in this step, but the details 
depend on the DBMS, the hardware, and the database configuration. 

One method that can sometimes be used to reduce the data volume is to ex-
tract and transfer only data that has been changed since the last transfer. However, 
this process requires that the OLTP system track the date and time of all changes. 
Many older systems do not record this information for all elements. For instance, 
a sales database has to record the date and time of a sale, but it probably does not 
record the date and time that a customer address was changed.

Transforming the data often involves replacing Null values, converting text to 
numbers, or retrieving a value from a joined table and updating a value in the base 
table. All of these operations can be handled by SQL statements, and you will 
have to create modules that can be executed on a regular basis to extract the data, 
clean the data, and insert it into the new database.

Data warehouse:
All data must be 
consistent.

Customers

Convert Client 
to Customer

Apply standard 
product numbers

Convert currencies

Fix region codes

Transaction data 
from	diverse	
systems.

Figure 9.7
Extraction, transformation, and transportation (ETT). Transaction data usually has to 
be modified to make it completely consistent. This process must be automated so it 
can run unattended on a regular schedule.



441Chapter  9: Data Warehouses and Data Mining

Data Extraction, Tansformation, and Transportation
How is data loaded into the data warehouse? One of the most difficult tasks in 
creating a data warehouse is setting up the extraction, transformation, and trans-
portation (ETT) or loading (ETL) of data. Basically, you need to find all of the 
sources of data, find a way to extract it from its existing format, transform the 
data so it is internally consistent with every other piece of data, and load it into 
the data warehouse. More importantly, you have to create programs and tools so 
the entire process is automated. The ETL processes need to run on a timed basis 
(such as once a day). They need to run automatically, with no human intervention. 
As a database developer, it will be your responsibility to create and tests programs 
to handle these tasks. In large projects, developing all of the tools can easily take 
several months.

Figure 9.8 indicates the importance of focusing on the main sources of data: 
SQL databases, CSV files, spreadsheets and proprietary files. SQL databases are 
the easiest to handle. Most of the major DBMSs can be configured to connect to 
“external” databases. Hence, you can create connections from the data warehouse 
to the other databases. Once linked, you can write SQL statements to compare, 
transform, and copy data from the linked table into the warehouse tables. Another 
standard file type is the comma separated values (CSV) file. Data is stored se-
quentially in rows. The columns are separated by commas; although most tools 
enable you to change the delimiter to something else. For example, you might 
want to use tabs (ASCII character 9) in case the text data in a column happens 
to contain commas. In general, the bulk loaders make it relatively easy to import 
CSV data files. 

Excel spreadsheets and other proprietary formats can be more challenging. In 
both cases, you might have to use the original tool (e.g., Excel) to save the data 

Data Warehouse

SQL Database

Spreadsheet

CSV File

Proprietary Files

Figure 9.8
Data sources. The ETL process has to be automated so data can be extracted and 
loaded automatically every day. SQL sources are generally easy because tables can 
be linked and used directly. CSV files are relatively standard and can be handled with 
data loaders. Spreadsheets and other proprietary files can cause problems.



442Chapter  9: Data Warehouses and Data Mining

to a CSV file then call the data warehouse bulk loader to import the CSV file. The 
problem with this approach is that it is more difficult to automate. As shown in 
Figure 9.9, you need to write a program in the operating system that uses a timer 
to start Excel and call an Excel macro to export the data to a CSV file. After the 
file has been saved, the program calls the bulk loader to import the CSV data into 
the warehouse. Then the warehouse programs can run to extract and transform 
the data. You need to know how to use several different programing tools to even 
create this process. It will be difficult to write a program to automatically catch all 
errors and fix them on the fly. More likely, if something goes wrong, the program 
will crash and you will be called to fix the problem. And those calls always come 
at 3 AM. 

Any system that relies on multiple steps across different machines, operating 
systems, and software will have to be modified almost any time one of the com-
ponents changes. For example, when Microsoft updates Excel or Windows, the 
programs will have to be tested and probably modified. The goal here is not to 
scare you (well, maybe a little); but to help you understand some of the challenges 
to developing ETL programs—and why they take so long to create and test.

One of the goals in building an ETL system is to get the data into a SQL data 
source as early as possible. Once the data is in relational tables, you can use the 
full power of SQL to compare and transform the data. You will make heavy use 
of SQL commands of the form: INSERT INTO warehouse_table (…) SELECT … 
FROM linked_table.

Remember that the SELECT statement can transform the data as it extracts 
it. Also, you can use NOT IN or LEFT JOIN clauses to choose only data that is 
missing or is not already in a second source table. If data needs several process-
ing steps, you might have to write stored procedures or functions to perform more 
complex calculations. SQL Server has some useful tricks for creating temporary 
tables within functions and procedures. It is always best to stick with standard 

Figure 9.9
Problems with timing. The operating system has to run a program on a timer that 
calls Excel to export the data to a CSV file. After the file has been saved, the bulk 
loader can import the CSV data into the warehouse. If there is a delay or other 
problem, the system will likely crash and a human has to fix it.

CSV FileSpreadsheet
Data Warehouse

Bulk loaderExport

Need to set a timer to 
automate the data 
export.
Timer runs in operating 
system, so you need an 
OS program to control 
the tool (Excel).

The bulk loader must run 
after the	CSV	file	has	been	
created.
If	anything	goes	wrong,	it	will	
be	difficult	to	fix	automatically	
and a person probably needs 
to be called.



443Chapter  9: Data Warehouses and Data Mining

SQL commands, but sometimes you need to rely on the more complex program-
ming tools available. 

The main step is to extract and transform the data so that it is internally con-
sistent. Missing (Null) values are sometimes acceptable, but unmatched data is 
not. For instance, you cannot have a CustomerID in Sales data that lacks a related 
key in the Customer table. If the data all comes from a relational DBMS with 
referential integrity constraints, this problem is minimized. When the data sources 
include multiple databases, spreadsheets, and CSV files, all of the referential in-
tegrity constraints have to be built and tested as the data is loaded. 

Once the data is consistent, the data warehouse has tools to define fact and 
dimension attributes. Most warehouses also support renaming attributes, adding 
descriptions, and assigning formats so that the attributes are easier to understand. 
For instance, if the database files use abbreviations such as CID or EID, you can 
assign the more descriptive titles CustomerID and EmployeeID.

OLAP Concepts
How is OLAP different from queries? Probably the most important goal of 
OLAP is to make the data accessible to managers. They should be able to browse 
through the data without having to write queries. The concept of the multidimen-
sional cube shown in Figure 9.10 turns out to be a useful approach for many prob-
lems. The cube contains data about a specific fact (such as sales), and the dimen-
sions (sides) represent factors that are potentially interesting to the managers. You 
could write queries to retrieve all of the data. In fact, the cube is probably defined 
by a query. However, managers do not want to write queries, and no one wants to 
assume that managers are going to write accurate queries. Consequently, manag-
ers use specific tools to examine the data interactively. For instance, Microsoft 
provides the PivotTable browser for use on the desktop. It can connect to any 

Time

Sale Month

Customer 

Location

Cate
gory

CA

MI

NY

TX

Jan Feb Mar Apr May

Bird
Cat

Dog
Fish
Spider

880 750 935 684 993

1011 1257 985 874 1256

437 579 683 873 745

1420 1258 1184 1098 1578

880 750 935 684 993

1011 1257 985 874 1256

437 579 683 873 745

1420 1258 1184 1098 1578

Figure 9.10
Multidimensional cube. The fact element is sales. The dimensions are location, time, 
and category. Managers are interested in various combinations of the dimensions, and 
can use a cube browser to look at various subtotals.



444Chapter  9: Data Warehouses and Data Mining

common data source and enables managers to interactively see sections of the 
data and subtotals. Other vendors (and Microsoft) provide additional browsing 
tools.

To illustrate the process, consider a simple example from the Pet Store data-
base. Managers are interested in adoptions of animals. In particular, they want to 
look at adoptions by date, by the category (cat, dog, etc.), and by the location of 
the customer (state). The attribute they want to measure is the sale price, but you 
can also create more complex facts, such as price times quantity for merchan-
dise sales. Figure 9.10 shows how this small query could be pictured as a three-
dimensional cube. The OLAP tools enable managers to examine any question that 
involves the dimensions of the cube. For instance, they can quickly examine totals 
by state, city, month, or category. They can look at subtotals for the different cat-
egories or details within individual states. Currently, the front face of the cube 
shows sales subtotals by state and month. The cube browser makes it easy to ro-
tate the cube to display a different face—such as sales by category over time, or 
category by state. Users can also examine just one slice of the cube, such as sales 
by location and category for a specific month. All of these options are performed 
without asking the manager to write SQL. The desktop tools support drag-and-
drop operations to choose the dimensions to be compared. 

The OLAP tools also support the ability to look at tools or to change and look 
at details. Managers might want to start with high-level subtotals and drill down 
to see the details. For instance, a manager might be looking at total sales by month 
and spot a drop in a particular month. He or she can drill down to see the details 
of sales by category or location within that month. The opposite of drill-down is 
to roll up the data into totals or averages. Instead of looking at detail sales for a 
given state, the manager might want to see the totals for an entire month.

A data hierarchy is another common element in OLAP. Many dimensions 
have an explicit hierarchy of values. For instance, Figure 9.11 shows the common 

Figure 9.11
Drill down and Roll up. In a given dimension, drill down provides more detail. Roll 
up aggregates the values from subcategories.

Year

Quarter

Month

Week

Day

Levels Roll-up
To get higher-level totals

Drill-down
To get lower-level details



445Chapter  9: Data Warehouses and Data Mining

hierarchy for dates. A given event (e.g., sale) occurs on a specific date, but that 
date is defined by the year, quarter, month, or week in which it occurred. Manag-
ers might want to examine data at any level within the hierarchy, or drill down or 
roll up as they are looking at one level. Several standard hierarchies exist in busi-
ness data—such as dates and locations—and most systems know how to generate 
these levels automatically. However, the tools also enable you to create custom 
hierarchies for specific types of data.

Once the OLAP database is defined, users need tools to analyze the data. A 
cube browser is important because it enables users to look through the data and 
follow interesting observations. Statistical tools fall into the category of data min-
ing or business intelligence. Vendors provide several versions of tools, some are 
more automated than others. The goal in all cases is to identify potentially inter-
esting patterns.

OLAP Database Design
How are OLAP databases designed? Database design for OLAP is different 
from traditional database design. Some of the concepts are similar, but ultimately, 
most OLAP tools store the data in cube structures instead of relational tables. Ad-
ditionally, OLAP design hides table joins from the end user. The manager sees 
only the cube. Consequently, the heart of OLAP design is to identify: (1) Facts to 
be measured, (2) Dimensions to be evaluated, and (3) Data hierarchies. The re-
maining design issues consist of choosing the best way to organize these elements.

Facts are relatively easy to identify. In a business context, a fact is often a dollar 
value, but you can also include counts of items, such as the number of items sold. 
In any case, you can simply ask the managers what items need to be measured. 
All facts must be measures—that is, they must be numeric values. For that rea-
son, you cannot include categorical data (such as “small,” “medium,” or “large”). 
Some systems support multiple facts within a single cube, but they should be re-
lated. For instance, you might include the count of the number of items sold with 
the value of the items sold. Be careful to identify these values with distinctive and 
accurate names so users clearly identify the correct role of the data.

You need to be careful when the fact is a computed value. The problem is that 
you need to control the computational order. What happens if you build the cube 
using the original SaleItem table? Then you could only use Quantity and SalePrice 
as measures. It would be tempting to create a calculated measure: Amount2 = 
Quantity * SalePrice. However, this approach can lead to incorrect results. It is 
critical that you understand the difference between these two approaches. The cor-
rect method is to build a query for any computation that needs to be done on a 
line-by-line basis (Price * Quantity is a common example). If you wait and build 
it in the OLAP design cube as a calculated measure, then the cube will (1) slice 
the data, (2) subtotal any measures separately (Price and Quantity), then (3) per-
form your calculations: Sum(Price) * Sum(Quantity). So your calculations will 
be performed on data that has already been totaled. Figure 9.12 shows the differ-
ence with a small example. When you use a query for the fact table to compute 
the multiplication, the columns are multiplied first and then summed, giving the 
correct total or $23.00. If you use the original table as the fact table and specify 
the computation as the cube’s calculated measure, the cube first adds the quantity 
and price columns and then performs the multiplication, giving the incorrect result 
of $45.00. The solution is detailed line-by-line computations in a query and to use 
that query as the fact table.



446Chapter  9: Data Warehouses and Data Mining

The second step is to choose the attributes or dimensions that form the sides 
of the cube. The dimensions come from columns for which the users want to 
compute subtotals. In one sense, an OLAP cube is like a SELECT statement with 
multiple GROUP BY statements. Any item that would appear in the GROUP BY 
clause becomes a dimension. The user gets to dynamically choose which dimen-
sions to include at any time. The catch is that you have to find all of the tables that 
contain the desired dimensions and be sure they are linked to the desired facts.

The third step is to identify and generate all of the desired hierarchies within 
the dimensions. Some dimensions (e.g., dates) have well-known hierarchies. In 
other cases, you will have to talk with users to identify the desired levels and cre-
ate the hierarchies manually. Each OLAP tool has a different method for defining 
hierarchies, so the actual steps are not covered here.

Snowflake Design
Once you have identified the facts and dimensions needed for a cube, you can 
construct the cube within the OLAP tool. Although the details vary, two general 
models are commonly used to store the data: the snowflake and star designs. The 
snowflake design is similar to a traditional relational design, so it is easy to un-
derstand. However, it might not be the most efficient design. Both designs begin 
with the fact table to define the desired measures. The difference lies in how the 
dimension data is stored and accessed. With the snowflake design, the system uses 
predefined joins to connect any tables. As shown in Figure 9.13, you can connect 
tables through other tables. For instance, City connects through Customer, which 
connects to the Sale table. The data remains in the original normalized tables, and 
all columns in the tables are available to be used as dimensions.

The difficulty with the snowflake design is that the OLAP browser needs to 
process the joins, which can require considerable computational power and time. 
Systems that use this approach rely heavily on indexes to reduce the access times. 
Often, the data is moved out of transaction tables, into a read-only set of tables. 
Since the data is rarely updated, the system can create a huge number of indexes 
without worrying about needing to update them because insertions and deletions 
are not supported. When data is transferred from the OLTP system, the indexes are 
removed, the data loaded, and the indexes are rebuilt at one time. Some tools also 
add internal pointers within the data, essentially integrating the indexes into the 
data for even faster performance.

Quantity Price Quantity*Price
3 5.00  15.00
2 4.00  8.00
5 9.00 45.00 or 23.00

Figure 9.12
Order of computations. Multiplications should be performed in a query that is 
used for the fact table to get the correct total of $23.00. Computing it in the cube 
calculation causes sums to be computed first and then multiplied to give the incorrect 
value of $45.00.



447Chapter  9: Data Warehouses and Data Mining

Star Design
The star design focuses on speeding up data retrieval, essentially by removing 
joins. It accomplishes this task by denormalizing the data. Essentially, it saves du-
plicate data. In the standard sales example, the customer data would be entered for 
every sale. If you could scroll through the raw data, you would see the customer 
location repeated for every sale. Obviously, this approach requires more storage 
space. However, remember that insert, update, and delete are not supported on the 
individual items. Consequently, the problems discussed in Chapters 2 and 3 that 
are caused by non-normalized data are avoided. Figure 9.14 shows the star de-
sign for the sample sales problem. Once you understand the users’ goals, the star 
design is relatively easy to create. You simply identify the fact measures and the 
dimensions. The system then copies all of the needed data to place the dimensions 
close to the fact measures. If you add enough dimension tables, you will see the 
reason for the star name. The fact table sits in the center and is connected to the 
dimension tables through rays. On the other hand, the snowflake design begins the 
same way, but you can add tables that connect through other dimensions instead 
of directly to the fact table. This extended pattern with multiple levels leads to a 
snowflake appearance.

Which design is better? This question is beyond the scope of this book, because 
it is a difficult question to answer. In fact, vendors continue to argue over the 
benefits and weaknesses of each method. They both work best for non-transaction 
data that is bulk-updated on a regular basis. Both require the storage of additional 
information (either indexes or duplicate data). In the end, performance depends on 
multiple factors. If you are thinking about buying a new system, you need to test 
your specific data with various systems and decide which approach works best in 
your situation. In terms of configuration, it is easiest to think in terms of the star 
design. Identify the facts and connect the dimensions directly to the fact table.

SaleID
ItemID
Quantity
SalePrice
Amount

OLAPItems

ItemID
Description
QuantityOnHand
ListPrice
Category

Merchandise

SaleID
SaleDate
EmployeeID
CustomerID
SalesTax

Sale

CustomerID
Phone
FirstName
LastName
Address
ZipCode
CityID

Customer

CityID
ZipCode
City
State

City

Figure 9.13
Snowflake design. It is less strict than the star design in that dimension tables can be 
joined to other dimension tables before being connected to the fact table.



448Chapter  9: Data Warehouses and Data Mining

OLAP Data Analysis
What tools are used to examine OLAP data? Beyond transaction processing, 
managers collect data to assist in making decisions. Many levels and types of de-
cisions exist in business, so many different tools exist, with new ones created ev-
ery year. Two general categories of tools exist: (1) Cube browsers, and (2) Statisti-
cal tools used for data mining. This section focuses on the cube browsers, and the 
following section summarizes some of the common data mining tools.

The most common form of cube browsers are interactive tools that make it easy 
for managers to examine subtotals, select subsets of the data, and drill down to see 
detailed data. Many vendors provide these interactive cube browsers, but several 
common features exist. Once you understand the overall structure, you can learn 
the details of a specific tool. The SQL standard of 2003 introduced SQL exten-
sions to support retrieval and analysis of OLAP data. Additional standardization 
work concentrates on multidimensional expressions (MDX), or the more recent 
mdXML. Although they are not interactive, SQL or MDX make it easier to write 
code that can be executed to retrieve or analyze data.

Cube Browsers
Vendors who provide OLAP tools generally include a cube browser to support 
interactive browsing by decision makers. All of the major DBMS vendors provide 
similar tools, but the construction and browsing techniques vary considerably. 
Also note that the business intelligence tools might require separate development 
tools and additional licenses (fees) to deploy to users. If you are using a DBMS 
that does not have an integrated BI system or cube browser, you can generally use 
Microsoft Office to build a PivotTable on the desktop that connects to your back-
end database.

Figure 9.15 shows a sample cube for the Pet Store created with the Microsoft 
Business Intelligence Development Studio. The cube data was generated by creat-
ing a view to define the measures and dimensions related to sales of merchandise 
items. The Value fact was created as SalePrice*Quantity, and the SaleDate was 

Sales
Quantity

Amount=SalePrice*Quantity

Fact Table

Products

Customer
Location

Sales Date

Dimension Tables

Figure 9.14
Star OLAP design. The fact table holds the numeric data managers want to examine. 
The dimension tables hold the characteristics. In a star design, all dimension tables 
connect directly to the fact table.



449Chapter  9: Data Warehouses and Data Mining

extended into a year-month-date time hierarchy. Once the cube is defined, manag-
ers can browse the cube without needing to know anything about the underlying 
structures.

Browsing the cube is as simple as dragging the desired dimensions and facts 
onto the display grid. Users can experiment at will, because the dimensions can 
always be interchanged or removed. Subtotals are automatically generated for hi-
erarchies and the user can click the designated buttons to drill down or roll up 
the totals. Users can place dimensions on the page to use as filters. To show a 
different subset of data, the user simply opens the desired dimension (filter, row, 
or column) and selects the desired attributes. In the example, you could open the 
Sale filter and select only a couple of states to immediately see the Category and 
SaleMonth values for the chosen states. Starting with Visual Studio 2010 (and 
later 2012) the cube browser displays all dimensions in rows and does not support 
column headings. To see a more tabular approach, use a PivotTable.

Microsoft Office contains the PivotTable and PivotChart utilities that can run 
inside of Excel, or even deliver interactive Web pages. A PivotTable is the inter-
active cube browser. A PivotChart uses the same principles to display dynamic 
charts. The primary advantage of charts is the ability to visualize the data—par-
ticularly trends over time on line charts and correlations using scatter charts. 

Figure 9.15
An OLAP cube browser. The time (SaleDate) dimension is shown in the table of 
data along with the merchandise Category. Users can change the display simply by 
dragging the dimensions on or off the grid. They can also add filter fields such as the 
State dimension. The year-month-date hierarchy enables users to drill down or roll up 
data.



450Chapter  9: Data Warehouses and Data Mining

The process of creating PivotTables and PivotCharts is similar. Although you 
could use Microsoft Query to collect and refine the data, it is usually easier to 
save a view in the original database that retrieves the desired data. In particular, 
you should create any needed calculations in the query. Microsoft Excel has menu 
options to help you create PivotTables and PivotCharts, so it is relatively easy to 
create and to use the resulting objects. Figure 9.16 shows a PivotChart based on 
the merchandise sale data. The operation of the PivotChart is similar to the cube 
browsers. Once the chart is built, managers can drag the dimensions around to 
create a new chart.

OLAP in SQL
Think about the concepts of the OLAP cube for a couple of minutes, and you 
will recognize that it is a method of examining the results of multiple GROUP 
BY statements. The cube browsers simply make it easier to display the results 
and interactively explore the relationships. Interactivity is nice but sometimes you 
need a programmatic approach to a problem. Perhaps you need a formal report, or 
to transfer data, or to automate a statistical analysis. The SQL 99 standard added 
some features that provide OLAP-type results within SQL. Several vendors have 
integrated these new commands, although the syntax might be slightly different 
for each vendor.

In the Pet Store example, what happens if you use a GROUP BY statement with 
two columns? Figure 9.17 shows the partial results of a Pet Store query that con-
tains a GROUP BY computation with two columns (animal category and month 
sold). Notice that it provides a subtotal for each category element for each month. 

Figure 9.16
Microsoft PivotChart. Pivot tools make it easy for managers to examine cube data 
from any perspective, to select subsets of the data, to perform calculations, and to 
create charts.



451Chapter  9: Data Warehouses and Data Mining

SELECT Category, Month(SaleDate) As SaleMonth, 
 Sum(SalePrice*Quantity) As Amount
FROM Sale INNER JOIN SaleItem
 ON Sale.SaleID=SaleItem.SaleID
  INNER JOIN Merchandise ON 
 Merchandise.ItemID=SaleItem.ItemID
GROUP BY Category, Month(SaleDate)

Category Month Amount
Bird
Bird

Cat
Cat


 1
 2
  
 1
 2
  

 135.00
 45.00
 
 396.00
 113.85
 

Figure 9.17
SELECT query with two GROUP BY columns. You get subtotals for each animal 
category for each month. You do not see totals across an entire category (Birds for all 
months), and you do not get the overall total. 

SELECT Category, Month(SaleDate) As SaleMonth, 
 Sum(SalePrice*Quantity) As Amount
FROM Sale INNER JOIN SaleItem
 ON Sale.SaleID=SaleItem.SaleID
  INNER JOIN Merchandise ON 
 SaleItem.ItemID=Merchandise.ItemID
GROUP BY Category, Month(SaleDate) WITH ROLLUP;

Oracle syntax:
GROUP	BY	ROLLUP	(Category,	TO_CHAR(SaleDate,	‘mm’)

Category Month Amount
Bird
Bird

Bird
Cat
Cat

Cat

(null)

 1
 2
 
 (null)
 1
 2
 
 (null)
 
 (null)

 135.00
 45.00
  
 607.50
 396.00
 113.85
  
 1293.30
  
 8451.79

Figure 9.18
ROLLUP option.  Adding the ROLLUP option to the GROUP BY statement 
generates the super-aggregate totals. In this case, the query provides totals for each 
Category element and the overall total. Notice that the corresponding Month is a null 
value.



452Chapter  9: Data Warehouses and Data Mining

Assuming all animal types were sold in all months, you would see 12 values for 
birds, 12 for cats, 12 for dogs, and so on. What you do not get are super-aggre-
gate totals, or totals for an entire category or across all rows. For instance, what is 
the total value of bird merchandise sold for the entire year?
ROLLUP
You could get these super-aggregate totals by using additional SELECT state-
ments. However, SQL 99 added the ROLLUP option specifically to compute su-
per-aggregate totals. Figure 9.18 shows the results for the Pet Store query. The 
total across all months is calculated for each element in the Category column. This 
total is displayed with a null value for the Month column. At the bottom, the over-
all total is displayed with two null values. Of course, the super-aggregate totals 
are not normally printed in bold, so they can be hard to spot. A bigger question 
is, What happens if there is a missing (null) value for some months? In the case 
of a missing date for a sale of bird items, the display would contain two similar 
lines (Bird, null, 32.00). One of the lines would be the total sales of bird products 
for months with missing dates. The second total would be the super-aggregate 
total across all months. But how do you know which is which? It is possible to 
scrutinize the numbers with totals and realize that the larger total should be the 
super-aggregate value. But with other functions, such as Average, there might not 
be any way to tell. Notice that the Oracle syntax is slightly different from the SQL 
Server syntax. The Oracle version is slightly closer to the standard (which does 
not require the parentheses), but you should understand both versions.

SELECT Category, Month(SaleDate) As SaleMonth, 
 Sum(SalePrice*Quantity) As Amount,
 GROUPING (Category) AS Gc,
 GROUPING (Month(SaleDate)) AS Gm
FROM Sale INNER JOIN SaleItem
 ON Sale.SaleID=SaleItem.SaleID
  INNER JOIN Merchandise ON 
 SaleItem.ItemID=Merchandise.ItemD
GROUP BY Category, Month(SaleDate) WITH ROLLUP

Category Month Amount Gc Gm
Bird
Bird
 
Bird
Cat
Cat
 
Cat
 
(null)

 1
 2
 
 (null)
 1
 2
  
 (null)
  
 (null)

 135.00
 45.00
  
 607.50
 396.00
 113.85
  
 1293.30
  
 8451.79

0
0

0
0
0

0

1

0
0

1
0
0

1

1

Figure 9.19
GROUPING function. The GROUPING function returns a value of one when the 
row displayed is a super-aggregate for the selected column parameter.



453Chapter  9: Data Warehouses and Data Mining

To help identify the super-aggregate lines, the SQL standard introduced the 
GROUPING function. As shown in Figure 9.19, the function usually returns a 
value of 0. When the row displayed is a super-aggregate computation, it displays 
a value of 1. In the example, the totals across months for each category produce 
a value of one for the GROUPING(Category) function. The overall total contains 
values of one in both indicator columns. This function could also be used in other 
computations or even in WHERE conditions. For instance, you might want to per-
form a computation with the super-aggregate totals.
CUBE
Looking at the results, it is clear that the ROLLUP option does not provide all 
of the information a manager might want. Notice that the super-aggregate totals 
only apply to the Category column in the examples. There are no corresponding 
totals for the Month column, which would represent sales of all categories for a 
given month. Of course, you could obtain those totals if you rewrite the query and 
reverse the order of the Category and Month columns in the GROUP BY clause.

The CUBE option provides the solution. The CUBE option is similar to ROL-
LUP, but it computes and displays the super-aggregates for all GROUP BY col-
umns. In Figure 9.20, notice that the only change to the SQL was replacing the 

SELECT Category, Month(SaleDate) As SaleMonth, 
 Sum(SalePrice*Quantity) As Amount,
 GROUPING (Category) AS Gc,
 GROUPING (Month(SaleDate)) AS Gm
FROM Sale INNER JOIN SaleItem
 ON Sale.SaleID=SaleItem.SaleID
  INNER JOIN Animal ON 
 SaleItem.ItemID=Merchandise.ItemID
GROUP BY Category, Month(SaleDate) WITH CUBE

Category Month Amount Gc Gm
Bird
Bird
 
Bird
Cat
Cat
 
Cat
 
(null)
(null)
(null)
 
(null)

 1
 2
  
 (null)
 1
 2
 
 (null)
 
 (null)
 1
 2
 
 12

 135.00
 45.00
   
 1358.82
 45.00
 113.85
 
 1293.30
 
 8451.79
 1358.82
 1508.94
 
 164.70

0
0

0
0
0

0

1
1
1

0

0
0

1
0
0

1

1
0
0

0

Figure 9.20
CUBE option. The CUBE option computes super-aggregate values for all columns in 
the GROUP BY statement. The rows near the bottom with the Gm indicator value of 
1 are the totals by month for all categories of products.



454Chapter  9: Data Warehouses and Data Mining

ROLLUP keyword with CUBE. The result still includes the super-aggregate totals 
across months for each category. These totals have a value of 1 for the Gc indi-
cator column. But, the query also produces the super-aggregate totals for each 
month across all categories of products. The values for the three months are dis-
played near the bottom of the results. Notice the null value under Category, and 
the Gm column value of 1 indicating that it is the super-aggregate total for the 
month. Again, the Oracle syntax is slightly different, where the key phrase be-
comes: GROUP BY CUBE (Category, TO_CHAR(SaleDate, ‘mm’)).

Because of these additional totals, you will most likely use the CUBE option 
more often than ROLLUP. However, if you add several columns to the GROUP 
BY statement, you could get so many subtotals that you might prefer to use ROL-
LUP to simplify the display. Ultimately, the decision comes down to what the us-
ers need to see, or which values you need in additional computations. Remember 
that you cannot rely on the null value to identify super aggregates. You must use 
the GROUPING (e.g., Gc and Gm) function instead.

 The SQL standard provides additional options, including the ability to create 
CUBEs or ROLLUPs based on the combined value from multiple columns. The 
standard calls for a GROUPING SETS function to hide the detail subtotals and 
only display the super-aggregate totals. However, this function is not supported 
by all systems, and it is actually easier to use the GROUPING function directly. 
As shown in Figure 9.21, the SQL is straightforward by adding the conditions to a 
HAVING statement.

Although the ROLLUP and CUBE options bring new features to SQL, the re-
sults can be difficult to read. In terms of OLAP value, you would not want to show 
the results to managers or expect them to be able to use these tools interactively. 
On the other hand, they could be useful for feeding data into a procedure that you 
write which needs to perform more advanced computations or transfer the data to 
a spreadsheet.

SELECT Category, Month(SaleDate) As SaleMonth, 
 Sum(SalePrice*Quantity) As Amount
FROM Sale INNER JOIN SaleItem
 ON Sale.SaleID=SaleItem.SaleID
  INNER JOIN Merchandise ON 
 SaleItem.ItemID=Merchandise.ItemD
GROUP BY Category, Month(SaleDate) WITH CUBE
HAVING GROUPING(Category)=1 Or GROUPING(Month(SaleDate))=1

Category Month Amount
Bird
Cat
 
(null)
(null)
(null)
 
(null)

 (null)
 (null)
 
 (null)
 1
 2
 
 12

 607.50
 1293.30
 
 8451.79
 1358.82
 1508.94
 
 164.70

Figure 9.21
GROUPING SETS to hide detail. The GROUPING function can be used to hide the 
details so users can focus on the super-aggregate totals.  



455Chapter  9: Data Warehouses and Data Mining

SQL Analytic Functions
The SQL-99 standard added some mathematical functions that are useful for com-
mon OLAP analyses. For example, the statistical functions of standard deviation 
(STDDEV_POP and STDDEV_SAMP), variance (VAR_POP and VAR_SAMP), 
covariance (COVAR_POP and COVAR_SAMP), correlation (CORR), and linear 
regression (REGR_SLOPE, etc.) are now part of the standard. Because most data-
base systems already had proprietary versions of these functions, the impact is not 
that great, but it will help if vendors adopt the standard names for the functions.

Two of the more interesting new functions are RANK and DENSE_RANK. 
These functions assign numbers to the sorted results that indicate the ranking of 
the data. A new table (SampleSales) was created to illustrate the functions. The 
sample data was created specifically to illustrate the difference between the two 
functions. You could create a view in the Pet Store database and run the same que-
ry, but the results will be different. Figure 9.22 shows the query and the results. 
First, note that the syntax is somewhat complicated. The reason for the complex-
ity is because these two functions are designed to work with partitions—which 
are explained in the next section. The query in this example uses all of the rows of 
data, but you still need the OVER clause to specify the correct sort order.

Look closely at the results, and you will see the difference between the RANK 
and DENSE_RANK functions. If you have every worked with ranked data (such 
as sports or election results), you know the basic problem: How do you handle 
ties? Both functions give tied values the same rank (2 in this case). But the RANK 
function keeps counting the number of entries and assigns a rank to the next non-
tied value that includes all of the entries above it. In this example, White receives 
a rank of 4 because three people have higher sales. The DENSE_RANK function 
counts the ranks instead of the rows. Consequently, White receives a dense rank 
of 3 because it is the next ranking value. You can choose whichever function you 
need for a particular problem. The syntax is the same, but you have to remember 
the difference between the two.

SELECT Employee, SalesValue, 
RANK() OVER (ORDER BY SalesValue DESC) AS Rank,
DENSE_RANK() OVER (ORDER BY SalesValue DESC) AS Dense
FROM SampleSales
ORDER BY SalesValue DESC, Employee;

Employee SalesValue Rank Dense
Jones 18000 1 1
Black 16000 2 2
Smith 16000 2 2
White 14000 4 3

Figure 9.22
RANK functions. The sort order for the rank function is specified separately. Ties are 
given the same rank. RANK skips values that would have been assigned to tie values. 
DENSE_RANK does not skip values. 



456Chapter  9: Data Warehouses and Data Mining

SQL OLAP Windows Partition
The SQL-99 standard defines some a useful extension for OLAP that should make 
certain types of queries substantially easier in SQL. The standard introduced the 
concept of partitions or data windows. A partition is similar to a GROUP BY 
clause because you specify columns whose values are used to define the parti-
tions. But partitions offer additional options and enable you to display detail and 
aggregate data at the same time. Figure 9.23 demonstrates an advanced capability 
using the Oracle syntax, which is almost identical to the standard. SQL Server 
2012 supports the same syntax but the date conversion (TO_CHAR) has to be 
replaced with Year(SaleDate)*100+Month(SaleDate).

The main query needs a little explanation. Its goal is to compute a moving aver-
age over time within each Category. A moving average computes the average of 
a specified number of rows, then moves to the next row and slides the window to 
the next rows. The PARTITION BY Category command specifies that the compu-
tations are to be performed for each separate value of the Category variable and 
reset when a new Category value is found.  The ROWS 2 PRECEDING command 

CREATE VIEW qryMonthlyMerchandise AS
SELECT Category, 
			TO_CHAR(SaleDate,	‘yyyy-mm’)	As	SaleMonth,	
   sum(SalePrice*Quantity) As MonthAmount
FROM Sale INNER JOIN SaleItem ON Sale.SaleID=SaleItem.SaleID
   INNER JOIN Merchandise ON Merchandise.ItemID=SaleItem.ItemID
GROUP	BY	Category,	TO_CHAR(SaleDate,	‘yyyy-mm’)

SELECT Category, SaleMonth, MonthAmount, AVG(MonthAmount)
    OVER (PARTITION BY Category
          ORDER BY SaleMonth ASC ROWS 2 PRECEDING)
    AS MA
FROM qryMonthlyMerchandise
ORDER BY Category, SaleMonth;

Category SaleMonth MonthAmount MA
Bird
Bird
Bird
Bird


2013-01
2013-02
2013-03
2013-06


135
45
202.5
67.5


135
90
127.5
105


Cat
Cat
Cat
Cat


2013-01
2013-02
2013-03
2013-04


396
113.85
443.7
2.25


396
254.925
317.85
186.6


Figure 9.23
SQL-99 OLAP PARTITION versus GROUP BY. The window PARTITION statement 
enables you to display aggregate data (average) along with the detail rows. The 
GROUP BY statement only provides the summarized data. Also note the use of the 
PRECEDING statement in the partition to calculate across previous rows of data. 
This version is based on the Oracle syntax.



457Chapter  9: Data Warehouses and Data Mining

specifies that three rows are to be included in the computation: the current row 
and the two rows before it. If fewer than three rows exist, the DBMS uses only the 
values that do exist. 

One of the strengths of the OVER statement is that you can specify different 
partitions within the same SELECT statement. The standard also supports rela-
tively powerful options to specify a variety of ranges of rows. It is used to perform 
calculations relative to the current row, so you can compute differences and av-
erages backward and forward. Figure 9.24 shows some commonly used options 
for the RANGE function. The entire query computes three values of totals. The 
first SUM command totals the values in the rows from the beginning of the query 
through the current row. The second SUM column does the same thing, but more 
explicitly states the beginning and ending rows. The third SUM column computes 
the total from the current row through the last row of the query. In the second and 

- - Create a view to get the simple monthly merchandise totals
CREATE VIEW qryMonthlyTotal AS
SELECT SaleMonth, Sum(MonthAmount) As Value
FROM qryMonthlyMerchandise
GROUP BY SaleMonth;

SELECT SaleMonth, Value,
	 SUM(Value)	OVER	(ORDER	BY	SaleMonth)	AS	running_sum,
 SUM(Value) OVER (ORDER BY SaleMonth RANGE
  BETWEEN UNBOUNDED PRECEDING 
	 	 AND	CURRENT	ROW)	AS	running_sum2,
 SUM (Value) OVER (ORDER BY SaleMonth RANGE
  BETWEEN CURRENT ROW
	 	 AND	UNBOUNDED	FOLLOWING)	AS	remaining_sum
FROM qryMonthlyTotal
ORDER BY SaleMonth;

Month Value Sum1 Sum2 Remain
2013-01
2013-02
2013-03
2013-04
2013-05
2013-06
2013-07
2013-08
2013-09
2013-10
2013-11
2013-12

1358.82
1508.94
2362.68
377.55
418.50
522.45
168.30
162.70
288.90
666.00
452.25
164.70

1358.82
2867.76
5230.44
5607.99
6026.49
6548.94
6717.24
6879.94
7168.84
7834.84
8287.09
8451.79

1358.82
2867.76
5230.44
5607.99
6026.49
6548.94
6717.24
6879.94
7168.84
7834.84
8287.09
8451.79

8451.79
7092.97
5584.03
3221.35
2843.80
2425.30
1902.85
1734.55
1571.85
1282.95
616.95
164.70

Figure 9.24
OVER and RANGE functions.  The first SUM function computes the total from 
the beginning to through the current row. The second SUM function does the same 
thing more explicitly. The third SUM function totals the values from the current row 
through the remaining rows in the query.



458Chapter  9: Data Warehouses and Data Mining

third examples, notice the use of the UNBOUNDED keyword to specify the start 
or end row. You could have replaced those with specific numbers if you wanted 
to compute only the totals for a specified number of preceding or following rows.

Most database systems also make it easy to use LAG and LEAD functions. 
These functions are designed to be used as inline functions that refer backward 
or forward to a specified number of rows. For example, the LAG function refers 
to values on previous rows. Figure 9.25 shows the basic syntax for Oracle and 
SQL Server with the result of a one-period lag and one-period lead. The power 
of the functions is that it is also easy to use the lag or lead variables in additional 
calculations. These functions are not part of the official SQL standard, so there 
are still some differences among the vendors. For example, you might not be able 
to specify the default value, which is useful for the first (or last) few rows that 
do not have defined values. But because most systems support the functions, and 
because they are so useful, they are worth studying. As of SQL Server 2012, the 
PARTITION, LAG, and LEAD functions are available in SQL Server with the 
same syntax.

Data Mining and Business Intelligence
What tools exist to search for patterns 
and correlations in the data? The goal 
of data mining is to discover unknown re-
lationships that can be used to make bet-
ter decisions. Figure 9.26 summarizes the 
various methods available to retrieve data 
from the database. Reports are predefined 
and generated as part of the transaction 
system. Queries are used to answer ad 
hoc questions, but require knowledge of 
SQL or a query builder. The OLAP cube 

-	-LAG	or	LEAD	(Column,	#	rows,	default)
SELECT SaleMonth, Value,
	 LAG(Value,	1,	0)	OVER	(ORDER	BY	SaleMonth)	AS	Prior_
Month,
	 LEAD(Value,1,0)	OVER	(ORDER	BY	SaleMonth)	AS	Next_
Month
FROM qryMonthlyTotal
ORDER BY SaleMonth

SaleMonth MonthAmount Prior_Month Next_Month
2013-01
2013-02
2013-03

2013-12

1358.82
1508.94
2362.68


164.70

0
1358.82
1508.94


452.25

1508.94
2362.68
377.55


0

Figure 9.25
LAG and LEAD functions. As inline functions, they easily return a value from a 
prior or following line. You can specify how many lines to go backward or forward.

The topics in this section are more 
advanced and might be saved for a 
second course. The examples re-
quire installation of the Business 
Intelligence tools. In-depth details 
and explanations are provide in the 
separate Data Mining textbook. But 
this section provides an introduction 
to the basic concepts and goals.



459Chapter  9: Data Warehouses and Data Mining

browser enables managers to retrieve data interactively, but primarily focuses on 
subtotals. Data mining is different in that the tools use statistical comparisons to 
search for patterns, and many of the tools are relatively autonomous. Managers 
have to select the appropriate tool and interpret the results, but the goal of data 
mining is to run with minimal input.

A few tools require more input and specification by model builders. Most of 
the technologies are exploratory, in the sense that you are searching for unknown 
relationships as opposed to trying to confirm a suspected one. Some of the rou-
tines are derived from statistical analysis; others are highly detailed and created 
for specialized tasks. This section presents an overview of some of the more popu-
lar technologies. Detailed statistical and programming issues are not covered here, 
but can be found in specialized textbooks.

Figure 9.27 lists some of the common data mining categories. Occasionally, a 
DBMS vendor will include a few of the technologies with the base system. How-
ever, most vendors sell business intelligence tools as add-on products. Many other 
tools are available from specialized data mining companies. In either case, you 
generally require the services of a modeler to help build the proper models and in-
terpret the results. Data classification and market basket analysis are two common 
methods of analyzing data in business because they are useful for many types of 
problems. Geographic systems are powerful solutions to specific questions. Web 
site analysis through time-series evaluation of logs is increasingly popular. New 
technologies and new methodologies that can evaluate ever-larger datasets are be-
ing developed continually.

Data Configuration
Configuring data is one of the most critical tasks of analysis, and the task a da-
tabase developer is most likely to focus on. The categories in this section are or-
ganized in terms of how the data needs to be organized—which is related to the 
ultimate task. For example, several classification tools exist, but they all rely on 
the same data structure.

Data for analysis can come from a data warehouse or from relational tables. 
Standalone tools, such as the open-source tools, often require that data be stored 
in CSV files. Most data warehouses and relational DBMSs can export data into 

Databases

Reports

Queries

OLAP

Data Mining

Transactions and operations

Specific	ad	hoc	questions

Aggregate, compare, drill down

Unknown relationships

Figure 9.26
Data mining. With a goal of identifying unknown relationships. Data mining is a 
bottom-up approach. Highly specialized tools scan the data searching for information 
that might be useful.



460Chapter  9: Data Warehouses and Data Mining

CSV files. If nothing else, a SQL SELECT statement can be used to extract the 
data—complete with commas—and then the output can be redirected or saved to 
a text file.

Classification
As shown in Figure 9.28, many business problems can benefit from classifica-
tion analysis. Several tools have been developed to estimate relationships that 
can predict an outcome. Statistical methods like regression are readily available. 
However, the two drawbacks to statistical methods are that they tend to assume 
linear relationships exist, and the estimates are based on averages—but often the 
most important hidden relationships are too small to be identified by averages. For 
example, you might be searching for new customers that can be encouraged to 
return and make more purchases. Since they are new, you might not have enough 
average data to create a statistically important effect.

Problems that can be evaluated by classification analysis have an outcome that 
is affected by a set of indicator attributes. The basic objective is to estimate the 
strength of the effect of each indicator variable and its influence on the outcome. 
For instance, a bank would have historical data on borrower attributes such as job 
stability, credit history, and income. The data mining system could estimate the 

Which	borrowers/loans	are	most	likely	to	be	successful?
Which customers are most likely to want a new item?
Which	companies	are	likely	to	file	bankruptcy?
Which workers are likely to quit in the next six months?
Which startup companies are likely to succeed?
Which	tax	returns	are	fraudulent?

Figure 9.28
Classification examples. Many common business problems can benefit from 
classification analysis. Each problem has an outcome and the goal is to classify 
elements into the outcome choices based on a set of attributes.

Classification/prediction/regression
Association rules/market basket analysis
Clustering
 Data points
 Hierarchies
Neural networks
Deviation detection
Sequential analysis
 Time series events
 Website analysis
Spatial/geographic analysis
Textual analysis

Figure 9.27
Data mining techniques. Classification and market basket analysis are popular 
technologies in business. New technologies and new methods of estimating 
relationships are still being developed. 



461Chapter  9: Data Warehouses and Data Mining

effect of each of these variables on the ultimate outcome (paying off the loan or 
defaulting). These weights could be applied to future customer data to help deter-
mine whether to grant a loan, or to affect the interest rate to charge.

 Figure 9.29 shows a tiny sample of data for the lending situation. Note that 
the data might be categorical (Yes/No) or continuous (e.g., Income). Some clas-
sification tools can work with either type of data, but some require you to convert 
to categorical data. For example, the income data could be converted to bins, such 
as low: 0-30,000; medium: 30,000-70,000; high: 70,000-120,000, and wealthy: 
above 120,000. Of course, then you face the new data mining question of where 
to draw the lines to separate the categories. Some tools provide techniques to help 
make this decision as well. 

Common classification tools include: various regression methods, Bayesian 
analysis, decision trees (particularly for hierarchical data), genetic algorithms, and 
neural networks. Of the group, neural networks typically require the least supervi-
sion, whereas advanced regression techniques rely on the skills of an experienced 
modeler. The key issue with any classification analysis is to determine how ac-
curately the model can predict both existing and new cases. All of the techniques 
have strengths and weaknesses that you need to evaluate before choose a tool for 
a specific problem. Most require a solid knowledge of fundamental statistics to 
interpret the results.
Data for Classification
Data for classification problems is typically stored similar to a relational table. 
Each row holds one instance of data and the columns represent the attributes. At 
least one attribute (column) is the predicted or dependent column, but that deci-
sion is made by the analyst or modeler. This data is usually easy to generate be-
cause a SQL SELECT command can commonly be used to choose the columns 
and rows and to perform simple computations.
Example
Most data mining tools require a considerable amount of data to work effectively. 
In most business transaction applications, you will have plenty of data. However, 
the sample Pet Store database is intentionally kept small to make it easier to han-
dle. The Rolling Thunder Bicycle company database has considerably more data 

NoGoodGoodNo75000
NoBadBadYes25000
YesGoodGoodYes50000
SuccessJob StabilityCredit HistoryMarriedIncome

NoGoodGoodNo75000
NoBadBadYes25000
YesGoodGoodYes50000
SuccessJob StabilityCredit HistoryMarriedIncome

Figure 9.29
Bank loan classification. The indicator attributes affect the outcome in some fashion. 
The data mining software estimates the strength of each attribute on a set of test data. 
The resulting model can be applied to future data to predict the potential success or 
failure of new loans.



462Chapter  9: Data Warehouses and Data Mining

and works better for data mining illustrations. As a classification example, con-
sider a basic goal of examining sales by model type. The goal is to see what fac-
tors affect the choice of model type, so the detail data consists of each individual 
bicycle sale. The fact attribute is the ModelType column. The company collects 
only minimal demographic data—something the managers might want to add in 
the future. However, Gender is available, the SaleYear is available in case pur-
chases changed over time. Additionally, the City table contains two values from 
the Census Bureau: Income and Population which represent average customers 
within a city. A straightforward query generates the data in the correct format.

 The data can be analyzed with standalone tools or a model can be built with-
in the SQL Server Business Intelligence Studio. Every tool uses slightly different 
techniques and algorithms, so the results can vary slightly depending on the tool 
selected. The results shown in Figure 9.30 come from SQL Server’s Decision Tree 
model. This tool examines the data to identify significant change points which are 
then marked as nodes in the tree. The selected node represents sales from 2006 
on from cities with per capita income of about $35,000 and more. The legend for 
that node shows the percentage breakdown of model type sales for that group. The 
marketing managers can compare the values to the nearest node (incomes less 
than $35,000) to see the different purchase patterns.

Many other classification tools can be used. They all examine the impact of the 
selected attributes on the target fact variable. However, the outputs are slightly 
different and can provide different perspectives on the data. Some tools, such as 
regression, require pure numeric data; others can use categorical data.

Figure 9.30
Rolling Thunder Bicycles Model Type decision tree. Attributes Gender, SaleYear, 
Income, and city Population were used to predict the model type selection. Each 
node in the tree represents a significant change variable. The displayed legend shows 
percentage sales by model type for sales from 2006 with relatively higher personal 
incomes ($35,000 or more). 



463Chapter  9: Data Warehouses and Data Mining

Association Rules/Market Basket Analysis
Market basket analysis is the tool that is credited with driving the acceptance 
of data mining. Originally, the techniques were applied to analyzing consumer 
purchases at convenience stores, hence the term market basket. The more generic 
term of association rules indicates that the methodology can be used for other 
situations. The basic question these systems answer is, What items are customers 
likely to buy together? Or, in terms of rules, Does the existence of A imply the 
existence of B? In the classic example, a convenience store discovered that shop-
pers who purchase diapers often purchase beer at the same time—particularly on 
Thursday and Friday nights. The importance of this piece of information is that 
managers can use it to increase sales. For instance, you might consider placing 
the two items close to each other in the store to encourage even more customers 
to purchase both items. Likewise, manufacturers might use similar knowledge to 
cross-sell items by providing coupons or product descriptions in the packaging of 
the related items.

Market basket analysis requires that you have a set of transaction data that con-
tains a list of all items purchased by one person. Today, this data is readily avail-
able from supermarkets and large chains that use bar-code scanners. Most compa-
nies sell this data to specialized firms that resell it to other companies. The analy-
sis software then scans the data and compares each item against the others to see 
if any patterns exist. In the process, the software computes three numbers that you 
use to evaluate the strength of the potential relationship or rule. The definitions 
are easier to understand with pairs of items, but they also apply to multiple items. 
The support for a rule is measured by the percent of transactions that contain both 
items. Statistically, the probability is denoted as P(A ∩ B) (the probability of A 
and B occurring together) and computed by counting the number of transactions 
with both items and dividing by the total number of transactions. Similar numbers 
can be computed for A and B alone, or the percentage of times each individual 
item has been purchased. Higher values of support indicate that both items are fre-
quently purchased together—but the number does not tell us that one causes the 
other. The confidence of the rule (A implies B) is measured by the percentage of 
transactions with item A that also contain item B. Statistically, it is the probability 
that B is in the basket, given that A has already been chosen, denoted P(B|A). By 
statistical definitions, P(B|A) = P(A ∩ B) / P(A), so it is relatively easy to com-
pute. Again, higher values of confidence tend to indicate that purchases of item 
A lead to purchases of item B. The third statistic reported by most data mining 
tools is lift. Lift is the potential gain attributed to the rule, compared to purchases 
without the rule. If the value is greater than 1, the lift is positive. Conceptually, 

Support:		 P(B	∩	D)	=	.6	 P(D)	=	.7	 P(B)	=	.5
Confidence:		 P(B|D)	=	P(B	∩	D)/P(D)	=	0.857
Lift:	 P(B|D)/P(B)	=	1.714

Figure 9.31
Evaluating a market basket association. Support is the percentage of both items being 
purchased in one transaction. Confidence is the probability of purchasing beer (B) 
given that diapers (D) are purchased. Lift is the contribution of the effect to sales and 
should be greater than 1.



464Chapter  9: Data Warehouses and Data Mining

it indicates the gain in sales resulting from the association. Statistically, it can be 
computed as P(A ∩ B) / (P(A) * P(B)) or as P(B|A)/P(B).

Figure 9.31 shows how the numbers are computed for the diapers and beer 
example. The numbers are fictional but representative of the situation. Notice 
that the lift is substantially higher than 1 (1.714), indicating that the association 
strongly contributes to sales of beer. Data mining software computes all of these 
numbers for essentially all pairs of items. If there are many items, the process can 
take quite a while to run. Also, multiple items could be considered in the analy-
sis: Does the purchase of sheets and pillowcases lead to the sale of more towels? 
However, combining too many dimensions leads to huge computational issues, so 
most analyses are done with a limited set of comparisons. 

Working with market basket analysis, you will quickly encounter several prob-
lems. First, items with a small number of purchases can result in misleading val-
ues. If an item is purchased only once or twice, then almost anything else pur-
chased with it will seem to be related. Consequently, you will have to examine 
the data and change groupings to ensure that most items are purchased with ap-
proximately the same frequency. Figure 9.32 shows a hypothetical situation at a 
hardware store that sells a lot of lumber but only a limited number of nails and 
screws. To prevent spurious rules, the answer is to combine the nails and screws 
into a broader hardware category, and split the lumber transactions into more de-
tailed definitions. How do you know if problems exist? You can use additional 
queries to quickly count the number of sales of each item. The newer OLAP func-
tions also make it easy to compute the percentages if the raw count numbers are 
hard to read.

The other problems that you can encounter with market basket analysis include 
the fact that some rules identified will be obvious to anyone in the industry. For 
example, a fast food chain would undoubtedly see a relationship between burgers 
and fries. A tricky problem arises when the system returns rules that do not make 
sense or cannot be explained. For example, a hardware chain found that sales of 
toilet rings were closely tied to the opening of new stores. Even if this correlation 
is true, what do you do with it?
Data for Association Analysis
Data for association analysis generally comes from transaction systems—particu-
larly sales data. The catch is that analysis systems use two different methods for 

Freq.Item

2%4” nails
50%Lumber

1%3” nails
1%2” nails
2%1 “ nails
Freq.Item

2%4” nails
50%Lumber

1%3” nails
1%2” nails
2%1 “ nails

Freq.Item

15%Finish lumber
15%Plywood
20%Dim. Lumber
15%Hardware
Freq.Item

15%Finish lumber
15%Plywood
20%Dim. Lumber
15%Hardware

Figure 9.32
Balanced frequencies. Items that are rarely purchased will lead to false rules. The 
solution is to define the items so that they balance. In this case, combine nails into a 
hardware category and split lumber into smaller categories.



465Chapter  9: Data Warehouses and Data Mining

arranging data. You need to read the tool’s documentation carefully to determine 
the correct layout. Figure 9.33 shows the two common layouts, labeled transac-
tion and basket. The transaction format mirrors the relational database approach. 
Essentially you just need data from the SaleItem table, and perhaps the Merchan-
dise table if the manager wants to analyze data by category instead of ItemID. The 
data can be retrieved easily using a standard SELECT statement. 

Unfortunately, some of the early tools created for association analysis were 
written with the requirement that each basket be specified as one line of text, with 
the item values separated by commas. Each row represents one basket and the 
rows are variable length. There is no easy way to convert relational data into this 
basket format. It can be done, but it requires writing programming code that us-
ers a cursor to track through each row of data in the SaleItem table. The ItemID 
values are collected and built into a new string that appends a comma and the new 
ItemID for each row. When the SaleID switches, the new string row is written to 
the file. The code is straightforward, but eventually you will need a generic pro-
gram that can be applied to any table or query because you will tire of rewriting 
the code every time it is needed.

Figure 9.33
Two data formats for association analysis. Coming from a  relational database, the 
top format is the easiest to create. The second format requires programming. It could 
be based on Category instead, but not both ItemID and category at the same time.

SaleID ItemID Description Category
4 36 Leash Dog
4 1 Dog Kennel-Small Dog
6 20 Wood Shavings/Bedding Mammal
6 21 Bird Cage-Medium Bird
7 40 Litter Box-Covered Cat
7 19 Cat Litter-10 pound Cat
7 5 Cat Bed-Small Cat
8 16 Dog Food-Can-Premium Dog
8 36 Leash Dog
8 11 Dog Food-Dry-50 pound Dog

Transaction data. It is easy to extract with SQL on the 
SaleItem and Merchandise tables.

36, 1
20, 21
40, 19, 5
16, 36, 11

Basket	data.	Converting	from	the	SaleItem	table	to	this	format	requires	
a	cursor	program	that	builds	each	row	as	a	string	for	each	SaleID.



466Chapter  9: Data Warehouses and Data Mining

Example
It can be fun to experiment with market basket analysis. In some cases, it is ob-
vious which items are purchased together (burgers and fries), in other cases the 
results are surprising. It is the surprising results that are the most useful. Still, 
association analysis can generate hundreds or even thousands of rules. It takes 
time and some experience to read through the rules and find the ones that can be 
useful. Rolling Thunder Bicycles has a couple of possibilities for using associa-
tion analysis. It might be tempting to look at the traditional market basket and see 
which items were purchased at the same time. However, remember that almost all 
bicycles are built using groups of components. A group specifies all of the default 
components, so a market basket analysis would simply identify all of the compo-
nents within a group. But, we already know those values, so there is no surprise. If 
customers routinely overrode the defaults and selected their own components, the 
results would be more interesting. 

Instead, Figure 9.34 shows the results of examining model type purchases by 
customer. Essentially, CustomerID is the market basket and model types are the 
items purchased. Customers can buy multiple bicycles, perhaps at different times. 

Figure 9.34
Association rules for bicycles purchased by each customer. Same customer, possibly 
different times. Microsoft’s probability and importance calculations are non-
traditional but the interpretation is the same. Rules with high probability and high 
importance are likely to repeat. 



467Chapter  9: Data Warehouses and Data Mining

The question being asked is whether there is a pattern in purchases of model types. 
Consider the first rule which has a high probability (1.00) and relatively high im-
portance (0.261). It says the customers who purchased a track and a hybrid bi-
cycle also purchased a road bike. Consequently, future customers who purchased 
the first two model types should be contacted to suggest that they might also want 
to buy a road bike. Alternatively, the company could offer discounts on hybrid or 
track bikes which might then increase the sales of road bikes—which would not 
be discounted. Only some of the rules are shown in the figure. The challenge with 
association rules is to find the ones that are strong, important, and meaningful.

Cluster Analysis
Cluster analysis is used to identify groupings of data—data points that tend to be 
related to each other. It can be used to identify groups of people, for example, to 
categorize customers. If you know that customers fall within certain groupings, 
you can use the information about a few customers to help sell additional products 
to the others in the group. Most likely, customers in the same group will want 
similar products. For instance, a bookstore can use the purchases of some items to 
categorize a customer and then identify books that similar customers bought and 
suggest them to the other shoppers. Likewise, you could use cluster analysis to 
categorize the skills of employees that work in various departments and use that 
information when hiring new workers.

As shown in Figure 9.35, clusters are relatively easy to see in two dimensions. 
The objective of the software is to identify the data points that are close to each 
other (small intra-cluster distance), yet further away from other points (larger 
inter-cluster distance). Unfortunately, most datasets do not exhibit clustering as 
strongly as shown in this example. But cluster analysis is a useful data exploration 
technique because it can reveal patterns that you might not see with other tools. 
However, keep in mind that datasets with a large number of observations (rows) 
and many dimensions are extremely difficult to cluster. Even with relatively mod-
ern computers, it can take hours or days to evaluate large, complex problems. So 
start cautiously and try to build clusters using smaller samples and a limited num-
ber of dimensions.

Small intra-
cluster 
distance

Large inter-
cluster 
distance

Dimension A

B

Figure 9.35
Cluster analysis. The goal is to find data points that are grouped close to each other 
and farther from other groups. Larger datasets with multiple dimensions are difficult 
and time-consuming to evaluate.



468Chapter  9: Data Warehouses and Data Mining

Data for Cluster Analysis
Data for cluster analysis is straightforward because it is similar to relational ta-
bles. Each column defines values for a chosen attribute. Each row represents one 
instance of the data. If the query results contain two attributes (columns), then 
each row represents one point on the two-dimensional chart. This data is easily 
retrieved using a standard SELECT query. 

The one catch with cluster analysis is that some versions will not run if the 
dataset is too large. Too large is defined both in terms of the number of dimen-
sions (columns) and the number of observations (rows). The specific limits de-
pend on the algorithm used by the tool and the processing speed of the computer. 
This problem is similar to the issue of dimensionality in association analysis. You 
might need to reduce the number of dimensions, or combine items into aggre-
gates. For example, it might make sense to examine sales of categories instead of 
individual items. Ultimately, this decision must be made by the manager or statis-
tical analyst. However, it is often wise to start with smaller problems using aggre-
gated data. Once these work, you can begin disaggregating the data and looking at 
larger problems.
Example
Rolling Thunder Bicycle Company presents several opportunities for cluster 
analysis. Aligning with the other examples, this example builds cluster based on 

Figure 9.36
Cluster based on bicycle attributes. This chart focuses on model type. Based on the 
shading, the two main clusters are split by road/race bikes versus mountain/hybrid 
types. Details within the two groups are based on sale price and order year. Bike size 
also plays a role in differentiating the clusters.

Mountain and Hybrid

Road, Race, Track



469Chapter  9: Data Warehouses and Data Mining

model type. It is possible to include multiple attributes for each point so the data 
examines each bicycle in detail: Construction type (which is a proxy for material 
used), order year, sale price, bike size, and time to build. The attributes selected 
depend on the goals of the analysis. You might want to start with a smaller number 
of attributes—partly because including too many dimensions makes the model 
more difficult and time-consuming to estimate.

Figure 9.36 shows one version of the cluster results. Note the two large group-
ings—these are largely determined by model type. The top grouping consists of 
mountain and hybrid bikes. The lower group consists of road and race bikes. The 
tools provide additional charts to enable you to determine the differences between 
the clusters within the groups. These charts are not shown here, but they indicate 
that the details are determined by order year, sale price, and bike size. If manag-
ers want to examine these effects in more detail, it would make sense to run ad-
ditional cluster analyses focusing on two or three of these attributes at one time. 
Ultimately, managers will want to see results from a variety of different models. 
For example, clusters might generate some intuition about the data, which could 
then be analyzed with classification tools. 

Geographic Analysis
Geographic information systems (GIS) display data in relation to its location. 
The systems are generally classified as visualization systems. They are useful for 
displaying geographical relationships and showing people how data is influenced 
by location. Few systems have true data mining capabilities for scanning the data 
to find patterns. Nonetheless, they are an important tool in analyzing data. Some 
relationships are much easier to understand if you see them on a map. Figure 9.37 

Figure 9.37
Geographic analysis. This basic map shows sales by state. As shown by the key, 
darker colors represent larger sales. Additional data, such as income, could be shown 
as overlays or compared in charts.



470Chapter  9: Data Warehouses and Data Mining

shows a simple map of sales by western states. Additional data could be displayed 
with more colors or charts could be placed on each state.

Larger DBMS vendors have begun incorporating spatial and GIS systems into 
their offerings. You can also purchase standalone systems from other vendors. Be-
yond drawing maps, a true GIS has several methods for displaying data on the 
map. Basic techniques include shading and overlays, often used to display sales 
by region. Overlays show multiple items on different levels, making it easier to 
see how several items relate to each other as well as to location. For instance, mar-
keters might compare sales, income, and population by geographic region.

In addition to the software, you need two important components for geographic 
systems. First, you need map data. Generally, this data is sold with the analysis 
system, but detailed data is sometimes sold as an add-on option. Highly detailed 
data down to individual street level is available for the United States (and much 
of Europe), but it is a large database. Second, you need to geocode your data 
and probably buy additional demographic data that is already geocoded. Essen-
tially, you need to collect and store some type of geographical tag for your data. 
At a basic level, you probably already know country and state. But you might also 
want to add a region code, or a city code, or perhaps even latitude and longitude. 
If all of your sales are through individual stores, it is relatively easy to get the 
geographic position of each store from maps or GPS systems. An interesting pos-
sible option in the future arises from the increasing use of cell phones. Because of 
federal emergency regulations (e-911), cell phones are required to have position-
ing systems. Eventually, it is conceivable that this information will be provided to 
businesses, so your transaction systems can record exact locations of salespeople, 
and possibly even of customers. Please keep in mind the serious privacy issues 
these technologies create, but as you build new databases, you should think about 
incorporating geocode information into the data capture tables. Once the data has 
been collected, the GIS makes it easy to display relationships.
Data for Geographic Analysis
Most GIS tools are standalone tools. For example, Microsoft’s MapPoint is in-
tegrated into Excel. On a larger scale, ESRI’s ArcGIS is definitely a standalone 
(or Web based) tool. Similarly, Google Earth is largely Web based. Most of these 

Figure 9.38
Common geographic identifiers. At least one of these attributes must be coded into 
the data to use a GIS.

State
Country
Region	(custom	defined)
Latitude, Longitude
Address
City
County
ZIP Code
Census Tract
Standard Metropolitan Statistical Area



471Chapter  9: Data Warehouses and Data Mining

tools can extract data from a DBMS and use it in their displays and analyses, so 
data preparation can still be handled within the DBMS. 

GIS data is typically stored in a relational format. Each column represents a 
single attribute and each row contains values for one location. The critical point is 
that at least one column must contain a geographic identifier. For example, a que-
ry might compute sales by state, so one column contains the state code. Each tool 
supports different types of geographic codes, but Figure 9.38 shows the types of 
geographic identifiers support by most systems. Some of the items in the list are 
defined within the U.S. only; however, there are often similar values in other na-
tions. For instance, Postal Code is an international version of the U.S. ZIP Code.

At least in the U.S., some national data is already coded geographically. In par-
ticular, data collected by the Census Bureau is tagged by several identifiers such 
as City, State, ZIP Code, Census Tract, and Standard Metropolitan Statistical Area 
(SMSA) or large city region. Some tools include access to common Census data, 
but much of the data is available for free download from the Census Bureau Web 
site. This data is useful for comparisons or overlays with your business data. In 
particular, economic models suggest that it is useful to compare average income 
to sales.
Example
GIS systems are different from most other data mining tools. You need a spe-
cific tool to be able to plot data geographically, and these tools are almost always 
standalone tools. Consequently, you generally export the data from the database. 

Figure 9.39
Sales of bicycles by state in 2009. The legend is hidden but states colored in darker 
green represent higher sales based on dollar value.



472Chapter  9: Data Warehouses and Data Mining

A relatively inexpensive tool is Microsoft’s Map Point software. You also might 
be able to use online tools such as Google Earth—but even some of those carry 
fees if you want to add your own data. Some applications can be handled online, 
such as placing stick pins or drawing routes in Google Maps or Microsoft Maps. 
Shading regions or states based on sales data has usually more difficult with the 
online tools.

As a small example of Microsoft Map Point, it is straightforward to write a 
query to retrieve sales value by state for 2009. Running the query, the results can 
be copied and pasted into an Excel spreadsheet. Once Map Point is installed, it 
can be run as an add-in. The tool automatically picks up the state codes (although 
it does not recognize PR for Puerto Rico). Figure 9.39 shows the data plotted us-
ing darker colors for higher sales. It is also straightforward to insert push pins, 
sized dots, or data charts.

Summary
Large databases are optimized for transactions processing—to handle day-to-day 
operations efficiently, data is stored in normalized tables. But most managers need 
to join several tables to retrieve and understand the data. Indexes speed joins and 
data retrieval, but slow down transactions. This dichotomy means that it is often 
better to create a separate data warehouse to use for data analysis. Data can be 
extracted and cleaned from transaction systems, and placed into star or snowflake 
designs enabling managers to focus on the dimensions that surround a particular 
fact.

OLAP cubes are a powerful tool to enable managers to quickly sift through 
data and examine subtotals from a variety of perspectives. Without writing intense 
SQL queries, managers can compare values across product categories, time, and 
even across multiple dimensions simultaneously. OLAP cube browsers also con-
tain easy methods to filter the data to specific rows or cube sections.

Many statistical data mining tools have been developed to help managers ana-
lyze data. They often require training and specialized knowledge by the workers, 
but can be powerful tools to understand relationships among the data. Classifi-
cation and clustering algorithms help break the data into groups. Comparing the 
various groups makes it possible to better understand customers and expand the 
market. Association or market basket rules are popular with stores that sell a large 
variety of items. Identifying items that are purchased together makes it possible 
to suggest products to other customers. It can also lead to insights in store layout 
and customer psychology. Geographic systems are useful for any problem involv-
ing location. Specialized tools and demographic data are available to see the geo-
graphic relationships that exist.



473Chapter  9: Data Warehouses and Data Mining

Key Terms

Review Questions
1. Why are indexes so important in relational databases?
2. Given the power of a relational DBMS, why might a company still need a 

data warehouse?
3. What main problems are encountered in setting up a data warehouse?
4. How are OLAP queries different from traditional SQL queries?
5. What is an OLAP cube?
6. What are hierarchical dimensions and how do they relate to roll up and drill 

down operations?
7. What basic analytical functions are defined in SQL? 
8. What is the goal of data mining?
9. What are the main categories of data mining tools?
10. How is data organized in a data warehouse?

association rules
binary search
business intelligence (BI)
classification analysis
cluster analysis
comma separated values (CSV)
confidence
data hierarchy
data mining
data warehouse
DENSE_RANK
dimensions
drill down
extraction, transformation, and 

transportation (ETT)
fact table
geocode

geographic information systems 
(GIS)

lift
market basket analysis
measures
multidimensional expressions (MDX)
online analytical processing (OLAP)
online transaction processing (OLTP)
partition, SQL
pointer
RANK
roll up
snowflake design
star design
super-aggregate
support

A Developer’s View
Miranda saw that some business questions are difficult to answer, even with SQL. 
When managers are not exactly sure what they are looking for, you need to con-
sider the OLAP and data mining approaches. Providing an OLAP cube is a good 
first step because it makes it easy for managers to see subtotals and slice the data 
to whatever level they want. More sophisticated statistical data mining tools are 
available, but generally require additional training and knowledgeable users. Just 
remember that performance often requires moving OLAP data into a separate 
data warehouse.



474Chapter  9: Data Warehouses and Data Mining

Exercises
1. Find at least two commercial OLAP tools and compare the features.
2. Find a commercial data mining tool and outline the steps needed to extract 

and transform data from a typical DBMS so it is usable by the system.
3. Find a commercial data mining tool and outline the steps needed to perform a 

market basket analysis.
4. Assume you have two separate sets (tables) of customer data. You need to 

merge the two sets and eliminate the duplicates. The two tables use different 
ID/key values. Describe any problems you expect to encounter and how you 
might resolve them.

5. This question requires some tricky SQL. Assume you have a query 
(AnnualSales) with columns for SaleYear and Sales. Write the plain SQL 
(without the LAG function) to compute the difference in sales (current year 
value – prior year). 

Most of the following questions require an OLAP cube processor. You should 
have access to SQL, an OLAP browser within the DBMS, or a PivotTable. For the 
data mining tools, if you do not have access to specialized software, you can use 
Excel for simple analyses.

Sally’s Pet Store
6. Create a cube to browse merchandise sales by date, state, employee, and item 

category.
7. Create a cube to browse animal adoptions by time, category, breed, gender, 

and registration.
8. If you are using SQL Server or Oracle, write the grouping and cube query to 

compute sales by employee by month, similar to the query in Figure 9.21.
9. Create a cube to browse purchases of merchandise from suppliers based on 

time, employee, and location. As facts, include the value of the purchase, the 
shipping cost, and the delay between order and receipt.

10. If you have access to market basket software, evaluate the sales tables to see 
if any associations exist. If you do not have the software, set up the query to 
retrieve the data.

11. Using SQL Server or Oracle, create a view to compute sales by month 
(YearMonth). Use the Lag function to compute the percentage change from 
the previous month.

12. Using SQL Server or Oracle, create a view as in the previous question that 
computes the sales by month. Then use the AVG and OVER functions to 
compute the three-month moving average.

13. Using SQL Server or Oracle, create a view that computes the total 
merchandise purchases by month. Then create a query that displays the 
month, total, and running total to date.



475Chapter  9: Data Warehouses and Data Mining

14. Identify at least two specific data mining tools that would be useful for this 
company and explain what data would be used and how they might be used 
to improve sales or operations.

15. Using monthly sales of merchandise, forecast sales for the next three months.
16. Is there a geographic pattern to sales? Do some states or regions have more 

sales?
17. Compute the total sales by employee for the year and list them in descending 

order with the computed ranking, similar to Figure 9.22.
18. Use the bulk load or import facilities of your DBMS to load several new 

items into the Merchandise table. File: MerchandiseNew.csv. Hint: Import 
the CSV file into a new table and use an INSERT statement to move the data 
into the Merchandise table.

19. Import the CSV file NewCustomers.csv into the database as a new, temporary 
table. Add the customers to the Customer table but be careful. Some of the 
“new” customers already exist in the Customer table—do not add duplicate 
values.

20. Import two CSV files (NewSales.csv and NewSaleItems.csv). The Sale 
file has a SaleID and a CustomerID. The CustomerID is valid, but the 
SaleID values are temporary can cannot be used in the main database. The 
NewSaleItems file has the matching SaleID and an ItemID. The ItemID is 
valid, and the SaleID matches the temporary value in the matching NewSales 
file. Import both files into the database, insert the new sales into the main 
Sales table, generating a new SaleID value. Assign that new SaleID value to 
insert the NewSaleItems entries into the SaleItem table. 

 Rolling Thunder Bicycles
21. Create an OLAP cube to evaluate sales (value and quantity) by model type, 

state, time, and sales employee.
22. Create an OLAP cube to evaluate production time (ShipDate – OrderDate) 

by order date (time), model type, month, and employee who assembled the 
frame.

23. Create an OLAP cube to evaluate purchases of components by time, 
manufacturer, road or mountain bike, and component category.

24. Run a regression analysis to determine how sales by city by year are affected 
by population and income.

25. Using monthly sales by model type, forecast sales for the next six months.
26. Write a query to retrieve the data to perform a market basket analysis of 

component sales—to test which components were installed on the same bike. 
27. Create an OLAP cube to evaluate sales (quantity) by paint type, letter style, 

and model type. 
28. Create a query that computes total sales by year. Create another query that 

displays those annual values and computes the percentage change from year 
to year. Hint: Define a new column as PriorYear = Year-1 and use it in a join.



476Chapter  9: Data Warehouses and Data Mining

29. Using SQL Server or Oracle, create  query that computes total sales by Year 
and Model Type and compute and show only the super-aggregate totals for 
model type and year.

30. Using SQL Server or Oracle, create a query that displays Year, Month (year/
month), Sales, and year-to-date sales using the SQL Analytic functions. 
Hint: The syntax is slightly easier if you first create a view to compute 
MonthlySales (Year, YearMonth, Sales).

31. Using SQL Server or Oracle, if it does not already exist, create a View that 
computes total sales by YearMonth. Using the SQL Analytic functions create 
a query to compute a 3-month moving average by model type. Hint: Leave 
out the Hybrid and Track model types because of their limited sales.

32. If you have access to a GIS such as Microsoft MapPoint, write the query and 
import the data to display a map similar to Figure 9.39 showing sales of Race 
bikes in 2012.

Corner Med 
33. Use association software or computations to see if some diagnoses 

commonly arise together.
 34. Assume the ICD10 conversion does not exist. Use the crosswalk tables 

to identify the matching values for the existing ICD9 codes in the 
VisitDiagnoses table. Comment on any problems you find.

35. Using categorization software, such as regression, neural network, or 
decision tree, try to identify features of patients that spend the most money.

36. Create an OLAP cube to explore physician data in terms of patients and 
procedures. Managers want to focus on revenue and patients visited per day, 
week, and month.

37. Forecast the number of patients expected for a specific month. Hint: Use 
simple regression unless you have access to a time series analyzer.

38. Using SQL Server or Oracle SQL Analytic functions, show the monthly 
revenue generated by procedures by each of the physicians, along with the 
super-aggregate totals. Including the Grouping values. 

39. Using SQL Server or Oracle SQL Analytic functions, count the number of 
patient visits per day for the month of March, and show the running total for 
the month.

40. Create a view that computes Revenue by month. Using either the Lag 
function or a JOIN by Year – 1, compute the percentage change in revenue by 
month.

Corner
Med

Corner
Med



477Chapter  9: Data Warehouses and Data Mining

 Web Site References
http://www.oracle.com/technology/tech/bi/index.html Oracle business intelligence tools
http://www.microsoft.com/en-us/bi/default.aspx Microsoft	SQL	Server	analysis	tools
http://www-03.ibm.com/software/products/us/en/
category/SWQ20

IBM DB2 business intelligence tools

http://publib.boulder.ibm.com/infocenter/rbhelp/
v6r3/index.jsp?topic=%2Fcom.ibm.redbrick.
doc6.3%2Fsqlrg%2Fsqlrg36.htm

SQL 99 OLAP standards and example.

Additional Reading
Apte, C., B. Liu, E. Pednault, and P. Smyth, Business applications of data mining, 

Communications of the ACM, 45(8) August 2002, 49-53. [Some examples of 
data mining, also part of a special issue on data mining.] 

Golfarelli, M, and S. Rizzi, A Methodological Framework for Data Warehouse 
Design, Proceedings of the first ACM international workshop on Data 
warehousing and OLAP, 1998, ACM Press, 3-9. [ Relatively formal 
definition of facts, dimensions, and hierarchies.]

Han, J. and M. Kamber, Data Mining: Concepts and Techniques, San Francisco: 
Morgan Kaufmann/Academic Press, 2001. [A general introduction to data 
mining techniques.] 

Hastie, T., R. Tibshirani, and J. Friedman, The Elements of Statistical 
Learning/2e, New York: Springer-Verlag, 2009. [A strong foundation book 
on the statistics and algorithms of data mining including all of the math.]

Peterson, T., J. Pinkelman, and B. Pfeiff, Microsoft OLAP Unleashed, 
Indianapolis: Sams/Macmillan, 1999. [Details on OLAP queries and data 
warehouses in SQL Server.]

Post, Gerald, Data Mining Applications/2e, 2012, http://www.JerryPost.com/
Books/DMBook. [Detailed applications of data mining with SQL Server and 
some open-source tools.]

Scott, J. Warehousing over the Web, Communications of the ACM, 41(9), 
September 1998, 64-65. [Brief comments on Comcast using a Web interface 
for its data warehouse.] 

http://www.oracle.com/technology/tech/bi/index.html


4Part

Database Administration

Large applications require careful support. Most organizations 
hire a database administrator to monitor application performance, 
assess security, and ensure database integrity. Chapter 10 high-
lights the tasks of the data administrator and the database admin-
istrator—with special emphasis on database security. Once again, 
SQL has a strong role in managing and protecting the database. 

Information systems (IS) managers are increasingly concerned 
with issues of providing access to data regardless of location. 
Networks and the Internet provide multiple options for distrib-
uting data and providing answers throughout the organization. 
Chapter 11 explores some of the challenges and options of dis-
tributed databases.

Chapter 12 introduces the technologies that a DBMS uses to 
physically store the data tables on a typical operating system. Da-
tabase administrators need to understand the basic concepts so 
they can select the proper storage mechanisms for high perfor-
mance or large databases. Students with a computer science or 
programming background will recognize the importance of the 
underlying data structures.

Chapter 13 introduces the reasons for the interest in the new-
er non-relational or non-SQL databases. The big target is Web-
based applications requiring high performance to handle data for 
millions of users—inexpensively. Performance is critical because 
database design is optimized for specific operations and queries. 
The tools support only simple queries without JOINs or complex 
conditions.

Chapter 10: Database Administration

Chapter 11: Distributed Databases

Chapter 12: Physical Database Design

Chapter13: Non-Relational Databases



479

What You Will Learn in This Chapter
•	 What	administrative	tasks	need	to	be	performed	with	a	database	application?
•	 How do you ensure data is consistent across multiple databases?
•	 What	are	the	basic	tasks	of	a	database	administrator?
•	 How does a DBMS support multiple databases?
•	 How	does	a	DBA	find	out	what	is	stored	in	each	database?
•	 What	DBA	tasks	need	to	be	performed	as	an	application	is	developed?
•	 How do you back up data that is constantly changing?
•	 How	should	computers	be	configured	for	DBMS	software	and	database	files?
•	 What security techniques are used to protect databases?
•	 How	do	you	prevent	eavesdroppers	or	hackers	from	reading	data?
•	 What security conditions would be needed at Sally’s Pet Store?

Chapter Outline

Database Administration
10Chapter

Introduction, 480
Two-Minute Chapter, 481
Data Administrator, 482
Database Administrator, 483
Database Structure, 485
Metadata, 486
Database Tasks by Development Stages, 
488

Database Planning, 488
Database Design, 489
Database Implementation, 489
Database Operation and Maintenance, 
490

Backup and Recovery, 492
Physical	Configuration,	494
Security and Privacy, 496

Data Privacy, 497
Threats, 498
Physical Security, 499
Managerial Controls, 500
Logical Security, 500

Division of Duties, 506
Software Updates, 507

Encryption, 507
Sally’s Pet Store, 510
Summary, 512
Key Terms, 514
Review Questions, 514
Exercises, 515
Web	Site	References,	519
Additional Reading, 519



480Chapter  10: Database Administration

A Developer’s View
 Miranda: Finally, everything seems to be 

running well.

 Ariel: Does that mean you finally got 
paid?

 Miranda: Yes. They gave me the check 
yesterday. They even liked my work 
so well, they offered me a job.

 Ariel: That’s great. Are you going to take 
it? What job is it?

 Miranda: I think so. They want me to be a 
database administrator. They said 
they need me to keep the database 
running properly. They also hinted 

that they want me to help their 
existing programmers learn to build 
database applications.

 Ariel: Wow! That means you’ll get more 
money than the programmers.

 Miranda: Probably. But I’ll have to learn 
some new material. I’m really 
starting to worry about security. The 
accounting manager talked to me 
yesterday and gave me some idea of 
the problems that I can expect with 
the sales application.

Introduction
What administrative tasks need to be performed with a database application? 
The power of a DBMS comes from its ability to share data. Data can be shared 
across many users, departments, and applications. Most organizations build more 
than one application and more than one database. Large organizations might use 
more than one DBMS. Most companies have several projects being developed or 
revised at the same time by different teams. Imagine what happens if you just turn 
developers loose to create databases, tables, and applications anyway they want 
to. It is highly unlikely the applications would work together. Just using a DBMS 
is not enough. An organization that wants to build integrated applications must 
have someone in charge of the data and the databases.

Data administration consists of the planning and coordination required to de-
fine data consistently throughout the company. Some person or group should have 
the responsibility for determining what data should be collected, how it should 
be stored, and promoting ways in which it can be used. This person or group is 
responsible for the integrity of the data.

Database administration consists of technical aspects of creating and running 
the database. The basic tasks are performance monitoring, backup and recovery, 
and assigning and controlling security. Database administrators are trained in the 
details of installing, configuring, and operating the DBMS. Smaller organiza-

Getting Started
Someone has to perform several administrative tasks to keep a database 
running. The DBMS software has to be installed, monitored, and up-
dated. Databases have to be backed up. Security permissions have to be 
assigned, tested, and revised. Applications and queries need to be opti-
mized.



481Chapter  10: Database Administration

tions might have a single person responsible for the data administration and DBA 
roles. Larger companies tend to have multiple DBAs, but only one or two data 
administrators.

Computer security is increasingly important to organizations. Large organiza-
tions usually have a head computer security officer responsible for setting poli-
cies, identifying major threats, monitoring compliance, and organizing responses 
to threats. However, security topics need to be studied by all application develop-
ers and database managers. Security is not a separate set of topics that can be add-
ed on at the end of a project. Security issues need to be integrated into the design 
and development process. Some of the more critical issues have been mentioned 
in earlier chapters. In particular, the SQL injection attack is best solved by devel-
opers adding code to test all input values. Likewise, developers can use selection 
boxes and radio buttons to limit user input. They can also create menu options that 
are visible only to selected groups of users. 

Database security is a subset of computer security topics, and it is important to 
build security at multiple levels. Some of these levels are best handled centrally 
by the DBA. If database security is assigned properly, it has the ability to reduce 
many types of fraud. If database security is ignored or performed poorly, major 
assets of the company could be manipulated or stolen from any computer in the 
world. It pays to understand the security issues and to handle security properly. 
This chapter presents an introduction to DBA and security tasks. Both of these 
roles require considerable additional learning and practice. This chapter focuses 
on the general tasks that need to be performed with any DBMS, but many DBA 
tasks rely on specific features or a particular DBMS. If you choose to become a 
DBA, you will have to study a particular system in detail.

Two-Minute Chapter
Database systems are powerful tools and they easily handle several complex 
tasks. But because data is so critical, someone has to monitor and manage the 
databases. Database design and consistency are critical to being able to integrate 
data. But performance, security, and backup and recovery are also critical opera-
tions to ensure the long-term value of the data. A database administrator (DBA) is 
in charge of keeping the database system running, planning upgrades, and moni-
toring performance. The larger systems including SQL Server, Oracle, and DB2 
are complex tools with many internal controls and options that can be configured. 
It takes several months of study and practical experience to become a good DBA. 

Computer security concepts are important in database design and operations. 
Typically, roles are assigned to cover specific tasks, such as an Order Entry Clerk 
which needs the ability to lookup Customer and Product data and create new Or-
ders. Permissions to access tables have to be given to each role. Then the roles are 
assigned to individual employees or groups of employees. The permissions have 
to be thoroughly tested so that the individuals have enough access to complete 
their tasks.

Physical security has to be established through physical locks, fire safety, and 
other standard precautions. Backup facilities are critical to any company. If time 
is critical, companies will run duplicate data centers and share the workload and 
data. If one center fails, the other can immediately pick up the load and later be 
expanded to handle more of the operations. Cloud-based systems are useful for 
backup because they can be expanded or contracted without incurring huge fixed 
costs.



482Chapter  10: Database Administration

Some data needs to be encrypted both for data transmission and for safety in 
storing the data. Common examples include credit card numbers and taxpayer 
IDs. Encryption tools are built into the higher-end systems but they usually re-
quire configuration. An important step is securing the encryption keys so that even 
if someone steals the database, they will not be able to decrypt the data. 

Data Administrator
How do you ensure data is consistent across multiple databases? Data is an 
important asset to companies. Think about how long a modern company would 
survive if its computers were suddenly destroyed or all the data lost. Some organi-
zations might survive as long as a few days or a week. Many, like banks, would be 
out of business immediately. A company should not have to lose any data before it 
recognizes the value of the information contained in the data. As indicated by Fig-
ure 10.1, companies have many databases for different purposes. Over time, orga-
nizations build different databases and applications to support decisions for opera-
tions, tactics, and strategies. Each application is important by itself, but when the 
applications and databases can coordinate and exchange data, managers receive a 
complete picture of the entire organization.

Despite the power and flexibility of database systems, applications built at dif-
ferent times by different people do not automatically share data. The key to inte-
grating data is to put someone in charge of the data resources of the company. In 
most companies the data administrator (DA) fills this position.

As summarized in Figure 10.2, the primary role of the DA is to provide cen-
tralized control over the data for the entire organization. The DA sets data defini-
tion standards to ensure that all applications use consistent formats and naming 
conventions. The DA coordinates applications and teams to ensure that data from 
individual projects can be integrated into a corporatewide information system. If 
disputes occur among developers or managers, the DA serves as the judge, mak-

Figure 10.1
Data administration. With many projects and developers, a data administrator 
coordinates the projects so data can be integrated across applications.



483Chapter  10: Database Administration

ing decisions to ensure compatibility across the organization. The DA also moni-
tors the database industry and watches trends and technologies to advise the com-
pany on which database systems and tools to consider for long-term benefits.

The DA plays a crucial role as an advocate. Most managers and many develop-
ers are not aware of the power and capabilities of modern database systems. By 
understanding the managerial tasks and the database capabilities, the DA is in a 
position to suggest new applications and expanded uses of the existing data.

Ultimately, the DA is also responsible for the integrity of the data: Does the 
data contained in the DBMS represent a true picture of the firm? Does the firm 
have the proper systems and controls in place to ensure the accuracy and timeli-
ness of the data?

The DA position is largely a management job. The DA tasks consist of orga-
nizing and controlling the design aspects of application development. Control is 
maintained by setting standards, monitoring ongoing development and changes, 
and providing assistance in database design as needed. The DA also spends time 
with business managers to evaluate current systems, monitor business trends, and 
identify future needs. The person hired for this position usually has several years 
of experience in designing databases and needs a detailed knowledge of the com-
pany. The DA also needs technical database skills to understand the various stor-
age implications of the decisions. The DA must also be able to communicate eas-
ily with technical managers and business managers.

Database Administrator
What are the basic tasks of a database administrator? A DBMS is a complex 
software package. Installing, running, and upgrading a DBMS are not trivial tasks. 
Even with personal computer-based systems, these tasks can require the services 
of a full-time person. Every database requires the services of a database adminis-
trator (DBA). The DBA position is generally staffed by a specialist who is trained 
in the administration of a particular DBMS. In smaller companies, instead of hir-
ing a specialist, one of the lead developers may be asked to perform DBA duties.

The DBA role is relatively technical. As highlighted in Figure 10.3, the DBA’s 
responsibilities include installing and upgrading the DBMS. Additional tasks in-
clude creating user accounts and monitoring security. The DBA is also responsible 
for managing backups. Although the actual backup task may be performed by a 

Provide centralized control over the data.
	 Data	definition:	format	and	naming	convention.
 Data integration.
 DBMS selection.
Act as data and database advocate.
 Application ideas.
 Decision support.
 Strategic uses.
Coordinate data integrity, security, privacy, and control.

Figure 10.2
Data administrator roles. The DA is responsible for maintaining the quality of the 
data and for integrating data across the organization. The DA also advocates the use 
of databases and is often in charge of security.



484Chapter  10: Database Administration

system operator, the DBA is responsible for setting schedules and making sure 
the data backups are safe. The DBA also monitors the performance of the data-
bases and plans upgrades and additional capacity. The DBA must stay in contact 
with the DBMS vendor to track system problems and to be notified of changes. 
As new utilities, tools, or information are provided, the DBA functions as a liai-
son to gather this knowledge and make it available to developers. The DBA has 
complete access to the data in the application. In many organizations the DBA is 
in charge of security for each database. Larger companies might appoint a special 
security officer to specify policies and procedures and to help with the monitoring. 
However, the DBA is generally in charge of carrying out the technical details of 
assigning security privileges for the database.

Data allocation and storage are an important part of the daily tasks of the DBA. 
Some large database systems require the DBA to preassign a space on the disk 
drive for each database. Many systems allocate physical space by creating data-
files and tablespaces, which are logical collections of space where data can be 
stored. 

Separate space is usually allocated for the data tables, the indexes, and the 
transaction logs, and the DBA must estimate the size of each component. If the 
DBA allocates too little space, performance will suffer; on the other hand, allo-
cating too much space means that the company will waste money on unneeded 
disk drive capacity. Most systems provide tools to add space later, but it is best to 
get good estimates up front. The data volume estimates from Chapter 3 provide 
crucial information in determining the space requirements. For tables, the main 
concept is to determine the size of an average row (in bytes) and multiply by the 
expected number of rows in the table. Note that each DBMS stores data slightly 
differently and some add bytes per row of storage. The documentation will pro-
vide details for each DBMS. A more accurate solution is to set up a temporary 
database, create a few rows of data in each table, and then use the actual average 
space to estimate future needs. Space required for the indexes and rollback log 
depend on the specific DBMS and the computer system. If you need highly ac-
curate estimates, you will have to consult the documentation and support tools for 
your specific DBMS. Space for indexes and logs also depends on the number and 
length of transactions defined in the applications. For example, the transaction log 
in a database used for transaction processing will have to be substantially larger 
than the log in a database used primarily for decision support and data retrieval. 
The larger DBMSs provide tools to help estimate and monitor storage space.

Install and upgrade DBMS.
Create user accounts and monitor security.
Backup	and	recovery	of	the	database.
Monitor	and	tune	the	database	performance.
Coordinate	with	DBMS	vendor	and	plan	for	changes.
Maintain	DBMS-specific	information	for	developers.

Figure 10.3
Database administrator roles. The DBA tasks are fairly technical and require daily 
monitoring and changes to the DBMS.



485Chapter  10: Database Administration

Database Structure
How does a DBMS support multiple databases? The DBA works on a daily ba-
sis with the structure of the database. Although each DBMS has slightly different 
characteristics, Figure 10.4 shows the overall structure of a database as defined 
by the SQL standard. Users are defined within the individual database instance 
and granted permissions by the DBA. The schema is a container that serves as a 
namespace so that duplicate table names can be avoided. Originally, it was defined 
so that each user would have a separate space to create tables. Two users could 
each create a table named Employee without causing a problem. Today, schemas 
can be created for any purpose, not just for each user. The catalog was proposed 
in the SQL 99 standard, primarily to make it easier to find and access related sche-
mas by placing them into one container. At this point, it is not likely that any 
DBMS supports the catalog element. However, the schema approach is relatively 
common. Users and applications are assigned to a default schema, and tables and 
views within that schema are directly accessible (depending on the security per-
missions, of course). But sometimes you need to access tables or views stored in 
a different schema. In these situations, you need to use the full name of the item. 
The full name includes the schema name (and eventually the catalog name). For 
example, if you want to access the Employee table in the Corporate schema, you 
would use SELECT * FROM Corporate.Employee to indicate the full name of 
the table. If you need to specify the catalog (e.g., Main), you would use Main.
Corporate.Employee as the full name of the table. More commonly, the name of 
the database is used instead of a catalog name. The standard database elements 
such as tables, views, and triggers reside within each schema. One of the tasks of 
the DBA (and the DA) is to identify when to create new schemas. Although there 
are no specific rules, keep in mind that the purpose of a schema is to isolate and 
compartmentalize applications.

Database

Catalog: (rare)
Schema

Table
Columns
Data types
Constraints
Views
Triggers
Routines and Modules
…

Users and Permissions

Figure 10.4
Database structure. The schema serves as a container for other elements to minimize 
potential naming conflicts. 



486Chapter  10: Database Administration

Figure 10.5 gives an example of using a schema to support two different appli-
cations within the same database. The database name is MyBusiness and the two 
schemas are HR and Recreation. Note that both schemas contain a table named 
Employee. These two tables are completely separate, can contain different col-
umns and have different security permissions. This approach is particularly useful 
when an application is purchased from an outside vendor and it is not possible to 
rename the tables. Placing the application definition within its own schema keeps 
it separated from everything else. But all of the tables can be shared across sche-
mas as necessary. 

The other option would be to place all applications into separate databases. 
What is the difference? The two big differences are (1) backup/files and (2) secu-
rity permissions. Each database uses different files for data storage and rollback. 
Plus, security objects are defined separately within each database. So every time 
a new database is created, procedures and people need to be assigned to handle 
backup, and assign and test security permissions. Sometimes the increased separa-
tion is worth the effort, other times it is easier and faster to simply create a new 
schema within an existing database. This is just one of the decisions that needs to 
be made by the DBA.

Metadata
How does a DBA find out what is stored in each database? Each vendor pro-
vides tools to help DBAs accomplish common tasks. Most have a graphically ori-
ented approach to make them easier to use. On the other hand, DBAs often choose 
to perform tasks using SQL by building specific procedures. The SQL commands 
provide detailed control over an operation and can be written to handle dozens or 
hundreds of operations at one time. For example, the graphical approach is easy 
to use for adding one user, but if you need to add 100 users, it is easier to write an 
SQL procedure that pulls the list of users from a file or a temporary table.

In terms of administration, one of the powerful aspects of relational database 
systems is that even the administrative data is stored in tables. This metadata 

Figure 10.5
Usefulness of schemas. Schemas are separated collections of tables, queries, 
functions, and triggers. Notice how each schema has a table named Employee, but 
they are completely separate tables.

Database: MyBusiness

Schema: HR
Tables:
Employee
Payroll
Vacation
…

Schema: Recreation
Tables:
Employee
Teams
…

Table	with	same	name,	but	no	conflict:
MyBusiness.HR.Employee
MyBusiness.Recreation.Employee



487Chapter  10: Database Administration

is data about the data. For example, a system table contains a list of all the user 
tables. The SQL 99 standard describes the Information_Schema which consists of 
a set of views that provide documentation on the database. Technically, the Infor-
mation_Schema views retrieve data from the Definition_Schema tables; however, 
DBMS vendors might choose not to implement the Definition_Schema. DBMS 
vendors have already developed proprietary system tables to hold the metadata. 
The drawback to this approach has been that there is no consistency across prod-
ucts, so DBAs have to learn different commands for each DBMS. As vendors 
implement the newer standards, DBAs should find it easier to work with prod-
ucts from multiple vendors. As of 2013, only some vendors have implemented 
the Information_Schema views. Currently, most DBAs use vendor-specific que-
ries, such as the Describe command or the USER_TABLES view in Oracle; or 
the MSysObjects system table in Access; or the sys.xxx views in SQL Server; or 
the syscat views (e.g., syscat.Tables) in IBM’s DB2. It would be relatively easy 
to create an Information_Schema in most of these systems and add your own 
view definitions for the standard metadata. Essentially, the standard views extract 
the information from the underlying metadata tables. Note that Microsoft’s SQL 
Server does support the Information_Schema views (along with proprietary sys. 
views). Technically, Oracle does not support the Information_Schema, but search 
the Web and you will find downloadable files that can be installed in an Oracle 
DBMS to provide most of Information_Schema definitions.

Figure 10.6 shows some of the common elements of the Information_Schema. 
The SQL command illustrates how to obtain a partial list of the tables, based on 
the name. Commands of this type are useful when a database has hundreds of 
tables and views. Instead of scrolling through dozens of pages looking for a spe-
cific table, you can use the power of SQL to quickly find the exact table needed. 
In the example, note that you should always retrieve the Table_Type as well as 
the name. Tables can be base types (that actually hold the data), views, or derived 
tables. You can use these standard views to get lists of tables, views, triggers, and 
other procedures. You can also use them to get detailed information about tables 
and views, such as a list of columns, data types, and SQL statements for the views 
and functions.

Schemata
Tables
Domains
Views
Table_Privileges
Referential_Constraints
Check_Constraints
Triggers
Trigger_Table_Usage
Parameters
Routines

SELECT	Table_Name,	Table_Type
FROM	Information_Schema.Tables
WHERE	table_name	LIKE	‘Emp%’

Figure 10.6
Information Schema. A few of the 61 views in the standard are listed on the left. 
The sample query shows how DBAs can query the metadata views to quickly find a 
specific item.



488Chapter  10: Database Administration

Figure 10.7 shows examples of queries used to obtain metadata in four differ-
ent systems. The structure of the queries is the same in each case, but the table/
query names are different as are the columns and the data retrieved. In particular, 
the Type values are different in each case. Still, it is useful to have the power of 
SQL to find objects by partial name if necessary.

Database Tasks by Development Stages
What DBA tasks need to be performed as an application is developed? Which-
ever development methodology you follow (e.g., traditional systems development 
life cycle, rapid development, or prototyping), certain database tasks are required 
at each step. Most tasks are performed by the application developers, but some 
involve the DA. Many require communication with the DBA, both to get advice 
and to provide information to help the DBA set up the databases.

Database Planning
During the feasibility and planning stages, you will have to make an estimate of 
the data storage requirements. These initial estimates will be rough, but they will 
help determine the size and capacity of the hardware needed to support the appli-
cation. For example, if you are building a simple database to track materials that 
will be used by five people, the database might require less than 100 megabytes 
of storage and run on a desktop computer. If the initial size estimates start to ex-
ceed a few hundred megabytes of storage, a file server with high-speed disk drives 
might be more appropriate, and the system can probably run on the “free” copies 
of DBMS software. As the database estimates approach gigabytes or terabytes, 
you should investigate special database hardware and parallel-processing systems.

The initial investigation should also provide some idea of the number of forms 
and reports that will be needed, as well as their complexity. These numbers will 
be used to estimate the time and cost required to develop the system. An experi-
enced DBA can provide estimates of space requirements from similar projects. 
Company records on other projects can provide estimates of the average time to 
develop forms and reports.

SELECT	MSysObjects.Name,	MSysObjects.Type
FROM	MSysObjects
WHERE	MSysObjects.Name	Like	“EMP*”;

Access

SELECT *
FROM sys.tables
WHERE name Like N’Emp%’;

SQL Server

SELECT *
FROM	ALL_TABLES
WHERE	TABLE_NAME	Like	‘Emp%’;

Oracle

SELECT *
FROM	INFORMATION_SCHEMA.TABLES
WHERE	TABLE_NAME	LIKE	N’Emp%’;

SQL Standard

Figure 10.7
Usefulness of schemas. Schemas are separated collections of tables, queries, 
functions, and triggers. Notice how each schema has a table named Employee, but 
they are completely separate tables.



489Chapter  10: Database Administration

Database Design
The basic goal of the design stage is to identify the user needs and design the ap-
propriate data tables. Data normalization is the primary database-related activity 
in this stage. The final table definitions will also provide better estimates of the 
storage requirements.

Teamwork coordination and project management are important administrative 
tasks at this stage. As highlighted in Figure 10.8, teamwork is supported with data 
standards as defined by the DA. Projects can be split into pieces and assigned to 
each team member. The ability to integrate the pieces into a complete application 
is provided through standards and communication. Communication is enhanced 
through a shared data repository, networked tools, e-mail, and computer-aided 
software engineering (CASE) tools. Leading CASE tools include Oracle De-
signer/2000, Rational Rose, IEF, and IBM’s Visual Age. These tools provide a 
centralized repository for all project work, including diagrams, data definitions, 
and programming code. As team members work on their portion of the project, 
they can see the rest of the project. In an OO project, they can use the objects cre-
ated by other teams.

From the perspective of data design or normalization, the project is often split 
by assigning forms and reports to individual team members. Each person is then 
responsible for identifying the business assumptions and defining the normalized 
tables needed for the assigned forms. Periodically, the individuals combine their 
work and create a centralized list of the tables that will be used in the database. 
This final list must follow the standards established by the DA.

Database Implementation
The primary database tasks required for implementation are listed in Figure 10.9. 
The major steps are development of the application and the user interface. Man-
agement and organizational tasks largely entail determining the overall look and 
feel of the application. Once the overall structure is determined, programming 
standards and testing procedures facilitate teamwork and ensure quality. Another 
important management task is to assign ownership of the various databases. Own-
ers should be from business management. Data owners are responsible for identi-

Teamwork
 Data standards.
 Data repository.
	 Reusable	objects.
 CASE tools.
 Networks and communication.
Subdividing	projects
 Delivering in stages: versions.
 Normalization by user views.
	 Assigning	forms	and	reports.

Figure 10.8
Managing database design. Database design requires teamwork and standards to 
ensure that individual components can be integrated into a complete application. 
CASE tools and networks improve communication through a centralized repository 
of design data.



490Chapter  10: Database Administration

fying primary security rules and for verifying the accuracy of the data. If the DBA 
has any questions about access rights or changes to the data, the DBA can obtain 
additional information and advice from the data owner.

Backup and recovery procedures have to be established and tested. If any com-
ponent fails, the database logs should be able to fully restore the data. Backups 
are often handled in two forms: full backup at predefined checkpoints and incre-
mental backups of changes that have occurred since the last full backup. Complete 
backups are easier to restore and provide safer recovery. However, they can be 
time-consuming and require large amounts of backup space. For small databases, 
full backups are not a problem. For large, continually changing transaction data-
bases, it may only be possible to perform a full backup once a week or so.

Users and operators also have to be trained. No matter how carefully the user 
interface is designed, there should always be at least an introductory training ses-
sion for users. Similarly, computer operators may have to be trained in the backup 
and recovery procedures.

Database Operation and Maintenance
Once the database is placed in operation, the DBA performs most of the manage-
ment tasks. The primary tasks are to (1) monitor usage and security, (2) perform 
backups and recovery, and (3) support the user.

Monitoring performance and storage space is a critical factor in managing a 
database and planning for growth. All of the big DBMS vendors provide graphi-
cal tools to display a variety of performance measures. Figure 10.10 shows some 
of the basic measures generated in Oracle’s Enterprise Manager. This example 
shows a database with almost no load. In a production environment, you would 
look for spikes in certain statistics—particularly if the occur at set times every 
day. You would also watch for trends over time. For instance, if you see usage 
rates increasing and performance declining over time, you can use the data to pre-
dict future problems and schedule upgrades.

Monitoring performance and storage space is a critical factor in managing a 
database and planning for growth. All of the big DBMS vendors provide graphi-
cal tools to display a variety of performance measures. Figure 10.10 shows some 

Standards	for	application	programming.
	 User	interface.
 Programming structure.
	 Programming	variables	and	objects.
 Test procedures.
Data access and ownership.
Loading databases.
Backup and recovery plans.
User and operator training.

Figure 10.9
Implementation management. The user interface must be carefully chosen. 
Programming standards and test procedures help ensure compatibility of the 
components and provide quality control. Business managers should be assigned 
ownership of the data, so they can make final determinations of security conditions 
and quality. Backup and recovery plans have to be created and tested. Training 
programs have to be created for operators and users.



491Chapter  10: Database Administration

of the basic measures generated in Oracle’s Enterprise Manager. This example 
shows a database with almost no load. In a production environment, you would 
look for spikes in certain statistics—particularly if they occur at set times every 
day. You would also watch for trends over time. For instance, if you see usage 
rates increasing and performance declining over time, you can use the data to pre-
dict future problems and schedule upgrades.

Monitoring is also used to fine-tune the application performance and to estimate 
growth and plan for future needs. Security access and changes are also monitored. 
Security logs can track changes to critical data. They can also be specified to track 
usage (both read and write) by individual users if there is a suspected problem. 
Monitoring user problems as well as performance provides useful feedback on 
the application. If users consistently have problems in certain areas, the design 
team should be encouraged to improve those forms. Similarly, if some users are 
running queries that take a long time to execute, the design team should be called 
in to create efficient versions of the queries. For example, do not expect a user to 
recognize or correct a correlated subquery. Instead, if the DBA sees users running 
complex queries that take too long to run, the team should add a new section to 
the application that stores and executes a more efficient query.

Similarly, if some people are heavily using certain sections of the database, it 
might be more efficient to provide them with replicated copies of the main sec-
tions. If the users do not need up-to-the-minute data, a smaller database can be set 

Figure 10.10
Oracle’s basic performance monitoring statistics. The load on this server is minimal, 
but the DBA can watch these charts on a regular basis to spot problems and identify 
trends.



492Chapter  10: Database Administration

up on a server and updated nightly. The users end up with faster response times 
because they have a smaller database and less communication time. The rest of 
the database runs faster because there are fewer heavy users.

Database vendors provide some powerful tools to help analyze queries and da-
tabase performance. With these tools, you can break apart the entire query process 
to see exactly which step is taking the most time. With this knowledge, developers 
can work on alternative solutions to avoid the bottlenecks. Other tools can moni-
tor for deadlock and transaction problems, making it relatively easy to correct 
problems. Tuning a large database to improve performance is a complex issue and 
depends heavily on the capabilities and tools of the specific DBMS.

Backup and Recovery
How do you back up data that is constantly changing? Perhaps the most criti-
cal database management task is backup. No matter how well you plan, no matter 
how sophisticated your security system, something will go wrong. Database man-
agers and developers have an obligation to plan for disasters. The most critical as-
pect of planning is to make sure that a current copy of the database is easily acces-
sible. Any type of disaster—fire, flood, terrorist attack, power failure, computer 
virus, disk drive crash, or accidental deletion—requires backup data. Given the 
low cost of making and storing backup copies, there is no excuse for not having a 
current backup available at all times.

As shown in Figure 10.11, database backups provide some interesting chal-
lenges—particularly when the database must be available 24 hours a day, 7 days a 
week (abbreviated to 24-7). The basic problem is that while the database is mak-
ing a backup copy, changes could still be made to the data. That is, every copy of 
the database is immediately out of date—even while it is being made. A related 

OrdID Odate Amount ...
192 2/2/07 252.35 …
193 2/2/07 998.34 …

OrdID Odate Amount ...
192 2/2/07 252.35 …
193 2/2/07 998.34 …
194 2/2/07 77.23 ...

OrdID Odate Amount ...
192 2/2/07 252.35 …
193 2/2/07 998.34 …
194 2/2/07 77.28 …
195 2/2/07 101.52 …

Snapshot

Changes

Ins 194 2/2/01 77.23 …
Upd 194 Amount=77.28
Ins 195 2/2/07 101.52…

Journal/Log

Figure 10.11
Backup of a changing database. Backup takes a snapshot at one point in time. New 
changes are stored in the journal or log. Recovery loads snapshot and adds or deletes 
changes in the journal.



493Chapter  10: Database Administration

issue is that the DBMS copy routines might have to wait to copy portions of the 
database that are currently in use (possibly creating a deadlock situation).

Fortunately, the larger database systems provide many tools to solve these 
problems. One approach is to take a snapshot of the tables. The snapshot repre-
sents the status of a table at one instant in time. Because of ongoing changes, this 
snapshot is likely to be inconsistent or record only portions of a transaction. To 
solve these problems, the transaction log (or journal) records all changes as they 
are written to the database. These log files must also be backed up. However, since 
the transaction system only adds new rows to the logs, it is relatively easy to back 
them up with no contention or deadlock issues. On restore, the system loads the 
snapshot data and then plays back the changes in the log files to make everything 
consistent, and record changes that were made after the instant the snapshot was 
taken.

If a problem arises with the main database files, the database has to be restored 
from the backup tapes. First the DBMS loads the most recent snapshot data. Then 
it examines the transactions. Completed transactions are rolled forward, and the 
changes are rewritten to the data tables. If the backup occurred in the middle of 
a transaction and the transaction was not completed, the DBMS will roll back 
or remove the initial changes and then restart the transaction. Remember that a 
transaction consists of a series of changes that must all succeed or fail together. 
The DBMS relies on the application’s definition of a transaction as described in 
Chapter 7.

Backups have to be performed on a regular schedule. Occasionally, the sched-
ule will have to be revised—particularly if the database records many changes. 
Remember that every change since the last backup is recorded in a journal or 
transaction log. The DBA has to watch the space on the transaction log. If it be-
comes too full, a backup has to be run earlier than scheduled. If these unexpected 
backups happen too often, the schedule should be changed. It is possible to make 
complete backups and incremental backups. An incremental backup saves only 
the data that was changed since the last backup, making it considerably faster 
than a full backup. However, the system has to work harder to piece everything 
together if you need to restore the entire database. With high-speed processors and 
storage, the additional time to restore the data might be minimal today, but you 
still face a greater risk of damage if one of the incremental backups has problems.

As a side note, be careful with your development databases on your own work-
station. In particular, SQL Server default logging mode automatically extends the 
transaction log—potentially reaching several gigabytes in size. You have to run a 
full backup to clean up the transaction log. Alternatively, your development data-
bases can be configured without transaction logging.

Backup tapes must be stored offsite. Otherwise, a fire or other disaster might 
destroy all data stored in the building. Snapshot and journal logs should be copied 
and moved offsite at least once a day. Networks make it easier to transfer data if 
the company is large enough to support computer facilities at more than one loca-
tion. Several companies provide disaster-safe vaults for storage of data tapes and 
disks. In extreme situations, it might pay to have duplicate computer facilities and 
to program the system to automatically mirror changes from the main database 
onto the secondary computer in a different location. Then when something goes 
wrong, the secondary computer can immediately pick up the operations. However, 
even in this situation, you should make physical backup copies.



494Chapter  10: Database Administration

An increasingly popular approach to backups is to create mirrored copies of 
the database—using either software or hardware. With a high-speed network, you 
can configure the DBMS to write all changes to a second location (mirror). This 
server could pick up the load if the first server is slow or something crashes. You 
can also mirror the data in one place—by using a redundant array of indepen-
dent drives (RAID).  With RAID (and other striping systems), each piece of data 
is written in two locations on different physical drives. If one drive fails, the DBA 
simply removes it and installs a replacement. The system automatically uses its 
internal copy of the data that is spread across the other drives. As indicated in 
Figure 10.12, the system is also considerably faster than using a single drive, since 
each portion of data can be simultaneously written to a different physical drive. 
Because disk drives are mechanical, they are the slowest and least reliable compo-
nent of the computer system (not counting humans). Striping data across multiple 
drives means that data can be read or written in parallel at the same time—pro-
viding substantially faster throughput, as well as providing duplication to protect 
from the failure of a single drive.

Physical Configuration
How should computers be configured for DBMS software and database files? 
Obviously, this question has multiple answers and each situation is different from 
others, so the final selection needs to be based on the size of the project and the 
amount of money available. However, a few key elements tend to be useful in 
many situations based on current computer and network capabilities. 

It is important to recognize that computers and networks have improved dra-
matically in the past few years. These trends are likely to continue for at least a 
few more years. One of the biggest trends in computer architecture is the growing 
importance of parallel processing—most computer processors are being built with 
multiple cores, so servers can easily contain a handful to thousands of indepen-
dent processors. A key consequence of having multiple processors is the creation 
of a virtual machine (VM). With a VM, the computer running tasks is essentially 
hosted on a parent computer. 

Figure 10.13 shows the logical structure of a VM. A single physical machine 
runs a base operating system that contains a VM hypervisor program that is used 
to configure and control VMs. A VM is loaded with its own operating system 
(with its own license). The VM operating system thinks it is running on an inde-
pendent machine, but it actually shares processors and memory on the base com-
puter. One of the main strengths of this approach is that more RAM and more pro-
cessing power can be given to the VM when it is needed. Also, the VM definition, 

Drive 1 Drive 2 Drive 3 Drive 4 Drive 5

Row 2Row 1 Row 1 Row 2

Figure 10.12
RAID drives. Pieces of data, such as a row, are written on two different drives. Other 
rows are spread across drives so that multiple disk reads and writes can occur at the 
same time to dramatically improve performance.



495Chapter  10: Database Administration

including the operating system and the software configuration is stored as a file on 
the base computer. It is straightforward to back up this VM definition and restore 
it on a different computer if the base machine crashes or is destroyed in a fire. 
Spend several hours configuring a new OS, installing, and configuring Oracle and 
you will quickly appreciate the value of a simple VM backup and restore facility.

Figure 10.14 shows the Microsoft Hyper-V tool to manage VMs in Server 2012. 
The base server consists of a single computer with an 8-core processor and 32 GB 
of actual RAM. The Hyper-V instance is running on this physical server. Four vir-
tual machines are defined (two running versions of LINUX, two with Windows). 
Disk space is allocated on the main server to hold the operating systems in VHD 
files. This space is allocated to an individual VM which sees it as its own disk 
drive. Shared space can also be allocated using the virtual storage area network 
(SAN) manager. Using VMs makes it easier to set up systems for testing. It is also 
straightforward to clone a system, so if anything goes wrong with an upgrade or 
expansion, the original version can be restored quickly.

A second major trend is the increasing speed of local area networks. Most net-
works can easily handle 1 gigabits per second (gps) transfer speeds. This speed 
is already faster than most hard-drive transfer speeds; and network speeds are in-
creasing every few years. Consequently, as shown in Figure 10.15, hard drives 
no longer need to be located in the same box as the server. Several vendors now 
sell network attached storage (NAS) or storage area network (SAN) devices. 
The devices usually have RAID configurations—both for speed and for internal 
backup. Several independent vendors sell these devices, and even provide sepa-
rate, automatic backup systems. The DBMS sees the storage device as a giant disk 
drive, but the device automatically writes striped copies of the data, and writes a 
cached copy that is backed up to tape at regular intervals. The system provides 
immediate online copies of all data, as well as long term copies. Essentially, the 
systems transfer the responsibility for backup from software to hardware, and they 
store and retrieve data very rapidly. Separating the server from the data improves 
reliability and makes it easier to restore operations if either the server crashes or 
the SAN fails.

Figure 10.13
Virtual Machine. A physical computer is the base layer and it runs a base operating 
system that contains a hypervisor program. Each VM is installed with a separate 
operating system and appears to be a separate physical machine—but it shares the 
physical processor and memory on the base machine. 

Computer/ 
Processor/ 
Memory

Base Operating System 
with Hypervisor

VMs with own 
operating systems



496Chapter  10: Database Administration

When using a VM, it is always a good idea to store the actual database on an 
external drive. Except for small systems for development and testing, the data 
should not be stored on a virtual drive associated with a VM. The intervening 
layers of software on a VM virtual drive will slow down all data operations. It is 
faster to write directly to the drive hardware, and SAN devices can be optimized 
for transaction performance.

Security and Privacy
What security techniques are used to protect databases? Computer security is 
an issue with every company today, and any computer application faces security 
problems. A database collects a large amount of data in one location and makes it 
easy for people to retrieve and change data. In other words, a database is a critical 
resource that must be protected, and it is a tempting target for attackers. Yet the 
same factors that make a database so useful also make it more difficult to secure. 
In particular, the purpose of a database is to share data. In a security context, you 
want to control who can share the data and what those users can do with it.

Computer security is often split into three categories: (1) physical security, (2) 
logical security, and (3) behavioral security. Physical security is concerned with 
physically protecting the computing resources and preparing for physical disasters 
that might damage equipment or data. Logical security consists of protecting the 
data and controlling access to the data. Behavioral security is trickier because it 
emphasizes the role of people or employees. It is related to logical security but 
involves interesting problems because it deals with mistakes that people make. 

Figure 10.14
Hyper-V Management. Windows Server 2012 includes the Hyper-V tool to manage 
virtual machines. It is used to assign physical attributes such as memory, processors, 
and network access.



497Chapter  10: Database Administration

Data Privacy
Privacy is related to security but with a slight twist. Companies and governmental 
agencies collect huge amounts of data on customers, suppliers, and employees. 
Privacy means controlling the distribution of this data and respecting the wishes 
of these external people. Figure 10.16 shows some of the demands placed on busi-
ness data in terms of marketing, employee management, and governmental re-
quests. The concepts of keeping data accurate and limiting who has access to it 
are the same for security and for privacy. The differences lie in the objectives and 
motivation. In terms of security, every company has a self-interest in keeping its 
data safe and protected. In terms of privacy—at least in the United States—there 
are few regulations or limitations on what a company can do with personal data. 
Whereas customers and employees may want a company to keep personal data 
private, companies may have a financial incentive to trade or sell the data to other 
companies.

In terms of data privacy, the most important question is, Who owns the data? 
In most cases the answer is the company or individual that collects the data. Some 
people, particularly in Europe, have suggested that the individuals should be con-
sidered to be the owners. Then companies would have to get permission—or pay 
for permission—to use or trade personal data. So far, technical limitations have 
prevented most of the suggested payment schemes from being implemented. 
However, companies must pay attention to changes in the laws regarding privacy.

Database workers have an ethical obligation in terms of data privacy. Many 
times, you will have access to personal data regarding customers and other em-
ployees. You have an obligation to maintain the privacy of that data: You cannot 
reveal the data to other people. In fact, you should avoid even reading the data. 
You should also not tolerate abuses by other workers within the organization. If 
you detect privacy (or security) violations by others, you should report the prob-
lems and issues to the appropriate supervisors.

Figure 10.15
Network attached storage. The database files should be stored on a network drive. 
These RAID devices are fast and handle their own backups through RAID and 
streaming to tape drives. Drive maintenance and replacement can be handled 
independently of the server. 

Server

DBMS VM

Network attached 
storage  (RAID 
drives)

Backup



498Chapter  10: Database Administration

Threats
What are the primary threats to computer security? What possible events cause 
nightmares for database administrators? Is it the outside hackers or crackers that 
you see in the movies? Is it tornadoes, hurricanes, or earthquakes (also popular in 
movies)?

No. The primary threat to any company comes from “insiders.” Companies can 
plan for all of the other threats, and various tools exist to help minimize prob-
lems. However, you have to trust your employees, consultants, and business part-
ners. For them to do their jobs, they need physical access to computers and logical 
access to the databases. Once you are committed to granting access, it becomes 
more difficult to control what they do. Not impossible, just more difficult. Even 
when employees are honest and cautious, they are still going to make mistakes be-
cause they are human. Some behavioral issues are easier to deal with than others. 
Writing down passwords or giving them out over the phone are risky behaviors. 
Picking up a USB drive in the parking lot and inserting it into a computer is flat 
out dangerous—but hard for people to resist. Yes, the volume of attacks from the 
Internet is high, but in many ways they are easier to stop.

Another, more insidious threat comes from programmers who intentionally 
damage data. One technique is to embed a time bomb in a program. A time bomb 
requires the programmer to enter a secret code every day. If the programmer 
leaves (or is fired) and cannot enter the code, the program begins deleting files. 
In other cases programmers have created programs that deliberately alter data or 
transfer funds to their own accounts. These examples illustrate the heart of the 
problem. Companies must trust their programmers, but this trust carries a poten-
tial for considerable damage or fraud. It is one of the reasons that companies are 
so sensitive about MIS employee misconduct. As a developer, you must always 
project an image of trust.

Marketing needs

Government requests

Employee management

Figure 10.16
Privacy. Many reasons exist to collect and analyze data. People might find some 
reasons invasive. Although few privacy laws exist, businesses and database 
administrators should consider the implications and trade-offs of using this data.



499Chapter  10: Database Administration

Physical Security
In terms of physically protecting the computer system, the most important task is 
to make sure you always have current backups. This policy of maintaining back-
ups also applies to hardware. In case of a fire or other physical disaster, you need 
to collect the data tapes and then find a computer to load and run them. Instead of 
waiting until a disaster happens, you really need to create a disaster plan.

A disaster plan is a complete list of the steps that the IS department will take if 
a disaster hits the information system. The plan details who is in charge, describes 
what steps everyone will take, lists contact numbers, and tells how you will get 
the systems up and running. One popular method of finding an alternative com-
puter is to lease a hot site from a disaster planning company. A hot site consists of 
a computer facility that has power, terminals, communication systems, and a com-
puter. You pay a monthly fee for the right to use the facility if a disaster occurs. 
If there is a disaster, you activate the disaster plan, collect the data tapes, load the 
system, load your backup tapes, and run the system from the hot site. A slightly 
cheaper alternative is to lease a cold site. A cold site or shell site is similar to a 
hot site, but it does not have the computer and telecommunications equipment. 
If a disaster occurs, you call your hardware vendor and beg for a new computer. 
Actually, vendors have been very cooperative. The catch is that it can still take 
several days to receive and install a new computer. Can your company survive for 
several days without a computer system? To replace smaller computers, some of 
the disaster recovery companies can deliver a truck to your site and run the system 
from your parking lot.

As summarized in Figure 10.17, prevention is another important step in pro-
viding physical security. Computer facilities should have fire detection and pro-
tection systems. Similarly, computer facilities should be located away from flood 
plains, earthquake faults, tidal areas, and other locations subject to known disas-
ters. Physical access to computers, network equipment, and personal computers 
should be limited. Most companies have instituted company badges with elec-
tronic locks. Access by visitors, delivery people, and temporary employees should 
be controlled.

Today, with the need for continuous online systems, the role of backup facili-
ties has changed. Many companies now have multiple data centers in separate 
locations. Each center can run all of the operations but normally share the load 
and the data. If one system goes down, the other can immediately pick up the 
transactions and operations. Cloud-based operations can also be used to increase 
the scale of a system if something goes wrong in one location.

Backup data
Backup hardware
Disaster planning and testing
Prevention
 Location
 Fire monitoring and control
 Control physical access

Figure 10.17
Physical security controls. Backup data is the most important step. Having a place to 
move to is a second step. Disaster plans and prevention help prevent problems and 
make recovery faster.



500Chapter  10: Database Administration

Managerial Controls
Because the major threats to data security come from company insiders, tradition-
al managerial controls play an important role in enhancing security. For example, 
one of the most important controls begins with the hiring process. Some firms 
perform background checks to verify the character and trustworthiness of the em-
ployees. Even simple verification of references will help to minimize problems. 
Similarly, firms have become more cautious when terminating employees—par-
ticularly MIS employees with wide access to databases. Even for routine layoffs, 
access rights and passwords are revoked immediately.

Sensitive jobs are segmented. For example, several employees are required to 
complete financial transactions. Transactions involving larger amounts of money 
are routed to higher level employees. Similarly, outside institutions like banks of-
ten call back to designated supervisors to verify large transactions. Transactions 
are often monitored and recorded in terms of the time, location, and person per-
forming the operations.

In some cases, security can be enhanced through physical control over the hard-
ware. Centralized computers are placed in locked and guarded rooms. Employees 
are often tracked through video monitors. Security badges are also used to track 
employee access to locations and computer hardware.

Consultants and business alliances also raise security concerns. Generally, you 
have less control over the selection of the consultant and any partnership employ-
ees. Although you have control in the selection of a consulting firm, you have 
little control over the specific employees assigned to your location. These risks 
can be controlled by limiting their access to the data and restricting their access to 
physical locations. In some situations, you may also want to pair an internal em-
ployee with each consultant.

Logical Security
The essence of logical security is that you want to allow each user to have some 
access to the data, but you want to control exactly what type of access the user will 
have. You also want to monitor access to the data to identify potential problems. 
Figure 10.18 notes the three basic problems that you want to avoid: confidentiality 
(unauthorized disclosure), integrity (unauthorized modification), and accessibility 
(unauthorized withholding of information or denial of service).

Confidentiality refers to information that needs to be protected so that only a 
select group of users can retrieve it. For example, the company’s strategic market-
ing plans need to be protected so that no competitor can retrieve the data. To be 
safe, only a few top people in the company would have access to the plans.

Integrity applies to information that is safe to display to users, but you do not 
want the users to change it. For example, an employee should be able to check the 
human resource files to verify his or her salary, remaining vacation days, or merit 

Confidentiality	 Unauthorized	disclosure
Integrity	 Unauthorized	modification
Accessibility Unauthorized withholding

Figure 10.18
Logical security problems. Each situation can cause problems for the company, 
including financial loss, lost time, lost sales, or destruction of the company. 



501Chapter  10: Database Administration

evaluations. But it would be a mistake to allow the employee to change any of this 
data. No matter how honest your employees are, it would be a dangerous tempta-
tion to allow them to alter their salary, for example.

The third problem is subtle but just as dangerous. Consider what would happen 
if the chief financial officer needs to retrieve data to finalize a bank loan. However, 
the security system is set incorrectly and refuses to provide the data needed. If the 
data is not delivered to the bank by the end of the day, the company will default on 
several payments, receive negative publicity, lose stock value, and potentially risk 
going under. The point is that withholding data from authorized users can be just 
as dangerous as allowing access to the wrong people.

Assuming you have a sophisticated computer system and a DBMS that sup-
ports security controls, two steps are needed to prevent these problems. First, the 
computer system must be able to identify each user. Second, the owner of the data 
must assign the proper access rights to every piece of data. The DBA (or a security 
officer) is responsible for assigning and managing user accounts to uniquely iden-
tify users. The application designer and data owners are jointly responsible for 
identifying the necessary security controls and access rights for each user.
User Identification
One of the major difficulties of logical computer security is identifying the user. 
Humans recognize other people with sophisticated pattern-recognition tech-
niques applied to appearance, voice, handwriting, and so on. Yet even people can 
be fooled. Computers are weak at pattern recognition, so other techniques are 
required.

The most common method of identifying users is by accounts and passwords. 
Each person has a unique account name and chooses a password. In theory, the 
password is known only to the individual user and the computer system. When 
the user enters the correct name and matching password, the computer accepts the 
identity of the person.

The problem is that computers are better than people at remembering pass-
words. Consequently, people make poor choices for passwords. Some of the basic 
rules for creating passwords are outlined in Figure 10.19. The best passwords are 
long, contain nonalphabetic characters, have no relationship to the user, and are 
changed often. Fine, but a user today can easily have 30, 40, or more different 
accounts and passwords. Almost no one can remember every account and the con-
voluted passwords required for security. So there is a natural inclination either to 
write the passwords in a convenient location (where they can be found by others) 
or choose simple passwords (which can be guessed).

Do not use words in a dictionary.
Do not use personal (or pet) names.
Include nonalphabetic characters.
Use at least eight characters.
Change it often.

Figure 10.19
Password suggestions. Pick passwords that are not in a dictionary and are hard to 
guess. The catch is, Can you remember a convoluted password?



502Chapter  10: Database Administration

Passwords are the easiest (and least expensive) system to implement at this 
time. Within a given company, it is possible to implement a central  security serv-
er (e.g., Kerberos used in Microsoft’s Active Directory), where a user logs into 
the main server and all other software verifies users with that server. Another ap-
proach is to use password generator cards. Each user carries a small card that gen-
erates a new password every minute. At login, the computer generates a password 
that is synchronized to the card. Once the password is used, it is invalidated, so 
if an interloper observes a password, it has no value. The system still requires 
users to memorize a short password just in case a thief steals the password card. 
Of course, if a user loses the card, that user cannot get access to the computers. 
Encrypted software variations can be loaded onto laptop computers, which then 
provide access to the corporate network.

Other alternatives are being developed to get away from the need to memorize 
passwords. Biometric systems that measure physical characteristics already exist 
and are becoming less expensive. For example, fingerprint, handprint, iris pattern, 
voice recognition, and thermal imaging systems now work relatively well. The 
advantage to biometric approaches is that the user does not have to memorize any-
thing or carry around devices that could be lost or stolen. The main drawback is 
cost, since the validating equipment has to be installed anywhere that employees 
might need access to a computer. A secondary problem is that although the devic-
es are good at preventing unauthorized access, many of them still have relatively 
high failure rates and refuse access to authorized users.

After individual users are identified, most systems enable you to assign the in-
dividuals to groups. Groups make it easier to assign permissions to users. For ex-
ample, by putting 100 employees into a clerical group, you can grant permissions 
to the group, which is much faster than assigning the same permissions 100 times.

Most DBMSs identify the user either internally (database login) or through 
integration with the operating system (particularly Windows Active Directory). 
Similarly groups or roles can be created within the DBMS or within Active Direc-
tory. The choice depends on the company and the type of application being cre-
ated. Centralizing logins through the operating system (Windows) makes it easier 
for users to access data and makes it easier for security personnel to monitor and 
change groups. But it requires close cooperation between the DBA, developers, 
and the network security group.
Access Controls
After users are identified, they can be assigned specific permissions to any re-
source. From a database perspective, two levels of access must be set. First, the 
user must be granted access to the overall database or standalone application, us-
ing operating system commands. Second, the user or group must be granted indi-
vidual permissions, using the database security commands.

The privileges listed in Figure 10.20 apply to an entire table or query. The most 
common privileges you will grant are read, update, and insert. Delete permission 
means that a user can delete an entire row: —it should be granted to only a few 
people in specific circumstances. Privileges that are more powerful can be granted 
to enable users to read and modify the design of the tables, forms, and reports. 
These privileges should be reserved for trusted users or DBAs. Users will rarely 
need to modify the design of the underlying tables. These privileges are granted to 
developers.



503Chapter  10: Database Administration

With most database systems the basic security permissions can be set with two 
SQL commands: GRANT and REVOKE. Figure 10.21 shows the standard syn-
tax of the GRANT command. The REVOKE command is similar. SQL 92 pro-
vides some additional control over security by allowing you to specify columns in 
the GRANT and REVOKE commands, so you can grant access to just one or two 
columns within a table. However, the privilege applies to every row in the table 
or query. 

Most of the database systems provide a visual security tool to help assign ac-
cess rights. The SQL commands are useful for batch operations when you need 
to assign permissions to a large number of tables or for several users at the same 
time. The visual tools are easier to use for single operations. They also make it 
easy to see exactly which permissions have currently been assigned to individ-
uals. However, the SQL statements can be used in scripts to automate security 
assignments.

The GRANT command offers an additional option that is sometimes useful. 
As the owner of a database element, you have the ability to pass on some of your 
powers when you grant access. If you add the phrase WITH GRANT OPTION, 
then whoever just received the privileges you specified can also pass those on to 
someone else. For example, you could grant SELECT (read) privilege on a table 
WITH GRANT OPTION to the head of the marketing department. That person 
could then give read access to the other employees in the marketing department.

Figure 10.21
SQL security commands. Most systems also provide a visual tool to assign and 
revoke access rights.

GRANT privileges
ON	objects
TO users

REVOKE privileges
ON	objects
FROM users

Read data
Update data
Insert data
Delete data
Open/run
Read design
Modify	design
Administer

Figure 10.20
DBMS privileges. These privileges apply to the entire table or query. The first three 
(read, update, and insert) are commonly used. The design privileges are usually 
granted only to developers.



504Chapter  10: Database Administration

Database Roles
Imagine the administrative hassles you would face if you have to assign security 
permissions for hundreds or thousands of employees. Each time an employee is 
hired or leaves, someone would have to assign or remove rights to possibly hun-
dreds of tables and views. The task would be time consuming and highly error 
prone. Even if you build SQL procedures to help, it would require almost constant 
maintenance. A far more effective solution is to define database roles. A role is 
often associated with a group of users and consists of a set of permissions that 
are assigned together. As shown in Figure 10.22, you create a role and assign the 
desired permissions to the role instead of to the individual users. Then you assign 
the role to the specific users. When a new employee is hired, adding the role to 
that user provides all of the necessary permissions. The SQL 99 standard supports 
the ability to assign roles to other roles. For instance, you could define smaller sets 
of tasks as roles (sell item, add customer, update inventory) and then assign those 
tasks to broader roles (sales clerk, inventory clerk, and so on).
Queries as Controls
With many systems, the basic security commands are powerful but somewhat lim-
ited in their usefulness. Many systems only grant and revoke privileges to an en-
tire table or query. Although the SQL 2003 standard supports specifying columns 
in the GRANT and REVOKE commands, this option might not be available in 
all situations. Also, queries provide detailed control through the WHERE clause. 
The true power of a database security system lies in the ability to assign access to 
individual queries. Consider the example in Figure 10.23. You have an Employee 
table that lists each worker’s name, phone number, and salary. You want to use the 
table as a phone book so employees can look up phone numbers for other work-

Figure 10.22
Database roles. Create a role and assign permissions to the role. When an employee 
is added or released, you simply assign or remove the desired roles to instantly 
provide the appropriate permissions.

ItemID Description Price QOH

111 Dog Food 0.95 53

222 Cat Food 1.23 82

333 Bird Food 3.75 18
CustomerID LastName FirstName Phone

1111 Wilson Peta 2222

1112 Pollock Jackson 3333

1113 Locke Jennifer 4444
SalesID SaleDate CustomerID

111 03-May- 1112

112 04-May- 1112

113 05-May- 1113

Assign permissions 
to the role.

New hire:
Add role to person

Items: SELECT

Customers: SELECT, 
UPDATE

Sales: SELECT, 
UPDATE, INSERT

Role: SalesClerk



505Chapter  10: Database Administration

ers. The problem is that you do not want employees to see the salary values. The 
solution is to create a query that contains just the name and phone number. Re-
member that a query does not duplicate the data—it simply retrieves the data from 
the other tables. Now, assign the SELECT privilege on the Phonebook query to 
all employees and revoke all employee privileges to the original Employee table. 
If you want, you can also choose specific rows from the Employee table. For ex-
ample, you might not want to display the phone numbers of the senior executives.

Chapters 4 and 5 showed you the power of queries. This power can be used to 
create virtually any level of security that you need. Almost all user access to the 
database will be through queries. Avoid granting any access directly to a table. 
Then it will be easier to alter the security conditions as the business needs change.

The basic process is to confer with the users and to determine exactly which 
type of access each user needs to the data. In particular, determine which users 
need to add or change data. Then create the users and assign the appropriate se-
curity conditions to the queries. Be certain to test the application for each user 
group. If security is a critical issue, you should consider assigning a couple of 
programmers to “attack” the database from the perspective of different users to 
see whether they can delete or change important files.

As a reminder from Chapter 8, a key issue in modern databases—particularly 
Web-based applications—is the problem of SQL injection. Injection attacks arise 
when queries are created that use data entered by users—particularly uncontrolled 
users on the Web. The worst cases arise when SQL queries are built as strings 
by appending data entered on Web forms. A process should be established for 
reviewing all SQL statements created in applications that use Web forms. Ensure 
that they use parameters and remove quote and comment characters from param-
eter values whenever possible.

Employee(ID, Name, Phone, Salary)

Query:  Phonebook
SELECT Name, Phone
FROM Employee

Security
Grant Read access to Phonebook
for	group	of	Employees.

Grant Read access to Employee
for	group	of	Managers.

Revoke all access to Employee
for	everyone	else	(except	Admin).

Figure 10.23
Security using queries. You wish to let all employees look up worker phone numbers. 
But employees should not be able to see salaries. Define a query that contains only 
the data needed, and then give employees access to the query—not to the original 
table.



506Chapter  10: Database Administration

Division of Duties
For years, security experts have worried about theft and fraud by people who 
work for the company. Consider a classic situation that seems to arise every year. 
A “bad” purchasing manager sets up a fake supplier. The manager orders supplies 
from the fake company, and pretends that shipments arrive and authorizes pay-
ments. Of course, the manager cashes the payment checks. Some of these frauds 
run for several years before the perpetrators are caught. Ultimately, it is a weak 
scam because eventually the manager will be caught. Nonetheless, you want to 
stop the problem and catch the thief as quickly as possible.

The standard method to avoid this type of problem is to divide the duties of 
all the workers. The goal is to ensure that at least two people are involved in any 
major financial transaction. For example, a purchasing manager would find new 
suppliers and perhaps issue purchase requisitions. A different person would be in 
charge of receiving supplies, and a third person would authorize payments. The 
goal of separating duties can be challenging to implement. Companies try to re-
duce costs by using fewer employees. Business picks up, and someone takes ad-
vantage of the confusion. It is impossible to eliminate all fraud. However, a well-
designed database application can provide some useful controls.

 Consider the purchasing example shown in Figure 10.24 in which the basic 
tables include a Supplier table, a SupplyItem table, a PurchaseOrder table and a 
PurchaseItem table. In addition, financial tables authorize and record payments. 
The key to separation of duties is to assign permissions correctly to each table. 
The purchasing manager is the only user authorized to add new rows to the Sup-
plier table. Purchasing clerks are the only users authorized to add rows to the Pur-
chaseOrder and PurchaseItem tables. Receiving clerks are the only users autho-
rized to record the receipt of supplies. Now if a purchasing clerk tries to create 
fake orders, he or she will not be able to create a new supplier. Because referential 

Figure 10.24
Division of duties. The clerk cannot create a fake supplier. Referential integrity 
forces the clerk to enter a SupplierID from the Supplier table, and the clerk cannot 
add a new row to the Supplier table.

SupplierID Name …
673 Acme Supply
772 Basic Tools
983 Common X

Supplier

OrderID SupplierID
8882 772
8893 673
8895 009

PurchaseOrder

Referential
integrity

Clerk must use SupplierID from	
the Supplier table, and cannot 
add a new supplier.

Purchasing manager 
can add new 
suppliers, but cannot 
add new orders.

Resource Purchasing 
Manager

Purchasing Clerk

Supplier table Select, Insert, 
Modify,	Delete

Select

PurchaseOrder table 
PurchaseItem table

Select Select, Insert, 
Modify,	Delete



507Chapter  10: Database Administration

integrity is enforced between the Order table and the Supplier table, the clerk can-
not even enter a false supplier on the order form. Likewise, payments will be sent 
only to legitimate companies, and a purchasing manager will not be able to fake 
a receipt of a shipment. The power of the database security system is that it will 
always enforce the assigned responsibilities.

Software Updates
Modern software is large and complex. Software vendors and other researchers 
often find security problems after the software has been released. Typically, the 
company has a process to evaluate security threats, create patches to fix the prob-
lems, and notify users to update their systems. The difficulty is that announcing 
the security flaw to users also means that potential hackers are alerted to the prob-
lem. As long as all users patch their systems immediately, these announcements 
would be effective. But as a database administrator, the issue is not that simple. 
Even if you receive the notice, you still need to test the patch and ensure that it 
does not cause problems with your applications. Several major attacks have been 
launched against companies by attackers using known security holes that were not 
patched.

Consequently, a major task of database administrators is to monitor security 
releases for the DBMS and operating system software. These patches need to be 
installed on test machines and moved to the production systems as soon as pos-
sible. In the meantime, the network administrators can block specific ports and 
prevent outsiders from accessing features on the database. The DBAs and the net-
work administrators also have to carefully monitor the network and the servers to 
see if rogue processes have been started. Most vendors have an automated system 
so you can discover which patches need to be installed; and even install them au-
tomatically. Of course, you must still monitor the process, and choose an update 
time that does not interfere with operations. You should also perform backups be-
fore updating your system.

Encryption
How do you prevent eavesdroppers or hackers from reading data? Encryp-
tion is a method of modifying the original information according to some code so 
that it can be read only if the user knows the decryption key. Encryption should be 
used when transmitting information from one computer to another—particularly 
when using the Internet.  Sensitive information, particularly passwords and credit 
card numbers, stored within a database also can be encrypted.  Without the en-
cryption key, the files are gibberish. Encryption is critical for personal computer-
based systems that do not provide user identification and access controls. Encryp-
tion is a useful technique, but you need to be aware of issues involving the keys.

Two basic types of encryption are commonly used today. Most methods use a 
single key to both encrypt and decrypt a message.  For example, the advanced 
encryption system (AES) method uses a single key. Although AES is a U.S. 
standard, versions of it are available throughout the world because it is based on 
Rijndael created by two Belgian cryptographers. The AES algorithm is fast and 
supports key lengths of 128, 192, and 256 bits—protecting it from a brute force 
attack that tries all possible key values. Note that adding one bit to the key length 
provides twice as many keys; for example, moving from 56 to 128 bits adds 2 to 
the 72nd power more possibilities to test, making it virtually impossible to at-
tack with brute force—using today’s computers. Figure 10.25 shows a basic use 



508Chapter  10: Database Administration

of the AES encryption method. The primary drawback to AES is that it requires 
both parties to have the same value of the encryption key. Safely distributing the 
correct encryption key to each participant is a major problem in protecting data 
encrypted with a single key.

To solve the key-distribution problem, a second method was created that uses 
both a private key and a public key.  Whichever key is used to encrypt the mes-
sage, the other key must be used to decrypt it.  The Rivest-Shamir-Adelman 
(RSA) algorithm is an example of a method that uses two keys. RSA protec-
tion is available on a variety of computers. RSA encryption works because of the 
properties of prime numbers. In particular, it is relatively easy for computers to 
multiply two prime numbers together. Yet it is exceedingly difficult to factor the 
resulting large number back into its two component parts. The security of the RSA 
approach relies on using huge numbers (128 digits or more), which would take 
many years to factor with current technology.

Methods that use two keys have some interesting uses.  The trick is that ev-
eryone knows your public key, but only you know the private key.  Consider the 
situation in Figure 10.26, where Bob wants to send a database transaction to Al-
ice across the Internet. Bob looks up Alice’s public key in a directory. Once the 
message is encrypted with Alice’s public key, only her private key can decrypt it: 
No one else can read or change the transaction message. The dual-key approach 
solves the key-distribution problem because anyone can have access to the pub-
lic key. The tradeoff is that dual-key encryption and decryption is considerably 
slower than single-key encryption. Consequently, many systems use dual-key en-
cryption to establish a connection and distribute a one-time AES key to use for the 
session. Also, keep in mind that encryption only prevents people from reading or 
changing data, someone could still destroy the message before Alice receives it.

Figure 10.25
Single-key encryption. The same key is used to encrypt and decrypt the message. 
Distributing and controlling access to keys becomes a major problem when several 
users are involved.

Plain text
message

Encrypted
text

Key:  9837362

Key:  9837362

AES

Encrypted
text

Plain text
message

AES

Single key:  e.g., AES



509Chapter  10: Database Administration

There is a second use of dual-key systems called authentication.  Let’s say 
that Bob wants to send a message to Alice.  To make sure that only she can read 
it, he encrypts it with her public key.  However, Bob is worried that someone has 
been sending false messages to Alice using his name, and he wants to make sure 
that Alice knows the message came from him.  If Bob also encrypts the message 
with his private key, it can be decrypted only with Bob’s public key.  When Alice 
receives the message, she applies her private key and Bob’s public key.  If the 
message is readable, then it must have been sent by Bob.  

Dual-key encryption systems are useful in all aspects of information communi-
cation. They do have one complication: The directory that lists public keys must 
be accurate. Think about what would happen to authentication if someone imper-
sonated Bob and invented a private and public key for him. This interloper would 
then be accepted as Bob for any transaction. Hence, the public keys must be main-
tained by an organization that is trusted. Additionally, this organization must be 
careful to verify the identity of anyone (individual or corporation) who applies for 
a key. Several companies have begun to offer these services as a certificate au-
thority. One of the leading commercial firms is Verisign, but GoDaddy is cheaper.

For internal use, it is relatively easy to set up a company server that functions 
as a certificate authority. With this approach, you can generate internal security 
certificates that will protect transmissions among employees and internal data-
base applications. This approach is significantly less expensive than purchasing 
annual certificates for every employee. Of course, your certificates will probably 
not be accepted by anyone outside the company, so you will still need to obtain 
commercial certificates for applications that deal with external firms and people. 
Web browsers automatically use dual-key encryption on a secure sockets layer 
(SSL) connection. Check out the options in your browser and you will find a list 
of known certificate authorities. Certificates issued by these companies will be 
automatically accepted by the browser.

Encrypting data within a database has one additional twist: Where do you store 
the decryption key? The purpose of encrypting data within a database is to protect 

Figure 10.26
Dual-key encryption. Bob sends a message to Alice. Alice publishes here public key, 
which Bob uses to encrypt the message. Only Alice can read the message, because 
she is the only one who has access to her matching private key.

Alice

Bob
Public Keys

Alice  29
Bob   17

Private Key
13

Private Key
37

Message
Message

Encrypt+AEncrypt+A

Use
Alice’s

Public key

Use
Alice’s

Private key

Transmission



510Chapter  10: Database Administration

it in case someone gets access to or steals the entire database file. It is particularly 
useful at protecting sensitive data such as credit card numbers or taxpayer IDs 
from browsing by employees or other insiders. However, you still have to find a 
place to store the decryption key so that your application can run, but someone 
who gets access to the database will not be able to find the decryption key. This 
problem must be addressed for both types of encryption. Modern operating sys-
tems are beginning to offer new options for storing decryption keys. For example, 
Microsoft systems now provide an encrypted data store specifically for handling 
encryption keys and certificates. You can find whitepapers on Microsoft’s Web 
site that explain the options. One of the easier-to-use options is to protect the keys 
using special security certificates that are installed on the server. In SQL Server, 
you first run CREATE MASTER KEY ENCRYPTION to define a secure area 
within the database to hold certificates. Then you create certificates that are used 
to encrypt and decrypt the data. Oracle includes the DBMS_CRYPTO package 
and sells a Transparent Data Encryption (TDE) system.

Another choice is to store the decryption key in a separate operating system file 
that has system security rights to allow only a special process to access the file. 
All of the methods increase the complexity of the application, but they do make it 
more difficult for someone to read the plaintext data. Over time, operating system 
vendors will likely add new features that are more secure and easier to use.

The most important rule to follow with encryption is that you should never at-
tempt to create your own encryption method. Always use the tools that are built 
into the DBMS or operating system. They have been tested and verified by thou-
sands of people.

Sally’s Pet Store
What security conditions would be needed at Sally’s Pet Store? It is often eas-
ier to understand security issues through an example. The first step in assigning 
security permissions for Sally’s Pet Store is to identify the various groups of users. 
The initial list is shown in Figure 10.27. As the company grows, there will eventu-
ally be additional categories of users. Note that these are groups and that several 
people might be assigned to each category.

Management
 Sally/CEO

Sales	Staff
 Store manager
 Salespeople

Business Alliances
 Accountant
 Attorney
 Suppliers
 Customers

Figure 10.27
Initial list of user groups for Sally’s Pet Store.



511Chapter  10: Database Administration

The second step is to identify the operations that various users will perform. 
Separate forms will be designed to support each of these activities. Figure 10.28 
contains a partial list of the major activities.

The user and group accounts need to be created within the operating system 
and within the DBMS. After the tables, queries, and forms are created, the DBA 
should make sure that only the DBA should be able to read or modify data. Go 
through each operation and identify the queries and tables needed to perform the 
operation. You should list the permissions for each user group that are required 
to complete the operation. Figure 10.29 presents the permissions that would be 
needed to purchase items from suppliers. Notice that only the store managers (and 
the owner) can order new merchandise. (Insert permission on the Merchandis-
eOrder and OrderItem tables.) Also note that only the owner can add new sup-
pliers. Remember that a referential integrity constraint is in place that forces the 
MerchandiseOrder table to use only Suppliers already listed in the Supplier table. 
Therefore, a store manager will not be able to invent a fictitious supplier. Also 
note that you would like to permit store managers to add items to the OrderItem 
table, but they should not be able to alter the order once it has been completed. 
The DBMS might not support this restriction, and you probably have to give the 
managers Write permission as well. If available, the distinction would be useful. 
Otherwise, a manager in charge of receiving products could steal some of the 
items and change the original order quantity. If Sally has enough managers, this 
problem can be minimized by dividing the duties and having one manager place 
orders and another manager record the shipments. Also note that Sally wants to 
record the identity of the employee who placed the order. For this purpose, you 
need only read permission on the EmployeeID and Name columns. This privilege 
can be set by creating a separate EmployeeName query that only retrieves a mini-
mal number of columns from the Employee table. Then you can use this query for 
purchases instead of the original Employee table.

Products
 Sales
 Purchases
 Receive products
Animals
 Sales
 Purchases
 Animal health care
Employees
 Hiring/release
 Hours
 Paychecks
Accounts
 Payments
 Receipts
 Management reports

Figure 10.28
Primary operations at Sally’s Pet Store. All of these transactions will have forms or 
reports built into the database.



512Chapter  10: Database Administration

You follow a similar process to identify the access rights for all of the other ta-
bles. It is critical that you test all of the security conditions. Best practices dictate 
that you lock down the permissions so almost no one can access the data. Then, 
add permissions so that each group can complete assigned tasks. If the actual per-
missions are altered, you should go record the new values on the charts. The dis-
plays make it easier to see if some group has too much access.

Summary
Several steps are involved in managing a database. The DA performs management 
tasks related to design and planning. Key priorities are establishing standards to 
facilitate sharing data and integrating applications. The DA also works with users 
and business managers to identify new applications. In contrast, the DBA is re-
sponsible for installing and maintaining the DBMS software, defining databases, 
ensuring data is backed up, monitoring performance, and assisting developers.

Each stage of application development involves different aspects of database 
management. Planning entails estimating the size and approximate development 
costs. Project management skills and teamwork are used in the design stage to 
split the project and assign it to individual workers. Implementation requires es-
tablishing and enforcing development standards, testing procedures, training, and 
operating plans. Once the application is operational, the DBA monitors perfor-
mance in terms of space and processing time. Physical storage parameters and 
other attributes are modified to improve the application’s performance.

Backup and recovery are key administrative tasks that must be performed on 
a regular basis. Backup is more challenging on systems that are running continu-
ously. The DBMS takes a snapshot and saves the data at one point in time. All 
changes are saved to a journal, which is also backed up on a regular basis. If the 
system has to be recovered, the DBMS loads the snapshot and then integrates the 
logged changes.

Security is an important issue in database management. Physical security con-
sists of problems that involve the actual equipment, such as natural disasters or 

Figure 10.29
Permissions for purchases. Notice that only the owner can add new suppliers, and 
only top-level managers can create new orders.

Purchase Purchase Query PurchaseItem Query
Merchandise 
Order

Supplier Employee City Order Item Merchandise

Sally/CEO SIUD SIUD SIUD SIUD SIUD SIUD
Store Mgr. SIUD S* SIUD SIUD I SIUD
Salespeople S S* S: ID, Name S S S
Accountant S S* S: ID, Name S S S
Attorney - - S: ID, Name - - -
Suppliers S S* - S S S
Customers - - - - - S

S: Select, I: Insert, U: Update, D: Delete
* Basic suppler data: ID, Name, Address, Phone



513Chapter  10: Database Administration

physical theft of hardware. Data backup and disaster planning are the keys to 
providing physical security. Logical security consists of protecting data from un-
authorized disclosure, unauthorized modification, and unauthorized withholding. 
The first step to providing logical security is to create a system that enables the 
computer to identify the user. Then application designers and users must deter-
mine the access rights that should be assigned to each user. Access rights should 
be assigned to enforce separation of duties.

Encryption is a tool that is often needed to protect databases. Encryption is par-
ticularly useful when the operating system cannot protect the database files. En-
cryption is also used when data must be transmitted across networks—particularly 
open networks like the Internet.

A Developer’s View
Miranda will quickly see that the tasks of a DBA are different from those of a de-
veloper, yet the developer must work closely with the DBA. As a developer, you 
need to understand the importance of data standards. You also need to work with 
the DBA in planning, implementing, and maintaining the database application. 
Before implementing the application, you need to establish the database security 
rights and controls. For your class project, identify all users and determine their 
access rights. Use queries to give them access only to the data that they need. Test 
your work. Also, run any performance monitors or analysis tools.



514Chapter  10: Database Administration

Key Terms

Review Questions
1. What is the role and purpose of a data administrator?
2. What tasks are performed by a database administrator?
3. What tools are available to monitor database performance?
4. What is metadata and how do DBAs determine the structure of tables in a 

database?
5. How does the DA facilitate teamwork in developing database applications?
6. What are the primary security threats to a business?
7. How do DBMSs backup data that is constantly changing?
8. How does hardware provide real-time backup to databases?
9. What are the three problems faced by logical security systems?
10. How does a DBMS identify a user?
11. What are the basic database privileges that can be assigned to users?
12. How do queries provide detailed access controls?
13. How does a good DBMS application provide for division of duties?
14. How is encryption used to protect data sent to Web sites?
15. How do virtual machines and storage area networks improve administration 

and security?

24-7
advanced encryption standard (AES)
authentication
behavioral security
brute force attack
certificate authority
cold site
computer-aided software engineering 
(CASE)
data administration
data administrator (DA)
database administration
database administrator (DBA)
disaster plan
encryption
GRANT
hot site
logical security
metadata

network attached storage (NAS)
physical security
private key
public key
redundant array of independent drives 
(RAID)
REVOKE
Rivest-Shamir-Adelman (RSA) algorithm
role
schema
secure sockets layer (SSL) connection
shell site
snapshot
storage area network (SAN)
tablespaces
transaction log
tuning
virtual machine (VM)
WITH GRANT OPTION



515Chapter  10: Database Administration

Exercises
1. Use online resources to find three job openings for a DBA. Summarize the 

expected salary and the experience level required for the jobs.
2. You are working on a new project that has the following primary tables 

with the estimated number of rows. Provide a rough estimate of the size of 
the database after three years of operation. Pick a DBMS and identify the 
components needed and try to estimate the cost upfront and annual software 
licensing costs

Table Initial size (gigabytes) Annual Growth rate
Customers 10 10%
Employees (with photo) 12 5%
Item/Package (per year) 625 10%
Tracking (per year) 5,000 10%

3. Briefly describe how you would protect a computer system from the 
following problems. List steps you will take before the event and after the 
event has occurred. 
a) Your local electricity provider expanded into wind and solar power and 

now the weather is bad and the company has insufficient power during 
peak days so you have rolling brownouts (no power) for up to an hour 
every three days.

b) Employees sneaking cigarette breaks behind the building somehow 
caused a fire that burned down the computer center.

c) Your CEO managed to anger a couple of hacker groups and your Web 
servers are now facing a huge distributed denial of service attack so no 
one can get access.

d) The North Korean government created a spyware/attack program 
targeted to your production databases, placed it on a USB drive and 
dropped a dozen of them in your parking lot. An employee plugged 
it in an infected your computers, destroying the databases (and some 
production equipment).

e) The FBI just appeared at your door and said the person you hired as one 
of your DBAs a year ago was just caught at the airport with a ticket to 
China, smuggling a USB drive with what looks to be 80 percent of your 
main database contents.

f) As part of a lawsuit against the company, an ex-employee is accusing an 
HR worker of looking up salaries in the company payroll database and 
telling other people the numbers.

4. Research the methods of encrypting a database column for a specific DBMS 
used to connect to a Web application. In particular, describe how the key is 
stored and comment on what it would take to obtain the key.

5. Research the costs of running SQL Server (or Oracle if you prefer) on a 
cloud server hosted by a third party. Assume the size of the database is about 
50 GB with about 400 GB of network data traffic a month.



516Chapter  10: Database Administration

6. You are setting up a database for a local government agency to handle its 
purchases, including electronic payments to suppliers. Define the user groups 
and access rights to the following tables:
Supplier(SupplierID, Name, Address, Phone, City, State, 
ZIP, BankAccount)
PurchaseOrder(OrderID, SupplierID, OrderDate, EmployeeID, 
DateDue, DatePaid)
OrderItem(OrderID, ItemID, Description, Quantity, Price, 
DateReceived)
Payment(PaymentID, OrderID, PaymentDate, BankConfirm, 
Amount)

7. You are setting up a database for a company that sells products over the Web. 
Define the access rights to four groups of users: Customers, Shipping Clerks, 
Marketing Manager, and Customer Service; on the following tables:
Customers(CustomerID, Name, Address,  Gender, Phone, 
Email, …
Items(ItemID, Description, Photo, ListPrice, Category
Sale(SaleID, SaleDate, CustomerID, IPAddress
SaleItem(SaleID, ItemID, Quantity, SalePrice, 
CustomerComments
Returns(ReturnID, ReturnDate, SaleID, ItemID, Quantity, 
Reason, Comments

8. Employees and other insiders present the greatest security problems to 
companies. Outline basic policies and procedures that should be implemented 
to protect the computer systems. (Hint: Research employee hiring 
procedures.)

9. Research the current status of RAID drives versus SSDs for storing database 
files. What the benefits and costs to each method?

10. Write a metadata query to retrieve a list of all stored views that use a table 
named Customer. Hint: Try the SQL Standard, or use your favorite DBMS to 
test it.

Sally’s Pet Store
11. Devise a security plan for Sally’s Pet Store. Identify the various classes of 

users and determine the level of access required by each group. Create any 
queries necessary to provide the desired security.

12. If it does not already exist, create a sales query that uses data from the 
Customer, Sales, SaleItems, Employee, and City tables to produce a report 
of all sales sorted by state. Use a query analyzer to evaluate the query and 
identify methods to improve its performance.

13. Create a backup and recovery plan that will be used at Sally’s Pet Store. 
Identify the techniques used, who will be in charge, and the frequency of the 
backups. Explain how the process will change as the store and the database 
grow larger.



517Chapter  10: Database Administration

14. What physical security controls will be needed to protect the database and 
hardware?

15. Assume the database security system has user groups for SalesClerks and 
Managers. Write the GRANT commands to let sales clerks record a new sale 
but only managers can make changes to the sale.

16. Assume the Pet Store grows bigger (but still a single store), to include 10 
checkout counters including a grooming salon service, handling several 
hundred customers and thousands of items sold each day. Where would you 
expect to see bottlenecks in the application? How could performance and 
security be improved?

17. The Pet Store owner/manager wants to be able to connect to the database 
while traveling or at home. What security precautions would be needed to 
keep this connection safe?

18. What data tables or transactions would you want to monitor on a regular 
basis to help indicate if a crime or attack is begin committed against the 
system?

Rolling Thunder Bicycles
19. Devise a security plan for Rolling Thunder Bicycles. Identify the various 

classes of users and determine the level of access required by each group. 
Create any queries necessary to provide the desired security.

20. Devise a backup and recovery plan for Rolling Thunder Bicycles. Be sure 
to specify what data should be backed up and how often. Outline a basic 
disaster plan for the company. Where are security problems likely in the 
existing application? How should duties be separated to improve security?

21. Use the performance analyzer tools available for your DBMS to evaluate 
the tables, queries, forms, and reports. Provide an explanation of the top five 
recommendations.

22. The company is planning to set up a Web site to enable customers to enter 
and track their orders using the Internet. Explain the additional security 
procedures that will be needed.

23. The managers want to expand the employee information in the database, such 
as adding sick days, vacation leave, and some benefits information. For now, 
these would be simple columns in the Employee table. How can security be 
assigned so that each employee can see his or her personal data but not that 
of other employees?

24. Using the existing data, estimate the size and monthly transaction volume/
data traffic. Use this data to estimate the price for hosting the entire database 
on Microsoft’s cloud-based SQL Server database.

25. Use the metadata to find all of the queries/views that reference the Customer 
table.



518Chapter  10: Database Administration

26. Which of the elements of the Rolling Thunder Bicycle application are most 
likely to require updates over time—often because of changes in the database 
software?

27. What data could most benefit through the use of encryption in this company? 
How can data be encrypted in Microsoft Access?

Corner Med 
28. Specify the access permissions needed at Corner Med. Focus on the two main 

user groups: clerical and medical staff, but also include a managerial group 
that reviews financial and treatment summary data—without needing access 
to individual patient data. The plan should address the privacy implications.

29. The company would like to give wireless devices to the medical staff to give 
them access to the data while talking with patients. Research the potential 
security issues and describe a solution that would protect the privacy and 
security, and remain usable.

30. Describe the physical security precautions that need to be taken. How will 
users be authenticated? Where should the servers and data be stored? How 
will backups be handled?

31. Identify the elements of the database that should be stored in encrypted form. 
Pick a DBMS and research the support available to encrypt individual data 
elements.

32. Use performance monitoring tools to evaluate the database and identify any 
important suggestions for improving performance.

33. The company is planning to expand to multiple locations, each with a 
separate manager and staff, but wants to share the database centrally. Which 
aspects of the database application are likely to need the most work in terms 
of performance as the load increases?

34. The company wants to move the entire database to a cloud-based platform 
(pick one). Assume the company maintains about the same patient load per 
physician and simply adds 19 more locations. Also, assume the company 
decides to store images (high-definition camera and x-ray) that average 
two images per patient visit. Because each file is about 10 MB, the images 
themselves will be stored as files in the cloud with name links stored in the 
database. Estimate the cost of running this database on a cloud server, storing 
data for five years.

35. Write the GRANT statements to let each employee see his or her own 
Employee records and edit simple columns such as name and phone number 
(but not salary).

Corner
Med

Corner
Med



519Chapter  10: Database Administration

Web Site References

http://www.dama.org Data management organization.
http://www.aitp.org Association	for	Information	Technology	

Professionals	organization.
http://www.sigsac.org/ Association	for	Computing	Machinery:	Special	

Interest Group on Security, Audit, and Control.
http://www.cert.org Internet organization tracking security topics.
http://www.databasejournal.com	 Database security and other database 

management topics.
http://www.oracle.com/pls/db112/docindex/ Oracle Administrator Books Online

Additional Reading
Bertino, E., B. Catania, E. Ferrari, P. Perlasca, A Logical Framework for 

Reasoning about Access Control Models, ACM Transactions on Information 
and System Security (TISSEC), 6(1), February 2003, 71-127. [A detailed 
discussion of various security access complications.]

Bryla, B. and K. Loney, Oracle Database 11g DBA Handbook, New York: 
McGraw-Hill/Oracle Press, 2008. [One of many Oracle administrator books 
from Oracle Press.]

Carpenter, T., Microsoft SQL Server 2012 Administration: Real-World Skills for 
MCSA Certification and Beyond, Indianapolis: Sybex/Wiley, 2013. [One of 
many books for studying for certification exams.]

Castano, S. (ed.). Database Security, Reading, MA: Addison Wesley, 1994. 
[Collection of articles from the Association of Computing Machinery.]

Natan, R.B., Implementing Database Security and Auditing, Burlington, MA: 
Elsevier Digital Press, 2005.

Shamsudeen, R., “Oracle Database 12c Review: Finally, a True Cloud 
Database,” Infoworld, June 26, 2013. http://www.computerworld.com/s/
article/9240354/. [Overview of improvements in Oracle 12c. Almost all of 
them are related to distributed databases.]

http://www.dama.org
http://www.aitp.org
http://www.cert.org
http://www.databasejournal.com 


520

What You Will Learn in This Chapter
•	 Why do you need a distributed database?
•	 What are distributed databases?
•	 How is data distributed with client/server systems?
•	 Can a Web approach solve the data distribution issues?
•	 How	much	data	can	you	send	to	a	client	form?
•	 What	benefits	are	provided	by	cloud	computing	and	data	storage?
•	 How will Sally’s employees access the database?

Chapter Outline

Distributed Databases
11Chapter

Introduction, 521
Two-Minute Chapter, 522
Distributed Databases, 523

Goals and Rules, 524
Advantages and Applications, 525
Creating a Distributed Database 
System, 526
Network Speeds, 527
Query Processing and Data Transfer, 
529
Data Replication, 530
Generating Keys with Replicated Data, 
532
Concurrency, Locks, and Transactions, 
533
Distributed Transaction Managers, 535
Distributed Design Questions, 536

Client/Server Databases, 536
Client/Server versus File Server, 537
Three-Tier Client/Server Model, 539
The Back End: Server Databases, 540
The Front End: Windows Clients, 540
Maintaining Database Independence in 
the Client, 541

Centralizing with a Web Server, 542
Web Server Database Fundamentals, 
543
Browser and Server Perspectives, 545

Data Transmission Issues in Applications, 
546
Cloud Databases, 548

Cloud Computing Basics, 548
Data Storage in the Cloud, 549
Sally’s Pet Store, 550

Summary, 551
Key Terms, 553
Review Questions, 553
Exercises, 554
Web	Site	References,	557
Additional Reading, 557



521Chapter  11: Distributed Databases

A Developer’s View
 Ariel: How is the new job going, 

Miranda?

 Miranda: Great! The other developers are 
really fun to work with.

 Ariel: So you’re not bored with the job 
yet?

 Miranda: No. I don’t think that will ever 
happen—everything keeps 
changing. Now they want me to 
set up a Web site for the sales 
application. They want a site where 
customers can check on their order 
status and maybe even enter new 
orders.

 Ariel: That sounds hard. I know a little 
about HTML, but I don’t have any 
idea of how you access a database 
over the Web.

 Miranda: Well, there are some nice tools out 
there now. With SQL and a little 
programming, it should not be too 
hard. 

 Ariel: That sounds like a great 
opportunity. If you learn how 
to build Web sites that access 
databases, you can write your ticket 
to a job anywhere.

Introduction
Why do you need a distributed database? Today even small businesses have 
more than one computer. At a minimum they have several personal computers. 
More realistically, most organizations take advantage of networks of computers 
by installing portions of their database and applications on more than one com-
puter. As companies open offices in new locations, they need to share data across 
a larger distance. Increasingly, companies are finding it useful and necessary to 
share data with people around the world. Manufacturing companies need to con-
nect to suppliers, distributors, and customers. Service companies need to share 
data among employees or partners. All of these situations are examples of distrib-
uted databases. Many applications can take advantage of the network capabilities 
of the Internet and the presentation standards of the World Wide Web. Even ap-
plications that seem simple need to consider some distributed issues. For instance, 
a basic transaction-processing system, such as Sally’s Pet Store might need to ac-
cess the data from sales terminals as well as several management computers. If 
the company expands to multiple stores, you would need to decide how to han-
dle the data for the individual stores, yet still combine the information for use by 
management.

Getting Started
Databases and applications need to be used in multiple locations. You 
need to decide where to physically place the DBMS and databases and 
which data to transfer to users. Four primary methods are used to distrib-
ute data: (1) Linked databases, (2) Replicated databases, (3) Web appli-
cations, and (3) Cloud computing. You need to understand the strengths 
and weaknesses of each to choose the best method for any application.



522Chapter  11: Distributed Databases

Building applications that function over networks and managing distributed da-
tabases can be complicated tasks. The goal is to provide location transparency 
to the users. Users should never have to know where data is stored. This fea-
ture requires a good DBMS, a solid network, and considerable database, network, 
and security management skills. However, a well-designed distributed database 
application also makes it easier for a company to expand its operations. On the 
other hand, databases that run on more than one computer significantly complicate 
transaction processing. 

Increasingly, people are carrying tablets and smart phones to run Web applica-
tions. Although business applications are behind social networks and other com-
mercial Web sites, it is likely that eventually most applications will need at least 
some Web-based capabilities. Certainly, most new applications will be built to run 
in browsers. With Web-based applications, database content and most application 
processing is handled on central servers, while user interaction is handled on the 
portable clients using HTML and JavaScript. In a sense, the database becomes 
centralized while the user applications are decentralized.

The Internet offers other alternatives for distributed databases. Cloud comput-
ing and data storage can be purchased from third-party providers such as Amazon 
and Microsoft. These services offer the ability to store databases online with fast 
data transfers and network and computer support provided by experts. But, it can 
be expensive, so you need to understand the tradeoffs.

Higher speeds in network connections are simplifying the issues of distributed 
databases. When tablets and cell phones have 40 mbps or higher reliable data con-
nections, it becomes easier to store data and applications centrally.

Two-Minute Chapter
Databases and applications become more complex when users need to access 
the data from different locations. Locations can be relatively close or they can 
be thousands of miles apart. Networks are used to connect users to the database 
and application servers. Local networks can be very fast but still create some de-
sign issues for large applications. Wide area networks that require paying for data 
transfers across relatively slow public networks cause bigger problems with shar-
ing data. The primary design decision is where to locate the data. Today, the two 
main options are (1) store replicated copies locally and synchronize the copies, or 
(2) keep the data centralized and use Web servers and applications to connect to 
users. 

Using centralized Web server applications is tempting in many situations be-
cause it simplifies the management and control of data. But, despite improve-
ments in networks some applications probably need to remain on local systems. 
For instance, a checkout systems for retail stores would probably be too slow to 
run as Web applications. And checkout speed is a critical factor for many retail 
stores. But network and browser technologies continue to improve so developers 
have to continue to examine the tradeoffs.

Distributed databases consist of database files stored in different locations, un-
der the control of different copies of a DBMS. Developers need to decide if data 
should be shared instantaneously across all sites or if replicas should be used that 
periodically synchronize the data changes. The choice depends on whether all 
sites need to see exactly the same data. Distributed databases also make it harder 
to deal with key generation, concurrent data access, and distributed transactions. 



523Chapter  11: Distributed Databases

High-end DBMSs contain mechanisms for handling many of these elements auto-
matically, but they tend to be expensive. 

Older client-server systems split applications into the front-end of forms and 
reports, connected to a back-end database server. Sometimes middleware applica-
tions are used to provide business logic and data connectivity between the two 
layers.

Increasingly, applications are moving to centralized Web servers—perhaps us-
ing cloud computing. The data for these sites is centralized but the applications 
are distributed and available on computers, tablets, and mobile devices through 
just a Web browser. This approach simplifies the data issues but requires relatively 
high-speed, and highly-reliable Internet connections to each user.

Distributed Databases
What are distributed databases? ? A distributed database system consists of 
multiple independent databases that operate on two or more computers that are 
connected and share data over a network. The databases are usually in different 
physical locations. Each database is controlled by an independent DBMS, which 
is responsible for maintaining the integrity of its own databases. In extreme situ-
ations, the databases might be installed on different hardware, use different oper-
ating systems, and could even use DBMS software from different vendors. That 
last contingency is the hardest one to handle. Most current distributed databases 
function better if all of the environments are running DBMS software from the 
same vendor.

In the example shown in Figure 11.1, a company could have offices in three 
different nations. Each office would have its own computer and database. Much 
of the data would stay within the individual offices. For example, workers in the 
United States would rarely need to see the daily schedules of workers in France. 
On the other hand, workers in France and England could be working on a large 
international project. The network and distributed database enable them to share 
data and treat the project as if all the information were in one place. 

Database
Zeus

Database
Apollo

Database
Athena

United States

England
France

Figure 11.1
Distributed database. Each office has its own hardware and databases. For 
international projects, workers in different offices can easily share data. The workers 
do not need to know that the data is stored in different locations. 



524Chapter  11: Distributed Databases

Distributed databases do not have to be international. They might even exist 
within the same building. The key part of the definition is that the database runs 
on different computers—those computers could simply be in different rooms. 
However, distributed systems where the machines are physically close to each 
other are much easier to configure. The primary issue in distributed databases is 
the speed of the network connections. When the machines are physically close, 
you can easily install high-speed networks at a relatively low cost. When you can 
transfer huge amounts of data between computers for almost no cost, the distrib-
uted issues are easier to solve. On the other hand, you still have to understand the 
options and plan for potential problems.

 The main issue with a distributed database is identifying the data that needs to 
be shared. Data that is used exclusively within one location, on a single database, 
is easy to handle—just keep it on the local computer. Data that needs to be ac-
cessed from multiple locations is more complex. You have to choose how the data 
will be shared. For example, you could keep all of the data on one central com-
puter. Or, you could replicate copies to each location. The challenge is to balance 
the benefits and costs to achieve the performance needed for each application.

Goals and Rules
It is difficult to create a DBMS that can adequately handle distributed databases. 
(The major issues will be addressed in later sections.) In fact, early systems faced 
various problems. Consequently, a few writers have created a set of goals or rules 
that constitute the useful features of a distributed DBMS. C. J. Date, who worked 
with E. F. Codd to define the relational database approach, lists several rules that 
he feels are important. This section summarizes Date’s rules.

In anyone’s definition of a distributed database, the most important rule is that 
the user should not know or care that the database is distributed. For example, the 
user should be able to create and run a simple query just as if the database were 
on one computer. Behind the scenes the DBMS might connect to three different 
computers, collect data, and format the results. But the user does not know about 
these steps.

As part of this rule, the data should be stored independently of location. For 
example, if the business changes, it should be straightforward to move data from 
one machine and put it in a different office. This move should not crash the en-
tire application, and the applications should run with a few simple changes. The 
system should not rely on a central computer to coordinate all the others. Instead, 
each computer should contact the others as needed. This separation improves sys-
tem performance and enables the other offices to continue operations even if one 
computer or part of the network goes down.

Some additional goals are more idealistic. The DBMS should be hardware and 
operating system independent so that when a newer, faster computer is needed, 
the company could simply transfer the software and data to the new machine and 
have everything run as it did before. Similarly, it is beneficial if the system runs 
independently of its network. Most large networks are built from components and 
software from a variety of companies. A good distributed DBMS should be able 
to function across different networks. Finally, it is preferable if the distributed 
application does not rely on using DBMS software from only one vendor. For ex-
ample, if two companies were to merge, it would be great if they could just install 
a network connection and have all the applications continue to function—even if 



525Chapter  11: Distributed Databases

the companies have different networks, different hardware, and database software 
from different vendors. This idealistic scenario does not yet exist.

These features are desirable because they would make it easier for a company 
to expand or alter its databases and applications without discarding the existing 
work. By providing for a mix of hardware, software, and network components, 
these objectives also enable an organization to choose the individual components 
that best support its needs.

Advantages and Applications
The main strength of the distributed database approach is that it matches the way 
organizations function. Business operations are often distributed across different 
locations. For example, work and data are segmented by departments. Workers 
within each department share most data and communications with other work-
ers within that department. Yet some data needs to be shared with the rest of the 
company as well. Similarly, larger companies often have offices in different geo-
graphical regions. Again, much of the data collected within a region is used within 
that region; however, some of the data needs to be shared by workers in different 
regions.

Three basic configurations exist for sharing data: (1) one central computer that 
collects and processes all data, (2) independent computer systems in each office 
that do not share data with the others, and (3) a distributed database system.

The first option—a single computer—was the earliest approach to the problem. 
Interestingly, it is regaining popularity in recent years. Originally, simple termi-
nals were connected to a single, expensive, computer. Today, data can be stored on 
central servers and accessed via Web browsers from anywhere in the world. Keep-
ing all of the data in one location greatly simplifies coordination and security. Us-
ing relatively inexpensive computers as browsers makes it easy to replace them if 
something breaks. 

local
transactions

future
expansion

Figure 11.2
Distributed database strengths. Most data is collected and stored locally. Only data 
that needs to be shared is transmitted across the network. The system is flexible 
because it can be expanded in sections as the organization grows.



526Chapter  11: Distributed Databases

The second option is a possibility—as long as the offices rarely need to share 
data. It is still a common approach in many situations. Data that needs to be shared 
is transmitted via paper reports, e-mail messages, or perhaps text files. Of course, 
these are ineffective methods for sharing data on a regular basis.

Figure 11.2 illustrates the third option of using a distributed database approach. 
The main advantage is that distributed systems provide a significant performance 
advantage through better alignment with the needs of the organization. Most up-
dates and queries are performed locally. Each office retains local control and re-
sponsibility for the data in that office. Yet the system enables anyone with the 
proper authority to retrieve and integrate data from any portion of the company as 
it is needed.

A second advantage to distributed databases is that, compared to centralized 
systems, they are easier to expand. Think about what happens if the company is 
using one large, centralized computer. If the company expands into a new region, 
requiring more processing capacity, the entire computer might have to be re-
placed. With a distributed database approach, expanding into a new area would be 
supported by adding another computer with a database to support the new opera-
tions. All existing hardware and applications remain the same. By using smaller 
computer systems, it is easier and cheaper to match the changing needs of the 
organization.

Because the distributed database approach can be tailored to match the lay-
out of any company, it has many applications. In a transaction processing system, 
each region would be responsible for collecting the detailed transaction data that 
it uses on a daily basis. For instance, a manufacturing plant would have a database 
to collect and store data on purchases, human relations, and production. Most of 
this data would be used by the individual plant to manage its operations. Yet as 
part of the corporate network, summary data could be collected from each plant 
and sent to headquarters for analysis. As another example, consider a consulting 
firm with offices in several countries. The workers can store their notes and com-
ments in a local database. If a client in one country needs specialized assistance 
or encounters a unique problem, the local partners can use the database to search 
for similar problems and solutions at other offices around the world. The distrib-
uted database enables workers within the company to share their knowledge and 
experiences.

Creating a Distributed Database System
The basic steps to building a distributed database are similar to those for creating 
any database application. Once you identify the user needs, the developers orga-
nize the data through normalization, create queries using SQL, define the user in-
terface, and build the application. However, as shown in Figure 11.3, a distributed 
database requires some additional steps. In particular, a network must connect the 
computers from all the locations. Even if the network already exists, it might have 
to be modified or extended to support the chosen hardware and DBMS software.

Another crucial step is to determine where to store the data. The next section 
examines some of the issues you will encounter with processing queries on a dis-
tributed database. For now, remember that the goal is to store the data as close 
as possible to the location where it will be used the most. It is also possible to 
replicate heavily used data so that it can be stored on more than one computer. Of 
course, then you need to choose and implement a strategy to make sure that each 
copy is kept up-to-date.



527Chapter  11: Distributed Databases

Backup and recovery plans are even more critical with a distributed database. 
Remember that several computers will be operating in different locations. Each 
system will probably have a different DBA. Yet the entire database must be pro-
tected from failures, so every system must have consistent backup and security 
plans. Developing these plans will probably require negotiation among the admin-
istrators—particularly when the systems cross national boundaries and multiple 
time zones. For example, it would be virtually impossible to back up data every-
where at the same time. 

Once the individual systems are installed and operational, each location must 
create local views, synonyms, and stored procedures that will connect the databas-
es, grant access to the appropriate users, and connect the applications running on 
each system. Each individual link must be tested, and the final applications must 
be tested both for connections and for stress under heavy loads. It should also be 
tested for proper behavior when a network link is broken or a remote computer 
fails.

Operating and managing a distributed database system is considerably more 
difficult than a handling single database. Identifying the cause of problems is 
much more difficult. Basic tasks like backup and recovery require coordination of 
all DBAs. Some tools exist to make these jobs easier, but they can be improved. 
Do you remember the rule that a distributed database should be transparent to the 
user? That same rule does not yet apply to DBAs or to application developers. Co-
ordination among administrators and developers is crucial to making applications 
more accessible to users.

Network Speeds
The challenge with distributed databases comes down to physics and econom-
ics. As illustrated in Figure 11.4, data that is stored on a local disk drive can be 
transferred to the CPU at transfer rates of 60 to 400 megabytes per second (higher 
speeds with SSD and RAID drives). Data that is stored on a server attached to a 
local area network (LAN) can be transferred at rates from 10 to 100 megabytes 
per second (100 to 1,000 megabits per second). Using public transmission lines 
to connect across a wide area network (WAN) provides transfer rates from 0.2 
to 300 megabytes per second. To get that 300 megabytes per second (on an OC-

Design administration plan.
Choose hardware, DBMS vendor, and network.
Set up network and DBMS connections.
Choose	locations	for	data.
Choose replication strategy.
Create backup plan and strategy.
Create local views and synonyms.
Perform	stress	test:	loads	and	failures.

Figure 11.3
Additional steps to creating a distributed database. After the individual systems and 
network are installed, you must choose where to store the data. Data can also be 
replicated and stored in more than one location. Local views and synonyms are used 
to provide transparency and security. Be sure to stress test the applications under 
heavy loads and to ensure that they handle failures in the network and in remote 
computers.



528Chapter  11: Distributed Databases

48 line at 2488 mbps), your company would probably have to pay over $50,000 
a month in network costs. As technology changes these numbers are continually 
improving. One of the biggest changes in recent years is the performance gains 
of local area networks. With gigabit performance, it is relatively easy to move 
data away from the processor and place it on a network attached storage device 
on a storage area network (SAN). Separating the data from the processor makes 
it easier to upgrade processors and provide backup facilities—both in terms of 
backing up the data and replacing servers. Although a SAN offers several benefits 
to running servers, it does not solve the distributed database problem because the 
distance is still limited.

Note that most DBMS vendors also sell enterprise versions of the software that 
can take advantage of a computer cluster. A cluster consists of multiple computers 
that effectively work as a single machine. Because the system uses a single copy 
of the DBMS, it is not a distributed system. However, it does take advantage of 
fast LAN speeds and attached storage. The major strengths of clusters are fault 
tolerance and scalability. The system automatically balances the load across the 
servers. If one of the processors fails, the system simply ignores it. The DBA can 
shut down the failed server and replace it with a new one. Likewise, as the data-
base grows, and you need more processing power, you simply add another ma-
chine to the cluster. The system detects the new capabilities and redirects process-
ing needs to the new server.

The real issues of distributed databases arise when you need to connect ma-
chines using a wide area network (WAN). Although high-speed WANs are becom-
ing more common, they are still relatively expensive. The goal of distributed pro-
cessing is to minimize the transfer of data on slower networks and to reduce the 
costs of network transfers. Part of this goal can be accomplished through design—
developers must carefully choose where data should be located. Data should be 
stored as close as possible to where it will be used the most. However, trade-offs 
always arise when data is used in several locations.

Figure 11.4
Network transfer rates. Network performance is shown here in megabytes per 
second. Local disks and networks are considerably faster than wide area networks 
and WAN costs are higher.

60 – 400 MB
10-100 MB

0.2 - 300 MB

Disk drive
LAN

WAN



529Chapter  11: Distributed Databases

Query Processing and Data Transfer
Data transfer rates are a key issue in distributed processing. To understand their 
importance, consider the issue of responding to queries if data is stored in sepa-
rate locations. If a query needs to retrieve data from several different computers, 
the time to transfer the data and process the query depends heavily on how much 
data must be transferred and the speed of the transmission lines. Consequently, 
the result depends on how the DBMS joins the data from the multiple tables. In 
some cases the difference can be extreme. One method could produce a result in 
a few seconds. A different approach to the same query might take several days to 
process! Ideally, the DBMS should evaluate the query, the databases used, and the 
transmission times to determine the most efficient way to answer the query.

Figure 11.5 illustrates the basic problem. Consider tables on three different da-
tabases: (1) a Customer table in New York with 1 million rows, (2) a Production 
table in Los Angeles with 10 million rows, and (3) a Sales table in Chicago with 
20 million rows. A manager in Chicago wants to run the following query: List 
customers who bought blue products on March 1. This query could be processed 
in several ways. First, consider a bad idea. Transfer all of the rows to Chicago; 
then join the tables and select the rows that match the query. This method results 
in 11 million rows of data being transferred to Chicago. Even with a relatively fast 
WAN, anything less than 30 minutes for this query would be fast.

A better idea would be to tell the database in Los Angeles to find all of the 
blue products and send the resulting rows to Chicago. Assuming only some of 
the products are blue, this method could significantly cut the number of rows that 
need to be transmitted. The performance gain will depend on what percentage of 
rows consists of blue products.

Customers(C#, …)
1,000,000

NY

Products(P#, Color…)
10,000,000

Sales(S#, C#, Sdate)
20,000,000
SaleItem(S#, P#,…)
50,000,000

Chicago

LA

P# sold on
March 1

Blue P#
sold on
March 1

C#	list	from
desired P#

Matching
Customer
data

Figure 11.5
Distributed database query example. List customers who bought blue products on 
March 1. A bad idea is to transfer all data to Chicago. The goal is to restrict each set 
and transfer the least amount of data.



530Chapter  11: Distributed Databases

An even better idea is to get the list of items sold on March 1 from the Chicago 
table, which requires no transmission cost. Send this list to Los Angeles and have 
that database determine which of the products are blue. Send the matching Cus-
tomerID to the New York database, which returns the corresponding Customer 
data.

Notice that to optimize the query the DBMS needs to know a little about the 
data in each table. For example, if there are many blue products in the Los Ange-
les database and not very many sales on March 1, then the database should send 
the Sales data from Chicago to Los Angeles. On the other hand, if there are few 
blue products, it will be more efficient to send the product data from Los Angeles 
to Chicago. In some cases, the network also needs to know the transfer speed of 
the network links. A good DBMS contains a query optimizer that checks the data-
base contents and network transfer speeds to choose the best method to answer the 
query. You still might have to optimize some queries yourself. The basic rule is to 
transfer the least amount of data possible.

Data Replication
Sometimes there is no good way to optimize a query; or there might be many que-
ries and each requires conflicting optimization methods. When large data sets are 
needed in several different places, it can be more efficient to replicate the tables 
and store copies in each location. The problem is that the databases involved have 
to know about each of the copies. If a user updates data in one location, the chang-
es have to be replicated to all the other copies. Two common methods are used 
to hanlde synchronization: (a) replication mangement, and (2) subscribe/publish 
connections.

Developers and database administrators can tune the performance by specify-
ing how the database should be replicated. You can control how often the changes 

Main Replica
subscribe

Changed 
data

Published 
changes

Figure 11.6
Replication with subscribe/publish. The databases are linked by subscribing a replica 
to the main database. When changes are made on the main, they are published to all 
of the subscribers.



531Chapter  11: Distributed Databases

are distributed and whether they are sent in pieces or as a bulk transfer of the entire 
table. The biggest difficulty is that sometimes a network link might be unavailable 
or a server might be down. Then the DBMS has to coordinate the databases to 
make sure they get the current version of the table and do not lose any changes. 
Figure 11.6 shows the basic concept of publish/subscribe. Once the subscription 
connection is established, any changes made to the main database are published 
to all of the subscribers. In many cases, the changes are sent immediately, which 
results in a continuous flow of changed data across the network.

With bulk synchronization, most of the database is transferred to a second loca-
tion, the changes are exchanged, and the new database is returned to the original 
location. With subscribe/publish, databases that want to be informed of changes 
create a subscription to a main database. When changes are made on the main 
copy, they are published and sent to the subscribing databases. In both cases, a 
replication manager in the DBMS determines which changes should be sent and 
to handle the updates at each location. Replications can be sent automatically at 
certain times of the day, sent continuously, or triggered manually when someone 
feels it is necessary to synchronize the data.

Figure 11.7 illustrates the basic concepts of replication. Marketing offices in 
each location have copies of Customer and Sales data from Britain, France, and 
Spain. Managers probably do not need up-to-the-minute data from the other coun-
tries, so the tables can be replicated as batch updates during the night. The data 
will be available to managers in all locations without the managers worrying about 
transfer time, and the company can minimize international transmission costs by 
performing transfers at off-peak times.

Figure 11.7
Replicated databases. If managers do not need immediate data from other nations, the 
tables can be replicated and updates can be transferred at night when costs are lower.

Britain:  Customers
& Sales

France: Customers
& Sales

Spain:  Customers
& Sales

Britain

Britain:  Customers
& Sales

France: Customers
& Sales

Spain:  Customers
& Sales

Spain

Update data.

Market research & 
data corrections.

Periodic 
updates



532Chapter  11: Distributed Databases

Transaction processing databases generally record many changes—sometimes 
hundreds of changes per minute. These applications require fast response times at 
the point of the transaction. It is generally best to run these systems as distributed 
databases to improve the performance within the local region. On the other hand, 
managers from different locations often need to analyze the transaction data. If 
you give them direct access to the distributed transaction databases, the analysis 
queries might slow the performance of the transaction system. A popular solution 
is to replicate the transaction data into a data warehouse. Routines extract data 
from the transaction processing system and store it in the data warehouse. Manag-
ers run applications and build queries to retrieve the data from the warehouse and 
analyze it to make tactical and strategic decisions. Because the managers rarely 
make changes to the underlying data, the data warehouse is a good candidate for 
replication. The underlying transaction processing system retains its speed, and 
the raw data is not shared. Managers have shared access to the warehouse data.

Generating Keys with Replicated Data
Replication seems like an easy solution—each location has a complete copy of 
the database; performance of local updates and queries is unaffected by the other 
copies; transactions are completed locally; and data backups are made automati-
cally. In practice, several problems can arise. One problem is the need to generate 
unique primary key values. A second is the issue of concurrent changes—which is 
described in the next section.

Automatic key generation is a challenge with replicated databases. What hap-
pens if two people in different locations create a new customer? If the key genera-
tor is not synchronized, then it is highly likely that both locations will generate the 
same key, and when the data is updated from the two locations, a collision will 
occur that must be resolved by hand. Two common methods can be used in dis-

DBMS #1
Accounts

Jones 8898

DBMS #2
Accounts

Jones 3561

Transaction A
Locked
Waiting

Transaction B
Waiting
Locked

Figure 11.8
Concurrency and deadlock are more complicated in a distributed database. The 
deadlock can arise across many different databases, making it hard to identify and 
resolve.



533Chapter  11: Distributed Databases

tributed databases to generate keys safely: (1) randomly generated keys, and (2) 
location-specific keys. Randomly generated keys work if the generator chooses 
from a sufficiently large number of possible keys. Then there is only a small prob-
ability that two keys would ever be generated the same at the same time. To be 
safe, the generator immediately checks to see if the key just created already exists. 
The second approach can use either sequential keys or random keys, but it relies 
on each location being allocated a certain range of values. For instance, one region 
might be given the range from 1 to 1 million, the next from 1 million to 2 million, 
and so on. With location-specific generators, you must be careful to isolate the key 
generation data tables. For example, your key tables would contain the location 
identifier and the starting or current value of the key. This problem is relatively 
easy to solve—but you must remember to configure it in your application.

The globally-unique identifier (GUID) is often used in distributed databases 
when a unique value needs to be created. A GUID is essentially a large random 
number. Microsoft tools use them extensively, and the mechanism for creating 
them is accessible to most programming tools. The Microsoft algorithm uses the 
unique ID from the computers’ network interface card as part of the GUID, and 
then adds random digits—for a total of 128 digits. This process ensures that dif-
ferent machines always create different numbers.

Concurrency, Locks, and Transactions
Concurrency and deadlock become complex problems in a distributed database. 
Remember that concurrency problems arise when two people try to alter the same 
data at the same time. The situation is prevented by locking a row that is about to 
be changed. As shown in Figure 11.8, the problem with a distributed database is 
that the application could create a deadlock that involves different databases on 
separate computers. One user could hold a lock on a table on one computer and be 
waiting for a resource on a different computer. Now imagine what happens when 
there are five databases in five locations. It can be difficult to identify the deadlock 

Database 1
Initiate Transaction

Database 2
Database 3

1. Prepare to commit.
All agree?

2. Commit

Lock tables.
Save log.
Update all tables.

Figure 11.9
Two-phase commit. Each database must agree to save all changes—even if the 
system crashes. When all systems are prepared, they are asked to commit the 
changes. 



534Chapter  11: Distributed Databases

problem. When the locks are on one computer, the DBMS can use a lock graph to 
catch deadlock problems as they arise. With distributed databases, the DBMS has 
to monitor the delay while waiting for a resource. If the delay is too long, the sys-
tem assumes a deadlock has arisen and rolls back the transaction. Of course, the 
delay might simply be due to a slow network link, so the method is not foolproof. 
Worse, the time spent waiting is wasted. In a busy system, the DBMS could spend 
more time waiting than it does processing transactions.

Handling transactions across several databases is also a more complex prob-
lem. When changes have to be written to several computers, you still have to be 
certain that all changes succeed or fail together. To date, the most common mecha-
nism for verifying transactions utilizes a two-phase commit process. Figure 11.9 
illustrates the process. The database that initiates the transaction becomes a co-
ordinator. In the first phase it sends the updates to the other databases and asks 
them to prepare the transaction. Each database must then send a reply about its 
status. Each database must agree to perform the entire transaction or to roll back 
changes if needed. The local database must agree to make the changes even if a 
failure occurs. In other words, it writes the changes to a transaction log. Once 
the log is successfully created, the remote database agrees that it can handle the 
update. If a database encounters a problem and cannot perform the transaction 
(perhaps it cannot lock a table), it sends a failure message and the coordinator 
tells all the databases to roll back their changes. A good DBMS handles the two-
phase commit automatically. As a developer, you write standard SQL statements, 
and the DBMS handles the communication to ensure the transaction is completed 
successfully. With weaker systems you will have to embed the two-phase commit 
commands within your program code. If you know that you are building an appli-
cation that will use many distributed updates, it is generally better to budget for a 
better DBMS that can handle the two-phase-commit process automatically.

Transaction 
Processing 
Monitor

Transaction Manager

Resource 
Manager

Transaction Manager

Resource 
Manager

Transaction Manager

Resource 
Manager

DBMS
DBMS

DBMS

Figure 11.10
Distributed transaction processing monitor. This software handles the transaction 
decisions and coordinates across the participating systems by communicating with 
the local transaction managers.



535Chapter  11: Distributed Databases

Notice that the two-phase commit system relies on pessimistic locking. Be-
cause of transmission delays, it could significantly slow down all of the systems 
involved in the transaction—as it waits for each machine to lock records. Al-
though optimistic locking might help with some aspects of the transaction, it does 
not help when a system or communication link fails.

Distributed Transaction Managers
The problem of distributed systems—particularly when database systems are 
from diverse vendors—is difficult to solve efficiently. One common approach, 
shown in Figure 11.10, is to use an independent transaction processing monitor 
or distributed transaction coordinator. This system is a separate piece of software 
that coordinates all transactions and makes the decision to commit or abort based 
on interactions with the local transaction managers. This approach is generally 
provided by the operating system vendor, and the DBMS vendors need to develop 
interfaces that communicate with the transaction manager. The main transaction 
manager could run on a separate system, or one of the local transaction managers 
might be promoted to be the coordinator. For example, Microsoft provides the 
Distributed Transaction Coordinator, IBM supports Java transactions within its 
WebSphere Application server, and JBoss Transactions is available independently 
for UNIX platforms.

Independence is the main strength of the transaction manager. As long as mul-
tiple vendors provide support (with the local resource manager software), the 
system can support diverse products. It is also useful for program-level transac-
tions, where a substantial amount of code is written outside of the databases (e.g., 
in C++). By relying on the transaction manager, the database system could be 
changed later if desired—without having to rewrite all of the transaction-process-
ing elements.

Question Concurrent Replication
What	level	of	data	consistency	is	needed? High Low – Medium 
How expensive is storage? Medium – High Low
What are the shared access requirements? Global Local
How	often	are	the	tables	updated? Often Seldom
Required	speed	of	updates	(transactions)? Fast Slow
How important are predictable transaction times? High Low
DBMS	support	for	concurrency	and	locking? Good – Excellent Poor
Can shared access be avoided? No Yes

Figure 11.11
Design questions. Use these questions to determine whether you should replicate 
the database, or provide concurrent access to data across the network. Transaction 
operations are generally run with concurrent access. Decision support systems often 
use replicated databases. However, the exact choice depends on the use of the data 
and the needs of the users.



536Chapter  11: Distributed Databases

Distributed Design Questions
Because of the issues with transmission costs, replication, and concurrency, dis-
tributed databases require careful design. As networks gain better transfer rates, 
database design will eventually become less of a problem. In the meantime you 
need to analyze your applications to determine how they should be distributed. 
Figure 11.11 lists some of the questions you need to ask when designing a dis-
tributed database. The main point is to determine what portions of the databases 
should be replicated. If users at all locations require absolute consistency in the 
database, then replication is probably a bad idea. On the other hand, you might 
have a weak DBMS that poorly handles locking and concurrency. In this situation 
it is better to replicate the data, rather than risk destroying the data through incom-
plete transaction updates.

Client/Server Databases
How is data distributed with client/server systems? Many applications run on 
local area networks using some version of a client/server configuration. This ap-
proach is particularly common within retail stores, where checkout registers are 
based on simple client computers. With this system, the bulk of the data is stored 
on a centralized server, while the applications run on personal computers. How-
ever, some of the data might also be stored on the personal computers, and por-
tions of the application logic might run on middle-tier servers. The client/server 
approach was driven largely by the limited capabilities of personal computer oper-
ating systems. Early operating systems could not support multiple users and pro-
vided no security controls. Hence powerful operating systems were installed on 
servers that handled all the tasks that required sharing data and hardware. The 
client/server approach is also somewhat easier to manage and control than moni-
toring hundreds of PCs. Any hardware, software, or data that needs to be shared 
is stored in a centralized location and controlled by an MIS staff. With the client/
server approach, all data that will be shared is first transferred to a server.

As indicated by Figure 11.12, the actual database resides on a server computer. 
Individual components can be run from client machines, but they store and re-
trieve data on the servers. The client component is usually a front-end application 

ServerServer

ClientsClients

Shared
Database

Front-end
User	Interface

Figure 11.12
Client/server system. The client computers run front-end, user interface applications. 
These applications retrieve and store data in shared databases that are run on the 
server computers. The network enables clients to access data on any server where 
they have appropriate permissions. 



537Chapter  11: Distributed Databases

that interacts with the user. For example, a common approach is to store the data 
tables on a server but run the forms on personal computers. The forms handle 
user events with a graphical interface, but all data is transferred to the server. You 
need to understand a few important concepts to design and manage client/server 
databases. Like any distributed database, where you store the data and how you 
access it can make a substantial difference in performance. This section also dem-
onstrates some of the tools available to build a client/server database application.

Client/Server versus File Server
To understand the features and power of a client/server database, it is first useful 
to examine a database application that is not a true client/server database. Initial 
local area networks were based on file servers. A file server is a centralized com-
puter that can share files with personal computers. However, it does not contain a 
DBMS. The file server stores files, but to the personal computers it appears as a 
giant, passive disk drive. The sole purpose of the server is to provide secure shared 
access to files. The client personal computers do all of the application processing. 

Microsoft Access is often used in file server applications. It is relatively easy 
to split the database and store the data as a file on the server that is accessed by 
the forms and reports running on personal computers. The file server approach 
enables you to share a single copy of the data so all users see the same data. How-
ever, the file server approach faces some important drawbacks.

Figure 11.13 illustrates the basic problem. The database file is stored on the 
file server but the DBMS itself runs on the client. Security permissions are set so 
that each user has read and write permission on the file. The problem arises when 
your application runs a query. The processing of the query is done on the client 
computer. That means that the personal computer has to retrieve every row of 
data from the server, examine it, and decide whether to use it in the computation 
or display. If the database is small, if the network connection is fast, and if users 

Figure 11.13
File server problems. The file server acts as a large, passive disk drive. The personal 
computer does all the database processing, so it must retrieve and examine every row 
of data. For large tables, this process is slow and wastes network bandwidth.

File Server

CustID Name …
115 Jenkins…
125 Juarez ...

Order ...

MyFile.mdb

Forms

SELECT *
FROM Customer
WHERE City = “Sandy”

DBMS
software
transferred.

Application
and query
transferred.

One row at a time
transferred,	until
all rows are examined.



538Chapter  11: Distributed Databases

often want to see the entire table, then this process does not matter. But if the table 
is large and users need to see only a small portion, then it is a waste of time and 
network bandwidth to transfer the entire table to the client computer.

The problem is that the file server approach relies on transferring huge amounts 
of data when the application needs only some of the data. The client/server data-
base approach was designed to solve this problem. With a client/server database, 
the binary code for the database actually runs on the server. As shown in Figure 
11.14, the server database receives SQL statements, processes them, and returns 
only the results of the query. Notice the reduction in network transfers. The ini-
tial SQL statement is small, and only the data needed by the application is trans-
ferred over the network. This result is particularly important for decision support 
systems. The server database might contain millions of rows of data. The man-
ager is analyzing the data and may want summary statistics, such as an average. 
The server database optimizes the query, computes the result, and transfers a few 
simple numbers back to the client. Without the server database millions of rows 
of data would be transferred across the network. Remember that even fast LAN 
transfer rates are substantially slower than disk drive transfers.

Of course, the drawback to the server database approach is that the server 
spends more time processing data. Consequently, the server computer has to be 
configured so that it can efficiently run processes for many users at the same time. 
Fortunately, processor speeds have historically increased much more rapidly than 
disk drive and network transfer speeds. The other drawback is that this approach 
requires the purchase of a powerful DBMS that runs on the server. However, you 
rarely have a choice. Only small applications used by a few users can be run with-
out a database server.

Figure 11.14
Database server. The client computer sends a SQL statement that is processed on the 
server. Only the result is returned to the client, reducing network traffic.

File Server

DBMS

SQL Server
Shared
Data

application

Send SQL
statement.

Return
matching
data.



539Chapter  11: Distributed Databases

Three-Tier Client/Server Model
The three-tier client/server model has been suggested as an approach that has 
some advantages over the two-tier model. The three-tier approach adds a layer 
between the clients and the servers. The three-tier approach is particularly useful 
for systems having several database servers with many different applications. The 
method is useful when some of the servers are running legacy applications.

As shown in Figure 11.15, one role of the middle layer is to create links to 
the databases. If necessary, the middle layer translates SQL requests and retrieves 
data from legacy COBOL applications. By placing the access links in one loca-
tion, the server databases can be moved or altered without affecting the client 
front-end applications. Developers simply change the location pointers, or alter 
the middleware routines. Some people refer to this approach as n-tier because you 
can have any number of middle-level computers—each specializing in a particu-
lar aspect of the business rules.

Another important role of the middle layer is to host the business rules. For ex-
ample, creating identification numbers for customers and products should follow 
a standard process. The routine that generates these numbers should be stored in 
one location, and all the applications that need it will call that function. Similarly, 
common application functions can be written once and stored on the middle-layer 
servers.

This middleware system is well suited to an object-oriented development ap-
proach. Common objects that are used for multiple business applications can be 
written once and stored on the middle servers. Any application can use those ob-
jects as needed. As the business rules change or as systems are updated, develop-
ers can alter or improve the base objects without interfering with the operations of 
the applications on the client side. The three-tier approach separates the business 
rules and program code from the databases and from the applications. The inde-
pendence makes the system more flexible and easier to expand. Several middle-
ware development tools exist to create and manage objects, but many are propri-
etary to specific platforms, such as those by Oracle and IBM.

Figure 11.15
Three-tier client/server model. The middle layer separates the business rules and 
program code from the databases and applications. Independence makes it easier to 
alter each component without interfering with the other elements.

Client

Middleware

Database
Servers

Application.
Front-end.
User	Interface.

Databases.
Transactions.
Legacy applications.

Database links.
Business rules.
Program code.



540Chapter  11: Distributed Databases

The Back End: Server Databases
Server database systems tend to be considerably more complex and require more 
administrative tasks than personal computer-based systems. The server environ-
ment also provides more options, which makes administration and development 
more complicated. The DBA must work closely with the system administrator to 
set up the software, define user accounts, and monitor performance. 

Server databases also use trigger procedures to define and enforce business 
rules. One of the more difficult design questions you must address is whether to 
store these rules on the back-end database as database triggers and procedures, or 
move them to a middle-level server using lower-level languages such as C++ or 
Java. Sometimes you are constrained by the tools and time available. But when 
possible, you should consider the various alternatives in terms of cost, perfor-
mance, and expandability. 

Placing procedures in the back-end database ensures that all rules are enforced 
by the DBMS, regardless of how the data is accessed. But, this approach ties you 
in to a particular DBMS vendor. Because most systems contain proprietary ele-
ments, it is difficult to switch to a different DBMS in the future. Placing rules in 
a middle tier also makes it easier to physically move the database. Generally, the 
systems are built with reference links to the databases. To move the database, you 
simply change the reference pointers.

One rule of thumb is to write user-interface code for the client computers and 
to write data manipulation and control programs to run on the server. Middle-
layer programs are used to encode business rules and provide data translation and 
database independence. The primary objective is to minimize the transfer of data 
across the network. However, if some computers are substantially slower than 
others, you will have to accept more data transfers in order to execute the code on 
faster machines.

The Front End: Windows Clients
Windows-based computers are commonly used as client machines, so Microsoft 
has created several technologies to provide database connections from the PCs to 
back-end databases. Various tools and many vendors support the technologies, so 
they are relatively standardized. The tools have evolved over time as hardware 
and networks have improved and applications became more complex. Visual Stu-
dio is often used as a front-end tool to create the forms and reports. The applica-
tion is compiled and distributed to user machines, which connect through the Mi-
crosoft data components to a back-end server. The PC has a network connection 
and a database connection that enables it to find the central database on the server. 
The application code simply selects the appropriate database connection. From 
that point, your application no longer cares where the data is located—it simply 
passes SQL requests to the server.

The current Microsoft technology to connect programs to databases is active 
data objects (ADO). Most DBMS vendors have written ADO connectors, so your 
application code can retrieve and save data to the most common DBMSs. When-
ever you build an application in Visual Studio, you will use ADO to connect to the 
DBMS. All of the commonly-used commands are embedded in the objects, so you 
can retrieve data to display it in a form and save changes back to the database with 
a couple of calls to the object methods. ADO is also used in Microsoft’s Web-
based applications and the underlying concepts are the same. Java (now supported 
by Oracle) uses JDBC to connect the language to backend databases.



541Chapter  11: Distributed Databases

Maintaining Database Independence in the Client
One of the trickiest aspects of distributed databases is the issue of maintaining 
database independence. When you first build an application, it is often created to 
run with a single, specified database on the back end. Consequently, it is tempting 
to simply build the application assuming that the same database will always be 
there, and use the tools and shortcuts available for that particular system. But what 
happens later when someone wants to change the back-end database? In extreme 
cases, the entire application will have to be rewritten. As a developer pressed for 
time, you might ask why it matters. If someone wants to change the database at a 
later date, then should they be willing to pay the costs at that time? Yet, with only 
a little extra effort up front, the application can support most common database 
systems on the back end; making it easy to change later.

The database connection is one issue in building a generic application. Us-
ing a standard such as ADO makes it easier to change databases. Figure 11.16 
shows that by changing the connection, your application can connect to a dif-
ferent DBMS. Of course, it is never quite that simple, but the ADO buffer is an 
important element. In many cases, you can specify the ADO connection string 
dynamically, making it easy for the application to connect to a different DBMS 
without rewriting the code. If you are careful, you can build the application so that 
it can switch DBMS connections at any time. You can build the system using one 
DBMS and run the production system against a different one.

It is important that you understand that the connection is only one element in 
making an application DBMS independent. In most situations, the actual SQL 
commands are a much bigger issue. DBMS vendors tend to provide different lev-
els of support for the SQL standard. They also add proprietary options and com-
mands that are enticing. In particular, vendors offer many variations within the 
SELECT command. For example, string and date operations are notoriously non-

New DBMSOriginal DBMS

Application

ADO ADO

Figure 11.16
Database independence. ADO is a useful buffer between the application and the 
DBMS. Changing the connection makes it relatively easy to switch the back-end 
DBMS.



542Chapter  11: Distributed Databases

standardized across vendors. And, if you are using an older version of Oracle or 
SQL Server, you will not be able to use the INNER JOIN syntax. Because of these 
differences, a key step in making an application DBMS independent is to move all 
queries to the DBMS and save them as views. Then your application only contains 
simple SELECT (or INSERT/UPDATE/DELETE) queries that pull data from the 
saved view. These simple queries should use only basic standard SQL elements. 
All of the vendor-specific functions are coded into the query that is saved in the 
DBMS. To transfer to a new DBMS, you just recreate the queries on the new 
DBMS using that vendor’s specific tools and syntax. This technique is particu-
larly important for applications that might begin small and grow. At a small size, 
you might be able to use a small, inexpensive DBMS, but as the number of users 
grows and demand on the system increases, you will have to scale up to a larger 
DBMS. If the application queries were carefully built to remain independent, it 
will be relatively easy to transfer to a new DBMS. Figure 11.17 shows an example 
of using simple queries to maintain DBMS vendor independence. 

Trigger functions are a more complex issue. Some systems do not support trig-
gers at all, and those that do generally provide different functionality. At this point 
in time, the only method to guarantee compatibility across vendors is to avoid 
database triggers. Instead, write the same functionality into middleware code that 
also relies on generic queries.

Centralizing with a Web Server
Can a Web approach solve the data distribution issues? The World Wide Web 
was designed to enable people (initially physicists and researchers) to share infor-
mation with their colleagues. The fundamental problem was that everyone used 
different hardware and software. The solution was to define a set of standards. 
These evolving standards are the heart of the Web. They define how computers 
can connect, how data can be transferred, and how data can be found. Additional 
standards define how data should be stored and how it can be displayed. As long 

Generic application query:
SELECT SaleID, SaleDate, CustomerID, CustomerName
FROM SaleCustomer

Saved Oracle query:
SELECT SaleID, SaleDate, CustomerID, 
 LastName || ‘, ‘ || FirstName AS CustomerName
FROM Sale, Customer
WHERE Sale.CustomerID=Customer.CustomerID

Saved SQL Server query:
SELECT SaleID, SaleDate, CustomerID, 
 LastName + ‘, ‘ + FirstName AS CustomerName
FROM Sale INNER JOIN Customer
ON Sale.CustomerID = Customer.CustomerID

Figure 11.17
Database query independence. The application contains only simple queries that do 
not use vendor-specific functions. All detail queries are created and saved within the 
DBMS. 



543Chapter  11: Distributed Databases

as a computer runs browser software that receives and displays data files, it can 
access and interact with data stored on Web servers. The servers run Web server 
software that can do almost anything—as long as it formats the data for standard 
browsers. Both the servers and browsers are becoming more sophisticated, but the 
essence of the method is presented in Figure 11.18.

An interesting consequence of the rapid acceptance of the Web approach is that 
it encourages a return to a centralized database. All of the data and applications 
are stored in one location. Users can be located anywhere in the world—as long 
as they have a Web browser and an Internet connection. The issues of concurrency 
and security are simplified again, since everything is handled by one DBMS. The 
issues of distributed data are minimized, since the data is now stored in one place, 
and all users share the same data. Placing the data in one location does not remove 
the issue of data transfer speeds. Users with slow Internet connections might 
complain about sluggish performance. However, most of the bulk data transfers 
should take place at the server itself on high-speed lines. The majority of the com-
munication with users can be reduced to simple pages consisting of input screens 
or simple data results. 

The Web-based approach does not yet solve all distributed problems. For in-
stance, a retail chain that has stores in multiple locations will probably want to 
keep most data locally. Each store would use a server to handle local transactions. 
This data can be transferred in bulk to the headquarters server a couple of times 
a day, where it can be made available for analysis over the Web. Even though the 
data eventually winds up on a central Web server, local server are still needed to 
improve transaction performance and reliability at each store.

Web Server Database Fundamentals
There is no standard mechanism for connecting databases to the Web server. Con-
sequently, the method you use depends on the specific software (Web server and 
DBMS) that you install. Most of the methods follow a similar structure but vary 
in the details. Several tools exist to help you build forms in a graphical designer, 
supported by a programming language to process the data. These tools then gen-

Client
Browser

Server

Web Server

Router Router
Internet

HTML 
formshttp://server.location/page

request

Database Server

SQL

result page

Data

Figure 11.18
Web servers and client browsers. Browsers are standardized display platforms. 
Servers are accessible from any browser.



544Chapter  11: Distributed Databases

erate the HTML files that are sent to the client browsers. One issue to watch for 
when selecting tools is that some of them require users to download special add-
in software for the browsers. Most users are wary of downloading nonstandard 
components. When you are dealing with users outside of the main company, it is 
best to stick with tools that use only standard browser features. At the moment, 
the three leading tools are: (1) Microsoft ASP .NET, (2) Java, such as Oracle’s 
JDeveloper and IBM’s WebSphere, (3) UNIX-based scripting, particularly LAMP 
(Linux, Apache Web Server, MySql, and PHP or Python).

Figure 11.19 shows the basic process of connecting a DBMS to a Web server. 
As the developer, you create a code file on the server. The file contains data ob-
jects that pass SQL commands to the DBMS and receive results (and error codes). 
The page code can contain complex SQL statements and conditions. Ultimately, 
it generates the HTML code and browser script that is sent to the client’s Web 
browser. Most systems also use a cascading style sheet (CSS) to establish the 
overall page design elements. The syntax of the code varies enormously, depend-
ing on the server. Pages written for one server system generally cannot be trans-
lated to run on a different system. Consequently, the choice of server and tools is a 
critical first step in building data-driven Web applications.

Systems that separate the code from the HTML and the styles have a substan-
tial advantage. In particular, most organizations hire Web graphics designers and 
usability experts to design the final Web page that is seen by users. These people 

Web Server

DBMS

<body>
<form	id="form1"	runat="server">

<asp:Label ID="PageTitleLabel" runat="server" …
<asp:SqlDataSource ID="CustomerSqlDataSource“
DeleteCommand="DELETE	FROM	[Customer]	…
SelectCommand="SELECT	[CustomerID],	…
UpdateCommand="UPDATE	[Customer]	SET…
<DeleteParameters>

<asp:Parameter Name="CustomerID" Type="Int32" />
</DeleteParameters>

<asp:FormView ID="CustomersFormView" runat="server“…
DataSourceID="CustomerSqlDataSource">
…

</asp:FormView>
</form>
</body>

Server Code
SQL

Data

Data	Object

Customers

CustomerID 1653
LastName
FirstName
…

Jones
Mary

Save

Web Browser

.PageTitle
{

font-weight:	bold;
font-size:	larger;
text-align: center;

}

CSS Style Sheet

Figure 11.19
Web server database fundamentals. The server executes a script or code page that 
utilizes a data object to pass SQL commands to the DBMS and receive data and 
results. The page generates HTML and browser script that is sent to the browser 
along with a style sheet to establish the page data and layout.



545Chapter  11: Distributed Databases

rarely know how to write database code. If the system mixes code with layout and 
design elements, it is difficult for the designers to alter the server files. By separat-
ing the three elements (code, layout, and style), the designers can fine tune their 
work without affecting any of the underlying procedural code. Similarly, the style 
sheet is easily modified by designers. If the style sheet is used for every page item, 
it is possible to change the overall look and feel of a Web site simply by editing 
this one file.

Browser and Server Perspectives
On the client browser the user will see a simple sequence like the forms shown in 
Figure 11.19. Once someone chooses a Search option, the AnimalSearch form is 
displayed on his or her browser. The user chooses a category and enters a color. 
When the Search button is clicked, the choices are sent to a new page on the 
server. This page retrieves the data and formats a new page. The data is generally 
stored in a table, similar to the one shown in Figure 11.20. The user never needs to 
know anything about the DBMS: Users see only forms and new pages. Each new 
page should provide additional choices and links to other pages.

Vendors are busy creating and refining tools to create Web-based forms that can 
interact easily with the database. The details vary enormously depending on which 
tool you use. However, the basic process remains similar. The server takes the 
values from the client form, validates them for rules you specify, and writes SQL 
queries to insert them or update existing rows in the database. You should review 
all of the issues discussed in Chapter 6 for building forms and reports. The main 
difference with the Web is that today’s tools generally require more programming 
and individualized attention. On the other hand, Web-based applications create 
some potentially difficult problems that must be addressed. Data transmission, 

0 Request Server/Form.html

1

2

Server

3 Results
Call ASP page

Initial	form

Figure 11.20
Client perspective. The client enters data into a form. Clicking the Search button 
sends the data to a server page. The server page retrieves the matching data from the 
DBMS and formats a new HTML page. This table is returned to the user, along with 
additional choices.



546Chapter  11: Distributed Databases

concurrency, and server loads are significant issues that arise in Web-based ap-
plications. In fact, some of the most important differences in vendor tools can be 
found in how these problems are solved.

Data Transmission Issues in Applications
How much data can you send to a client form? At first glance, it seems straight-
forward to build a client/server or Web-based application. You simply move the 
database to a central server and use the network connections to handle the data 
transfer. However, these applications can present some challenging issues for data 
transfer and usability of forms. One of the most difficult issues is the use of drop 
down list boxes on a form.

Consider the main section of a standard order form shown in Figure 11.21. 
If you build this form in Access or Visual Studio and run it locally over a fast 
network, it will run fine. But what happens if there are 10,000 customers or the 
form runs at a remote location with a slow network? For simplicity, assume those 
names and identification numbers average 20 Unicode characters for each cus-
tomer. So the selection box needs 10,000 times 20 times 2 or 400,000 bytes of 
data. At 8 bits per byte that is 3.2 million bits of data to transfer. Even at 3 mbps 
it would take a little over 3 seconds just to transfer the data for that one lookup 
box. If the network is slower, such as 300 kbps on a cell hone, it would take 30 
seconds. Anytime you need to refresh the form or reload the drop down list box, it 
takes another 30 seconds. If your form has several selection boxes, the form takes 
even longer to load. Most users will be unhappy with the performance if forms 
take more than a couple seconds to load. 

So why not just remove the drop down list box? To understand the issues, you 
need to remember why the selection box is useful. In a relational database, data is 
stored in separate tables that are joined through key data. In this case, the Order 
table contains the CustomerID. Theoretically, to place an order you simply need 
the customer’s ID. (Eventually you will also need individual identification num-
bers for products as well.) You cannot expect your customers or clerks to memo-
rize ID numbers, so the order form uses the drop down list box to look up custom-
ers alphabetically and return the matching ID number for the selected customer. If 
you remove the list box, you need to rethink the usability and find another method 
for customers and clerks to enter data.

Even without the data transfer issue, a selection box might not be the best so-
lution when it has thousands of entries. Some boxes try to automatically find a 

Order Form

Order Date

Customer

12-Aug

Jones, Martha

Order ID 1015

Figure 11.21
Data transfer in forms. What if there are 10,000 customers? How long will it take to 
load the selection box? How long will it take to refresh a page with several selection 
boxes? How can a user possibly read and scroll all 10,000 entries?



547Chapter  11: Distributed Databases

matching entry as a user enters the first few characters of a name or product, but 
this method still requires the user to know the first few characters. Hence, a po-
tentially better solution is to create a more detailed search mechanism. Instead of 
a selection box containing all customers, the user could enter the first few charac-
ters of a customer’s last name, click a button, and receive a small list of matching 
names.

ItemIDs present similar problems. Two common solutions exist: (1) For in-
store sales, attach the product ID numbers to the individual items (e.g., bar codes); 
or (2) for Web sales, let the customer search for items and keep a collection of the 
selected ID numbers in a shopping cart.

For situations where you still want to use selection boxes, you need to be more 
creative with programming. For example, Oracle recommends that you do not use 
selection boxes for lists with more than 30 items. Instead, Oracle suggests the use 
of a standard text box, along with a list of values (LOV). A list of values can be 
defined as a query. When the user enters the text box, the item can be selected 
from the list of values. How is this approach different from a selection box? The 
main difference lies beneath the surface. The LOV retrieves data in chunks in-
stead of trying to transfer the entire set at one time. To the user, the list appears 
continuous, but by transferring only the currently displayed section of the list, 
the LOV reduces transmission time. It also transfers data while the user is read-
ing, so the delay is less noticeable. This approach can be used, even if your tool 
or vendor does not support it directly. In Web forms, simply create a second form 
that holds the list of items on multiple pages with a search function. When users 
find the specific item, you can write a function to transfer the selected item to the 
main form. On the Web, this approach requires some slightly tricky Javascript (or 
ECMA script) coding.

For similar data transmission reasons, concurrency is also a problem with Web 
forms. In engineering terms, latency is a time delay in a system. In the context of 
forms, latency is the time between generating the form and receiving a response 
from the user. With a long latency, there is a greater opportunity for someone else 
to modify the same data elements, so concurrency is a greater problem. As shown 
in Figure 11.22, latency is typically longer on Web forms because of slow trans-

Figure 11.22
Latency. Transmission delays and user delays can create long latency for Web forms. 
Avoid pessimistic locking and carefully test for changes in the underlying database.

time

Server

Client

Generate	form

Form received

User delay

Receive	form	data

Transmission 
delay

Transmission 
delay



548Chapter  11: Distributed Databases

mission lines and because users may be casual browsers who wander off and do 
other tasks before submitting the form. Consequently, Web-based applications 
should avoid pessimistic locking so that the data is available to more people at the 
same time. As a result, your application has to test and handle optimistic concur-
rency issues when the data has been changed by another process.

Cloud Databases
What benefits are provided by cloud computing and data storage? As the In-
ternet has expanded, some of the structures have changed. In particular, a few 
large companies have become leaders in developing tools and in establishing mul-
tiple high-speed connections. These companies are led by Amazon, Microsoft, 
and possibly Google. All of them have huge data centers with very high-capacity 
Internet connections. Beyond their underlying businesses, they offer other firms 
the ability to use their computing and network facilities—for a fee of course.

Think about Web-based servers for a second. Typically, you think about one 
big server and its Internet connection. An expensive Internet connection might 
be capable of handling 155 megabits per second, which sounds like a lot of ca-
pacity. But, what happens if your server (and database) needs to deliver content 
to a million users—at the same time? The network becomes congested and you 
are averaging only 155 bits per second per user—way too slow for transferring 
large amounts of data. OK, perhaps a million simultaneous hits is high, but similar 
problems quickly arise with a smaller number of users when the Web server is 
delivering complex content such as images or video. As shown in Figure 11.23, 
some companies—notably Akamai—help reduce this problem by creating hun-
dreds of data centers around the globe. Your data gets duplicated and distributed. 
Users interacting with your server might actually receive data from a nearby data 
center—reducing the overall processing and transmission load on any one server. 

Cloud Computing Basics
Cloud computing arises by locating multiple servers and databases on the Inter-
net. You can purchase time, space, and network data transfers by renting a vir-
tual machine and virtual storage space on these distributed servers.  At the sim-
plest level, you can store files on a virtual Web folder (e.g., Amazon S3). You are 

Figure 11.23
Cloud computing. Data is replicated to multiple, connected servers in the Internet 
cloud. Client requests are filled from the nearest available server, spreading the 
bandwidth and processor demands across the network.

Data



549Chapter  11: Distributed Databases

charged a monthly storage fee along with monthly fees based on the amount of 
data transferred. This approach is typically used to store large files (books, music, 
videos, and so on) that need to be downloaded by people around the world. The 
service provider has high-speed data connections that can support a huge number 
of users, but you only pay for the actual usage rates.

In more complex scenarios, you can rent SQL Server data storage and query 
processing (e.g., Microsoft). The data is actually stored in Microsoft’s cloud, and 
that company runs the network, hardware, and backup facilities. Your Web site 
issues queries and stores data, but the data is stored on these distributed servers. 

It is even possible to rent virtual machine servers (e.g., Amazon EC2). These 
computers can be configured in a variety of sizes and with almost any operating 
system or software you can find. You pay a monthly fee based on the relative size/
performance needed. Again, the service provider ensures that the computers keep 
running and provides network access. One of the key features of these virtual ma-
chines and cloud databases is that they can be expanded (or contracted) at almost 
any time. Also, initial fixed costs are low.

Think about the problem from the perspective of an Internet entrepreneur with 
a new idea. You could build your own data center, hire a staff, and buy hardware, 
software, and network access for hundreds of thousands of dollars. But you really 
do not know how much capacity you need. Alternatively, you can rent all of the 
initial capacity you need from a cloud provider for a monthly fee with little or no 
startup cost. If your company takes off and you get a huge increase in customers, 
you simply scale up the processing and storage with the cloud vendor.

However, you must continually re-evaluate your costs. The monthly rates 
charged by the cloud providers will ultimately be higher than those that you might 
achieve on your own. Once a company reaches a relatively steady-state, it might 
be cheaper to install your own computers or lease servers directly from a hosting 
company. But the decision depends on how much your demand fluctuates, and 
whether you want to hire people to configure and run your own servers.

Data Storage in the Cloud
Web-based data is interesting. It might or might not resemble traditional transac-
tion data. For example, images, files, audio, and video are common on the Web. 
These items could be stored in a relational DBMS, but it is generally easier to 
store them as separate files—perhaps storing the file location in a relational table. 
Cloud vendors have initially concentrated on tools to handle these types of object 
data. For example, Amazon’s S3 and Google’s Bigtable are designed to store large 
chunks of object data. They are not relational databases and support only rudi-
mentary query operations. However, they are distributed and have the ability to 
deliver data quickly—to anywhere in the world. For the most part, think of them 
as keyed storage—you provide a key value and the database returns the matching 
item stored at that location. (The systems, particularly Bigtable, are more flexible 
than that but it is a good starting point.)

When you need more traditional relational database services, you can also rent 
those—such as Microsoft’s SQL Server offerings through its Azure platform.

In all cases, the data storage is most commonly used in combination with Web 
applications. But, Web applications are often used for in-house systems as well as 
public data, so this usage is not a limitation. Essentially, you treat the cloud server 
as a basic database server. The Web server (which could also be in the cloud), 
sends key values or queries to the cloud database, then formats and displays the 
returned data to place it into an HTML page.



550Chapter  11: Distributed Databases

 Figure 11.24 shows the basic process for the Amazon S3 service. Developers 
define buckets in Amazon, which are similar to file folders. Objects are uploaded 
to a bucket and assigned a key value. The developer creates pages on the Web 
server (which does not have to be at Amazon), and includes the bucket and key 
names to tell the browser to insert objects from the S3 service. The bucket and 
key names might actually be stored in a relational database and assigned based on 
some actions or choices by the user. For example, a page request might retrieve the 
bucket name and ID value to display a photo of an item being purchased. The Web 
server encodes the bucket name and key into a URL such as http://s3.amazonaws.
com/mybucket/mykey. When the browser sees that link, it retrieves the specified 
object from the nearest available S3 server. Objects are generally uploaded to the 
S3 service using a simple transfer tool such as the add-in for the Fire Fox browser. 

Microsoft’s Azure SQL service is even easier. You interact with the service by 
writing SQL statements and upload data into tables. Then you write the Web page 
code using a database connection that specifies the Azure SQL service as the da-
tabase provider. Your Web server runs the SQL statements and sends them to the 
Azure server which returns the values, and you insert the results into the Web 
page. The details are straightforward with most current Web programming plat-
forms including Microsoft .NET and Java’s JDBC. 

Sally’s Pet Store
How will Sally’s employees access the database? Even with relatively simple 
applications, you need to think about how employees and managers will access 
the database. As a retail store, Sally’s employees will need access to terminals or 
personal computers to record sales transactions and purchases or lookup customer 
or item data. Managers will have to print reports and browse for trends over time. 
You still need to determine where these computers will be located, how they will 

Figure 11.24
Amazon S3 process. Developer uploads object to an Amazon S3 account into a 
named bucket and gives the object a key value. The Web server code includes the 
HTML and the link to the S3 service with the bucket name and key. The Web.server 
delivers the HTML page and the nearest S3 server delivers the referenced content.

Web server

HTML 
Page

Developer User

Amazon S3
Bucket Name

Key, ObjectHTML, 
Code, 
Bucket+
Key



551Chapter  11: Distributed Databases

be connected, and where the data will be stored. Some of the answers depend on 
which DBMS you are using and the physical layout of the store. For example, will 
Sally’s have a single checkout counter near the entrance with one terminal, or will 
there be multiple terminals scattered throughout the store? If you use Microsoft 
Access as the DBMS with multiple transaction computers, you will need to split 
the database to store the shared data tables on a file server. Or, you might transfer 
the tables to SQL Server and just use Access for the front-end forms and reports. 
With Oracle, a single server would hold all of the data, and the front-end tools 
would run on basic Web browsers. Since the machines are all contained within the 
store, you can install a relatively high-speed network and not worry about transfer 
speeds. If Sally wants access to the database from home, you will have to experi-
ment with options.

If Sally wants to expand and add a second store, the decisions become more 
complex. She is also pushing for creation of a Web site, so that customers can 
order products, check on adopting animals, and get some help in caring for their 
pets.

Sally’s request to expand the database to a second store raises many questions. 
Does she need “instant” access to the sales data from both stores all the time? 
Do the stores need to share data with each other? For example, if a product is 
out of stock at one store, does Sally want the system to automatically check the 
other store? Will the stores operate somewhat independently—so that sales and 
financial data are maintained separately for each store—or will the data always be 
merged into one entity? How up-to-date does data need to be? Is it acceptable to 
have inventory data from yesterday, or does it need to be up-to-the-minute? 

The answers to these questions determine some crucial design aspects. In par-
ticular, the primary design question to answer is whether one central database 
should handle all sales or separate, distributed databases should handle each store. 
The answer depends on how the stores are managed, the type of data needed, the 
network capabilities and costs, and the capabilities of the DBMS.

In many ways, initially the cheapest solution is to keep the second store com-
pletely independent. Then there is no need to share data except for some basic 
financial information at the end of each accounting period. A second advantage 
of this approach is that it is easy to expand since each new store is independent. 
Similarly, if something goes wrong with the computer system at one store, it will 
not affect the other stores.

However, at some point Sally will probably want a tighter integration of the 
data. For example, the ability to check inventory at other local stores can be a 
useful feature to customers, which means that the application will need to re-
trieve data from several databases, located in different stores. These distributed 
databases must be networked through a telecommunications channel. There are 
many ways to physically link computers, and you should take a telecommunica-
tions course to understand the various options. Once the computers are physically 
linked, you need to deal with some additional issues in terms of creating and man-
aging the distributed databases.

Summary
As organizations grow, distributed databases become useful. Distributed databases 
enable the company to expand individual departments without directly affecting 
everyone else. Distributed databases also give individual departments increased 
control and responsibility for their data. However, distributed databases, with in-



552Chapter  11: Distributed Databases

dependent database engines running in different locations, increase the complex-
ity of developing and managing applications. One of the primary goals is to make 
the location of the data transparent to the user. To accomplish this goal, developers 
and DBAs need to carefully define the databases, networks, and applications.

Some of the major complications generated by distributed databases are query 
optimization; data replication questions; and support for transactions, concurren-
cy controls, and deadlock resolution. These issues become even more complex 
when multiple databases are involved. Network transfers of data are substantially 
slower than transfers from local disk drives. Transfers over wide area networks 
can be slow and costly. These factors imply that developers must carefully design 
the applications and the data distribution strategy. The applications also have to be 
tested and monitored for performance and cost.

One of the major strategies in designing and controlling distributed databases 
is to replicate data. Instead of maintaining one source, it is often more efficient to 
replicate data that is heavily used in multiple locations. Of course, replication re-
quires additional disk space, along with periodic updates and transfers of the data 
changes to each copy. Replication saves time by providing local access to data. It 
reduces costs by reducing the need for a full-time high-speed connection. Instead, 
bulk data is transferred at regular intervals—preferably at off-peak communica-
tion rates.

Client/server networks and client/server databases are a common means to de-
sign applications and distribute databases. Clients usually run applications on per-
sonal computers, and most of their power is devoted to the user interface. The data 
is maintained on a limited number of database servers, which are more efficient 
than simple file-server transfers. With a server database, the client sends an SQL 
query, and the server processes the request and returns only the desired data. With 
a file server, the client computer performs all the processing and must retrieve and 
examine all the data. 

Larger, object-oriented applications are being built using a three-tier client/
server architecture. The additional layer is in the middle and consists of business 
rules and program code (business objects) that execute on servers. The middle 
layer is also responsible for pulling data from the database servers and reformat-
ting it for use by the client applications. Separating the three layers makes it easier 
to modify each component without interfering with the other elements.

The World Wide Web is becoming a popular mechanism to centralize applica-
tions and solve some of the distributed database issues. Web browsers have lim-
ited capabilities, but standards make it easier for everyone to get access to the ap-
plications and data. Keeping the data in one location simplifies security and con-
currency issues. You still have to think about reducing the data transferred to cli-
ent computers, such as avoiding huge drop down lists. You also have to deal with 
transferring data to external suppliers and customers. XML is a standard method 
of transferring bulk data. XML stores data in hierarchical files and XQuery pro-
vides searches of those files.



553Chapter  11: Distributed Databases

Key Terms

Review Questions
1. What are the strengths and weaknesses of distributed databases?
2. Why might a query on a distributed database take a long time to run?
3. When would you want to replicate data in a distributed database?
4. Why is concurrency a bigger problem with distributed databases than with 

stand-alone databases?
5. How does the two-phase commit process work?
6. Why is a client/server database more efficient than a database on a simple file 

server?
7. What are the advantages of the three-tier client/server approach?
8. How does a central Web site reduce problems with distributed databases?
9. How do you reduce transmission delays within data-driven Web sites? 
10. What benefits are provided by databases run on the Internet as cloud 

computing?

A Developer’s View
Like Miranda, most developers understand the importance of the Web. The cli-
ent standards make it easier to distribute data and connect with users around the 
world. Additionally, as applications expand, it becomes necessary to create dis-
tributed databases to improve performance and to support different regions. Dis-
tributed databases can significantly complicate application development. First be 
sure the application runs on one computer. Then get the best software you can 
afford. As much as possible, let the server databases perform the data manipula-
tion and computation tasks. Use the client computers to display the results. Learn 
as much as you can about the Internet: It changes constantly, but will become 
increasingly important in your applications. For your class project, you should 
identify where the company might expand and where you would position distrib-
uted computers to support it. Explain how the database design would change in a 
distributed environment.

active data objects (ADO)
browser
cascading style sheet (CSS)
cloud computing
cluster
distributed database
fault tolerance
globally-unique identifier (GUID)
latency
list of values (LOV)

local area network (LAN)
replicate
replication manager
scalability
three-tier client/server
two-phase commit
wide area network (WAN)
World Wide Web



554Chapter  11: Distributed Databases

Exercises
1. In each of the following situations, identify the best method of structuring the 

databases.
A. A single retail store with 7 checkout lanes, a manager’s office, and an 

owner who wants to review reports from home.
B. Three retail stores with the same owner located in different cities about 

50 miles apart. Each with 5 checkout lanes.
C. An engineering firm with computers used for design work where 

engineers spend considerable time at production sites.
D. A large marketing firm with major offices in Los Angeles and New York, 

where each office mostly works with local clients, but some work is 
shared.

E. A large agricultural firm with a custom application used to collect and 
analyze production data with headquarters in one state and farms located 
in at least three other states.

2. Assuming your DBMS cannot generate distributed safe keys automatically 
write a procedure to generate key values based on a location.

3. Compare the cost of using Amazon RDS versus Microsoft SQL Server cloud 
services. Assume the database content is about 10 GB with monthly data 
transfer rates around 1 GB per month.

4. You have the following distributed databases: 

Location Link Speed Tables Sizes
London 53 kbps Contact(ContactID, Name, ClientID, Title, Phone)

Employee(EmployeeID, Name, Phone, Title)
WorkHours(WorkID, EmployeeID, ClientID, Date, Hours) 

5,000 rows
2,300 rows
3,000,000 rows

Paris 1.544 mbps Contact(ContactID, Name, ClientID, Title, Phone)
Employee(EmployeeID, Name, Phone, Title)
WorkHours(WorkID, EmployeeID, ClientID, Date, Hours) 

10,000 rows
1,000 rows
20,000,000 rows

Frankfort 128 kbps Contact(ContactID, Name, ClientID, Title, Phone)
Employee(EmployeeID, Name, Phone, Title)
WorkHours(WorkID, EmployeeID, ClientID, Date, Hours) 

7,000 rows
3,500 rows
30,000,000 rows

Madrid 
(HQ)

local Client(ClientID, Name, Lead contact, Main city)
Employee(EmployeeID, Name, Phone, Title)
Project(ProjectID,	ClientID,	StartDate,	Topic)

20,000 rows
10,000 rows
1,000,000 rows

 You are working for an accounting firm with headquarters in Madrid and 
major offices in London, Paris, and Frankfort. Many of the client companies 
have offices in three or four of these cities. Some clients are smaller and 
work with a single office. The accounting teams in the various offices need 
to share documents with teams in the other offices when they are working 
for the same client. Each office maintains a database of working papers, 
spreadsheets, questions, answers, and workflow data for the team. It also 
tracks billable hours for each employee and client. You need to get a list 
of all employees who have worked for a particular client in the last month; 
along with hours worked. Based on the communication speeds and table 
sizes, design the best performing query to answer this question. Could the 
database and query performance be improved by changing the distributed 
design?



555Chapter  11: Distributed Databases

5. A company has a database and an application where managers often generate 
and read a report that consists of 5 pages of dense text and numbers plus a 
chart on each page. If 100 people routinely view this report (with different 
data) each hour, and if the company wants to run the report on a central 
Web server, how much bandwidth capacity is needed? If the application is 
converted to tablets using cell-phone connections, how much will it cost in 
monthly cell phone bills?  

6. You are working for a company that has two offices and is using a replicated 
database approach. Both offices have copies of the database of about 100 GB. 
Assuming that the entire database has to be transferred (both ways) between 
the two offices to handle synchronization, estimate the time required to 
handle the updates using at least three common network speeds.

7. A company wants managers to use mobile devices (phones, tablets, laptops) 
to access its database-driven applications. Briefly explain the different ways 
there are to develop the client (tablet/phone) applications. Which method 
would you select?

8. Find a development tool that can be used to create database-driven 
application on a Web server. Briefly describe the commands used to connect 
a server page to a database and explain what needs to be changed if the 
underlying DBMS is changed.

9. A company is building a Web-based application with SQL Server (or 
Oracle) as the backend DBMS. The middle tier uses a server-based 
programming language to generate HTML pages and insert data retrieved 
from the DBMS. The project manager wants on section of the application to 
implement pessimistic locking but does not think the application software 
can adequately handle it. Over half of the large application has already been 
written. What can you do to address the issue?

 
Sally’s Pet Store
10. Sally is planning to add a second store. Write a plan that describes how the 

data will be shared. How will you control and monitor the new system? 
Which tools will you add?

11. Sally wants to connect to suppliers so that she can get information on orders 
and shipments electronically. The data needs to be imported into her database 
and matched to the orders. Describe a system that can handle these tasks.

12. Sally is thinking about implementing a Web site to sell pet products. Estimate 
the costs of storing the data for the site on Microsoft Azure SQL servers. The 
database would need to store the tables for Customer, Merchandise, Sale, 
and SaleItem. As an initial estimate, assume there will be 3,000 merchandise 
items, 10,000 customers with each customer placing an average of one 
purchase a month consisting of an average of three items on each order.  

13. Use the tables for a different DBMS, or create them if necessary. Try to 
connect your primary DBMS to the new tables. Write a query that pulls data 
from both DBMSs.



556Chapter  11: Distributed Databases

14. Build a front-end application that handles the Sales form and connects to a 
database server. 

15. Briefly explain the steps required (and estimate the time) to build an 
application so that store clerks could carry tablets on the floor to look up 
inventory or take special orders from customers.

Rolling Thunder Bicycles
16. Rolling Thunder is planning to expand to a second location across the 

country. How should the database be distributed? Where should each table be 
stored? Which tables should be replicated, and how should the data changes 
be reconciled?

17. Rolling Thunder is planning to expand by sending sales representatives 
around the country to various bike shops. They will use portable devices 
and a Web interface to configure bicycles and take new orders. The system 
should at least be able to run on an Apple iPad browser, and perhaps even 
a cell-phone browser. Describe how this system will work. What security 
provisions will be needed?

18. Describe a method to create a Web application that enables customers to 
check on the progress of their bicycle orders.

19. Create a second copy of your database running on a second computer. Create 
a link from the first database to the copy. Write a query that combines data 
from at least one table in each database.

20. Assume the owners want to convert the entire application to the cloud (such 
as Amazon RDS or Microsoft SQL Server/cloud). In the process, they want 
to increase marketing to increase sales and production to ten times the level 
in 2012. Estimate the new database size. Assuming customers place their 
own orders over the Web, estimate the cloud hosting costs.

21. Using the DBMS tools available to you, create a replica of the database; 
make changes to data in both copies and then synchronize the database to 
see the changes. Test what happens if you change the same data (such as 
customer phone number) in both copies before synchronizing.

22. Assume the managers want to temporarily connect a SQL Server of the 
database to an Oracle database with other tables. How can you build a link 
between SQL Server and Oracle that lets you run Oracle queries inside SQL 
Server?

Corner Med 
23. The company owners basically want to franchise the operations. The 

headquarters will run database operations for all of the local clinics. Describe 
how you will configure the database to support this operational process. List 
any potential problems you might encounter.

24. Using one DBMS, research the capabilities for replicating data. Build at least 
one replica of a table, make changes to both copies, and synchronize the 
copies. Describe how the system handles generated keys.

Corner
Med

Corner
Med



557Chapter  11: Distributed Databases

25. If Corner Med decides to franchise and move the database to cloud 
computing, what security and privacy problems might arise and how could 
they be managed?

26. Assume the company has several offices, but physicians (and sometimes 
patients) move among the offices during the month. So the company builds 
the application on a centralized server with access through Web-based forms 
and reports. Would you add pessimistic locking to any of the tables or forms?

27. Related to distributed databases, assume that insurance companies send you 
payment data by downloading data files. The CSV files contain a line for 
each payment and list: Customer SSN, LastName, FirstName, VisitDate, 
PaymentAmount, and AmountDenied (not paid). Create an application to 
read this data and update the insurance company payment data. You might 
need to add more columns to existing tables, and you should create a sample 
file to test your application.

28. Create a second copy of your database running on a second computer. Create 
a link from the first database to the copy. Write a query that combines data 
from at least one table in each database.

Web Site References

http://www.w3.org/ Web standards body.
http://msdn.microsoft.com Search	for	Microsoft’s	.NET	framework	

and documentation.
http://www.oracle.com/technetwork/java/index.html	 Java and JDBC documentation and 

references.

Additional Reading
R. Burns, D. Long, and R. Rees, Consistency and Locking For Distributing 

Updates to Web Servers using a File System, ACM SIGMETRICS 
Performance Evaluation Review, 28(2) September 2000, 15-21. 
[Performance issues in replicated databases.]

Date, C. J., An Introduction to Database Systems, 8th ed. Reading, MA: Addison-
Wesley, 2003. [In-depth discussion of distributed databases.]

Fisher, M., J. Ellis, and J. Bruce, JDBC API Tutorial and Reference/3e, Boston: 
Addison-Wesley, 2003. [Using JDBC and Java to connect to database.]

http://www.w3.org/
http://msdn.microsoft.com


558

What You Will Learn in This Chapter
•	 How	does	a	DBMS	store	data	for	efficient	retrieval?
•	 How	does	a	DBMS	interact	with	the	file	system?
•	 What are the common database operations?
•	 What	options	does	a	DBMS	have	for	storing	tables?
•	 How is one data row stored?
•	 How	can	you	improve	performance	by	specifying	where	data	is	stored?
•	 How	does	a	DBA	control	file	storage?
•	 What	performance	issues	might	arise	at	Sally’s	Pet	Store?

Chapter Outline

Physical Database Design
12Chapter

Introduction, 559
Two-Minute Chapter, 560
Physical Data Storage, 560
Table Operations, 561

Retrieve Data, 562
Store Data, 563
Reorganize the Database, 564
Identifying Problems, 565

Data Storage Methods, 565
Sequential Storage, 566
Pointers and Indexes, 567
Linked Lists, 569
B+Trees, 571
Direct or Hashed Access, 574
Bitmap Index, 575
Comparison of Access Methods, 575

Storing Data Columns, 576
Text and Numbers, 576
Image and Binary Data, 578
Transferring Data with Delimited Files, 
578

Data Clustering and Partitioning, 579
Data Clustering, 579
Data Partitioning , 580

Managing Tablespaces, 582
Sally’s Pet Store, 582

Summary, 583
Key Terms, 584
Review Questions, 584
Exercises, 585
Web	Site	References,	586
Additional Reading, 587



559Chapter  12: Physical Database Design

A Developer’s View
 Ariel: How is the new job going, 

Miranda?

 Miranda: Great! The other developers are 
really fun to work with.

 Ariel: So you’re not bored with the job 
yet?

 Miranda: No. I don’t think that will ever 
happen—everything keeps 
changing. Now they want me to 
set up a Web site for the sales 
application. They want a site where 
customers can check on their order 
status and maybe even enter new 
orders.

 Ariel: That sounds hard. I know a little 
about HTML, but I don’t have any 
idea of how you access a database 
over the Web.

 Miranda: Well, there are some nice tools out 
there now. With SQL and a little 
programming, it should not be too 
hard. 

 Ariel: That sounds like a great 
opportunity. If you learn how 
to build Web sites that access 
databases, you can write your ticket 
to a job anywhere.

Introduction
How does a DBMS store data for efficient retrieval? Any database application 
is created through the basic steps described in Chapters 2 through 9. You get the 
user requirements, design the database through normalization, create the queries 
using SQL, build forms and reports and then add the details to create a complete 
application. However, with large applications, one more step is critical to the suc-
cess of your application. You must analyze its performance. Performance is large-
ly controlled by telling the DBMS how to physically store and retrieve the data.

If computers were fast enough, how the DBMS physically stored the data for 
each table might not matter. Today, for small applications, this situation is prob-
ably true. The default storage method provides acceptable levels of performance, 
and you could skip this chapter. However, as databases and applications become 
larger or contain specialized types of data, physical storage becomes an important 
issue in the performance of your application. Large business applications routine-
ly hold millions or even trillions of rows of data in tables. Proper configuration is 
essential—otherwise, even simple queries could take minutes or hours to run.

Two basic questions must be answered to store data tables: (1) How should 
each row of data be stored and accessed? and (2) How should individual columns 
be stored? The first question is more difficult to answer and is determined largely 
by how the data is used. Hence we must first examine the possible uses of the da-
tabase. The answer to the second question depends largely on the type of data be-

Getting Started
A DBMS sometimes provides options on how to physically store data. 
Most enable you to add indexes to improve query performance. Some 
systems enable you to select hashed or direct storage for data that needs 
immediate access. You can also use data clustering and partitioning to 
handle large data tables more efficiently. 



560Chapter  12: Physical Database Design

ing stored. For traditional business data (numbers and small text), the answers are 
straightforward. If your application stores more complex data objects, the second 
question becomes more critical.

Two-Minute Chapter
Up to this point in the book, the features of relational databases have been dis-
cussed without the need to understand how data is actually stored and retrieved by 
the DBMS. In fact, that is one of the key features of a DBMS—it is free to opti-
mize the storage of data without affecting the overall application design. Howev-
er, sometimes it becomes useful to understand some of the underlying data storage 
techniques. When databases get huge and you need to find ways to improve per-
formance, some DBMSs provide storage options that can make a big difference in 
usability. 

Indexes are the most common method of improving performance for data re-
trieval. Most systems use linked lists and a B+-tree approach to storing indexed 
data. These topics are routinely covered in a second programming course in com-
puter science disciplines (data structures). Some examples are given here but pro-
gramming details are left for CS courses.

As pointed out in Chapter 9, adding too many indexes to a table can degrade 
performance when inserting or updating data in the table. So two other primary 
methods of storing data are sometimes available: simple sequential and hashed-
key tables. It might seem strange, but sometimes sequential storage can be the 
fastest approach to handling big tables—as long as the data rarely changes and is 
generally retrieved as a large batch. Removing all other overhead items can sub-
stantially improve the raw transfer of the data. Hashed-key tables are trickier and 
not always available. They are useful when the data always has its own key value 
and you need rapid access to an individual item. For example, a bar-code number 
can be used as a key, or a transponder value from an RFID toll device (FasTrak in 
California or E-ZPass on the East Coast). The number provided is hashed (simpli-
fied) and directly converted into a physical location in the database file. So indi-
vidual items can be retrieved or updated almost instantaneously. 

Another approach that is used for huge databases is to partition the data or clus-
ter items together. Remember the common Sales form that leads to separate tables 
for Sales and SaleItems. The related data from these tables (linked by SaleID) is 
almost always retrieved together. So some systems provide methods to store the 
related data together—making it faster to retrieve from typical disk drives.  

Most applications work well with the standard B+-tree indexes, and as disk 
drive performance improves (such as using solid-state drives), this approach can 
be fast enough for most common business data. But for some specialized situa-
tions, performance can be dramatically improved with different storage approach-
es. Your job is to recognize when those tools are needed.

Physical Data Storage
How does a DBMS interact with the file system? Developers see database stor-
age in terms of tables, but these tables ultimately need to be stored in files on the 
operating system. The main job of the database engine is to translate the concept 
of tables and rows into physical storage on the computer’s disk drives. In com-
puter science classes (particularly the data structures class), you will spend a lot 
of time coding different ways to store this data. This chapter simply introduces 
the basic concepts.  Figure 12.1 shows how the operating system is responsible 



561Chapter  12: Physical Database Design

for translating files into physical storage on the disk drive. The file system (such 
as NTFS for Windows), breaks a file into clusters and uses internal pointers to 
record the physical location of each cluster. In most cases, the DBMS ignores 
the direct disk drive issues and lets the operating system handle the details. In-
stead, the DBMS uses the operating system’s file read and write commands. For 
the main data storage, the DBMS creates a file and reserves a specified amount 
of disk space. The DBMS extends the allocated file space as the data grows. The 
DBMS can write a chunk of data anywhere within the allocated space by using the 
standard write command. The DBMS keeps track of which portions of the space 
are used by recording the offset (count of the number of bytes) from the start of 
the file. If you are familiar with programming, you should recognize the role of 
the standard fopen, fseek, fread, and fwrite commands available in stdio in C (and 
similar languages), or the fstream objects with open, seekg, read, and write meth-
ods in C++. 

The challenge for programmers who create the DBMS is to translate the con-
cepts of tables and rows into this file structure—so that the data can be stored 
efficiently and retrieved quickly. Several common storage methods have been de-
veloped over the past few years. One of them (B+tree) is commonly used for gen-
eral data access and is useful in most situations. However, for huge databases, you 
might need more control over how the table rows are stored. Some DBMSs give 
you more choices and even if you do not intend to become a DBMS programmer, 
you need to understand their strengths and weaknesses.

Table Operations
What are the common database operations? To understand the differences be-
tween storage methods, you must first understand how the DBMS will use the 
data. Then by evaluating how each storage method affects the various table opera-
tions, you can choose the best method for your particular application. As shown in 
Figure 12.2, three major categories of operations affect tables: (1) retrieving data, 
(2) storing data, and (3) reorganizing the database. Each category contains more 
detailed tasks that are described in the following sections. Every application will 
perform all of the operations within the categories. As a developer you need to ex-
amine the application and identify the operations that are affecting performance.

Track
Sector
Byte	Offset

Drive 
Head

File

Random access.

Move	to	offset	from	
start	of	file.

Usually	write	fixed-
length chunks.

File Structure

Cluster 1

Cluster 2

Cluster 3

Operating System

Figure 12.1
Physical data storage. The operating system breaks files into clusters and writes the 
clusters onto the physical disk drive. It uses internal pointers to retrieve the data 
sequentially, or randomly based on an offset from the start of the file. The DBMS 
uses file read/write commands to store chunks of data.



562Chapter  12: Physical Database Design

Retrieve Data
Retrieving data constitutes some of the most common activities in a database ap-
plication. These operations also present the best opportunity to improve perfor-
mance. Applications commonly perform three types of data retrieval. They read 
the entire table, read the next row in a sequence, and find and retrieve an arbitrary 
row.

Reading the entire table, or large portions of it, might not seem like a com-
mon operation, but it does occur relatively often when printing reports. For the 
example in Figure 12.3, to print weekly paychecks, the application will have to 
read every row in the employee table. But what if hourly workers are paid weekly, 
but managers are paid monthly? In most companies the managers represent only 

Retrieve data
 Read entire table.
 Read next row.
 Read arbitrary row.
Store data
 Insert a row.
 Delete a row.
	 Modify	a	row.
Reorganize database
 Remove deleted rows.
 Recover unused space.

Figure 12.2
Table operations. Every application must perform these operations. The key is to 
determine which operation is causing delays.

LastName FirstName Phone
Adams
Adkins
Albright
Anderson
Baez
Baez
Bailey
Bell
Carter
Cartwright
Carver
Craig

Kimberly
Inga
Searoba
Charlotte
Bessie
Lou Ann
Gayle
Luther
Phillip
Glen
Bernice
Melinda

(406) 987-9338
(706) 977-4337
(619) 281-2485
(701) 384-5623
(606) 661-2765
(502) 029-3909
(360) 649-9754
(717) 244-3484
(219) 263-2040
(502) 595-1052
(804) 020-5842
(502) 691-7565

Figure 12.3
Read a table sequentially. Sequential retrieval requires the data to be sorted; for 
example, this customer data is sorted alphabetically by LastName and FirstName. 
Fortunately, sort methods are so fast that they do not generally affect the application 
performance.



563Chapter  12: Physical Database Design

a small percentage of the total workers, and retrieving 90 percent of a table is no 
different in performance than retrieving 100 percent.

Reading the next row in a sequence is related to retrieving all the data in a 
table. When an application needs to read an entire table, it is generally retrieved in 
some order or sequence. For example, paychecks might be printed in alphabetical 
order by employee name, department name, or postal code.

The more challenging retrieval operation is the ability to retrieve any arbitrary 
row. It is sometimes called random access because the database does not know 
which record might be requested. For example, any customer could place an or-
der at random, and the database would have to retrieve the matching data for that 
customer.

This lookup process is one of the most critical elements to affect the perfor-
mance of your application. It is easy to spot in situations like the customer exam-
ple. The clerk enters a customer name or number, and the database has to retrieve 
the matching data. Clearly, you want to keep the lookup time as short as possible 
to avoid delays for the customer and the clerks.

Yet there is a more critical problem involving lookups. Any time you build a 
query, two types of random lookups come into play. First, joining two tables re-
quires the database to match the values in one table with those in a second table. 
Second, any time you impose a condition with the WHERE statement, you are 
asking the DBMS to find rows that match that condition. So query performance is 
directly related to how fast the database can perform lookups and match the data 
requested. These lookups are critical because they are so numerous. Joining two 
tables could require thousands or millions of lookups—depending on the number 
of rows in the two tables. Remember that many tasks throughout the application 
use queries. Sequential lookups that retrieve large portions of the table require 
minimal optimization, because you have to read the entire table. The random re-
trievals and random lookups require more thought about optimization. However, 
storing data sequentially causes other problems when you need to insert, delete, or 
modify rows.

Store Data
A DBMS has to perform three basic operations involved with storing data: in-
serting a new row, deleting a row, or modifying the data in a row. Most systems 
implement a fast delete operation—they do not actually remove the deleted data. 
As shown in Figure 12.4, it is much faster to just mark the row as deleted. Then 
when the database wants to retrieve an item, the DBMS first checks to see whether 
the item has been deleted. If so, the DBMS ignores that row. Similarly, a good 
DBMS attempts to store data in fixed block lengths, so that if a row is modified, 
the DBMS can simply overwrite the data. With highly variable-length data, this 
operation is not always possible, so the DBMS must perform a delete and an insert 
operation.

In terms of performance, the biggest issue with delete operations involves stor-
age space instead of speed. Although a row has been deleted, it still takes up phys-
ical space. Sometimes the DBMS can overwrite the old data, but after a while, 
there can be millions of bytes of unused fragments.

Inserting a new row of data is one of the more challenging aspects in a database 
management system. Next to random lookups, it is the source of the most perfor-
mance problems. In fact, there is generally a trade-off between the two issues. If 
a system is good at random lookups, it is not as efficient at storing new data rows. 



564Chapter  12: Physical Database Design

That is, the techniques used to improve random lookups often require significantly 
more time to add data rows.

The performance issues of adding new data are somewhat technical and will be 
explained in more detail in the section on data storage methods. For now, examine 
your application to identify which tables will add new data on a regular basis and 
which tables might add data only occasionally. For example, a firm might add 
only a few new items a year to the Products table. However, thousands of new 
rows could be added to the Order table every day.

Reorganize the Database
Largely because of the deletion method, a database can become disorganized over 
time. Data that is flagged as deleted is still hiding in the table space. Empty holes 
of storage space are too small to hold new data and data rows that are used to-
gether are no longer stored near each other.

These problems are particularly challenging with relational databases. In a re-
lational database the system data is also stored in tables. For example, the form 
layout that you redesigned 20 times is stored as rows in a table. Each time you 
redesigned it, the database flagged the old version as deleted and saved the new 
version. Complex forms could take up several thousand bytes of storage.

Most systems have an administrative command to reorganize or pack the data-
base. This command causes the DBMS to go through the data and rewrite each ta-
ble—clearing up the storage space. A major challenge to database administration 
is to determine how often to run this command. Two complications exist. First, 
it can take several hours for this command to process large databases. Second, a 
few systems require that all users be logged off the DBMS before the administra-
tor can run this command. You want to avoid database systems with the second 
requirement. It prevents you from providing 24-hour access to the database. How-
ever, even if other people can still use the system, database reorganization can 
affect the overall performance of the application, so the process generally needs to 
be performed during slow periods (e.g., at night). 

LastName FirstName Phone
Adams
Adkins
Albright
Anderson
Baez
xBaez
Bailey
Bell
Carter
Cartwright
Carver
Craig

Kimberly
Inga
Searoba
Charlotte
Bessie
Lou Ann
Gayle
Luther
Phillip
Glen
Bernice
Melinda

(406) 987-9338
(706) 977-4337
(619) 281-2485
(701) 384-5623
(606) 661-2765
(502) 029-3909
(360) 649-9754
(717) 244-3484
(219) 263-2040
(502) 595-1052
(804) 020-5842
(502) 691-7565

Figure 12.4
Delete a row. Deletion is fast because the DBMS just marks the row as deleted. It 
does not actually remove the data.



565Chapter  12: Physical Database Design

On the flip side, if you forget to periodically reorganize the database, it can 
rapidly fill with wasted space. It is not uncommon for even a small Access data-
base to grow from under 1 megabyte to 5 or 6 megabytes of storage space during 
development. Be sure to use the database utilities to compact the database. Doing 
so will make it much easier and faster to back up and copy the data files.

Identifying Problems
During the database design stage, you should be able to identify potential prob-
lems. You need to analyze the database usage and volume statistics collected in 
Chapter 3. In particular, look for large tables; heavily used tables; transaction ta-
bles requiring fast database responses; and queries with multiple joins, complex 
criteria, or detailed subqueries. You should also perform tests during the develop-
ment of the applications. Generate large sample tables and test the performance 
of the queries, forms, and reports. Once the database application is operational, 
you can use the performance monitoring tools described in Chapter 11 to locate 
bottlenecks.

Once you identify the form, report, or query that is causing delays; you need 
to determine the cause of the problem: data retrieval, data storage, or data re-
organization. You can use the programming debug feature to step through code 
that utilizes many different operations. By timing procedures and loops, you can 
determine which section is causing the longest delays. You can also use the Timer 
function to record the times of various operations.

Once you have identified the location of the delays, you can test various strate-
gies for improving performance. If the delays involve your program, explore dif-
ferent ways to reorganize your code to improve performance. If delays are due 
to data retrieval or storage, think about ways to perform data operations in larger 
blocks. For example, your program might run faster if it writes individual changes 
to a temporary table and then uses SQL statements to transfer the changes to the 
primary tables in one large operation.

A second method to improve performance is to alter the way the data is stored. 
Each DBMS provides different controls over data storage. The following sections 
summarize the most common techniques.

Data Storage Methods
What options does a DBMS have for storing tables? Three primary methods 
are used to store data tables—each with several variations. The simplest method 
is sequential storage—putting the data into tables in the order in which it is most 
commonly accessed. To provide faster access, particularly for random lookups, a 
second approach is to create indexes of the data. A third approach known as direct 
or hashed-key storage is radically different and is designed to optimize random 
lookup at all costs.

Sequential storage is relatively easy to understand, but probably the least use-
ful. Hashed storage methods are also straightforward, but have their own limita-
tions. Indexed tables are by far the most common means of storing and access-
ing data today. They are complex and have many variations. To choose the best 
storage method, you sometimes have to understand the differences between the 
variations.

Pointers and linked lists are key topics in understanding how indexes work. You 
might have heard computer science students discussing these topics. Do not panic. 
You do not need to know how to program routines using pointers and linked lists. 



566Chapter  12: Physical Database Design

To understand their strengths and weaknesses, you just need to be able to draw 
some basic diagrams.

Sequential Storage
Sequential files are the simplest method of storing data. Each row is stored in a 
predefined order as shown in Figure 12.5. As long as the data is retrieved in the or-
der specified, access is fast and storage space is used efficiently. The real problems 
arise when data is added or when users need to retrieve data in several different 
sequences.
Uses
Sequential storage is useful when data is always retrieved in a fixed order. It is 
also useful when the file contains a lot of common data. For example, if most 
customers have the same ZIP code, you might as well leave the ZIP code data in 
simple sequential storage.

Another use of sequential files is for backup or transporting data to a differ-
ent system. Each database system stores data in a proprietary internal format. To 
transfer data from one system to another generally requires exporting the data to 
a common format, moving the data, and importing it into the new database. A se-
quential ASCII file is a popular export/import format that most database systems 
support.
Drawbacks
To understand the drawbacks to sequential storage, consider the steps involved in 
performing the basic database operations listed in Figure 12.2. Reading the entire 
table and retrieving the next sequential row are easy. Finding an arbitrary row is 
much slower. If the rows can hold different lengths of data, the only way to find 
an item is to search from the start of the table until the desired row is found. With 
N rows of data, the expected number of retrievals required to find a random row is 
(N + 1)/2, or a table with 1,000,000 rows would require 500,000 lookups on aver-
age to find a matching row. Obviously a bad idea.

Another major drawback can be seen by examining the data storage operations. 
As with every method, flagged deletion is fast and relatively efficient. The real 

ID LastName FirstName DateHired
1
2
3
4
5
6
7
8
9

10

Reeves
Gibson
Reasoner
Hopkins
James
Eaton
Farris
Carpenter
O’Connor
Shields

Keith
Bill
Katy
Alan
Leisha
Anissa
Dustin
Carlos
Jessica
Howard

1/29/....
3/31/....
2/17/....
2/8/....
1/6/....

8/23/....
3/28/....

12/29/....
7/23/....
7/13/....

Figure 12.5
Sequential file. Each row is stored in some predefined order. Sequential storage is 
used primarily for backup or for transferring data to a different database.



567Chapter  12: Physical Database Design

problems arise when you want to insert a new row. Examine Figure 12.5 and de-
cide how you would insert data for a new employee with the last name of Inez. 
The basic steps are shown in Figure 12.6. If you had to write a program to insert 
a row, the most efficient method is to follow four steps: (1) Read each row. (2) 
Decide if this row comes before the new row. If so, store it in a new table. (3) 
When you reach the insertion point, save the new row of data. (4) Append the rest 
of the data to the end of the new table. The main drawback to this approach is that 
any time you want to add a row of data, the database has to retrieve (and probably 
rewrite) every row in the table.

Pointers and Indexes
The most common solution to the problems of sequential tables is to store each 
row separately and use pointers to find a row. This approach also uses indexes to 
establish the sequential retrieval of data and to improve searches. Separating rows 
of data means that each row is stored as an independent group. (Actually, you can 
break rows into smaller chunks, but for now, think of each row stored indepen-
dently.) When a row of data is stored, it is stored at some location. This location is 
called an address, and a variable that holds this address is called a pointer. With 
most file systems, the address (and pointer value) is a number that represents the 
offset in bytes from the start of the file.

Figure 12.7 illustrates how the data is separated. It also shows how an index is 
used to retrieve the data. The data is linked to the index via the address pointers. 
To retrieve the data sequentially, the DBMS simply loops through the index and 
follows the pointers to retrieve the data. The data rows can be stored in any order 
in the file structure. 

An index is the most common method used to provide faster access to data. An 
index sorts and stores the key values from the original table along with a pointer 
to the rest of the data in each row. Figure 12.8 illustrates the concept. Notice that 
a table can have many indexes. Indexes can also be based on several columns of 
data. The ability to create multiple indexes in a table indicates their first strength. 

ID LastName FirstName DateHired
8
6
7
2

Carpenter
Eaton
Farris
Gibson

Carlos
Anissa
Dustin
Bill

12/29/....
8/23/....
3/28/....
3/31/....

11 Inez Maria 1/15/....
4
5
9
3
1

10

Hopkins
James
O’Connor
Reasoner
Reeves
Shields

Alan
Leisha
Jessica
Katy
Keith
Howard

2/8/....
1/6/....

7/23/....
2/17/....
1/29/....
7/13/....

Figure 12.6
Insert into a sequential table. Copy the top of the table to a new table. Store the new 
data row (Inez). Copy the rest of the data. The system must read every row in the 
table.



568Chapter  12: Physical Database Design

Data
Address

Key value Address
pointer

File Start

Key value Address
pointer

Data
Address

Index

Figure 12.7
Use of pointers. The database searches the key values. When it finds the appropriate 
key, it follows the pointer to retrieve the associated data stored on the disk.

Figure 12.8
Indexes. An index sorts and stores a key value along with a pointer to the rest of the 
data. Indexes can be built for any column or combination of columns in the table.  
The two separate indexes provide different sorts and searches for one table.

ID LastName FirstName DateHired
1 Reeves Keith 1/29/2010
2 Gibson Bill 3/31/2010
3 Reasoner Katy 2/17/2010
4 Hopkins Alan 2/8/ 2010
5 James Leisha 1/6/ 2010
6 Eaton Anissa 8/23/ 2010
7 Farris Dustin 3/28/ 2010
8 Carpenter Carlos 12/29/ 2010
9 O'Connor Jessica 7/23/ 2010
10 Shields Howard 7/13/ 2010

ID Pointer
1 A11
2 A22
3 A32
4 A42
5 A47
6 A58
7 A63
8 A67
9 A78
10 A83

A11
A22
A32
A42
A47
A58
A63
A67
A78
A83

Address

LastName Pointer
Carpenter A67
Eaton A58
Farris A63
Gibson A22
Hopkins A42
James A47
O'Connor A78
Reasoner A32
Reeves A11
Shields A83



569Chapter  12: Physical Database Design

They enable relatively fast, sorted access to a table based on any criteria. Index-
es generally provide a clear advantage over straight sequential files because they 
support high-speed access to any data columns.

The astute reader will recognize that the index has not really solved all of the 
problems—it has simply transferred them to the index file. That is, to store and 
retrieve data, you face the same problems in building the index. On the plus side, 
the index is smaller and easier to manipulate. It is also possible to create multiple 
indexes for any table, so it can be searched or retrieved using different key col-
umns. But, it would be nice to find a better way to handle the index itself.

Linked Lists
To solve the insert problem, indexes are generally based on linked lists instead 
of sequential lists. A linked list is a technique that splits data even further than a 
sequential index. With a linked list, any index element can be stored separately. A 
pointer is then used to link to the next index item. Figure 12.9 illustrates the basic 
concepts. In this example each row of data is stored separately. Then an index is 
created that is keyed on LastName. However, each element of the index is stored 
separately. An index element consists of three parts: the key value, a pointer to the 
associated data element, and a pointer to the next index element.

To retrieve data sequentially, start at the first element for Carpenter. Follow 
the pointer to the next element (B29 points to Eaton). Each element of the index 
is found by following the link (pointer) to the next element. The data pointer in 
each index element provides the link to the entire data row for that key value (A67 
points to the Carpenter row).

The strength of a linked list lies in its ability to easily and rapidly insert and de-
lete data. Remember the difficulty in inserting data with a sequential table. Even 
with a sequential index, inserting a new row generally results in copying half the 
index (or more). For large tables this approach is clearly inefficient.

Figure 12.9
Linked list. The index is split into separate index elements. Each element contains 
a key value (LastName), a pointer to the next index element, and a pointer to the 
rest of the data for that row. To retrieve data sequentially, start at the first element 
(Carpenter) and follow the link (pointer) to the next element (Eaton).

CarpenterB87 B29 A67

GibsonB38 00 A22
EatonB29 B71 A58

FarrisB71 B38 A63

7 Farris Dustin 3/28/2010A63

8 Carpenter Carlos 12/29/2010A67

6 Eaton Anissa 8/23/2010A58

2 Gibson Bill 3/31/2010A22



570Chapter  12: Physical Database Design

On the other hand, as shown in Figure 12.10, inserting a new key row into a 
linked list requires three basic steps. (1) Store the data and store the index ele-
ment—keeping the address of each. (2) Find the point in the index to insert the 
new row using a binary search. In the example, Eccles comes between Eaton 
and Farris. (3) Change the link pointers. The link in Eaton should point to Eccles 
(change B71 to B14) and the link in Eccles should point to Farris (insert the B71). 
Those are the only steps needed. No copying of data keys and no complicated 
code.

FarrisB71 B38 A63FarrisB71 B38 A63

EatonB29 B71 A58EatonB29 B71 A58

EcclesB14 B71 A97

B14

Figure 12.10
Insert into a linked list. To add the index element for Eccles: store the new data 
element, keep the address (B14); find the sort location—between Eaton and Farris; 
move the link pointer from Eaton into Eccles (B71); store the pointer for Eccles 
(B14) in Eaton.

1		↓

Adams
Brown
Cadiz
Dorfmann
Eaton
Farris
Goetz

									3				↓
Hanson
Inez

               4 Jones
				2			↑ Kalida

Lomax
Miranda
Norman

Figure 12.11
Binary search. A sorted index can be searched rapidly using a binary search. To find 
the entry for Jones, find the middle of the list (Goetz). Jones is past Goetz, so split the 
second half in half (Kalida). Keep splitting the remainder in half until you find the 
entry.



571Chapter  12: Physical Database Design

Linked lists have substantial advantages for most of the standard table opera-
tions. In particular, they are the most efficient way to insert and change data be-
cause the code simply edits the link pointers to add or delete something from the 
list. But, how can linked lists improve searching for and retrieving random items 
in the list?

B+Trees
As noted in Chapter 9, sorted lists like indexes provide a relatively efficient meth-
od to search for data. A binary search can take advantage of the sorted data by cut-
ting the search in half at each step. Figure 12.11 shows the search process. Recall 
that a binary search can find any specific entry with no more than log2(N) retriev-
als. In this example with 14 entries, log2(14) is 3.8, or a maximum of 4 lookups. 
The example specifically uses Jones because it requires all 4 retrievals.

It is clear that binary searches are efficient, but how does that help with linked 
lists on indexes. First, recognize that indexes are sorted, so it should be possible to 
use a similar approach. Second, think about the list for a few minutes, and you can 
see that it can be reorganized. Instead of trying to store it sequentially, grab the 
middle entry (the starting point for any search), and build a tree structure. In many 
ways, a tree is just a more complex way of storing a linked list. Instead of linear, 
it contains multiple links. 

One version of a tree is shown in Figure 12.12. Only the key values are shown 
in this figure. In practice, each node or element on the tree would contain an index 
element much like those in Figure 12.10. That is, each element would contain the 
key value, a pointer to the rest of the data, and two link pointers. For the particular 
tree in Figure 12.12, each element has at most two links. One link (the line to the 
left) points to elements that have lower values. The other link (line to the right) 
points to elements that have a value greater than or equal to the value in the node. 
The root is the highest node on the tree. The bottom nodes are called leaves be-
cause they are at the end of the tree branches.

The power of the tree lies in its ability to find a data element. To find the data 
for Jones, start at the top of the tree (Hanson). Jones is alphabetically greater than 
Hanson, so go to the right side. Track down the tree depending on the key value 
until you reach the bottom element for Jones. Notice that every element requires 
at most four searches because there are only four levels in the tree. Notice that 
the search was exactly the same as the binary search. The number of searches is 
given by the depth of the tree, which is the number of nodes between the root and 
the leaves. Notice that if you compress a B+tree down to one level, each element 

Hanson

Dorfmann Kalida

Brown Farriis Inez Miranda

Adams Cadiz Eaton Goetz Jones Lomax NormanInez
Figure 12.12
Simple tree. Each node element has a key value, a pointer to data for that key, and 
two link pointers. One pointer is for values less than the key. One is for values greater 
than or equal to the key.



572Chapter  12: Physical Database Design

would be in one long key row. In other words, you would end up with indexed 
sequential access.

The power of a B+tree for searching is clear, but what if you want to retrieve the 
data sequentially? The answer is that the leaves or bottom nodes contain a link to 
the next item. When the DBMS reads to the leftmost leaf (Adams), it can follow 
points to the right to retrieve each final item in sequence.
B+Tree Definition
On examining Figure 12.12, it quickly becomes clear that there are many ways 
to organize a tree. For example, why is Brown listed beneath Cadiz instead of 
beneath Adams? There is no good answer to this first question. Minor position-
al choices like this one are arbitrary and do not affect the tree. But the question 
shows that there is some flexibility in the final tree. Bigger questions do affect 
the tree significantly, such as why is the tree approximately symmetrical—that is, 
why not let one side reach lower than the other side? Why does each node split 
into two branches—why not three or more?

Answers to each of these questions will affect the layout of the tree. As the 
layout changes, so does the performance. Computer scientists have studied these 
structures in detail. For database purposes, they have determined that the best 
overall performance is provided by a B+tree, which follows the six basic rules 
shown in Figure 12.13. The rules are not as complicated as they may first appear.

First, you have to choose the degree of the tree. The degree represents the 
maximum number of children that can fall below any node. Choosing the degree 
determines how fast the database can find any particular item. In Figure 12.12 
the degree was 2, which produced a binary search. Higher degrees result in trees 
that are broader, requiring even fewer searches to find any item. Two rules that 
give the B+tree its power are that each node must have at least m/2 children (and 
no more than m children) and that all leaves must be at the same depth. In other 
words, the tree cannot be lopsided, but must be balanced so that data is distributed 
relatively evenly across the tree.

Figure 12.14 shows a small B+tree of degree 3. With a degree of 3, a node can 
point to three different children. If it does, the node must have two key values, 
such as (458, 792). To understand why, search the tree to find key value 692. Start 
at the top and note that 692 is greater than 315, so go to the right branch. Now 692 
falls between 458 and 792, so branch to the middle child and then drop down to 
find the entry on the bottom leaf, which contains a pointer to the rest of the data. A 
node with three children must have two keys. Any value lower than the left-most 

• Set the degree (m)
 ○ m >= 3
 ○ Usually an odd number.

• Every node (except the root) must have between m/2 and m children.
• All leaves are at the same level/depth.
• All key values are displayed on the bottom leaves.
• A nonleaf node with n children will contain n-1 key values.
• Leaves are connected by pointers (sequential access).

Figure 12.13
B+tree rules. These rules will generate a tree structure that provides good database 
performance under a variety of conditions.  



573Chapter  12: Physical Database Design

key goes to the left. A value greater than the right-most key goes to the right. Any-
thing between the keys follows the middle path.
Uses
The main strength of the B+tree is that it provides a guaranteed level of perfor-
mance for access to the data. Every element can be found in the same number of 
searches—which is determined by the depth of the tree. The tree also provides 
fast sequential retrieval. The other power comes from the ability to add or delete 
elements from the tree. As in a linked list, adding new items to a tree is rela-
tively easy. The process is a little more complicated in a tree, because the rules 
require the tree to be rearranged periodically as data is added. You can study the 
details of programming a B+tree in a computer science class. The basic operations 
are straightforward, but somewhat tedious. You can also buy software to create 
and manipulate B+trees. However, adding items to a tree is still relatively fast and 
efficient.

Overall, the B+tree approach provides the best general access to data. If you do 
not know anything useful about the data or how it will be used, you should always 
choose the B+tree method to store a table. It provides the best overall performance 
for typical data—for sequential retrieval, random lookup, and for changes to the 
data.
Drawbacks
The drawbacks to B+tree storage are relatively minor. It has been shown to be the 
best general purpose storage method, and most DBMSs use it as the main storage 
method. One criticism has been that the coding is relatively complex, but standard 
algorithms have been developed for several years, so it is not really an issue. The 
bigger problem is that for large tables that involve constant changes, it takes time 
to reorganize the index for every change. The problem is worse when you create 
multiple B+tree indexes on a table. Inserting a row could trigger changes in several 
indexes and result in restructuring millions of items in each index. Many systems 
recommend that if you are going to bulk insert thousands of rows of data, you 
should turn off all indexing, insert the data, then index the table one time. The 
only other solution is to use indexes sparingly on tables that have heavy transac-
tion changes.

315< <=

231< <= < 287 <= 458< <= < 792 <=

315< <= <347<= 458< <= <692 <=156< <= 231< <= 792< <=287< <=

data

Figure 12.14
Sample B+tree of degree 3. Start at the top to find the value 692. It is larger than 
315, so go to the right branch. It is between 458 and 792 so go down the middle. 
The bottom leaf points to the rest of the data. The bottom leaves also contain links to 
provide sequential access. 



574Chapter  12: Physical Database Design

Direct or Hashed Access
Some situations require super fast random access to data. For example, in trans-
action situations you might need virtually instantaneous retrieval of some data 
items. When a grocery store clerk scans an item, the DBMS must retrieve the 
price immediately. A delay of even 5 seconds would be incredibly annoying and 
costly given the huge number of items that are scanned every day. In this example, 
the computer is given a unique bar-code number and needs to retrieve the match-
ing data. It makes sense to optimize the search for this situation.

A direct access or hashed-key storage method solves this problem better than 
any other approach. The method works by first setting aside enough space to store 
all the key values you might need in numbered storage locations. Then the key 
value (bar code) is converted to a storage location number. Computer researchers 
have determined that a prime modulus function usually provides the best conver-
sion. For example, you might have 100 elements with key values ranging from 
100 to 9911. You choose a prime number approximately equal to the number of 
elements. For this case 101 is a good prime number. Then you divide each key 
value by the prime number and look at the remainder. As shown in Figure 12.15, a 
key value of 528 has a remainder (or modulus) of 23. Hence data for that key will 
be stored in location number 23. There is one catch—some keys might have the 
same modulus. The system sets aside an overflow area for these collisions, which 
it searches sequentially.
Uses
The hashed-key approach is extremely fast for finding and storing random data. 
The key’s value is immediately converted into a storage location, and data can be 
retrieved in one pass to the disk. This method works best for transaction opera-
tions that require instantaneous retrieval of small amounts of data.

The hashed-key storage method requires you to know approximately how many 
items will be stored in the table. It also works best if the data does not change very 
often. It is acceptable to set aside enough space to add a few items. The method 
begins to deteriorate if key values are constantly being added to the table.
Drawbacks
One drawback to the hashed-key storage method is that it has little or no provision 
for sequential retrieval of data. It is possible to retrieve the data and sort it. Some 

711
310

528
Overflow/Collisions

Figure 12.15
Hashed-key access. The key value (528) is converted directly into a storage location 
by dividing by a prime number (101). The remainder (23) is used to identify the 
storage position. If two keys have the same remainder, one is stored in an overflow 
location.



575Chapter  12: Physical Database Design

order-preserving hash functions exist to keep the keys in a predefined order. How-
ever, sequential retrieval will be slower than with a B+tree index.

A second drawback is that the method sets aside storage space for the data, so 
you have to know how much space will be needed before you collect the data. If 
you add items to the table, they tend to end up in overflow storage, which is sub-
stantially slower. Performance can be improved by reorganizing the table—which 
creates more space and uses a new prime number. However, it takes time to reor-
ganize the table, which should be done when the data is not being heavily used.

Bitmap Index
Some vendors (e.g., Oracle) provide highly compressed bitmap indexes for large 
tables. With a bitmap index each data key is encoded down to a small set of bits. 
The bitmap (binary) image of the entire index is usually small enough to fit in 
RAM. High-speed bit operations are used to make comparisons and search for key 
values. Hence the bitmap indexes are extremely fast. Bitmap indexes are particu-
larly useful for columns like secondary keys that contain large amounts of repeat-
ing data. They should not be used for a column that contains all unique values. 
For example, in a typical SaleItem(SaleID, ItemID, Quantity) table, you could 
consider using a bitmap index for the SaleID and ItemID columns. But you would 
not want to use a bitmap index for the SaleID column in the Sale table. In Oracle, 
you use the CREATE BITMAP INDEX to generate a new bitmap index.

Comparison of Access Methods
All of these access methods are critical to computer scientists who create the 
DBMS. As an application developer, you do not need to know the gory technical 
details of the various methods. However, you do need to understand the strengths, 
weaknesses, and best uses of the methods. A good DBMS will let you choose how 
you want to store each table. At a minimum the DBMS will provide the ability to 
specify indexes for various columns. To determine which method should be used 
to store and retrieve data, you need to know two things: the primary operations 
that will be performed on the table and which method best supports those opera-
tions. Figure 12.16 answers the second question by summarizing the comments 
from the previous sections.

Operation Sequential B+Tree Hashed
Read one •• •••• •••••
Read next ••••• •••• •••
Read all ••••• •••• •••
Insert • •••• ••••
Delete • •••• ••••
Modify • •••• ••••
Reorganize •• •••• •••

Figure 12.16
Comparison of access methods. The B+tree is the best overall method to store and 
retrieve data. Sequential is useful for large tables that do not change often and need 
only sequential access. Hashed is useful for rapid access to individual items.



576Chapter  12: Physical Database Design

In practice, you have only three choices. First, the B+tree is the best overall 
method to store and retrieve data. In almost any table the primary-key columns 
should be stored in a B+tree index to speed the join operations in queries. Sec-
ond, hashed access should be used for tables that do not change often and the 
application requires fast retrieval or storage of data based on a key value. Third, 
sequential storage can be used if a table almost never changes and the applica-
tion always retrieves data sequentially and in large chunks. Generally, your choice 
comes down to B+tree or hashed access. If you have tables that change often, you 
should consider removing indexes—which creates a sequential table. Most mod-
ern databases use some version of B+tree storage. Primary keys are almost always 
indexed this way by default. 

Storing Data Columns
How is one data row stored? The previous section explored the various methods 
of storing and retrieving individual rows of data. The second issue in storing data 
is how to store individual columns of data within a single row. For basic busi-
ness data consisting of numbers and short text, it rarely matters how individual 
columns are stored. However, applications are being developed that need to store 
more complex data such as large amounts of text, graphics, sound, and even vid-
eo clips. This data is relatively complex and requires significantly more storage 
space. Despite the declining cost of storage space, some of these objects are so 
large that you must be careful in how the database allocates storage for each item.

Text and Numbers
Fixed-width or positional storage is the simplest means of storing a row of data as 
shown in Figure 12.17. Each column is allocated a fixed number of bytes, and the 
data is stored in a set position. When the DBMS retrieves a row, it can find each 
column because the table definition lists the starting position of each column. The 
biggest drawback to this method is that at the start you must decide on the width 
of each column. Any data that does not fit into the assigned width will be truncat-
ed. This decision causes problems. For example, how much space should you set 
aside for a customer name? If you pick a small number, you risk throwing away 
part of a customer’s name. If you pick a large number, the database sets aside that 
much space for every row of data—wasting space for most situations. This type of 
storage is used when you specify the domain as numeric or a CHAR column with 
a fixed width.

ID Price QOH Description
4 110.00 Dog Kennel-Extra Large
18 1.00 1874 Cat Food-Can-Premium
29 6.00 240 Flea Collar-Cat

Figure 12.17
Fixed-width or positional-column storage. If data widths do not vary much, this 
method is a fast, efficient means to store columns. If descriptions can be short or very 
long, then you will have to allocate space for the longest possible description, which 
wastes space for the short descriptions.



577Chapter  12: Physical Database Design

The problem of deciding how much text space to allocate is common. Hence, a 
solution was developed to accommodate text data that is highly variable in length. 
For example, descriptions, comments, and memos can be long or short. In these 
situations the best storage method to use is the variable length method shown in 
Figure 12.18. In this case only a pointer is held in the actual row of the table. The 
data is stored in a separate pool. In SQL databases you specify this type of storage 
by selecting the VARCHAR column type. Some databases also provide a memo 
or comment data type to implement this type of storage. For example, Access pro-
vides a Memo type, which can hold large chunks of text. The Memo type can hold 
up to 64,000 characters, whereas text columns are limited to 255. For most sys-
tems you should always use the VARCHAR instead of fixed-width CHAR to store 
a text column. The exception is that small text columns, such as a two-letter state 
code, will be slightly more efficient if you use fixed width.
Note that numeric data is almost never stored as characters. Instead, it is stored in 
binary format to save space. The numbers used in these figures are just for illustra-
tion. You rarely have to worry about the width of numeric columns; they typically 
use either 4 or 8 bytes of storage.

One of the more challenging problems is storing variable-length string data, 
particularly when the lengths can vary widely, such as comments. If the system 
allocates a fixed amount of space, every row would be at the maximum value, 
and most of the space would be wasted. On the other hand, if the system allo-
cates space for each row dynamically, then some rows will be shorter than others. 
This approach saves space, but makes it more difficult to handle modifications of 
the data. If the new data is longer than the old row, the system cannot just over-
write the old row. Some systems (e.g., Oracle) solve this dilemma by allocating 
data blocks to hold a group of rows. Each block contains a certain amount of free 
space. The DBMS uses this free space to store modified data that is longer than 
the existing row. In Oracle, you can control the amount of free space through two 
parameters: PCTFREE and PCTUSED. If the current data block is fuller than the 
PCTFREE value, no new rows are added to the block. The remaining space is 
kept for expansion of existing rows. See the Oracle Server Administrator’s Guide 
for details and suggestions on values for these parameters.

A972406.0029

A7518741.0018

A35110.004

DescriptionQOHPriceID

A972406.0029

A7518741.0018

A35110.004

DescriptionQOHPriceID

Dog Kennel-Extra Large

Cat Food-Can-Premium

Flea Collar-Cat

A35

A75

A97

Figure 12.18
Variable length columns. Text columns that can be variable should be stored as 
variable width (varchar). The DBMS stores a pointer to the data that is stored in a 
pool.



578Chapter  12: Physical Database Design

Image and Binary Data
Most DBMSs provide the ability to store binary data within the database itself. For 
example, you can create a column to hold a picture for each row. Unfortunately, 
no standards exist for defining these columns or using this data. Hence, if you use 
these features, it is difficult to convert your database to another vendor’s format. 
The data type varies depending on the DBMS: Access uses an OLE Object col-
umn, Oracle uses LONG RAW or BLOB (binary large object), SQL Server uses 
image. More importantly, the internal data format, and the storage and retrieval 
methods are different for each vendor. It is relatively easy to create and store data 
in these formats. The only problem is if you need to transfer data from one DBMS 
to another. Usually, the only answer is to retrieve each object one at a time, return 
it to its native format, and then store it in the new DBMS. It is a relatively painful 
process that you want to avoid.

From a performance standpoint, you will have to experiment with each applica-
tion to decide if it is worthwhile to use these binary data types. The advantage of 
storing binary data within the DBMS is that you gain the use of the concurrency 
protection and database backup facilities. The main drawback is the difficulty in 
accessing the binary data using other software. Most software applications (e.g., 
drawing packages) do not know how to store and retrieve data from your DBMS, 
so you need to create an intermediate program to handle the exchange. 

The alternative to storing binary files within the DBMS is to store them in a 
separate subdirectory, and then store only the file name within a text column in 
the database. This method is commonly used for Web-based applications. The Pet 
Store example uses this method to provide support with different databases.

Transferring Data with Delimited Files
If you need to transfer data to a different database or a different application, you 
often have to use a delimited file. It is often called a delimited file because the 
table is converted to standard text characters (no binary numbers). As shown 
in Figure 12.19, each column is separated by a specific character or delimiter. 
A comma is a common delimiter. Because text data might contain commas or 
other special characters, text columns are enclosed in quotation marks. Spaces are 
eliminated unless they are in quoted text columns. Missing data is simply not dis-
played, so if a column is missing, the data row would have two adjacent commas 
(e.g., 110,,“Dog …”). This technique is not very useful for permanent use within 
a database. Every time it retrieves a row, the DBMS has to search for the commas 
and interpret the quotes to find a particular column. However, it is a good way to 
transfer data between different systems. It is also good at saving space—particu-
larly when many columns are missing.

4, 110, , "Dog Kennel-Extra Large"
18, 1, 1874, "Cat Food-Can-Premium"
29, 6, 240, "Flea Collar-Cat"

Figure 12.19
Delimited files. Each column is separated by a special delimiter character (,). Text 
columns are quoted to protect spaces and hide special characters like commas. This 
method is often used to transfer files to different databases or other applications.



579Chapter  12: Physical Database Design

Data Clustering and Partitioning
How can you improve performance by specifying where data is stored? An-
other way to improve database performance is to control the location of individual 
components of the table. For example, some parts of your application may always 
be retrieved together, so performance might improve if the two sets of data are 
retrieved together. On the other hand, sometimes you collect data that might not 
be accessed very often. It is still worthwhile to keep the data, but it might be better 
to store it on cheaper, slower drives. A third technique exists to speed up access 
to data by spreading it across several disk drives. All three situations are related 
in that they involve partitioning data and controlling where it is stored to improve 
performance. The key to understanding these methods is to remember that me-
chanical disk drives are slow. Every access to the disk that can be avoided will 
improve the application’s speed.

Data Clustering
To improve general system performance, most computers retrieve data in chunks. 
They try to anticipate the next demand and read ahead of the current request. If the 
system guesses correctly, the next data request can be filled from RAM, which is 
substantially faster than waiting for the drive to spin around again.

Database systems designers have used this concept to improve performance of 
database applications. Some parts of an application are generally used at the same 
time. Consider the example presented in Figure 12.20. Generally, when users look 
at order items, they also want to see the related data stored in the order table. By 
storing all the data for Order 1123 in the same data block, the data can be retrieved 
in one pass. The application will run faster because it avoids a second trip to the 
disk drive.

If you are using a DBMS that supports data clustering, you can improve perfor-
mance by identifying data that is commonly accessed together. To create a cluster, 
you need to specify the tables involved and the key columns that link those tables. 

Order
Order #1123
Odate
C# 8876

Order# 1123   Item #240  Quantity  2
Order# 1123   Item #987  Quantity  1

Order
Order #1124
Odate
C# 4293

Order# 1123   Item #078  Quantity  3

Figure 12.20
Data clustering. Order and OrderItem data are usually needed at the same time. 
By storing them close to each other, the computer can retrieve them in one pass. 
Clustering the data improves application speed by reducing the number of disk 
accesses.



580Chapter  12: Physical Database Design

The DBMS then automatically stores and retrieves the related data in the same 
cluster. Only some of the large transaction-oriented database systems support 
clustering. For example, Oracle has a CREATE CLUSTER command to define 
the tables and key columns.

Data Partitioning 
Another situation that commonly arises in business applications is that some data 
is used more frequently than other data. Even in the same table, you might collect 
data that is used only occasionally. For example, a basic customer table could con-
tain information on customers who have not placed orders for several years that 
the marketing department wants to keep. Because the data is rarely used, it would 
be nice to move it to a cheaper storage location.

As shown in Figure 12.21, this situation would involve a horizontal partition. 
Some of the rows (currently active customers) will be stored in one location, and 
other rows (inactive customers) will be stored in a different location. The active 
data will be stored on high-speed disk drives. In extreme situations, some of this 
data could be stored on solid-state RAM drives, which hold all data in semicon-
ductor RAM. On the other hand, the less-used data can be placed on slower-speed 
optical drives. The optical drives can hold huge amounts of data at a low cost; 
however, their access speeds are somewhat slower.

The key to making this approach work is that after you set it up, a good DBMS 
automatically retrieves the data from the appropriate drive. The user does not have 
to know that the data is stored on different drives. A single SQL query will retrieve 
the data—wherever it is stored. The high-end DBMSs provide several methods 
for determining the partition. Common methods include range partitioning (e.g., 

Figure 12.21
Horizontal partition. Data for currently active customers is stored on high-speed 
drives. Older data is moved to cheaper, slower drives. The user does not need to 
know about the split because the DBMS automatically retrieves the data.

High speed
SSD

Lower cost
disk

Customer# Name Address Phone
2234 Inouye 9978 Kahlea Dr. 555-555-2222
5532 Jones 887 Elm St. 666-777-3333
0087 Hardaway 112 West 2000 888-222-1111
0109 Pippen 873 Lake Shore 333-111-2235

Active
customers



581Chapter  12: Physical Database Design

specify a range of ID values) and list partitioning (e.g., list the key values that fall 
into each partition).

Vertical partitioning uses the same logic. The only difference is that with 
vertical partitioning, some columns of data are stored on a faster drive, whereas 
others are moved to cheaper and slower drives. Figure 12.22 shows how a prod-
uct table might be split into two pieces. Basic business data used in transactions 
is stored on a high-speed disk. Detailed technical specifications and images are 
stored on high-capacity optical disks. Most day-to-day operations will use the ba-
sic data stored on the high-speed drive. However, the detailed data is readily avail-
able to anyone who needs it. The only difference is users will wait a little longer to 
retrieve the data on the slower drive.

In theory, data can be partitioned using any DBMS. Simply define two tables 
that can be joined by a common key. Then store each table on the appropriate 
drive. The difficulty with this approach is that anyone who wants to use the data 
will have to know that it is stored in different tables. You can circumvent this issue 
by building a query that automatically combines the tables. Then users can pull 
data from the query without having to know where each piece is stored.

In practice, horizontal partitioning is often used to split data so that it can be 
stored in locations where it will be used the most. For instance, you might split 
a customer table so that each regional office has the set of customers that it deals 
with the most.

On the other hand, vertical partitioning is useful for limiting the amount of data 
that you need to read into memory. If some columns are rarely used, they can be 
stored in a separate table. Overall performance will improve because the DBMS 
will be able to retrieve more of the smaller rows.

Figure 12.22
Vertical partition. Technical data and images that are not accessed very often can be 
stored on a high-capacity, low-cost, but slower hard drive or even an optical drive.

High speed
SSD

Low cost
disk

Item# Name QOH Description TechnicalSpecifications
875 Bolt 268 1/4” x 10 Hardened, meets standards ...
937 Injector 104 Fuel	injector Designed 1995, specs . . .



582Chapter  12: Physical Database Design

Managing Tablespaces
How does a DBA control file storage? Each vendor provides different methods 
to monitor and control database performance. These tools are a major selling point 
for each vendor. Smaller systems like Microsoft Access provide only limited con-
trol over the physical storage of data. System developers generally use the storage 
methods that are appropriate for the most general situations (B+tree). You control 
column storage by the data type you assign.

Larger systems like Oracle provide a variety of tools to help evaluate and man-
age the performance of the database. For example, Oracle sets clustering and 
provides hashed access with the CREATE CLUSTER command. Indexed files 
can also be partitioned and clustered. Oracle database performance can also be 
tuned with various parameters. For example, the PCTFREE and PCTUSED op-
tions specify how tightly the data should be packed into the defined space. Various 
STORAGE parameters specify how the database should be expanded as it grows. 
Tables and indexes are stored in tablespaces, which are areas that the database ad-
ministrator allocates on a drive. By specifying the location of the tablespaces, you 
can allocate data on specific drives. You can improve performance by storing each 
element in a tablespace on a different drive. For example, large databases should 
store transaction and recovery logs and main data on different drives.

Sally’s Pet Store
What performance issues might arise at Sally’s Pet Store? At the start the Pet 
Store database should have few performance problems. Beginning in one store, an 
ambitious system might store the database on a central computer, which is con-
nected to three or four other computers in the store. Reasonably up-to-date per-
sonal computers should be able to handle the initial database. As accounting func-
tions are added, or if the system needs to expand beyond a single store, then the 
system would have to be reevaluated.

At the current time, there should be few concerns about performance tuning. 
However, to improve performance, all primary keys should be indexed. Microsoft 
Access generally defines these indexes by default, but you should examine each 
table to be sure. Be careful when assigning indexes to columns that are part of a 
concatenated key. The index on a partial key must allow duplicates.

One potential area for problems is the City table. This table currently holds 
basic data on cities throughout the United States. Performance could be improved 
by reducing the number of cities—on the assumption that most customers would 
come from the surrounding communities. However, if you choose to keep the data, 
you can improve performance by thinking about how the table will be accessed. In 
particular, it is often searched by ZIP code. Similarly, because users often want a 
sorted list of the cities, it would be useful to index the City column. Are there too 
many indexes for one table? You could test the performance of retrievals before 
and after adding the indexes. However, note that the City table is predominantly 
used for retrieval and rarely used to add data. Hence building additional indexes 
makes sense.

The same situation probably exists for the Merchandise table. Most applica-
tions and users will retrieve data from the Merchandise table, with few updates, 
deletions, or insertions. Hence you might build additional indexes on that table.

For now, partitioning and clustering are not warranted. Over time, as the busi-
ness expands, you might want to move some of the older data to less expensive 



583Chapter  12: Physical Database Design

storage devices. For instance, data on animals sold more than 5 or 10 years ago 
will probably not be used often and could be placed on slower CD-ROM drives. 
Similarly, inactive customer data, and older order data can be moved from the pri-
mary tables. The exact dates will depend on the cost of storage, discussions with 
Sally, observation of retrieval patterns, and legal needs.

Summary
Large application databases sometimes need to be fine-tuned to improve their 
performance. Some systems provide control over how the data is stored and re-
trieved. Three basic types of controls can be used to determine (1) how table rows 
are stored and retrieved, (2) how individual columns are stored, and (3) how data 
is clustered or partitioned.

The primary choices for storing rows of data are B+tree indexes, hashed-key ac-
cess, and sequential files. The method depends on how the data is used in terms of 
the standard database operations. The most challenging operations are searching 
for random entries and adding new data to the table. The B+tree approach is the 
most common because it provides the best overall access for a variety of situa-
tions. In particular, it provides reasonably fast random access, good sequential re-
trieval, and good performance for inserting and deleting rows of data. In contrast, 
the hashed-key approach provides high-speed random access to any data element, 
but it is poor at retrieving data sequentially. Sequential files are rarely used, be-
cause although they use a minimum of space, they provide weak access to random 
rows of data.

Most DBMSs provide some control over how individual columns can be 
stored. The most common feature enables developers to control the storage of text 
data. Large text columns should be stored in varying-character columns instead 
of fixed-width columns. You should also be familiar with using delimited files for 
transferring data to different systems.

Some systems can cluster data in common locations on the disk drive. This ap-
proach improves performance by enabling the disk drive to retrieve related data 
in one pass. Another useful technique is to partition data so that data that is used 
less often can be moved to less expensive, slower disk drives. RAID systems pro-
vide another performance gain by splitting data and storing it on independent disk 
drives within the same system. The RAID drives can store and retrieve data sub-
stantially faster than a single disk drive can. RAID drives can also provide auto-
matic backup by storing each component on two different drives.

Be careful when attempting to improve the performance of an application. 
Changes that help one area can adversely affect other operations. This trade-off is 
important when creating indexes for columns in a table. Indexes tend to improve 
data retrieval but slow down the processing when data is added to the table.



584Chapter  12: Physical Database Design

Key Terms

address
bitmap index
degree
depth
direct access
fixed-width
hashed-key
horizontal partition
index

leaves
node
offset
pack
pointer
root
VARCHAR
variable length
vertical partition

Review Questions
1. What basic data operations are performed on tables?
2. What are the primary data storage methods for tables?
3. What are the strengths and weaknesses of sequential storage?
4. How do linked lists solve insert and delete problems?
5. What are the strengths and weaknesses of indexed (B+tree) storage?
6. What are the strengths and weaknesses of hashed (direct access) data 

storage?
7. How does data clustering improve database performance?
8. How does data partitioning improve database performance?
9. How is storage different for CHAR versus VARCHAR data types?

A Developer’s View
As Miranda’s problems indicate, database performance can become an impor-
tant issue. Performance problems should be anticipated and solved as early as 
possible in design and development. You do not have to be intimately familiar 
with how the DBMS stores data. However, you do need to know which options 
are available to you. With many systems, the most important control you have is 
in choosing which columns to index. Sometimes you can choose the exact stor-
age method. You need to understand the strengths and weaknesses of the various 
methods so that you can choose the method that best fits your application’s needs. 
For your class project, you should identify the columns that should be indexed. 
You might have to generate sample data and compare processing time for various 
operations.



585Chapter  12: Physical Database Design

Exercises
1. Using the documentation for one DBMS, write the commands to create a 

table using a hashed-key index on an integer primary key column.
2. Based on the sample data in Figure 12.10, write the logic for the code to 

insert a new element in a linked list.
3. Research the documentation, DBAs, magazine, or Internet sources and find 

two methods or tricks that can be used to improve performance of your 
DBMS. Identify the specific problem the hint is designed to solve.

4. Create a B+tree (degree 3). Show each final tree.
a) The base tree holds the following key values: 1038, 1164, 2314, 3678, 

4164, 5931, 6104, 7368, 7547, 8442, 8556, 8777, and 9114.
b) Add the key value 8655.
c) Add the key value 2715.
d) Add the key value 10911.
e) Add the key value 2941.
f) Delete the key value 9114.

5. Draw a linked list.
a) Start with the following key values: 341, 492, 561, 678, 781, and 856.
b) Show how to insert the key value 603.
c) Show how to delete the key 781.

6. Create a hashed storage example. Use a prime number of 53. Show the 
storage of the following numbers: 781, 467, 198, 435, 351, 782, and 149.

7. Write the commands to partition a Customer table based on the CustomerID. 
Older data has lower values for CustomerID, so split the table into three 
partitions based on values of 10,000 and 20,000.

Sally’s Pet Store
8. The basic version of the database is relatively small and there should not 

be any current performance problems. However, if the company expands 
into several cities with multiple stores, performance could become more 
important. Outline a plan for how you could expand the database to handle 
this situation. Identify the DBMS software you would choose.

9. Go through the list of tables and classify them into two groups: (1) 
Transaction tables that receive many updates, and (2) Lookup or analytical 
tables that are used in transactions but are seldom updated, so they can 
include more indexes. 

10. Copy the City table and remove all of the indexes from the copy. Create a 
query that counts the number of customers from each state using the original 
City table. Create a second copy of the query that uses the copy of the City 
table. Run both queries and comment on the performance of the two queries.



586Chapter  12: Physical Database Design

 Rolling Thunder Bicycles
11. Make a copy of the Rolling Thunder database. Write SQL statements to 

perform the following operations on the Bicycle table: (a) add a row, (b) 
delete a row, (c) select all rows, and (d) write a program to change one value 
in every row. Write four short programs to perform these operations in a loop 
that repeats at least 100 times. Run the programs and record the time it takes 
to perform the operations. Next, index every column in the Bicycle table and 
rerun your tests. Record and analyze your results.

12. Examine the tables and the usage of each table in the Rolling Thunder 
application. Identify the primary uses of each table in terms of the table 
operations described in this chapter. Use this list to identify desired indexes 
and appropriate storage methods for each table if the database becomes large.

13. Examine the tables in Rolling Thunder and identify which tables should be 
clustered. Which tables could gain from partitioning? If the application is 
expanded, what new data could be added that might gain from partitioning?

Corner Med 
14. Examine the tables and the usage of each table in the Corner Med database. 

Assume the database is going to become relatively large when it is used at 
multiple locations. Identify the tables that are primarily transaction based 
versus the lookup and analysis tables. Use these lists to specify additional 
indexes that might be added (or removed) to improve performance. What 
other options could be used to improve performance?

15. Assuming the company has operated for five years, how would you partition 
the data to reduce storage needs and improve performance?

16. If the company decides to digitize other medical records (x-rays, photos, 
lab results, prescriptions, and so on), what performance problems can be 
expected? How will you minimize these issues?

Web Site References

http://www.sql-server-performance.com Hints	on	improving	performance	for	SQL	
Server.

http://docs.oracle.com/cd/B19306_01/server.102/
b14211/toc.htm 

Oracle	performance	tuning.

http://www.bluerwhite.org/btree/ General	B-tree	information	and	coding.

Corner
Med

Corner
Med

http://www.sql-server-performance.com
http://www.bluerwhite.org/btree/


587Chapter  12: Physical Database Design

Additional Reading
Baeza-Yates, R. and Ribeiro-Neto, B. Modern Information Retrieval, Reading, 

MA: Addison-Wesley, 1991. [Computer science approach to storing and 
retrieving data, includes Web access and multimedia.]

Goetz, G., Modern B-Tree Techniques, Boston: Now Publishers, 2011. [Basic 
textbook on B-tree processing.]

Korfhage, R., Information Storage and Retrieval, New York: Wiley & Sons, 
1997. [Summary of data storage methods.]

Loomis, M. Data Management and File Processing, Upper Saddle River, NJ: 
Prentice-Hall, 1983. [In-depth treatment of data storage issues such as 
B-trees.]

Dunham, J. Database Performance Tuning Handbook, Berkeley: McGraw-Hill, 
1997. [In-depth treatment of improving your application’s performance.]



588

What You Will Learn in This Chapter
•	 Why would anyone need a non-relational database?
•	 What	are	the	main	features	of	non-relational	databases?
•	 How are databases designed and queried using Cassandra?
•	 How	does	cloud	computing	benefit	key-value	pair	databases?

Chapter Outline

Non-Relational Databases
13Chapter

Introduction, 589
Two-Minute Chapter, 591
Non-Relational Databases: Background, 
592

Key-Value Pairs, 594
Sparse Data and Flexible Columns, 595
Distributed Data, 597
Consistency and Integrity, 598
Optimizing Data Storage for Queries, 
600

Cassandra, 601
Installation Issues, 601
Pet Store Web Example, 602
Database Design, 603
Primary Keys, 605
Initial Queries, 607
Indexes, 609
Querying Tables with Compound Keys, 
612
INSERT and UPDATE, 613

Cloud Databases, 614
Summary, 616
Key Terms, 618
Review Questions, 618
Exercises, 619
Web	Site	References,	621

Additional Reading, 621



589Chapter  13: Non-Relational Databases

A Developer’s View
 Ariel: Why the puzzled look, Miranda?

 Miranda: Well, my company built this great 
Web site that lets customers post 
comments, rate products, and 
interact with each other…

 Ariel: Yes, that sounds fairly standard 
today.

 Miranda: But, there are millions of 
customers! We ran some tests 
with sample data and it runs really 
slowly. Plus, it looks like we would 
need a huge server, and the DBMS 
license fees will be enormous—
just to provide a free service to 
customers.

 Ariel: Wow! That does sound like a 
problem. Are there any other 
options.

 Miranda: Yes, that is the confusing part. Big 
companies like Facebook have 
developed non-relational DBMSs 
that emphasize scalability and 
speed. Some are even open-source 
so we don’t have to pay license fees 
for each copy. All of which is great, 
but these things are really new and 
they keep changing, so it is difficult 
to figure out how to structure the 
data and write the code.

 Ariel: Hmm. That does sound tricky. But 
it sounds like it is useful to learn the 
basics to help you decide when to 
use the tools.

Introduction
Why would anyone need a non-relational database? The importance of the 
Web has three major impacts on technology systems: (1) The need to run 24-7 
(24-hours a day, 7-days a week); (2) The ability to handle relatively complex ob-
ject data (pictures, long text, and so on); and (3) Handling data for millions of 
users. In terms of Web 2.0 (Web services and social interaction), the other key 
aspect is that companies provide these services with minimal or no fees on cus-
tomers. The large scale of the applications causes several problems with perfor-
mance, reliability, and cost. This last element has led large Web firms to develop 
open source tools to handle many computing aspects in an attempt to hold down 
licensing costs. Along the way, they decided to use a different data model to im-

Getting Started
Web applications tend to handle data in a relatively unique pattern: Most 
data is exchanged as key-value pairs. Starting with data on forms passed 
to a Web server, the data is coded with a key (such as the textbox name) 
and the corresponding value. Large Web sites also struggle with han-
dling data for millions of users. So new systems have been defined to 
store and retrieve these individual pieces of data as quickly as possible. 
The Cassandra project is one of the most popular. It focuses on the abil-
ity to store data across multiple servers; both for performance and to 
minimize disruptions if one node fails. The data design for these systems 
is not normalized, and Joins are not supported. This chapter presents the 
basic elements of design and data retrieval in non-normal databases.



590Chapter  13: Non-Relational Databases

prove performance and reliability. These newer systems do not use relational data 
storage. The early versions had minimal support for data storage and retrieval, so 
some people referred to them as NoSQL databases. But it is better to refer to them 
as non-relational, because the major differences lie in the data model and stor-
age, not in the query language. Of course, as Chapter 1 points out, non-relational 
systems have been around longer than relational, so how are these new systems 
different from the old tools? The answer to that question revolves around two key 
features: distributed databases and key-value data storage.

The new DBMSs are evolving rapidly. Most of the tools were originally de-
veloped by specific companies for their particular needs (such as BigQuery (Big-
Table) and MapReduce by Google, Hadoop (HBase) by Yahoo, and DynamoDB 
by Amazon). The open-source community then developed variations on the tools. 
Some similarities exist across the tools, but in the end they are all different. As of 
2013, some Web sites list 150 variations of NoSQL tools. To illustrate the con-
cepts, this chapter explains the general concepts but focuses on one DBMS: Cas-
sandra. Cassandra is in the top 3 list for non-relational DBMSs in terms of popu-
larity or usage. It is also one of the best performing and has ongoing development 
with installation files for several operating systems (including Amazon EC2). It 
also has an interactive query language which makes it possible to explore the data 
without detailed programming. However, any real-world application would re-
quire programming, which is also supported through several languages.

Chapter 11 introduces how distributed databases can improve reliability and 
scalability. Data storage in the non-relational systems was built from the ground 
up to run as distributed systems. In particular, Cassandra operates as peer-to-peer 
distributed nodes. The system is designed to be installed on multiple servers, in 
multiple clusters, and across multiple data centers—which could be located any-
where in the world. Any piece of data is replicated across multiple servers, and 
typically each server holds only a portion of the data. If any node fails, the data 
is available from other nodes. As the database grows, more server nodes can be 
added to the clusters to scale the operations linearly. 

The other defining aspect to the new systems is that data is stored as key-value 
pairs. The key can be any type of data, but must be unique. The data value can be 
any data element and might be a complex object or collection of items. The key-
value concept is important in Web-based applications. For example, each text box 
on a Web-browser form has a unique ID. When the user submits the form to the 
server, the browser packages the data and sends it as pairs of the form: ID=value. 
The browser and Web server programming tools are designed to handle these 
pairs of data. So, it made sense to build a DBMS that uses this same concept to 
store and retrieve the data from files. The key-value concept is similar to the pri-
mary key in a relational DBMS, but most of the new systems are far more flexible. 
In particular, the new systems routinely violate the definition of first normal form 
(storing atomic, single-valued data in one cell). The data stored can be a single 
item (such as a last name), but it can also contain repeating items such as multiple 
e-mail addresses. 

Retrieving data is quite different from the SQL approach. The most important 
limitation is that the query systems do not support any type of table JOIN—which 
is the main reason for the NoSQL name. Data can be retrieved from only one table 
at a time—by providing the key data. Some additional queries can be supported 
by predefining indexes on the desired search columns. But queries are limited to 
improve performance. 



591Chapter  13: Non-Relational Databases

This chapter explores these fundamental differences between Cassandra and 
traditional systems. It explains how the database model design is different and 
how to handle common situations. A small example of the Pet Store is used to il-
lustrate data storage for a simple Web application. You can download and install 
a copy of Cassandra from the Web (www.DataStax.com is recommended), and 
then download and install the sample Pet Store Web database to test the basic 
concepts.

Two-Minute Chapter
Data storage is the defining difference between traditional relational DBMSs and 
the new non-relational systems. To improve performance, the new systems require 
that indexes be defined for every item that needs to be queried later. So the data 
storage model must be defined in terms of the queries that will be used. The stron-
gest limitation is that the query systems do not support any type of JOIN state-
ment. Data is retrieved from one table at a time. Retrieving matching data from a 
second table requires writing code to extract a key for the second table and then 
writing another query to obtain the data from the second table. For even faster per-
formance, data is often duplicated. For example, to avoid a lookup for Customer 
Name, many designers would store the Customer Name column along with the 
transaction data so it can be retrieved immediately. The assumption is that disk 
space is cheap, but Web response delays are expensive because people will leave 
a slow site.

The DBMSs do not provide referential integrity, so data entered in one table 
might not exist or match in a second table (unless application code is written to 
maintain integrity). Similarly, there is no guarantee that each node in the system 
has the exact same data for each item. A node or connection might fail or updates 
might be slow so a node might have older data. The goal of the new systems is 
to emphasize performance over strict data integrity. In their defense, an argument 
has been put forward that it is probably impossible to guarantee data integrity in a 
distributed system—without severe performance issues. Interestingly, Cassandra 
provides the ability to specify the level of consistency desired with each query. 

The issue of handling one-to-many relationships is still important, and in many 
cases it makes sense to create separate tables to handle them. But the new systems 
often encourage storing multi-valued items in a column or cell (which violates the 
first normalization rule). Cassandra supports the definition of sets and lists within 
a single column. Again, the point is that anything stored with the original row key 
will be retrieved immediately. So any data that is used together should be stored 
together. 

In Cassandra, a keyspace is similar to a schema in that it holds all of the tables 
for a single application. A Table holds a collection of rows, and each table must 
have a primary key—preferably based on a single column. One-to-many relation-
ships are handled by defining two columns in a compound primary key. A non-key 
column can hold single-valued data, or sets, lists, and maps can be used to store 
repeating data.

Database design is more flexible than the relational model, with few strict rules. 
Start by normalizing the data into tables and then decide how to duplicate or com-
bine data to improve performance. Ultimately, the design is based on the queries 
that will be needed by the application. 

Cassandra uses the CQL query language to define the database structure and 
retrieve data. Additional programming (CLI) tools are available but CQL provides 

http://www.DataStax.com


592Chapter  13: Non-Relational Databases

commands that are similar to SQL—without the JOINs and with severe restric-
tions on retrieving data. The CREATE TABLE command is similar to SQL (with 
different options). The SELECT command is used to specify columns and the ta-
ble name. A WHERE condition can be used but it can only include columns that 
are in the primary key or supported by a secondary index.

Non-Relational Databases: Background
What are the main features of non-relational databases? Technically, a non-
relational database could be any data storage method that does not support the 
data normalization rules. In fact, the earliest data storage methods were flat files 
and hierarchical databases, which were then expanded into network databases 
(which had nothing to do with LANs or distributed databases). In some ways, the 
resurgence of non-relational systems is a continuation of the arguments for those 
earlier data storage methods. A primary argument was that data stored in non-rela-
tional systems could be retrieved faster. And in some cases, that answer was true. 
What Codd successfully argued is that the relational system separated the data so 
that it was stored more efficiently and provided support for ad hoc queries. The 
relational model also provides tools to ensure data integrity and consistency. So 
overall, it provides the best performance across a wide range of uses.   

However, the relational approach is not necessarily the absolute fastest way to 
store and retrieve individual pieces of data. In particular, if data is always stored 
and retrieved in a specific way, it can be considerably faster to optimize the data 
storage to match the application needs. For instance, Chapter 12 explains the 
hashed or direct key access method. Given a unique key, its value can be hashed 
or converted into a specific location address and the data associated with that key 
can be stored and retrieved almost instantly. But, the application has to always 
store and retrieve the data using the key. The current non-relational systems utilize 
this hashed-key approach to store and retrieve data—with a few additional twists. 

In a Web application environment data is often collected and transferred in key-
value pairs, so it makes sense to store data using the key. Data related to individu-
als or to specific items is also easy to identify with unique keys. Data storage and 
retrieval can be optimized for these transactions. The data storage will fail if a 
manager wants to do a more complex search; but data could be extracted and 
stored in a data warehouse for purposes of data mining or complex searches.

The problem with Web applications is that users expect instantaneous results. 
In the early years, Google asked users if they would prefer 10 results or 30. Most 
people opted for the larger number. Until Google ran actual tests and found that 
people were dissatisfied with larger results page—as much as a 20 percent drop 
in usage. The reason: it took a half-second less time to generate the smaller page. 
Marissa Mayer (then at Google) gave a couple of talks with summaries on the Web 
such as http://www.zdnet.com/blog/btl/googles-marissa-mayer-speed-
wins/3925. The point is that timing can be critical on Web pages, and as the num-
ber of users and amount of data increase, delay times can increase exponentially. 
It is far better to scale up the servers linearly as the number of users increases. 

To improve speed, non-relational systems emphasize hashed-key data access, 
and storing data on distributed servers. Multiple servers are important for scale—
adding new servers should improve the overall performance of the data storage. 
The Web also has geographic implications because of the location of users and 
bandwidth constraints. Distributed systems are useful because the data can be 
placed around the world where local sites can respond faster to user requests. 

http://www.zdnet.com/blog/btl/googles-marissa-mayer-speed-wins/3925
http://www.zdnet.com/blog/btl/googles-marissa-mayer-speed-wins/3925


593Chapter  13: Non-Relational Databases

The challenge with distributed systems lies with maintaining data integrity. 
Specifically, how can the DBMS ensure that all nodes in the system have the same 
up-to-date copy of data? Relational systems emphasize the importance of data in-
tegrity. Most use locking mechanisms and transaction logs to ensure that data is 
always accurate across the entire system. But these mechanisms add delays to 
processing data—particularly storing or updating values. And, in the end, it is still 
hard to guarantee that every node will always maintain consistent data—particu-
larly if network connections fail.

So, the simple difference with non-relational systems is that they focus on per-
formance and worry less about data consistency. To improve performance, they 
also limit the ways in which the data can be queried. Consequently, the database 
design ultimately must be based on identifying exactly how the data will be used 
and queried. Figure 13.1 shows the main conceptual differences between a table 
in a relational database and in a key-value pair database. Relational tables have 
fixed columns with atomic, single-valued cells. Data for rows is retrieved via an 
indexed primary key, but keys can use several columns. For key-value tables, a 
primary key is almost always a single column and data is primarily retrieved only 
by a specific key. The rest of the row value can hold almost anything. In table 
terms, the columns are treated as another set of key-value pairs. So new columns 
can be added to any row at any time, simply by adding new key-value pairs to the 
row data. But, searching for data by any column other than the key requires creat-
ing a new index on that column.

CID LastName FirstName Email
101 Brown Bobby BBrown@gmail.com
102 Jones Jackie JJackie@live.com
103 Piste Paula SkiFast@yahoo.com

Relational table: Primary key (with index).
Atomic cell data, JOINs to other tables.
Fixed columns, all columns searchable.

Key Value
91e83b31... LN=Brown, FN=Bobby, E=BBrown@gmail.com
4f763ab4... LN=Jones, FN=Jackie, E=JJackie@live.com
754d4a... LN=Piste, FN=Paula, E=SkiFast@yahoo.com

Key-value	pairs.	Row	key	is	unique	and	defines	storage	partition.
Row	key	is	the	default	way	to	retrieve	a	row.
Searching by other columns requires a secondary index.
Data value can be almost anything. 
Columns	are	treated	as	more	key-value	pairs	and	are	flexible	by	row.

Figure 13.1
Relational v. Key-value pair table. Both use indexed primary keys to locate a row, 
but columns in a relational table are fixed and hold single, atomic values. With key 
values, rows are retrieved with a row key and the value can be almost anything; 
including more key-value pairs that are essentially columns.



594Chapter  13: Non-Relational Databases

Some non-relational systems also provide more flexibility in defining tables—
particularly columns. Primary keys identify rows of data, but with some tools it 
is possible to put anything into a row. Which means that each row might hold 
different columns and even different types of data. Early proponents of the non-
relational approach argued that this flexibility made it easy to expand the database 
to add new columns and new data later. In a world of Web applications that start 
small and then add features with each new version, there is some appeal to this 
flexibility. On the other hand, putting different columns and data into every row is 
a programmer’s nightmare because the code has to continually check to see what 
data exists for each row. In most cases, it is safer to simply add new columns to 
tables and ensure that each row is at least somewhat consistent.  

Key-Value Pairs
A key-value pair is probably the simplest data structure available for storing and 
locating data. Each item to be stored is identified with a key and the key is the 
only data needed to find the value item. The key could be any data type. A long 
integer is probably best to ensure that the values are unique, but text values can be 
converted into numbers through a hashing algorithm. As noted, Web forms make 
heavy use of key-value pairs, so most Web servers and other tools also use them. 
For instance, a basic customer Web form would send pairs of data to the server 
based on the text boxes, of the form: LastName=’Jones’, Email=’John@Jones.
com’, and Category=’Student’.

For storing data in a database, the concept is similar; but a database table has 
rows and columns. So each row needs to have a unique key entry. In the case of 
Customer data, it would make sense to invent a CustomerID to use as the primary 
key. So a data row for a specific customer might be stored with a value for Cus-
tomerID of 10938374. The remaining “columns” of associated data (FirstName, 
LastName, Email, and so on) would be stored in the space identified by the pri-
mary key value. Figure 13.2 gives an example of the key-value concepts. The 
primary key is similar to most other lookups, where the key is converted into a 
storage location. Some tools use indexes, others might use a hashed-key conver-
sion directly to the physical address. 

Figure 13.2
Key-value pairs for identifying rows and for extracting column data within a row. 
The row primary key is just a direct/hashed-key lookup. The column storage shows 
how key mappings are used to support flexible rows that can hold different data. 

10938374 LastName=‘Jones’, FirstName=‘John’, … 

29274367 LastName=‘Brown’, FirstName=‘Barb’, … 

38739415 LastName=‘Crow’, FirstName=‘Candy’, … 

Primary Key

Row identifier/hash Column Key-value pairs



595Chapter  13: Non-Relational Databases

The interesting twist with non-relational systems is that they might also store 
the column or cell data using key values where the key is the name of the column. 
Instead of allocating space for each column, the data storage consists of a mapping 
array that retrieves a value based on the key. With the sample data, data might be 
retrieved by specifying CustomerID=10938374. Then the application requests the 
value on that row associated with the key of ‘LastName’ or ‘FirstName’.

Obviously, the row keys need to hold unique values. The column names also 
have to be unique, but in most cases those are predefined. The challenge with row 
keys becomes more difficult in the distributed environment of most non-relation-
al systems. Think about the challenge of inventing a key number that has to be 
unique across all of the servers. A relational DBMS probably has a key-generation 
method that creates incremental values. It might store the latest ID values in a ta-
ble and then generate the next value on demand. However, this approach requires 
that all servers have access to the same consistent table data. The non-relational 
approach avoids enforcing consistency, so a different method is needed to create 
ID values. The most common approach is to use a number known as a universally 
unique identifier (uuid).  These numbers have been used for several years for 
similar purposes, so software exists to generate them reliably on almost any de-
vice. Microsoft has used a variation known as globally unique identifier or GUID, 
but an ISO standard now exists. By the standard, a uuid is a 128-bit number repre-
sented by 32 hexadecimal digits and written in standard form with hyphens, such 
as: 

71c1da88-88af-4217-aa41-332ea3d33ae9

Several methods have been defined to generate uuid values. The earliest ones 
(type: Version 1) used the MAC address of the computer’s network card and a 
measure of time. Because each network card is assigned a unique MAC address 
by the vendor, the UUID generated is known to be different from one generated by 
any other computer. Other methods also exist, including purely random numbers 
(Version 4), which could result in duplicates with a tiny probability; or (Version 
5) numbers generated with security hash algorithms. In any case, primary pro-
gramming languages all have algorithms to generate uuid values. The drawback 
to uuids is that they are a pain to type if you want to manually test a query. But 
they are necessary in distributed computing environments, and most of the time a 
programming language generates the value or retrieves it from an existing table.

Sparse Data and Flexible Columns
The second part of Figure 13.2 hints at how columns in non-relational systems 
are different from those in relational tables. In a relational DBMS, each table has 
a fixed set of columns and each row/column cell has exactly one value. Once the 
relational rules are discarded, it is easier to think of a row as just a collection of 
bytes. The row key retrieves those bytes, but the application can store or retrieve 
almost anything in that space. Most systems define the column space as a data 
map which is just another set of key-value pairs.  

One benefit to the mapping approach arises for data with many missing entries, 
or sparse tables. Each row only stores the data columns that exist so if much of 
the data is missing no space is wasted. For instance, one Customer entry might 
have values only for LastName and FirstName, so the map contains only those 
two entries. Another row might have several items, including a photograph. Ap-
plication do have to be slightly cautious and test for missing values when request-
ing items within a row. 



596Chapter  13: Non-Relational Databases

Some systems and some developers take this approach to the extreme and claim 
that the flexibility enables them to store different key items in every row. For ex-
ample, one Customer row might contain entries for LastName, FirstName, and 
Phone, while another could hold data for FamilyName, Nickname, and Skype ad-
dress. Even if a system does support this level of flexibility, it should be avoided. 
Changing column names/keys means that every application needs to know all of 
the possible values and test for them within the code. Making data storage more 
“flexible” at the cost of making program code harder to write, read, and test is a 
bad tradeoff in most situations. 

Another approach to flexible column data is the ability to store complex data 
within a single cell (or column). For example, Cassandra supports set, list, and 
map data types. A set is an unordered collection, a list has an index order (1, 2, 
…), and a map is a collection of key-value pairs. Each of these can be used to 
store multiple entries in a single column for one row of data. They should be used 
only for small lists because the query system will retrieve every value at the same 
time. 

Figure 13.3 shows an example where a set or list might be used to enable cus-
tomers to enter multiple e-mail addresses or multiple phone numbers. For in-
stance, to store two e-mail addresses, a set could define 

E-mail = {‘John@Jones.com’, ‘JJones@gmail.com’}

A map uses a key to define the difference between the two addresses such as 
E-mail = {‘Home’ : ‘John@Jones.com’, ‘Work’ : ‘JJones@gmail.com’}. 

Collections support any data type and the map can contain any key definitions 
needed by the application. But, the application programmers need to remember all 
of the keys and handle them within the program, so the programming can become 
more complex and subject to more errors. In some ways, the collection types are 
not radically different from the relational DBMS. Most relational systems today 
support an XML data type which makes it possible to store complex data, includ-
ing lists and collections in a single column. And the same warnings apply to using 
the XML data types—they make the application programming more complex and 
harder to test and debug. 

Figure 13.3
Data collection map for e-mail addresses. Multiple values can be stored in the 
E-mail column, but the key-values are defined and handled by the application. Using 
collections is similar to using XML. It is more flexible but requires more application 
code to handle the data storage and retrieval details which increases the programming 
difficulty and probability of introducing errors.

10938374 LastName=‘Jones’, FirstName=‘John’, …
E-mail={‘Home’ : ‘John@Jones.com’, 

‘Work’ : ‘JJones@gmail.com’}

Primary Key

Row identifier/hash Column Key-value pairs



597Chapter  13: Non-Relational Databases

Distributed Data
The non-relational systems are built from the ground up to handle highly distribut-
ed data. Cassandra has a particularly interesting version because it is peer-to-peer 
instead of using a central server approach. Every server node in the Cassandra 
network is independent and shares data directly with other nodes. No single node 
coordinates or controls the others. Figure 13.4 shows the basic elements of the 
Cassandra network. A data partitioner defines a range of key values for each node. 
When the database is created, the designer specifies a replication level—3 in this 
example. Data is then written to the appropriate server based on the value of the 
key and replicated to the specified number of servers. Each node communicates 
with the others via a gossip channel to share status information. If a server fails 
to respond, it is moved from the active list and others pick up the lost key range. 
Similarly, when a new server is added, the key ranges are redefined and gossip is 
used to synchronize the data updates across the new server. 

Distributed data in Cassandra is actually much more sophisticated, but most of 
the details are not important to the design or queries so they are not covered in this 
chapter. Basically, servers can support virtual nodes which simplifies replication 
assignments. More interestingly, it is possible to incorporate the physical layout of 
the servers into the replication design. For example, servers located in the same 
rack are connected by high-speed networks and can quickly share data; but they 
are more at risk for collective failure (e.g., power or network). Nodes in a different 
data center might be a different geographical location, so data is more protected if 
spread across centers, but updates are slower. Cassandra data models support de-
fining these characteristics and the data partitioner optimizes the data replication.

Other systems have different features, and some rely on a central server to co-
ordinate data storage and status messages. With Cassandra, data queries and write 
operations can be connected to any node and the system will function the same 
way each time, even if one node crashes or becomes inaccessible. Most of the 
non-relational systems use some form of distributed data storage; both to provide 
data protection through replication and to improve performance by having mul-
tiple servers and multiple drives handling the data.

Figure 13.4
Cassandra data storage overview. Servers are configured as (virtual) nodes. They 
communicate with each other via gossip for status (every second). A data partitioner 
assigns data to an initial server based on key value. The replication parameter 
specifies the number of copies.

servers

000-200 201-400 301-600 601-800 801-1000

Replication = 3 Data: key=325

Gossip/status



598Chapter  13: Non-Relational Databases

In terms of physical computers, the server processing is important, but the data 
storage methods are more important. Because Cassandra automatically handles 
replication of the data, RAID 1+0 drives are not recommended. RAID 1+0 drives 
make physical replicas of data being written so if one drive fails the others can 
rebuild the content. But Cassandra already handles the replication so using RAID 
1+0 just wastes space. RAID 0 drives are still useful because they multiply the 
access speeds with physically independent disks. But high-end Cassandra imple-
mentations still recommend even faster solid state drives (SSDs) for all data 
storage. 

Other than performance and backup, the nice feature of the distributed systems 
is that they are invisible to the application. The application (writing and retrieving 
data) just issues queries and the DBMS handles all of the details automatically. Of 
course, setting up and monitoring the distributed network takes additional time. 
But, application transparency is important because the data storage can be res-
caled at any time without altering the application. 

Consistency and Integrity
Largely because of the distributed structure, one of the key aspects of non-rela-
tional databases is the limitations on consistency and integrity. A key strength of 
traditional relational systems are the built-in controls to ensure data consistency; 
which makes them valuable for business transactions. The problem is that abso-
lute consistency is difficult to guarantee in a widely distributed system. It would 
require that all nodes maintain communication during all updates. Worse, strict 
consistency can require that some transactions (reads and writes) be delayed until 
all nodes are consistent. But the point of a distributed system is that it should be 
able to handle short-term failures in some nodes and connections; and maintain 
high performance even under heavy load.

Figure 13.5
Cassandra tunable consistency. Developers can choose a consistency level for any 
write (or read) operation. The lowest level (ANY) has the least delays. The ALL level 
requires all replicas to be updated before continuing.

Level Nodes Description
ANY (lowest) 1 Write	will	still	succeed	if	a	hinted	

handoff	has	been	written.
ONE, TWO, THREE 1, 2, or 3 Write must be logged and committed 

to	the	specified	number	of	replica	
nodes.

QUORUM Replication/2 + 1 Write logged and committed to at 
least	half	the	replication	nodes.

LOCAL_QUORUM Same data center Same as quorum within the local data 
center.

EACH_QUORUM All data centers Same as quorum within all data 
centers.

ALL (highest) All replicas Write must be logged and committed 
to all replicas.



599Chapter  13: Non-Relational Databases

Non-relational systems relax the constraints on absolute consistency and allow 
nodes to be inconsistent—at least for a short period of time. Actually, in terms of 
read and write transactions, Cassandra provides the ability for developers to spec-
ify the desired level of consistency, calling it tunable consistency. As shown in 
Figure 13.5, write consistency specifies the number of replicas that need to return 
an acknowledgement of success. The lowest level (ANY) operates with the least 
delays. The highest level of consistency (ALL) requires all replicas to be updated 
and committed before continuing. It is similar to the consistency requirements in 
traditional relational systems. 

However, several consistency issues exist beyond read and write transactions. 
First, non-relational systems do not support referential integrity. The DBMS does 
not have a method to verify that foreign keys are valid. For example, a Customer-
ID entered into a Sale table could be wrong. Similarly, when a row is deleted from 
the Customer table, there is no automatic mechanism to delete the corresponding 
data in tables that use that data (cascade delete). So the programmer is responsible 
for maintaining data integrity.

A second consistency issue arises because non-relational designs often dupli-
cate data to improve performance. Consider the standard Sale and Customer tables 
again. Instead of relying on the CustomerID to look up the customer name in the 
Customer table, many designers will duplicate and store the customer name in the 
Sale table. That way the name (and other data) can be retrieved at the same time 
the sale data is read, without requiring an additional lookup in the Customer table. 
But again, the DBMS has no method to ensure consistency of data. Changing the 
address in one location does not affect the others. This action might have some 
use—the sales data could contain different addresses for a customer depending on 
when the sale was made. Many Web databases rely on keeping different values of 
data at different points in time. But users do need to remember that the data can be 
inconsistent at times.

Figure 13.6
Non-relational storage affects how data can be retrieved. Hierarchical systems stored 
and located data by starting at the top level and working down. Network allowed 
more flexibility by separating the tables and linking them through indexes that had to 
be built to support queries. Key-Value combines elements of both by using indexes 
on keys to locate individual rows. Any other searches require additional indexes.

Customers

OrdersOrdersOrders

Order ItemsOrder ItemsOrder Items

Hierarchical

Customers

Orders

Order Items

Network

Index/links
Customers

Orders + Customer

Order Items

ID

ID

Key-Value Pairs
IndexKeys



600Chapter  13: Non-Relational Databases

Optimizing Data Storage for Queries
Figure 13.6 shows that the original non-relational DBMSs (hierarchical and net-
work) were relatively rigid in the way data was retrieved. Hierarchical models ad-
opted features of paper filing cabinets. A cabinet (database) would hold folders of 
Customers stored alphabetically. Each folder would contain the individual orders, 
and the orders would contain the detailed items purchased. As long as you only 
wanted to retrieve data by Customer and then find individual orders, the system 
was relatively fast. But, if you wanted to find customers who ordered a specific 
product, the system would have to start at the top and go through every customer 
and every order. The Network model attempted to support these additional search-
es by separating the storage of each table and then building indexes and links to 
all of the data. So, if the developer knew in advance that someone might want 
to search for customers who ordered a specific product, an index could be built 
on the ItemID, and then the back-links could be traced to identify the specific 
customers.

The newer key-value systems adopt some elements from both of these models 
(as well as a couple from the relational model). Data stored in separate tables is 
indexed by the primary key. Using multi-level indexes and the power of distrib-
uted data, the storage and retrieval of the associated row data is fast. For even 
faster access, data is often duplicated. For example, designers might include the 
Customer name and shipping address with the Order data. Likewise, the Order 
Item data might be stored within the Orders row, similar to the way it would be 
handled with a hierarchical model. The critical design concept to remember is that 
the DBMS can only retrieve data using the primary key. In fact, queries probably 
cannot use other data in WHERE conditions. This limitation is demonstrated in 
the query section. However, a few systems, particularly Cassandra, support the 
creation of additional indexes that can be used for searching. In the example, if the 
developer knows that someone will want to search for customers who ordered a 
specific product, a separate index can be created using ItemID on the Orders table.

 The most important point of this section: Unlike the relational data normal-
ization rules, there is no fixed method for defining data storage using key-value 
pairs. Instead, the designer must know how the data will be generated and queried 
and then design the data storage to optimize the overall performance. Figure 13.7 

Figure 13.7
Non-relational storage affects how data can be retrieved. Hierarchical stored and 
located data by starting at the top level and working down. Network allowed more 
flexibility by separating the tables and linking them through indexes that had to be 
built to support queries. Key-Value combines elements of both by using indexes on 
keys to locate individual rows. Any other searches require additional indexes.

1.	 Identify	the	basic	data	to	be	stored.
2.	 Do	a	base	data	normalization	to	identify	potential	tables.
3.	 Identify	all	the	ways	an	application	will	need	to	query	the	data.
4.	 Identify	the	primary	key-value	pairs	(base	tables).
5.	 If	needed,	duplicate	data	to	improve	performance.
6. Create additional indexes to support queries not covered by primary keys.
7.	 Test	performance,	combine	data	and	reduce	indexes	if	needed.



601Chapter  13: Non-Relational Databases

defines the basic steps that can be used to design data storage for a key-value 
DBMS. But, each design will be unique and require experimentation to find the 
best storage approach. The basic rule is that any data that can be accessed via a 
key will be relatively fast. Storing all related data in one row is faster—even if it 
means duplicating some information. Searching on non-key items requires creat-
ing additional indexes, but adding indexes slows down performance on updates 
and inserts because the indexes have to be rebuilt. If a design for a transaction 
system starts to require dozens of indexes, it will probably be better to eliminate 
all but the essential indexes and create a data warehouse to enable managers to 
perform additional searches on a copy of the database (see Chapter 9). 

Ultimately, getting the best performance out of a key-value pair database re-
quires experimentation with the design. Eventually, as the system software grows 
and stabilizes, perhaps computer scientists will be able to develop rules to im-
prove the designs.

Cassandra
How are databases designed and queried using Cassandra? All of the key-val-
ue pair DBMSs are slightly different and each application requires a custom data-
base structure. Although the general elements are similar, it is important to look at 
a specific DBMS and a specific problem to understand the features and constraints 
of the tools. Cassandra is one of the leading non-relational DBMSs, with strong 
developer support including a company (www.DataStax.com) that specializes in 
advancing the software and providing support. This level of support is useful to 
help ensure the DBMS will survive for at least a few years. Remember that these 
tools are relatively new and many companies are experimenting with different ap-
proaches. A second useful feature of Cassandra is that it has an interactive query 
system that makes it possible to experiment with the database without needing to 
write code for each example. Ultimately, each application still has to be written in 
some programming language, but it is helpful to be able to test designs and que-
ries before writing code. 

Installation Issues
One of the strengths of the non-relational systems, particularly Cassandra, is the 
ability to run as a distributed database on multiple server nodes. A drawback to 
running multiple servers is the cost of the servers—both hardware and software 
licensing costs. Consequently, most of these tools are open-source projects that 
are also designed to run on open-source systems—reducing the licensing costs. 
(Some of the hardware costs can be handled by using cloud-based computing as 
described in the last section of this chapter.) A challenge with open-source operat-
ing systems is that they can be harder to install and manage than Windows-based 
systems. Also, several variations exist, leading to differences in installation and 
operating procedures. Cassandra is written in the Java programming language, 
which means that versions have been compiled to run on most systems (including 
Windows—but it is not recommended). Cassandra also requires the Python pro-
gramming language (for the query tool).

It is highly recommended that Cassandra be installed on a virtual machine run-
ning an open-source operating system. The Debian version is relatively straight-
forward to install and it uses packages to install most software which simplifies 
installation of applications and tools. DataStax has packaged versions and instruc-



602Chapter  13: Non-Relational Databases

tions for a couple of the more-popular Linux variants including Debian. Figure 
13.8 outlines the basic steps, but several details can be required for each step so 
you might want to obtain assistance from a local Linux user. Installing the proper 
version of Java and setting it as the default version is one of the more complex 
steps.

Cassandra has several useful configuration options for production systems. 
These options are used to initialize and coordinate the multiple nodes in the dis-
tributed system. They are not needed for the sample demonstration files—which 
are tiny. They are critical for optimizing performance in large production data-
bases, but they focus on the distributed networking issues so are not covered in 
this chapter.

Pet Store Web Example
Many of the non-relational benefits arise when millions of people need to store 
and access data—particularly on the Web. Figure 13.9 shows a common exten-
sion to the Pet Store case. Customers will choose a category and see items in that 

Figure 13.8
Summary installation steps. Follow the detailed installation steps in the Apache 
Cassandra Documentation from DataStax: http://www.datastax.com/docs. Be certain 
to install the recommended version of Java before attempting to install Cassandra.

1.	 Install	Virtual	Machine	Server—open	source:	Debian
http://www.debian.org/releases/stable/installmanual
2.	 Sun/Oracle	version	of	Java:	at	least	JRE	and	JNA
	 a.	 Java	–version	(default	is	open	source	Java)
	 b.	 Download	and	install	from	Oracle,	then	set	as	default
http://www.oracle.com/technetwork/java/javase/downloads/index.html		
3.	 Download	and	install	Cassandra	from	DataStax	(Community	edition)
4.	 Several	configuration	steps	for	production	are	not	needed	for	the	sample	and	

testing. And only one node is needed.
	 a.	 Download	and	install	the	PetStoreWeb	files.
	 b.	 Unzip	and	copy	them	to	a	folder
 c. In terminal mode, run the cql command to install:
	 	 cqlsh	–f	PetStoreWeb.txt

Customer logs in:
Username
Password

Searches	for	
products by category

Selects a product

Comments

Add

CustomerID ItemID

Figure 13.9
Pet Store Web Site Usage. Customers see merchandise items based on a selected 
Category. When an item is selected, the page displays the product, description, price, 
and a set of comments from other customers. Customers who are logged in can add 
their own comments.



603Chapter  13: Non-Relational Databases

category. When they select a specific item, the details of the product are shown 
along with a set of comments entered by other customers. Once the customer is 
logged in, he or she can add a comment to the list. A customer can make only one 
comment on a given product, but some might want to change the comment later. 
The basic process should be familiar, because many Web sites support comments 
by users. With potentially millions of customers and their comments, the database 
could become large. It is also important that the page displaying a product be re-
trieved and generated quickly—customers will not tolerate delays. 

Think about the usage display for a minute in terms of data. The existing (re-
lational) database already has tables for Customer and Merchandise. Those basic 
tables will probably transfer cleanly—but the ID values will have to be changed 
to uuids. A new table will probably have to be defined for the Comments, and the 
details are covered in the next section. But also think about the potential queries 
needed by the application. Figure 13.10 shows the main queries that will be need-
ed by the application. These queries are important because they will affect the 
design of the database. Queries using IDs will become key-value pairs or primary 
keys, and the others will have to be handled by separate indexes. 

Database Design
Figure 13.11 shows the three tables needed for the Pet Store Web application. 
The Customer and Merchandise tables are essentially copied from the relational 
design, except that the primary keys are uuids. The ItemComments table is new. 
Notice that the keys are the same as they would be in a relational database: ItemID 
+ CustomerID. Also, notice the duplication of the ScreenName in the ItemCom-
ments table (from the Customer table). By placing this small piece of data that is 
displayed with the comment inside the comment table, it saves a lookup into the 
Customer table so it can be retrieved significantly faster. But the application will 
be responsible for maintaining data consistency. 

To understand the challenges of design, consider the ItemComments table. The 
first question to ask: Why is it a separate table? Why not just store the comments 
within the Merchandise table? It would be straightforward to add a column to 
the Merchandise table that could hold a repeating set of data as comments. The 
drawback to storing all comments in one row of the Item table is that retrieving a 
row of data always retrieves the entire row. If a popular product gets thousands of 
comments, it could take too long to retrieve that one row. Additionally, it is more 
difficult to include the other attributes (CustomerID, Date, Rating, and so on). It 
can be done—but only by creating a fairly large mapped object inside each row, 
which slows down retrieval and processing. Using both ItemID and CustomerID 
as keys also makes it straightforward to search for comments by Customer.

Figure 13.10
Initial application queries. These queries will affect the database design. Lookups by 
ID are handled as primary keys. Other lookups will require additional indexes.

•	 Find	CustomerID	given	the	Username
•	 List	Merchandise	given	a	Category
•	 Display	Merchandise	data	given	an	ItemID
•	 List	all	comments	and	customer	screen	name	for	a	specified	ItemID
•	 Insert	a	new	comment	given	ItemID	and	CustomerID



604Chapter  13: Non-Relational Databases

Before creating the tables, Cassandra requires that all tables be defined within 
a keyspace, which is similar to a schema in Oracle or SQL Server. It simply sepa-
rates one collection of tables from another by assigning a name. Generally, a key-
space is defined for each application. The syntax to create a keyspace is straight-
forward, as is the command to switch to a new (or different) key space: 

CREATE Keyspace PetStoreWeb;
USE PetStoreWeb;

Tables are created within a keyspace. In earlier versions, and in some existing 
documentation and error messages, a table was called a column family. In current 
versions, the two terms are synonyms, but it is easier to think of the data as a table 
than a family. Tables hold columns, which are not exactly the same as SQL col-
umns; but in most situations, they are similar. The differences are greater in terms 
of data storage (and keys) because the columns are actually stored as key-value 
pairs within each row.

Note that keyspace, table, and column names in Cassandra are normally not 
case sensitive. The key words (CREATE) are also not case sensitive. But this book 
uses case to highlight the key words and names to make them easier to read. There 
are two catches in Cassandra: (1) Double quotes placed around a name make it 
case sensitive and quotes are then required in all future usage. (2) Cassandra au-
tomatically converts all names to lower-case when it stores them. A few proce-
dures (notably COPY) seem to automatically use quotes, so if a command does 
not work, try entering all names in lower-case.

Figure 13.12 shows the CREATE TABLE commands used to define the tables 
in Cassandra. The syntax of the command is similar to that in SQL but it has dif-
ferent data storage options, which are not shown here. The default options are fine 
for the sample database. Also, notice the uuid data type for each of the ID col-
umns. These values will have to be generated by the application. Note the specifi-
cation of both columns as the PRIMARY KEY for the new ItemComments table. 
Although this syntax looks similar to SQL, the effects are quite different as will 
be explained shortly. Finally, notice the use of the set<text> definition for the e-

Figure 13.11
Data tables for Pet Store example. Customer and Merchandise are base tables and the 
ID key columns are uuids. ItemComments are new and each customer can comment 
once on a given item (but can change the comments later). Notice the duplication of 
ScreenName in the ItemComments table.

*CustomerID
FirstName
LastName
ScreenName
Username
Password
Email

*ItemID
Description
QuantityOnHand
ListPrice
Category

*ItemID
*CustomerID
CommentDate
ScreenName
Title
Comment
Rating

Customer Merchandise ItemComments



605Chapter  13: Non-Relational Databases

mail address in the Customer table. Defining it as a set means that the table can 
hold multiple e-mail addresses for each customer. It is still up to the application to 
handle the collection and editing of that data and it slightly complicates the syntax 
for storing them, but it demonstrates the additional flexibility of collections. 

Figure 13.13 shows the primary data types available in Cassandra. For business 
applications, the most common data types are the standard uuid, int, varchar (or 
text), decimal (for currency values), timestamp, boolean, and possibly float (for 
percentages).  Avoid the more exotic types of counter and varint, and you should 
almost always use varchar instead of ascii, which does not support international 
characters. Collections are defined with the set, list, and map keywords followed 
by the type of data that will be stored. Most collections will use the text data type.

Primary Keys
The Primary Key definition syntax is similar to that used in SQL. However, pri-
mary keys are considerably different in Cassandra than in relational databases; 

Figure 13.12
Data tables for Pet Store example. Customer and Merchandise are base tables and the 
ID key columns are uuids. ItemComments are new and each customer can comment 
once on a given item (but can change the comments later). Notice the duplication of 
ScreenName in the ItemComments table.

CREATE TABLE Customer(
  CustomerID uuid,
  FirstName varchar,
  LastName  varchar,
  ScreenName varchar,
  Username varchar,
  Password varchar,
  Email  set<text>,
  PRIMARY KEY (CustomerID)
);
CREATE TABLE Merchandise (
  ItemID  uuid,
  Description varchar,
  QOH  int,
  ListPrice decimal,
  Category varchar,
  PRIMARY KEY(ItemID)
);

CREATE TABLE ItemComments(
  ItemID  uuid,
  CustomerID uuid,
  CommentDate timestamp,
  ScreenName varchar,
  Title  varchar,
  Comment varchar,
  Rating int,
  PRIMARY KEY (ItemID, CustomerID)
);



606Chapter  13: Non-Relational Databases

particularly when the primary key contains more than one column. Recall that 
data is stored as a key-value pair. Specifically, each row must have a key that is 
used in the index to find a specific location. In case you are curious, that key can-
not be a counter type, and uuid is by far the most common. 

A critical difference with Cassandra is that when the primary key consists of 
multiple columns or a compound primary key, only the first column is used as 
the partition key—which determines where data is stored. The other columns are 
clustering columns and data is stored together. In fact, the clustering columns are 
used to sort the data. In the ItemComments example of PRIMARY KEY (ItemID, 
CustomerID), the ItemID determines where the data row is stored, and the com-
ments are stored sorted by the CustomerID. Depending on the application goals, it 
might be useful to change the keys to: PRIMARY KEY (ItemID, CommentDate). 
This definition would store the comments in order of date, making it easy to re-
trieve and display them in that order. However, the timestamp data type only splits 
time down to seconds, so the application would have to be careful to ensure that 
no two comments are ever written with the exact same date and time.

In some situations, it can be useful to partition the row data on more than one 
key value. The composite primary key is used to define multiple columns as the 
partitioning key by using a second set of parentheses, such as PRIMARY KEY ( 
(ItemID, CustomerID), optional columns). The difference with a composite key is 
important. Think of it as defining the data storage by both keys: ItemID + Custom-
erID. Without the parentheses, only the first column partitions the storage, with 
the extra parentheses both keys define the storage location—and both are required 
to retrieve the data. Because Cassandra retrieves all rows based on the partition 
key, the difference affects the queries.

With a simple compound key (ItemID, CustomerID), a query would retrieve 
data by specifying ONLY the ItemID value, which would return all of the com-
ments made by each customer. With a composite key ( (ItemID, CustomerID) ), 
a query requires BOTH the ItemID and CustomerID values to return exactly one 
row. The Pet Store application has to use the simple compound key, because when 
it displays an item, it knows only the value of the ItemID, not all of the Custom-

Figure 13.13
Cassandra data types. The most commonly used types in business applications should 
be: uuid, int, varchar (or text), decimal (for currency), and timestamp. 

Data Type Description Data Type Description
ascii US ASCII text string inet IP address as string
bigint 64-bit signed integer int 32-bit integer
Blob Binary	object/picture text or varchar UTF-8 string
boolean true/false timestamp Date+ time, 8 bytes
counter 64-bit integer, but… uuid Type 1 or 4 uuid
decimal variable precision 

decimal
varint Arbitrary-precision int

double 64-bit	floating	point Java classes Optional classes in Java
float 32-bit	floating	point



607Chapter  13: Non-Relational Databases

erIDs who have entered comments. And realistically, there is no way to obtain the 
list of CustomerIDs—without testing every possible value, which would be hor-
ribly slow.

Figure 13.14 illustrates the difference using some of the sample data. The com-
pound key uses only the first column (ItemID) to partition (store and retrieve) the 
data. So a query needs to know only the value of the ItemID and it will return 
comments from all customers in that “row.” The composite key uses an extra set 
of parentheses to partition by both the ItemID + CustomerID columns. A query 
needs values for both ID columns to retrieve exactly one row of data. The com-
posite key approach is faster—if the application always has values for both ID 
columns. In the Pet Store example, the usage description says that the application 
knows only the ItemID, so the design needs to use a compound key based only the 
ItemID column.

Some of these points might seem a little confusing at the moment. Do not panic. 
They are easier to understand once you see the limitations of queries as explained 
in the next section. So, read the section on queries and then come back and re-
read the design guidelines. Remember that data design and storage depend on the 
queries that need to be answered, so the design (and learning) process is iterative.

Initial Queries
The real differences with a non-relational DBMS arise when looking at queries—
which partly explains the misnomer: NoSQL. Interestingly, Cassandra now has 
an interactive query language named CQL (Cassandra Query Language). CQL 

Figure 13.14
Compound v. Composite key. The compound key partitions by the first column 
ONLY. A query specifies just the value for ItemID and returns comments by all 
customers for that item. A composite key partitions by both columns. A query must 
list both the ItemID and CustomerID values to retrieve exactly one row. The problem 
is that there is no easy way to get the list of all CustomerID values in the case of the 
composite key.

ItemID CustomerID Data
588e633f… 7f81c5d6…

804a2cdb…
Not big enough…
Easy to assemble…

7ee762a1… 04201f56…
3e137d55…
538adbba…

Smells bad…
Yummy…
Too big…

ItemID CustomerID Data
588e633f… 7f81c5d6… Not big enough…
588e633f… 804a2cdb… Easy to assemble…
7ee762a1… 04201f56… Smells bad…
7ee762a1… 3e137d55… Yummy…
7ee762a1… 538adbba… Too big…

Compound key: ItemID, CustomerID

Composite key: ItemID + CustomerID



608Chapter  13: Non-Relational Databases

borrows some of the basic structure of SQL, which makes it a little easier to write 
the syntax, but ultimately, the queries have almost nothing in common with even 
simple SQL queries. But it is not just a limitation of the query system. The re-
strictions arise because of the way the DBMS stores the data, which is done to 
improve performance for specific queries. This section shows some basic queries 
using the sample Pet Store Web data. A different approach is used here compared 
to learning SQL: Several of the initial queries will not work—specifically to dem-
onstrate the limits. If at all possible, you should install Cassandra and the sample 
database and run the queries to follow along. Start the CQL processor by opening 
a terminal window and typing: cqlsh (for CQL shell). Remember to enter the com-
mand to use the keyspace: use PetStoreWeb; Note that the use of uuids makes it a 
challenge to type some of the queries. 

Figure 13.15 shows two basic CQL queries using the SELECT command. The 
first uses the Count function to return the number of rows in the table. Count is 
the only aggregation function supported by CQL, but it can be useful to identify 
large tables. The second query looks similar to a simple SQL query. The SELECT 
clause can use * for all columns or the names of individual columns can be en-
tered. The WHERE clause is even more restrictive. Initially, the only conditions 
you can enter in the WHERE clause are conditions on the primary key (Customer-
ID in the example). Remember that rows are stored as key-value pairs and initially 
data can be retrieved only through the primary key.

Figure 13.16 shows some basic queries to experiment with variations of the 
WHERE condition in the SELECT command. The bottom line is that the WHERE 
clause can contain conditions that only use the primary key and an equals sign. It 
does not even support conjunctions (And, Or). However, it does support the IN 
( ) condition which takes multiple key values and finds matching rows based on 
equality—which is equivalent to several OR conditions. A token ( ) function exists 
which does support inequality conditions. However, the token function converts 
the values to their hashed-storage values and then makes the comparison. The de-
fault hashing function essentially randomizes the values, so the results are usually 

Figure 13.15
Two basic CQL queries. The basic CQL syntax is similar to SQL but much more 
limited. Count is the only aggregate function supported. The SELECT clause lists 
columns to retrieve and the WHERE clause can be used to specify primary key 
entries.

SELECT Count(*)
FROM Customer;
count
--------
    99
SELECT * FROM Customer
WHERE	CustomerID=71c1da88-88af-4217-aa41-332ea3d33ae9;
customerid						email																																																																							firstname			lastname…	
-----------------+------------------------------------------------------------------+-------------+----------------+
71c1da88… |  {BCummings@gmail.com, bignotes@gmail.com} |    Brent    |  Cummings |



609Chapter  13: Non-Relational Databases

meaningless. However, Cassandra does support a ByteOrdered partitioner, which 
arranges tokens in the same order as the keys. If this partitioner is specified as the 
storage mechanism when the table is created, the token function might be useful. 

The purpose of the examples is to demonstrate the constraints of the query sys-
tem. Although the SELECT command might look a little like simple SQL, it is far 
more limited. Remember that the data storage places strong limits on what can be 
done to retrieve data. At the moment, the SELECT command can retrieve only 
data based on specified values of the primary key. 

Indexes
Obviously, retrieving data based only on primary keys is too restrictive. Look 
again at the usage goals for the Web site. At a minimum, it requires finding a 
Customer based on Username, and retrieving Merchandise based on the Category 
value. Neither of these columns is in the primary key. In fact, Category could 
never be a primary key column because it is not unique. So how can Cassandra 
retrieve data using those conditions? The answer is to create indexes. An index is 
basically just another set of key-value pairs.

Figure 13.16
Experiments with CQL SELECT. Initially, a table can be searched only by individual 
values of the primary key. Conjunctions (Or, And) and inequalities (<, >) are not 
allowed. The IN (…) condition is used to find multiple values in one command. The 
token ( ) function does support inequality values but the comparison is made based 
on the hashed value of the key which is probably random.

SELECT * FROM Customer WHERE 
CustomerID=	71c1da88-88af-4217-aa41-332ea3d33ae9	OR
CustomerID=	378feb73-34cd-451f-90a9-a739a94c30f4;

>>> Error: Expected EOF at OR…
SELECT * FROM Customer WHERE CustomerID IN 
(71c1da88-88af-4217-aa41-332ea3d33ae9,
		378feb73-34cd-451f-90a9-a739a94c30f4);

>>> Retrieves two rows.
SELECT * FROM Customer 
WHERE	CustomerID	>	71c1da88-88af-4217-aa41-332ea3d33ae9;

>>> Error: Must use EQ or IN
SELECT CustomerID, LastName FROM Customer
WHERE token(customerid) > token(00000000-0000-0000-0000-000000000000);

>>>	Retrieves	random	rows	where	the	hash	value	is	greater	than	the	hash	of	0…



610Chapter  13: Non-Relational Databases

Figure 13.17 shows how to create an index on Merchandise Category so that 
the application can retrieve all items that match a specified category. The CRE-
ATE INDEX syntax is similar to SQL:

CREATE INDEX indexName ON table (column);

Technically, the index name is optional, but it should always be used because 
then the DROP INDEX command can be used to remove it later. Note that prima-
ry keys cannot be indexed—but it would not make any sense to do that. After the 
index has been created, the specified column can be used in the WHERE clause 
of a SELECT query—but only with an equals sign. In production databases, the 
CREATE INDEX command should be issued when the tables are CREATED and 
before data is loaded.

Figure 13.18 shows an interesting effect of using an index. Remember that only 
the Category column has been indexed. Yet, now the SELECT statement supports 
additional conditions in the WHERE clause—as long as the condition applies to 
a non-key column and the ALLOW FILTERING clause is added to the query. 
CQL will provide a warning if the ALLOW FILTERING clause is missing. In-
equality searches are potentially expensive and slow, so be certain that they are 

Figure 13.17
Creating an index to search by non-key columns. The CREATE INDEX command 
builds an index that can be used to add new conditions to a SELECT statement. The 
application requires searching by Category.

SELECT * FROM Merchandise
WHERE Category = ‘Cat’;

>>> Error: No indexed columns present…
CREATE INDEX idxMerchandiseCategory 
ON Merchandise (Category);
SELECT Category, Description, ListPrice
FROM Merchandise
WHERE Category = ’Cat’;
category     description           listprice
---------+-----------------------+---------- 
     Cat |         Cat Bed-Small |      25
     Cat |   Cat Litter-10 pound |       8
     Cat | Cat Food-Dry-10 pound |      10
     Cat |  Cat Food-Dry-5-pound |       7
     Cat |               Cat Toy |       3
     Cat | Cat Food-Dry-25 pound |      18
     Cat |  Cat Food-Can-Regular |     0.5
     Cat |            Brush-Soft |       8
     Cat |  Cat Food-Can-Premium |       1
     Cat |        Cat Bed-Medium |      35
     Cat |       Flea Collar-Cat |       6
     Cat |            Collar-Cat |       8
     Cat |    Litter Box-Covered |      15
     Cat |            Litter Box |       8



611Chapter  13: Non-Relational Databases

necessary before using them. It is often useful to include the LIMIT statement 
to restrict the number of rows returned. In fact, Cassandra has a default value of 
10,000 for the number of rows returned for any query. Queries that might return 
more rows need to use the LIMIT statement to increase that value. But, before 
blindly inserting a large number, ask yourself why you need a query to return so 
many rows. No one is going to read that many, and a large value would slow down 
almost any Web site. The statement would be useful when it is necessary to extract 
large chunks of data to transfer to other systems, but small values would be used 
in production applications. 

Note that the additional clause (AND ListPrice > 10) can be used only if the 
Cat condition is used. Try running the SELECT query with just the ListPrice con-
dition and it will generate an error (no index). If a new index is created for List-
Price the inequality condition by itself (ListPrice > 10) still will not work—be-
cause indexed columns can be searched only using equality conditions. The basic 
SELECT search rule is that a WHERE clause can search for only primary keys 

Figure 13.18
Secondary indexes enable additional conditions. Conditions on other (non-indexed) 
columns can be added as long as the ALLOW FILTERING phrase is added at the 
end. The LIMIT n command can be used in any SELECT query and defaults to 
10,000 rows if not specified.

SELECT Category, Description, ListPrice
FROM Merchandise
WHERE Category = ‘Cat’
AND ListPrice > 10
LIMIT 10
ALLOW FILTERING;
category     description           listprice
---------+-----------------------+---------- 
     Cat |         Cat Bed-Small |      25
     Cat | Cat Food-Dry-25 pound |      18
     Cat |        Cat Bed-Medium |      35
     Cat |    Litter Box-Covered |      15

Index Issues
Technically, indexes are supposed to be built on existing data as soon as the CREATE 
INDEX command is issued. However, some queries in testing returned no matching 
values after the index was created (Cassandra 1.2). In production situations, it is best 
to create all indexes before loading data. For the examples in the book, it might be 
necessary to create the index, remove the data, and reload the data:

CREATE INDEX ON Merchandise(…);
TRUNCATE Merchandise;
COPY petstoreweb.merchandise(itemid, description, 
qoh, listprice, category) FROM ‘Merchandise.csv’;

Production databases also require periodic use of the nodetool command to repair the 
database or force updates with the UNIX command line:

nodetool repair



612Chapter  13: Non-Relational Databases

and indexed columns using equality conditions. It is possible to add additional 
filtering conditions but only on the other non-key columns which are stored in the 
same row.

Once more look at the usage plan for the Pet Store Web application. What 
searches are required in the application that will require indexes? The second is-
sue is the search by Username. When a person logs in, only the Username and 
Password are provided. The Username has to be unique, so the application needs 
to retrieve the Customer row with that Username and then verify that the password 
values match. Because Username is not a primary key, it needs to be indexed:

CREATE INDEX idxCustomerUsername ON Customer (Username);

The index can be tested by searching for a known Username (BCummings):
SELECT CustomerID, Username, Password
FROM Customer
WHERE Username=’BCummings’;

Querying Tables with Compound Keys
The Pet Store Web application needs one more SELECT statement—to retrieve 
the comments for a given Item. This data is in the ItemComments table which 
has a compound primary key (ItemID, CustomerID). What command is needed 
to retrieve this data? Does it need a secondary index? The answer to the second 
question is “no,” which makes the SELECT query straightforward. 

Figure 13.19 shows the Pet Store Web query for retrieving the first 10 com-
ments for a specific ItemID. From the usage diagram, when a user clicks on an 
item, a page is generated that displays the basic item information (a different que-
ry), and then displays some of the comments for that item. The ItemID value is 
available to the application from the Web click. The designers decided to limit 
the comments to no more than 10 per page to improve the page performance. The 
query is relatively simple, which is good. This result is exactly what is needed 

Figure 13.19
Queries on compound primary keys. Only the first column in a compound key 
controls storage so only the ItemID is needed for a search condition. No indexes are 
necessary and the query will return all rows with the specified key value. A lower 
LIMIT value is useful for Web pages.

SELECT CommentDate, ScreenName, Title, Comment, Rating
FROM ItemComments
WHERE ItemID=7ee762a1-3a27-42a0-a51e-e7988250ecd5
LIMIT 10;

commentdate  screenname   title       comment                  rating
------------+------------+----------+-------------------------+------ 
2014-11-14… | Gazer33    | Smells…  | The smell is horrible…  |     4
2014-11-01… | Caged19    | Yummy…   | My human/slave feeds…   |     5
2014-15-21… | Cathouse   | Too big… | OK I only have one cat… |     3
2014-03-07… | RedStar    | Not…     | Not sure it matters…    |     3



613Chapter  13: Non-Relational Databases

for the application, which is why the compound key was chosen in the database 
design. The key (ItemID, CustomerID) supports a many-to-many relationship that 
returns all of the customer comments for a given item.

From an application perspective, it might be nice to retrieve the Customer com-
ments sorted by date, but CQL does not support any sorting by clustered columns 
(as of version 1.2). Instead, the application could read the rows into an array and 
then sort the data in the code. 

What about querying for comments made by a specific customer? As shown 
in Figure 13.20, because CustomerID is part of the primary key, yes the query 
will work—but it requires using the ALLOW FILTERING command. What about 
finding the Item information? CQL does not support any type of JOIN command 
so the Item data cannot be retrieved with a single query. Instead, the application 
would have to examine the initial results row-by-row, and then create a new query 
to retrieve the matching data from the Item table using a single ItemID value at a 
time.

The point of the example is that the database design was specifically chosen 
to make the first query easy—not just easy to write but easy and fast to execute. 
In fact, go back and look at the data storage again in conjunction with the queries 
used to retrieve the data. The application needed only two secondary indexes to 
use simple queries to retrieve all of the data. The data was stored in three tables in 
a distributed system that supports fast write and retrieval. All without using JOIN 
statements and extra lookups. But, the data tables had to be designed specifically 
to match the query needs for the application.

INSERT and UPDATE
Cassandra CQL also supports INSERT and UPDATE commands to add new 
rows or change the data in an existing row. The syntax for both resembles SQL, as 
can be seen from two simple examples:

INSERT INTO Customer(CustomerID, FirstName, LastName, ScreenName, 
Username, Password, Email)
VALUES (469aac21-5600-47c3-882f-f7a1ca269ede, ‘Jones’, ‘Jackie’, ‘JJJ’, 
‘JJones329’, ‘password’, {‘JJones329@gmail.com’} );

Figure 13.20
Query a compound primary key on the second column. The second (and later) 
columns in a compound key effectively already have an index and can be retrieved 
directly with a WHERE statement as long as the ALLOW FILTERING command is 
used.

SELECT ItemID, CommentDate
FROM ItemComments
WHERE	CustomerID=9f9f66c2-a949-4f60-b21b-1ec95158583c
ALLOW FILTERING;

itemid                                 commentdate
-------------------------------------+------------- 
563907d0-16bf-4b17-b516-3f42b7c787b7 | 2013-02-10… 
7cbc9858-3cf6-41e7-aba3-db09cc27ebbb | 2013-02-03…



614Chapter  13: Non-Relational Databases

UPDATE Customer
SET Password=’password2’, ScreenName=’JJ3’
WHERE CustomerID=469aac21-5600-47c3-882f-f7a1ca269ede;

Note the importance of listing the column names in the INSERT statement. The 
columns in the primary key are the only required columns, all of the others are op-
tional, so the column names need to be listed to ensure the values are matched cor-
rectly to the columns. Observe the braces used in the syntax for the e-mail column 
because it is defined as a set. Lists use square brackets ( [‘a’, ‘b’] ) instead. And 
mappings require braces and colons such as { ‘cost’ : ‘3200’, ‘name’ : ‘test15’ }.

The UPDATE command changes the column values to the new items. Multiple 
columns can be set at one time, but the WHERE clause must specify exactly one 
row. So the UPDATE (and INSERT) command lack the power of the SQL ver-
sions. Still, it is convenient to use similar syntax.

A far more interesting twist is what happens if an INSERT command is issued 
with an ID value that already exists. For instance, assume the two commands have 
been issued as shown in the short example. Then enter a new command:

INSERT INTO Customer(CustomerID, Username, Password)
VALUES (469aac21-5600-47c3-882f-f7a1ca269ede, ‘JJones329’, ‘pass-
word’);

Note that the CustomerID value exactly matches the one used above. What will 
be the result of this command? An error message—because of duplication of the 
IDs? A duplicate row? Try entering the three commands in the order shown, and 
then issue a SELECT command to examine the values for the specified Custom-
erID. The answer is that the query processor knows that the CustomerID value 
already exists, so it effectively converts the INSERT statement into an UPDATE 
statement. The result is that the Username and Password columns are reset to the 
values in the last command for the specified CustomerID. Technically, this result 
means the UPDATE command is not really needed; but what it really means is 
that you must be careful with any INSERT commands to ensure that the ID values 
are new (and unique). It is the reason that uuid and timeuuid are important data 
types—because they ensure that INSERT commands will never overlap an exist-
ing ID value. 

Cloud Databases
How does cloud computing benefit key-value pair databases? Cloud providers 
offer a variety of database tools including traditional relational and newer non-
relational systems. Some of these DBMSs are available directly from cloud-com-
puting companies, such as DynamoDB from Amazon and App Engine Datastore 
(bigtable) from Google among others. On the other hand, Cassandra also has an 
installation script for creating your own cloud using Amazon’s EC2 computers. 
EC2 systems are virtual machines that can be configured quickly and essentially 
rented by the hour. 

A major goal of cloud computing is provide a way to quickly scale an appli-
cation to handle greater loads—without the need for high upfront fixed costs. 
Most clouds accomplish this task through distributed virtual servers. With public 
clouds, a company runs large data centers and installs thousands of servers con-
nected to large-capacity networks. Other companies (you) then configure a virtual 
machine server and pay hourly (or monthly) rates for using the virtual machine. 



615Chapter  13: Non-Relational Databases

If security is critical and cannot be handled through encryption, a company might 
choose to build its own data centers, but the distributed concepts and virtual ma-
chine configurations are largely the same. In both cases, you will be responsible 
for configuring and running the server and its applications. 

DataStax provides a special copy of Cassandra and instructions for installing 
nodes on an Amazon EC2 cluster. As Figure 13.21 shows, with these tools, it is 
straightforward to build as many nodes as necessary on Amazon’s system. Be-
cause Cassandra is designed to be distributed, it runs well on the distributed serv-
ers. Detailed configuration options provide control over replication within and 
across data centers to meet a variety of different Web needs. And more nodes can 
quickly be added as the number of users increases. Once the base system is con-
figured, it is directly accessible to a Web application running on any server.

In the case of huge applications with millions of global users, the Web applica-
tion can be written to connect to the closest geographical data center. Cassandra 
eventually replicates the data so it is available everywhere, even if a few nodes 
are inaccessible. Yet, most of the data is provided locally to the user, reducing the 
need to transmit data immediately around the world; which improves performance 
of the applications.

If you do not want to install and run your own copies of the DBMS, many 
tools (such as DynamoDB and App Engine Datastore) are available for hourly or 
monthly lease charges. In these cases, you simply define the tables and columns 
needed and tell the application to use the cloud databases instead of your own 
copy. Data distribution and backups are handled by the cloud provider.

The difference between the options largely comes down to cost. Running your 
own data centers involves a substantial upfront fixed cost, along with expertise 
and people to manage the centers on a day-to-day basis. Using virtual servers and 

Figure 13.21
Cassandra on Amazon EC2. EC2 has multiple servers in multiple data centers around 
the world where virtual machines can be rented by the hour. Each VM becomes a 
node on a Cassandra network. The Web application just writes data to the Cassandra 
keyspace application and it is distributed across the Amazon network. New nodes can 
be added in minutes to expand capacity with almost no fixed costs.

Web server

HTML 
Page

Developer
User

Amazon EC2

VM

VM

VM VM

VM

VM
Cassandra nodes

data



616Chapter  13: Non-Relational Databases

configuring your own databases through companies such as Amazon and Rack-
space eliminates the fixed cost of installing the physical servers and networks. But, 
the monthly operating costs are higher than if you ran the same capacity on your 
own machines. The third option of using a prebuilt database cloud (DynamoDB 
or Google bigtable) has even higher monthly costs, but requires less expertise to 
configure and manage.

Many times it is difficult to predict the exact level of capacity needed for each 
month. Cloud-based systems have slightly higher marginal costs, but remove the 
need to guess ahead of time on the necessary capacity, because they are easy to 
expand or contract when needed. They also provide professional-level manage-
ment and bandwidth to even tiny firms. Small firms can get the same high-level of 
distributed systems without having to pay huge upfront costs, just by purchasing 
capacity on the public cloud systems. If customer demand increases, presumably 
the revenues will also increase to cover the higher costs.

Summary
Web-based applications are important to many organizations. Some Web appli-
cations are like any other business application, but a few are radically different. 
Applications built to be used by millions of customers to store data online, such as 
the social-based sites, have different data needs than a standard business applica-
tion. Performance and continuous accessibility are critical to these applications. 
Transactions and perfect data consistency are less important. Cost is another criti-
cal factor, particularly when the social features are offered at low or minimal cost. 

Highly-distributed databases are an important tool to address these new appli-
cations. These systems can use hundreds or thousands of servers in data centers 
around the world to provide the data backbone for the application. To hold down 
the licensing costs, several new non-relational database systems were created to 
provide these features, by using open-source servers and software. Cassandra is a 
leading tool in many organizations, including Facebook. These new systems focus 
on storing data in key-value pairs; and replicate data automatically across multiple 
server nodes.

Database design is important to non-relational systems, but the rules are more 
flexible. It is useful to start with normalized tables, and then adjust the design to 
optimize performance for the specific application. The key point is that the design 
must match the individual needs of the application, so it is important to lay out the 
usage (use cases in OO terms) and identify all data retrieval needs. 

Tables contain primary keys but the keys typically use uuid values which are 
safer to generate in a distributed system. Initially, rows can be retrieved from a ta-
ble only through the primary key values; and those values must only use equality 
conditions. Queries on additional columns can be supported by adding a second-
ary index on that column, but those queries can also only use equality conditions. 
Adding too many indexes will slow down processing of new data, so the design 
has to be conservative. Table JOINs are not supported, so data is often duplicat-
ed by including base information in transaction rows. For instance, a Sale table 
would likely include Customer name and shipping address so that information 
can be retrieved automatically with each Sale instead of requiring an additional 
lookup. 

Many-to-many relationships are indicated by specifying both columns in the 
primary key; just as in the relational model. However, the difference between 
compound and composite keys is critical. Compound keys are written as (ItemID, 



617Chapter  13: Non-Relational Databases

CustomerID); while composite keys include an extra set of parentheses: ( (ItemID, 
CustomerID) ). Compound keys store data using only the first column, while com-
posite keys use both columns to partition the data. Consequently, data stored with 
compound keys require only a value for the first column (ItemID) to retrieve a 
row; while composite keys require both values. A compound key actually returns 
multiple “rows” but a composite key returns exactly one row that matches all of 
the ID values. Typical applications will likely use compound keys instead of com-
posite keys. 

Queries in CQL use a simplified SELECT command. But the command is even 
more limited than it appears. JOINs are not supported and WHERE conditions 
are almost always based only on equality constraints. Additional constraints often 
require the ALLOW FILTERING clause to indicate they might be slower que-
ries. Data results are always limited to a specified number of rows. The default is 
10,000 rows, but the value can be changed with the LIMIT clause. 

The DMBSs, including Cassandra, are constantly being revised and updated, so 
limitations are likely to change; but the main limitations of the query system are 
due to the data storage model and the emphasis on performance. If an application 
needs more complex queries, it would probably be easier to move it to a relational 
DBMS or perhaps a data warehouse. The purpose of key-value pair non-relational 
DBMSs is to provide a fast, reliable way to store and retrieve individual pieces of 
data to millions of users.

A Developer’s View
As more applications move to the Web, performance and continuous availability 
can become critical. Distributed databases can be significantly more responsive 
in this environment, but installing thousands of servers and copies of the DBMS 
software can be expensive. Open-source non-relational systems, such as Cassan-
dra, are designed to handle these issues. Data is stored and retrieved as key-value 
pairs, which is fast for retrieving specific pieces of data. The tools do not support 
JOINs, referential integrity, or complex queries; so they are less useful for com-
plex, interrelated business data. But there are times when you need a different 
tool to handle performance issues, and a DBMS like Cassandra can solve prob-
lems that are difficult and expensive to handle with a relational DBMS. However, 
the performance gains also arise through careful database design adjusted specifi-
cally for each application. 



618Chapter  13: Non-Relational Databases

Key Terms

ad hoc queries
ALLOW FILTERING
Cassandar Query Language (CQL)
column family
columns
composite primary key
compound primary key
gossip
INSERT
keyspace
key-value pair
LIMIT

list
map
non-relational database
NoSQL
peer-to-peer
primary key
set
solid state drives (SSDs)
sparse table
tunable consistency
universally unique identifier (uuid)
UPDATE

Review Questions
1. How is a table in a key-value pair database different from one in a relational 

database?
2. How do highly-distributed databases create problems with data consistency?
3. What are the benefits and drawbacks to changing table columns over time?
4. What consistency problems can arise in a key-value pair database like 

Cassandra?
5. A database contains tables for Employee, Factory, and Assembly, where the 

Assembly table records which parts were installed by each employee at a 
specified time in each factory. Why would some of the employee data be 
stored in the Assembly rows?

6. What programming language is Cassandra written in and why does it matter?
7. What are the benefits and drawbacks to using uuids as primary key values?
8. Briefly explain what queries are supported by a table with a compound key of 

two columns, without adding indexes.
9. Why does Cassandra require indexes for some queries?
10. How is a composite key different from a compound key?



619Chapter  13: Non-Relational Databases

Exercises
1. Explain why you should avoid storing totals (such as inventory quantity on 

hand) in a key-value pair database and briefly describe an alternative to avoid 
totals.

2. An online site wants to hold medical health records for patients in a specific 
program. The records include basic patient data (name, birthdate, gender), 
and medical test results at various points in time that include levels for 
standard items such as Glucose, Potassium, and blood pressure. Design 
the tables you would use to store the data in Cassandra. Highlight the main 
queries. 

3. Define the key-value-pair tables that would be needed for a Web site that 
sells custom shirts. Customers choose colors and sizes, and can enter text to 
be printed on the back, front, or sleeves. 

4. Using Exercise 2 in Chapter 3 as a guide, define the key-value-pair tables 
needed for a Web site that lets individuals track their weight-lifting progress. 
Each session has multiple exercises (equipment), with different sets of weight 
levels, and a need to record the number of repetitions. For instance, a bench 
press might involve set1: 135 pounds, 10 reps, 185 pounds, 10 reps; and so 
on.

5. Looking at the previous exercise on weight lifting, explain how to change 
the design to support an application that shows the maximum weight lifted in 
an exercise over time (session). For example, the highest weight lifted in the 
bench press over the last year.

6. A Web site is built to access a database of music/songs (not classical 
music which has unique data elements). Users have the ability to rate each 
individual song. Define the key-value-pair tables needed for this site. Identify 
common queries that will be used and any indexes needed to support those 
queries.

7. Define the tables needed by Cassandra to build a Web site for a basketball 
league that records points scored by each team, the name of the referee, and 
the names of the players on each team. Similar to Chapter 3, Exercise 3. 

8. Research Cassandra and briefly explain the difference between the timestamp 
and timeuuid data types.

9. Find a programming tool (not an online Web service) and generate 5 uuid 
values.

10. Find a different key-value-pair (NoSQL) DBMS and briefly compare it to 
Cassandra.

Sally’s Pet Store
Using the Pet Store Web sample database for Cassandra, write the queries to an-
swer the following questions.

11. Get the Description, ListPrice, and QOH for Item 5e9c2e10-3db1-4189-
8c0d-0c700d421f17.



620Chapter  13: Non-Relational Databases

12. List all items in the Fish category? What indexes are needed?
13. List all items in the Dog category with a list price above $20 and a QOH 

greater than 50. What indexes are needed?
14. Write a query that enables the system to e-mail the username/password to 

users who cannot remember what they entered, but do know their e-mail 
address and name. What indexes are needed?

15. List all of the comments with a rating of less than 3. What indexes are 
needed?

16. If the application needs to display only the first 10 (earliest) comments fir a 
specific item (on the Web page), how should the design be modified and what 
is the new query?

17. How many comments have been made by the user with the screen name of 
Caged19? What indexes are needed?

18. Run the three UPDATE and INSERT queries in the text and issue a SELECT 
statement to see the ending values for the new CustomerID;

19. Change the list price on item ed7bb389-152c-4bdb-8546-4cd070fb4ae9 to 
$10.

20. Add a new comment to the ItemComments table.

Rolling Thunder Bicycles
21. Rolling Thunder managers want to create a Web site to let owners upload 

photos of their custom bikes and let other users submit comments or 
questions; which can then be answered by other users (basically a discussion 
list). Define the tables needed for this application.

22. Assuming standard Web conventions, such as login by Username, what initial 
indexes will be needed for the discussion Web site in the previous question?

23. If Rolling Thunder managers decide to build the entire main ordering system 
as a Web site, would it be better to use a traditional relational DBMS or a 
key-value pair system like Cassandra? Explain your answer.

Corner Med 
24. The managers of Corner Med want a Web site that handles communication 

between physicians and patients. They do not want to put all the patient visit 
data online, but want a secure site that enables patients to ask questions that 
are answered by physicians. What Cassandra tables would be needed for this 
site?

25. Assuming the solution to the previous question includes at least a Person and 
Discussion table, write the query to list all of the questions posted from a 
specific patient. What indexes would be needed?

Corner
Med

Corner
Med



621Chapter  13: Non-Relational Databases

Web Site References

http://cassandra.apache.org Open-soure	location	of	code.
http://www.datastax.com/docs DataStax documentation site.
http://nosql-database.org/ List	of	NoSQL	database	projects.
http://planetcassandra.org/ Cassandra background (DataStax)
http://aws.amazon.com/nosql/ Amazon NoSQL options.
https://developers.google.com/appengine/ Google App Engine.

Additional Reading
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem. Interesting, 

readable comments on distributed transactions, scalability, and consistency 
as a reason for non-relational databases. (Brewer’s CAP Theorem and 
references to other articles.)



622GlossaryGlossary
24 -7   Operation of an application or database 
24 hours a day, 7 days a week. Because the 
database can never be shut down, performing 
maintenance is a challenge.

Abstract data types   In SQL 1999 the ability 
to define more complex data domains that 
support inheritance for storing objects.

Accessibility   A design goal to make the 
application usable by as many users as possible, 
including those with physical challenges. One 
solution is to support multiple input and output 
methods.

ACID transactions   The acronym for 
transactions that specifies the four required 
elements of a safe transaction: atomicity, 
consistency, isolation, and durability.

Active data objects (ADO)   Microsoft’s 
component (COM) approach to connect 
program code and Web server scripts to a 
database. Provides SQL statement and row-
level access to virtually any database.

Active server pages (ASP)   Microsoft’s Web 
pages that enable you to run script programs 
on the server. Useful for providing access to a 
server database for Internet users.

Address, physical   The location of data 
stored in memory or on a file system. Used to 
establish a pointer to a specific piece of data.

ad hoc query   An unplanned question asked 
by users or administrators. Because it is 
unplanned, it is hard to support with non-
relational databases.

Administrative tasks   Jobs that need to be 
performed to keep the application running, such 
as updating data in lookup tables, backing up 
the database, and assigning users to groups

Advanced Encryption Standard (AES)   A 
single-key encryption system to replace 
DES, based on a Belgian encryption system: 
Rijndael. It supports key lengths of 128, 192 
and 256 bits, making it considerably more 
secure than DES.

Aesthetics   An application design goal, where 
layout, colors, and artwork are used to improve 
the appearance of the application—not detract 
from it. By its nature, the value of any design is 
subjective.

Aggregation   The generic name for several 
SQL functions that operate across the selected 
rows. Common examples include SUM, 
COUNT, and AVERAGE.

Aggregation association   A relationship where 
individual items become elements in a new 
class. For example, an Order contains Items. In 
UML, the association is indicated with a small 
open diamond on the association end.  See 
composition.

Alias   A temporary name for a table or a 
column. Often used when you need to refer to 
the same table more than once, as in a self-join. 

ALL   A SQL SELECT clause often used with 
subqueries. Used in a WHERE clause to match 
all of the items in a list. For example, Price > 
ALL (…) means that the row matches only if 
Price is greater than the largest value in the list.

ALLOW FILTERING   Cassandra query 
option required for supporting most WHERE 
clause options including AND, OR, and 
some range questions. Might reduce query 
performance so it is a warning that complex 
queries should be avoided.

ALTER TABLE   A SQL data definition 
command that changes the structure of a table. 
To improve performance, some systems limit 
the changes to adding new columns. In these 
situations to make major changes, you have to 
create a new table and copy the old data.

Anchor tag   The HTML tag that signifies a 
link. Denoted with <A>.

ANY   A SQL SELECT clause often used with 
subqueries. Used in a WHERE clause to match 
at least one of the items in a list. For example, 
Price > ANY (…) means that the row matches 
as long as Price is greater than at least one item 
in the list.

Application   A complete system that performs 
a specific collection of tasks. It typically 
consists of integrated forms and reports and 
generally contains menus and a Help system.

Application Design Guide   A standard set of 
design principles that should be followed when 
building applications. The standard makes it 
easier for users to operate new applications, 
since techniques they learn in one system will 
work in another.



623Glossary

Application generator   A DBMS tool that 
assists the developer in creating a complete 
application package. Common tools include 
menu and toolbar generators and an integrated 
context-sensitive Help system

Association   Connections between classes 
or entities. Generally, they represent business 
rules. For example, an order can be placed by 
one customer. It is important to identify whether 
the association is one-to-one, one-to-many, or 
many-to-many.

Association role   In UML the point where an 
association attaches to a class. It can be named, 
and generally shows multiplicity, aggregation, 
or composition.

Association rules   A data mining technique 
that examines a set of transactions to see which 
items are commonly purchased together.

Atomic   The smallest single-valued form of a 
data element. A table cannot be in first normal 
form if the cells contain non-atomic data. 
The definition is subjective depending on the 
application. For instance, an address such as 
123 Main Street is usually considered to be 
atomic even though it refers to both a house 
number and a street.

Atomicity   The transaction element that 
specifies that all changes in a transaction must 
succeed or fail together.

Attribute   A feature or characteristic of an 
entity. An attribute will become a column in a 
data table. Employee attributes might include 
name, address, date hired, and phone.

Authentication   Providing a verification 
system to determine who actually wrote a 
message. Common systems use a dual-key 
encryption system.

Autonumber   A type of data domain where 
the DBMS automatically assigns a unique 
identification number for each new row of data. 
Useful for generating primary keys.

B+tree   An indexed data storage method that is 
efficient for a wide range of data access tasks. 
Tree searches provide a consistent level of 
performance that is not affected by the size of 
the database.

Back end   In a client-server system, the back 
end usually consists of a central database. In 
general, hardware and data placed at the back 

end is designed to be centralized and shared. 
See front end.

Base table   A table that contains data about 
a single basic entity. It generally contains no 
foreign keys, so data can be entered into this 
table without reference to other tables. For 
example, Customer would be a base table; 
Order would not.

Behavioral security   Emphasizes the role of 
people or employees in security. It is related 
to logical security but involves interesting 
problems because it deals with mistakes that 
people make, such as tricking people to reveal 
passwords.

BETWEEN   A SQL comparison operator that 
determines whether an item falls between two 
values. Often useful for dates.

Binary large object (BLOB)   A data domain 
for undefined, large chunks of data. A BLOB 
(or simple object) type can hold any type of 
data, but the programmer is often responsible 
for displaying, manipulating, and searching the 
data.

Binary search   A search technique for sorted 
data. Start at the middle of the data. If the 
search value is greater than the middle value, 
split the following data in half. Keep reducing 
by half until the value is found.

Bitmap index   A compact, high-speed indexing 
method where the key values and conditions are 
compressed to a small size that can be stored 
and searched rapidly.

Boolean algebra   Creating and manipulating 
logic queries connected with AND, OR, and 
NOT conditions.

Bound control   A control on a form that 
is tied to a column in the database. When 
data is entered or changed, the changes are 
automatically saved to the data table.

Boyce-Codd normal form (BCNF)   All 
dependencies must be explicitly shown through 
keys. There cannot be a hidden dependency 
between nonkey and key columns.

Browser, Web   A software package on a client 
personal computer used to access and display 
Web pages from the Internet.

Brute force attack   An attempt to break 
a security system by trying every possible 



624Glossary

combination of passwords or encryption keys.

Business intelligence (BI)   The general 
process of analyzing data to find patterns. Tools 
include automated statistical systems and user-
driven exploratory options. Also called data 
mining. 

Business rules   The conditions and 
assumptions that describe how an organization 
operates. One-to-one and one-to-many rules are 
particularly important. For instance, a common 
business rule is that a sale is placed by only one 
customer.

Call-level interface (CLI)   A set of libraries 
that enable programmers to work in a language 
outside the DBMS (e.g., C++) and utilize the 
features of the DBMS. The DBMS provides the 
communication libraries and handles much of 
the data exchange itself.

Cascading delete   When tables are linked 
by data, if you delete a row in a higher level 
table, matching rows in other tables are deleted 
automatically. For example, if you delete 
Customer 1173, all orders placed by that 
customer are also deleted.

Cascading style sheets (CSS)   A style sheet 
that defines how elements are to be displayed 
on a Web page. Cascading means that a style 
can be overridden by declaring it inside the 
HTML file, but to maintain consistency, styles 
should be defined only in the style sheet.

Cascading triggers   Multiple events that arise 
when a change that fires a trigger on one table 
causes a change in a second table, that triggers 
a change in a third table and so on.

CASE   A SQL operator supported by some 
systems. It examines multiple conditions 
(cases) and takes the appropriate action when it 
finds a match.

Casandra Query Language (CQL)  An 
interactive query system for retrieving data 
from a Cassandra database. It includes 
commands similar in syntax to SQL but with 
limited options. In particular the SELECT 
command does not support JOINs.

Certificate authority   A company that ensures 
the validity of public keys and the applicant’s 
identify for dual-key encryption systems.

Check box   A square button that signifies 
a choice. By the design guide, users can 

select multiple options with check boxes, as 
opposed to option buttons that signify mutually 
exclusive choices.

Clarity   The goal of making an application 
easier to use through elegant design and 
organization that matches user tasks so that the 
purpose and use of the application is clear to 
the user.

Class   A descriptor for a set of objects with 
similar structure, behavior, and relationships. 
That is, a class is the model description of 
the business entity. A business model might 
have an Employee class, where one specific 
employee is an object in that class.

Class diagram   A graph of classes connected 
through relationships. It is designed to show 
the static structure of the model. Similar to the 
entity-relationship diagram.

Class hierarchy   A graph that highlights the 
inheritance relationships between classes.

Classification analysis   A data mining 
technique that classifies groups of objects, such 
as customers. It determines which factors are 
important classifier variables.

Client/server   A technique for organizing 
systems where a few computers hold most of 
the data, which is retrieved by individuals using 
personal computer clients.

Cloud computing   Using servers that are 
connected to the Internet. Typically the servers 
are leased as virtual machines that can be 
expanded as needed. Users rely on Web-based 
clients to run applications and retrieve data.

Cluster, data   A physical data storage 
technique to improve performance by storing 
related data in the same data blocks so that the 
operating system retrieves the related data in 
one pass.

Cluster, server   A collection of computer 
servers that share the workload. If one 
machine fails, the others pick up the load. New 
servers can be added at any time to improve 
performance.

Cluster analysis   A data mining technique that 
groups elements of a dataset, often based on 
how close the items are to each other.

Cold site   A facility that can be leased from a 
disaster backup specialist. A cold site contains 



625Glossary

power and telecommunication lines, but no 
computer. In the event of a disaster, a company 
calls the computer vendor and begs for the first 
available machine to be sent to the cold site.

Collaboration diagram   A UML diagram to 
display interactions among objects. It does not 
show time as a separate dimension. It is used to 
model processes.

Column   A column in a table represents an 
attribute or measure on the object defined by 
the table. Columns have a defined data type. 
A simple example would be a Phone Number 
in a Customer table. In a relational DBMS, 
columns hold a single value for each row. In a 
non-relational DBMS, columns may contain 
repeating or complex data.

Column family   The early term for a table in 
the Cassandra non-relational DBMS. The term 
still arises in some documentation and error 
messages.

Combo box   A combination of a list box and 
a text box that is used to enter new data or to 
select from a list of items. A combo box saves 
space compared to a list box since the list 
is displayed only when selected by the user. 
Known as a select box on Web forms.

Comma separated values (CSV)   A method 
of storing data for transfer to different 
computers or applications. Tabular data is 
stored in rows with the columns separated by 
commas. The data is stored in a simple text file.

Command button   A button on a form that 
is designed to be clicked. The designer writes 
the code that is activated when the button is 
clicked. 

Common gateway interface (CGI)   With 
Web servers, CGI is a predefined system for 
transferring data across the Internet. Current 
scripting languages hide the details, so you can 
simply retrieve data as it is needed.

Common language runtime (CLR)   
Microsoft’s base programming language. It is 
embedded into versions of SQL Server from 
2005, so database procedures can be written 
in CLR langugages such as Visual Basic and 
C# including access to all of their functions. 
Needed to use RegEx within SQL Server. Note 
that CLR support is turned off by default.

Composite key   A primary key that consists 
of more than one column. Indicates a many-to-

many relationship between the columns.

Composite primary key   In non-relational 
DBMSs, particularly Cassandra, a composite 
key uses two or more columns to define the 
partitioning key so both values are required to 
retrieve the associated data. It is defined with 
an extra set of parentheses: PRIMARY KEY ( 
(a, b), others).

Composition association   A relationship in 
which an object is composed of a collection of 
other objects. For example, a bicycle is built 
from components. In UML, it is indicated with 
a small filled diamond on the association end. 

Compound primary key   In non-relational 
DBMSs, particularly Cassandra, a compound 
key defines a many-to-many relationship across 
multiple columns. But unlike the composite 
key, it uses only the first column to partition 
the data so all elements of the many side are 
retrieved by specifying only the value for 
the first key column. The definition does not 
include extra parentheses: PRIMARY KEY (a, 
b, c, …).

Computer-aided software engineering 
(CASE)   Computer programs that are designed 
to support the analysis and development of 
computer systems. They make it easier to 
create, store, and share diagrams and data 
definitions. Some versions can analyze existing 
code and generate new code.

Concatenate   A programming operation that 
appends one string on the end of a second 
string. For example, LastName & “, “ & 
FirstName could yield “Smith, John”. 

Concatenated key   See composite key.

Concurrent access   Performing two (or more) 
operations on the same data at the same time. 
The DBMS must sequence the operations so 
that some of the changes are not lost.

Confidence   In data mining with association 
rules, a measure of the strength of a rule 
measured by the percentage of transactions 
with item A that also contain item B. The 
probability that B is in the basket given that A 
is already there.

Consistency, application   The goal of making 
an application easier to use by using the same 
features, colors, and commands throughout. 
Modern applications also strive for consistency 
with a common design guide.



626Glossary

Consistency, transaction   The transaction 
requirement that specifies all data must 
remain internally consistent when changes are 
committed and can be validated by application 
checks.

Constraint   In SQL, a constraint is a rule that 
is enforced on the data. For example, there can 
be primary-key and foreign-key constraints 
that limit the data that can be entered into the 
declared columns. Other business rules can 
form constraints, such as Price > 0.

Context-sensitive help   Help messages that 
are tailored to the specific task the user is 
performing.

Context sensitive menu   A menu that changes 
depending on the object selected by the user.

Control break   A report consisting of grouped 
data uses control breaks to separate the groups. 
The break is defined on the key variable that 
identifies each member of the group.

Controls   The generic term for an item placed 
on a form. Typical controls consist of text 
boxes, combo boxes, and labels.

Correlated subquery   A subquery that must 
be reevaluated for each row of the main query. 
Can be slow on some systems. Can often be 
avoided by creating a temporary table and 
using that in the subquery instead.

CREATE DOMAIN   A SQL data definition 
command to create a new data domain that is 
composed of existing domain types.

CREATE SCHEMA   A SQL data definition 
command to create a new logical grouping of 
tables. With some systems it is equivalent to 
creating a new database. This command is not 
available in Oracle or SQL Server.

CREATE TABLE   A SQL data definition 
command to create a new table. The command 
is often generated with a program.

CREATE VIEW   A SQL command to create a 
new view or saved query.

Cross join   Arises when you do not specify 
a join condition for two tables. It matches 
every row in the first table with every row in 
the second table. Also known as the Cartesian 
product. It should be avoided.

Crosstab   A special SQL query (not offered 
by all systems) that creates a tabular output 

based on two groups of data. Access uses a 
TRANSFORM command to create a cross 
tabulation. 

Cursor, graphics   The current location pointer 
in a graphical environment.

Cursor, database   A row pointer that tracks 
through a table, making one row of data active 
at a time.

Cylinder   Disk drives are partitioned into 
cylinders (or sectors) that represent a portion of 
a track.

Data administration   Planning and 
coordination required to define data 
consistently throughout the company.

Data administrator (DA)   The person in 
charge of the data resources of a company. 
The DA is responsible for data integrity, 
consistency, and integration. 

Data bound   A control that contains a link to 
a table and column data source. When a data-
bound control is displayed, the data is retrieved 
from the database and shown in the control. 
Changes are written to the defined column and 
table.

Data definition language (DDL)   A set of 
commands that are used to define data, such 
as CREATE TABLE. Graphical interfaces 
are often easier to use, but the data definition 
commands are useful for creating new tables 
with a program.

Data device   Storage space allocated to hold 
database tables, indexes, and rollback data. See 
tablespace.

Data dictionary   Holds the definitions of all 
of the data tables and describes the type of data 
that is being stored.

Data hierarchy   A structured ordering of 
data where higher levels contain aggregates of 
the lower levels. Some common hierarchies 
include dates (year, quarter, month, day), and 
geography (country, state, city). 

Data independence   Separates the data from 
the programs, which often enables the data 
definition to be changed without altering the 
program.

Data integrity   Keeping accurate data, which 
means few errors and means that the data 
reflects the true state of the business. A DBMS 



627Glossary

enables you to specify constraints or rules that 
help maintain integrity, such as prices must 
always be greater than 0.

Data manipulation language (DML)   A set of 
commands used to alter the data. See INSERT, 
DELETE, and UPDATE.

Data mining   Searching databases for 
unknown patterns and information. Tools 
include statistical analysis, pattern-matching 
techniques, and data segmentation analysis, 
classification analysis, association rules, and 
cluster analysis.

Data normalization   The process of creating 
a well-behaved set of tables to efficiently store 
data, minimize redundancy, and ensure data 
integrity. See first, second, and third normal 
form.

Data replication   In a distributed system, 
placing duplicate copies of data on several 
servers to reduce overall transmission time and 
costs.

Data repository   A complete listing of all 
terms used in a database design, including 
column names and tables. See data dictionary.

Data type   A type of data that can be held by 
a column. Each DBMS has predefined system 
domains (integer, float, string, etc.). Some 
systems support user-defined domains that are 
named combinations of other data types.

Data volume   The estimated size of the 
database. Computed for each table by 
multiplying the estimated number of rows times 
the average data length of each row.

Data warehouse   A specialized database that 
is optimized for management queries. Data is 
extracted from online transaction processing 
systems. The data is cleaned and optimized for 
searching and analysis. Generally supported by 
parallel processing and RAID storage.

Database   A collection of data stored in a 
standardized format, designed to be shared 
by multiple users. A collection of tables for a 
particular business situation.

Database administration   The technical 
aspects of creating and running the database. 
The basic tasks are performance monitoring, 
backup and recovery, and assigning and 
controlling security.

Database administrator (DBA)   A specialist 
who is trained in the administration of a 
particular DBMS. DBAs are trained in the 
details of installing, configuring, and operating 
the DBMS.

Database cursor   A variable created within a 
programming language that defines a SELECT 
statement and points to one row of data at 
a time. Data on that row can be retrieved or 
edited using the programming language.

Database engine   The heart of the DBMS. It is 
responsible for storing, retrieving, and updating 
the data.

Database management system (DBMS)   
Software that defines a database, stores the 
data, supports a query language, produces 
reports, and creates data entry screens.

Datasheet   A gridlike form that displays 
rows and columns of data. Generally used as a 
subform, a datasheet displays data in the least 
amount of space possible.

Deadlock   A situation that exists when two (or 
more) processes each have a lock on a piece of 
data that the other one needs. 

Default values   Values that are displayed and 
entered automatically. Used to save time at data 
entry.

Degree, tree   The maximum number of 
children allowed beneath one node in a B-tree. 
Most systems choose an odd number greater 
than or equal to three.

DELETE   A SQL data manipulation command 
that deletes rows of data. It is always used with 
a WHERE clause to specify which rows should 
be deleted.

Deletion anomaly   Problems that arise when 
you delete data from a table that is not in third 
normal form. For example, if all customer data 
is stored with each order, when you delete an 
order, you could lose all associated customer 
data.

DeMorgan’s law   An algebraic law that states: 
To negate a condition that contains an AND or 
an OR connector, you negate each of the two 
clauses and switch the connector. An AND 
becomes an OR and vice versa.

DENSE_RANK   A data mining extension to 
SQL that rank orders data. If ties exist, they 



628Glossary

receive the same dense rank, but the next value 
receives a dense rank that is one unit higher. 
Compare to RANK.

Dependence   An issue in data normalization. 
An attribute A depends on another attribute B if 
the values of A change in response to changes 
in B. For example, a customer’s name depends 
on the CustomerID (each employee has a 
specific name). On the other hand, a customer’s 
name does not depend on the OrderID. 
Customers do not change their names each time 
they place an order. 

Depth, tree   The number of levels in a B-tree 
or the number of nodes between the root and 
the leaves.

Derived class   A class that is created as an 
extension of another class. The programmer 
need only define the new attributes and 
methods. All others are inherited from the 
higher-level classes. See inheritance. 

DESC   The modifier in the SQL SELECT 
… ORDER BY statement that specifies a 
descending sort (e.g., Z … A). ASC can be used 
for ascending, but it is the default, so it is not 
necessary.

Dimension   An attribute in an OLAP cube that 
is used to group and search the data.

Direct access   A data storage method where 
the physical location is computed from the 
logical key value. Data can be stored and 
retrieved with no searches.

Direct manipulation of objects   A graphical 
interface method that is designed to mimic 
real-world actions. For example, you can copy 
files by dragging an icon from one location to 
another.

Disaster plan   A contingency plan that is 
created and followed if a disaster strikes 
the computer system. Plans include off-site 
storage of backups, notifying personnel, and 
establishing operations at a safe site.

DISTINCT   An SQL keyword used in the 
SELECT statement to remove duplicate rows 
from the output.

Distributed database   Multiple independent 
databases that operate on two or more 
computers that are connected and share data 
over a network. The databases are usually in 
different physical locations. Each database is 

controlled by an independent DBMS.

Dockable toolbar   A toolbar that users can 
drag to any location on the application window. 
It is generally customized with options and 
buttons to perform specific tasks.

Domain-key normal form (DKNF)   The 
ultimate goal in designing a database. Each 
table represents one topic, and all of the 
business rules are expressed in terms of domain 
constraints and key relationships. That is, all of 
the business rules are explicitly described by 
the table rules.

Drag-and-drop   A graphical interface 
technique where actions are defined by holding 
down a mouse key, dragging an icon, and 
dropping the icon on a new object.

Drill down   The act of moving from a display 
of summary data to more detail. Commonly 
used in examining data in a data warehouse or 
OLAP application. See Roll up.

Drive head   The mechanism that reads and 
writes data onto a disk. Modern drives have 
several drive heads.

DROP TABLE   A SQL data definition 
command that completely removes a table from 
the database—including the definition. Use it 
sparingly.

Dual-key encryption   An encryption 
technique that uses two different keys: one 
private and one public. The public key is 
published so anyone can retrieve it. To send 
an encrypted message to someone, you use 
the person’s public key. At that point, only the 
person’s private key will decrypt the message. 
Encrypting a message first with your private 
key can also be used to verify that you wrote 
the message. 

Durability   The transaction element that 
specifies that when a transaction is committed, 
all changes are permanently saved even if there 
is a hardware or system failure.

Edit   The Microsoft DAO command to alter 
data on the current row.

Electronic data interchange (EDI)   
Exchanging data over networks with external 
agents such as suppliers, customers, and banks.

Encapsulation   In object-oriented 
programming, the technique of defining 



629Glossary

attributes and methods within a common class. 
For example, all features and capabilities of 
an Employee class would be located together. 
Other code objects can use the properties and 
methods but only by referencing the Employee 
object.

Encryption   Encoding data with a key value 
so the data becomes unreadable. Two general 
types of encryption are used today: single key 
(e.g., DES) and dual key (e.g., RSA).

Entity   An item in the real world that we wish 
to identify and track.

Entity-relationship diagram (ERD)   A graph 
that shows the associations (relationships) 
between business entities. Under UML, the 
class diagram displays similar relationships.

Equi-join   A SQL equality join condition. 
Rows from two tables are joined if the columns 
match exactly. Equi-join is the most common 
join condition. Theta joins support inequality 
conditions.

Error handling   Special programming code 
used to trap errors. The try/catch or On Error 
Goto syntaxes are common. The goal is to catch 
errors and handle them automatically without 
interfering with the user.

Event   Something that arises during database 
or form operations. Events are named and 
developers can write code that is executed 
when a specific event is triggered.

EXCEPT   A SQL operator that examines 
rows from two SELECT statements. It returns 
all rows from one statement except those that 
would be returned by the second statement. 
Sometimes implemented as a SUBTRACT 
command. See UNION.

EXISTS   A SQL keyword used to determine if 
subqueries return any rows of data.

Expert system (ES)   A system with a 
knowledge base consisting of data and rules 
that enables a novice to make decisions as 
effectively as an expert.

Extensible markup language (XML)   A tag-
based notation system that is used to assign 
names and structure to data. It was mainly 
designed for transferring data among diverse 
systems.

Extraction, transformation, and 

transportation (ETT)   The three steps in 
populating a data warehouse from existing files 
or databases. Extraction means selecting the 
data you want. Transformation is generally the 
most difficult step and requires making the data 
consistent. Transportation implies that the data 
has to be physically moved over a network to 
the data warehouse. Oracle refers to the topic as 
ETL (loading).

Fact table   The table or query holding the 
facts to be presented in an OLAP cube.

Fault tolerance   Various methods of building 
a system so that if something fails, other 
components pick up the load without losing the 
entire transaction or application.

Feasibility study   A quick examination of 
the problems, goals, and expected costs of a 
proposed system. The objective is to determine 
whether the problem can reasonably be solved 
with a computer system.

Feedback   A design feature where the 
application provides information to the user 
as tasks are accomplished or errors arise. 
Feedback can be provided in many forms (e.g., 
messages, visual cues, or audible reminders). 

FETCH   The command used in SQL cursor 
programming to retrieve the next row of data 
into memory.

First normal form (1NF)   A table is in 1NF 
when there are no repeating groups within 
it. Each cell can contain only one value. For 
example, how may items can be placed in one 
Order table? The items repeat, so they must be 
split into a separate table.

Fixed-width storage   Storing each row of data 
in a fixed number of bytes per column.

Fixed-with-overflow storage   Storing a 
portion of the row data in a limited number of 
bytes, and moving extra data to an overflow 
location.

Focus   In a window environment, a form or 
control has focus when it is the one that will 
receive keystrokes. It is usually highlighted.

For Each … Next   In VBA, an iteration 
command to automatically identify objects 
in a group and apply some operation to that 
collection. Particularly useful when dealing 
with cells in a spreadsheet.



630Glossary

Foreign key   A column in one table that is a 
primary key in a second table. It does not need 
to be a key in the first table. For example, in 
an Order table, CustomerID is a foreign key 
because it is a primary key in the Customer 
table.

Forms development   The process of designing 
and creating input forms to collect data and 
store it in the database.

Forms generator   A DBMS tool that enables 
you to set up input forms on the screen. 

Fourth normal form (4NF)   There cannot be 
hidden dependencies between key columns. 
A multi-valued dependency exists when a 
key determines two separate but independent 
attributes. Split the table to make the two 
dependencies explicit.

FROM   The SQL SELECT clause that 
signifies the tables from which the query will 
retrieve data. Used in conjunction with the 
JOIN or INNER JOIN statement.

Front end   In a client-server or multi-tier 
system, the forms and applications that are 
displayed or run on the user’s computer. The 
portion of the application seen and manipulated 
by the user. See back end.

FULL JOIN   A join that matches all rows 
from both tables if they match, plus all rows 
from the left table that do not match, and all 
rows from the right table that do not match. 
Rarely used and rarely available. See left join 
and right join.

Function   A procedure designed to perform a 
specific computation. The difference between 
a function and a subroutine is that a function 
returns a specific value (not including the 
parameters).

Generalization association   A relationship 
among classes that begins with a generic class. 
More detailed classes are derived from it and 
inherit the properties and methods of the higher 
level classes.

Geocode   Assigning location coordinates of 
latitude and longitude to a dataset.

Geographic information system (GIS)   
Designed to identify and display relationships 
among business data and locations. A good 
example of the use of objects in a database 
environment.

Globally-unique identifier (GUID)   A large 
number that can be created on one computer 
and be different from all other numbers created. 
Often used for generated keys in a replicated 
database.

Gossip   A small communication channel in the 
Cassandra DBMS used to monitor server node 
status and metadata across database replicas.

GRANT   The SQL command to give someone 
access to specific tables or queries.

Graphics interchange file (GIF)   One 
standard method of storing graphical images. 
Commonly used for images shared on the 
Internet.

Group break   A report that splits data into 
groups. The split-point is called a break. Also 
known as a control break.

GROUP BY   A SQL SELECT clause that 
computes an aggregate value for each item in 
a group. For example, SELECT Department, 
SUM(Salary) FROM Employee GROUP 
BY Department; computes and lists the total 
employee salaries for each department.

Hashed-key access   See direct access. Hash 
refers to the function used to reduce a key 
value to a numbered location—usually modulo 
division by a prime number.

HAVING   A SQL clause used with the 
GROUP BY statement. It restricts the output 
to only those groups that meet the specified 
condition.

Heads-down data entry   Touch typists 
concentrate on entering data without looking at 
the screen. Forms for this task should minimize 
keystrokes and use audio cues.

Help system   A method for displaying, 
sequencing, and searching help documentation. 
Developers need to write the help files in a 
specific format and then use a help compiler to 
generate the final help file.

Hidden dependency   A dependency specified 
by business rules that is not shown in the table 
structure. It generally indicates that the table 
needs to be normalized further and is an issue 
with Boyce-Codd or fourth normal form.

Hierarchical database   An older DBMS 
type that organizes data in hierarchies that can 
be rapidly searched from top to bottom, e.g., 



631Glossary

Customer – Order – OrderItem.

Horizontal partition   Splitting a table into 
groups based on the rows of data. Rows that are 
seldom used can be moved to slower, cheaper 
storage devices.

Hot site   A facility that can be leased from a 
disaster backup specialist. A hot site contains 
all the power, telecommunication facilities, 
and computers necessary to run a company. 
In the event of a disaster, a company collects 
its backup data, notifies workers, and moves 
operations to the hot site. 

Human factors design   An attempt to design 
computer systems that best accommodate 
human users.

Hypertext link   Hypertext (e.g., Web) 
documents consist of text and graphics with 
links that retrieve new pages. Clicking on a 
link is the primary means of navigation and 
obtaining more information. 

Hypertext markup language (HTML)   
A display standard that is used to create 
documents to be shared on the Internet. Several 
generators will create HTML documents from 
standard word processor files.

Icon   A small graphical representation of some 
idea or object. Typically used in a graphical 
user interface to execute commands and 
manipulate underlying objects.

IN   A SQL WHERE clause operator typically 
used with subqueries. It returns a match if the 
selected item matches one of the items in the 
list. For example, WHERE ItemID IN (115, 
235, 536) returns a match for any of the items 
specified. Typically, another SELECT statement 
is inserted in the parentheses. 

Index   A sorted list of key values from the 
original table along with a pointer to the rest of 
the data in each row. Used to speed up searches 
and data retrieval.

Indexed sequential access method (ISAM)   
A data storage method that relies on an index 
to search and retrieve data faster than a pure 
sequential search.

Inequality join   A SQL join where the 
comparison is made with an inequality (greater 
than or less than) instead of an equality 
operator. Useful for placing data into categories 
based on ranges of data. The general form is 

also known as a theta join.

Inheritance   In object-oriented design, the 
ability to define new classes that are derived 
from higher-level classes. New classes 
inherit all prior properties and methods, so 
the programmer only needs to define new 
properties and methods. 

INNER JOIN   A SQL equality join condition. 
Rows from two tables are joined if the 
columns match exactly. The most common join 
condition. Rows that have no match in the other 
table are not displayed.

Input mask   A special string that defines 
how data can be entered. Used to control the 
way users enter values into text boxes, such as 
requiring numeric values for currency items.

InputBox   A predefined simplistic Window 
form that might be used to get one piece of data 
from the user. But it is better to avoid it and 
create your own form.

INSERT   Two SQL commands that insert data 
into a table. One version inserts a single row at 
a time. The other variation copies selected data 
from one query and appends it as new rows in a 
different table.

Insertion anomaly   Problems that arise when 
you try to insert data into a table that is not in 
third normal form. For example, if you find 
yourself repeatedly entering the same data (e.g., 
a customer’s address), the table probably needs 
to be redefined.

Internet   A collection of computers loosely 
connected to exchange information worldwide. 
Owners of the computers make files and 
information available to other users.

INTERSECT   A set operation on rows of data 
from two SELECT statements. Only rows that 
are in both statements will be retrieved. See 
UNION.

Intranet   A network internal to a company that 
uses Internet technologies to share data.

Isolation   The transaction requirement that 
says the system must give each transaction the 
perception that it is running in isolation with no 
concurrent access issues.

Isolation level   Used to assign locking 
properties in transactions. At a minimum, it is 
used to specify optimistic or pessimistic locks. 



632Glossary

Some systems support intermediate levels.

Iteration   Causing a section of code to be 
executed repeatedly, such as the need for a 
loop to track through each row of data. Typical 
commands include Do … Loop, and For … 
Next.

Java   A programming language developed 
by Sun Microsystems that is supposed to be 
able to run unchanged on diverse computers. 
Originally designed as a control language for 
embedded systems, Java is targeted for Internet 
applications. The source of many bad puns in 
naming software products.

Java 2 enterprise edition (J2EE)   A back-
end server-based system for building complex 
applications. It is based on Java but consists of 
an entire environment.

JDBC   A set of methods to connect Java code 
to databases. Similar in purpose to ADO, but 
works only in Java. Sometimes referred to as 
Java Database Connectivity.

JOIN   When data is retrieved from more than 
one table, the tables must be joined by some 
column or columns of data. See INNER JOIN 
and LEFT  JOIN.

Keyspace   The top level namespace in the 
Cassandra non-relational DBMS. It functions 
like a schema in SQL to separate tables by 
application. Table names must be unique within 
a keyspace but different keyspaces can have 
table names that exist in other keyspaces.

Key-value pair   A common method of 
identifying and transferring data in Web 
applications that is used for storage in non-
relational DBMSs such as Cassandra. A key 
number uniquely identifies a collection of data 
contained in the value. For example, (CID, 
Customer Data) would enable a single number 
(CID) to retrieve data associated with the 
specified customer.

Label   A simple text item displayed on a form 
or report. Values cannot be altered by the user.

Latency   Time delay in a system. In a Web-
based system, the delay created by slow links. 
Long download times create higher latency 
which leads to more server conflicts. 

Leaves   The bottom nodes in a B-tree 
(opposite from the root).

LEFT JOIN   An outer join that includes all 
of the rows from the “left” table, even if there 
are no matching rows in the “right” table. The 
missing values are indicated by Nulls. See right 
join and inner join. Left and right are defined 
by the order the tables are listed; left is first.

Lifetime   The length of time that a 
programming variable stays available. For 
example, variables created within subroutines 
are created when the routine is executed and 
then destroyed when it exits. Global variables 
stay alive for all routines within the module.

Lift   The potential gain attributed to an 
association rule compared to purchases without 
the rule.

LIKE   The SQL pattern-matching operator 
used to compare string values. The standard 
uses percent (%) to match any number of 
characters, and underscore (_) to match a single 
character. Some systems (e.g., Access) use an 
asterisk (*) and a question mark (?) instead.

LIMIT   The CQL keyword used in the 
Cassandra SELECT command to set the 
maximum number of rows retrieved. A default 
value is always used even if the LIMIT 
command is not specified, so beware of queries 
that do not retrieve the expected number of 
rows.

List   One type of Cassandra data collection 
(along with map and set). It enables a single 
column to hold multiple values, such as 
multiple e-mail addresses for one person. A list 
stores items as a sequence (1, 2, 3, …)

List box   A control on a form that displays a 
list of choices. The list is always displayed and 
takes up a fixed amount of space on the screen.

List of values (LOV)   An important technique 
for selecting data on Oracle forms. Used 
instead of combo/select boxes, the Oracle form 
maintains a small, buffered list of data that can 
be selected for a text box. Particularly useful in 
distributed databases because only portions of 
the list are sent to the user.

Local area network (LAN)   A collection of 
personal computers within a small geographic 
area. All components of the network are owned 
or controlled by one company.

Local variable   A variable defined within a 
subroutine. It can be accessed only within that 
subroutine and not from other procedures. 



633Glossary

Logic   Logic statements that define a 
program’s purpose and structure. Can be 
written in pseudocode independently of the 
program’s syntax. Logic structures include 
loops, conditions, subroutines, and input/output 
commands.

Logical security   Determining which users 
should have access to which data. It deals 
with preventing three data problems: (1) 
unauthorized disclosure, (2) unauthorized 
modification, and (3) unauthorized withholding.

Loop   Each loop must have a beginning, an 
end condition, and some way to increment a 
variable. See iteration.

Map   One type of Cassandra data collection 
(along with list and set). It enables a single 
column to hold multiple values stored as key-
value pairs. For instance, a phone map might 
hold items such as cell=1111, home=2222, 
work=3333.

Market basket analysis   See association 
rules.

Master-detail   A common one-to-many 
relationship often found on business forms, 
where the main form (e.g., Order) displays data 
for the master component, and a subform (e.g., 
Order Items) displays detail data. Sometimes 
called a parent-child relationship.

Measure   The numeric data displayed in an 
OLAP cube.

Menu   A set of application commands grouped 
together—usually on a toolbar. It provides an 
easy reference for commonly used commands 
and highlights the structure of the application.

Metadata   Data about data, or the description 
of the data tables and columns. Usually held 
in the data dictionary. For example, table 
definitions and column domains are metadata.

Method   A function or operation that a class 
can perform. For example, a Customer class 
would generally have an AddNew method that 
is called whenever a new customer object is 
added to the database.

Microsoft Assistance Markup Language 
(MAML)   A help system authoring language 
similar to XML introduced by Microsoft for 
use with the Windows Vista operating system. 
Discountinued.

Middle tier   In a multi-tier application, a set of 
programs that lies between the front and back 
ends. It is generally used to define and process 
business rules.

Modal form   A form that takes priority on the 
screen and forces the user to deal with it before 
continuing. It should be avoided because it 
interrupts the user.

Module (or package)   A collection of 
subroutines, generally related to a common 
purpose.

MsgBox   A predefined method in Windows for 
displaying a brief message on the screen and 
presenting a few limited choices to the user. 
Because it is modal and interrupts the user, it 
should be used sparingly. 

Multidimensional expressions (MDX)   A 
language for querying OLAP data that was 
initiated by Microsoft, but in the process of 
becoming a standard. It is designed to handle 
relatively complex computations and OLAP 
cubes.

Multiplicity   The UML term for signifying 
the quantities involved in an association. 
It is displayed on an association line with 
a minimum value, an ellipses (…), and a 
maximum value or asterisk (*) for many. For 
example, a customer can place from zero to 
many orders, so the multiplicity is (0…*).

N-ary association   An association among 
three or more classes. It is drawn as a diamond 
on a UML class diagram. The term comes from 
extending English terms: unary means one, 
binary means two, ternary means four; so N-ary 
means many. 

Naming conventions   Program teams should 
name their variables and controls according to 
a consistent format. One common approach is 
to use a three letter prefix to identify the type of 
variable, followed by a descriptive name.

Nested conditions   Conditional statements that 
are placed inside other conditional statements. 
For example, If (x > 0) Then … If (y < 4) Then 
… Some nested conditions can be replaced 
with a Case statement.

Nested query   See subquery.

Network attached storage (NAS)   Disk 
drives or other storage media that are connected 
to servers via a network connection instead 



634Glossary

of building them into the computer itself. The 
separation provides some autonomy, making 
it easier to provide backup and to replace the 
storage devices. Typically the drives are RAID 
configured.

Network database   An older DBMS type 
that expanded the hierarchical database by 
supporting multiple connections between 
entities. A network database is characterized by 
the requirement that all connections had to be 
supported by an index.

Node   An entry in a B-tree that contains a key 
value and links to other nodes. The top-most 
node is the root, the bottom nodes are leaves.

Non-relational database   Several newer 
database designs were developed to optimize 
performance for specific tasks--primarily for 
Web-based applications. The data storage 
does not follow data normalization rules and 
imposes limitations on queries to store and 
retrieve huge amounts of data.

Normalization   See data normalization.

NoSQL   Read as either Not SQL or Not Only 
SQL. Often used to refer to non-relational 
databases where data storage does not follow 
normalization rules. More specifically, the tools 
rarely support JOIN queries. By restricting 
operations allowed, the systems are optimized 
for specific data storage and retrieval tasks for 
giant databases.

NOT   The SQL negation operator. Used in the 
WHERE clause to reverse the truth value of a 
statement. See DeMorgan’s law.

NotInList   An event corresponding to a combo 
box in Access. It is triggered when a user enters 
a value that does not yet exist in the selected 
list. Often used to add new data to a table, such 
as new customers.

Null   A missing (or currently unassigned) 
value.

Object   An instance or particular example of 
a class. For example, in an Employee class, 
one individual employee would be an object. 
In a relational environment, a class is stored 
as a table, while an individual row in the table 
contains data for one object.

Object browser   A tool provided within 
Microsoft software that displays properties and 
methods for available objects.

Object-oriented database management 
system (OODBMS)   A database system 
that holds objects, including properties and 
methods. It supports links between objects, 
including inheritance. 

Object-oriented programming   A 
programming methodology where code is 
encapsulated within the definition of various 
objects (or classes). Systems are built from 
(hopefully) reusable objects. You control the 
system by manipulating object properties and 
calling object methods.

Offset, file   A method of identifying the 
location of data within an operating system file. 
The offset is the number of bytes from the start 
of the file. It is often used as a pointer to the 
physical data items.

Online analytical processing (OLAP)   The 
use of a database for data analysis. The focus is 
on retrieval of the data. The primary goals are 
to provide acceptable response times, maintain 
security, and make it easy for users to find the 
data they need.

Online transaction processing (OLTP)   The 
use of a database for transaction processing. It 
consists of many insert and update operations 
and supports hundreds of concurrent accesses. 
High-speed storage of data, reliability, and data 
integrity are primary goals. Examples include 
airline reservations, online banking, and retail 
sales.

Open database connectivity (ODBC)   A 
standard created by Microsoft to enable 
software to access a variety of databases. Each 
DBMS vendor provides an ODBC driver. 
Application code can generally be written once. 
To change the DBMS, you simply install and 
set up the proper ODBC driver.

Optimistic lock   A transaction lock that does 
not block other processes. If the data is changed 
between read and write steps, the system 
generates an error that must be handled by 
code.

Option button   A round button that is used to 
indicate a choice. By the design guide, option 
buttons signify mutually exclusive choices, as 
opposed to check boxes.

ORDER BY   The clause in the SQL SELECT 
statement that lists the columns to sort the 
output. The modifiers ASC and DESC are 



635Glossary

used to specify ascending and descending sort 
orders.

Outer join   A generic term that represents a 
left join or a right join. It returns rows from a 
table, even if there is no matching row in the 
other table.

Pack   A maintenance operation that must be 
periodically performed on a database to remove 
fragments of deleted data.

Package   A UML mechanism to group logical 
elements together. It is useful for isolating 
sections of a design. Packages can provide an 
overview of the entire system without having to 
see all the details. 

Page footer   A report element that appears at 
the bottom of every page. Often used for page 
numbers.

Page header   A report element that appears at 
the top of every page. Often used for column 
headings and subtitles.

Parameter   A variable that is passed to 
a subroutine or function and used in its 
computations.

Partition, SQL   A SQL 2003 standard used 
to implement OLAP computations. Similar 
to a GROUP BY clause because you specify 
columns whose values are used to define 
the partitions. But partitions offer additional 
options and enable you to display detail and 
aggregate data at the same time. Also known as 
a data window.

Pass-by-reference   A subroutine parameter 
that can be altered within the subroutine. If it is 
altered, the new value is returned to the calling 
program. That is, the subroutine can alter 
variables in other parts of the code. Usually a 
dangerous approach. See pass-by-value.

Pass-by-value   A subroutine parameter that 
cannot be altered within the subroutine. Only 
its value is passed. If the subroutine changes 
the value, the original value in the calling 
program is not changed.

Pass-through query   SQL queries that are 
ignored by Access on the front end. They 
enable you to write complex SQL queries that 
are specific to the server database.

Peer-to-peer   Refers to distributed databases 
and servers. No single server or DBMS is 

in charge of coordinating processing. All 
devices are considered equal and queries can 
be addressed to any server (usually the closest 
one).

Persistent objects   In object-oriented 
programming, the ability to store objects (in a 
file or database) so that they can be retrieved at 
a later date. 

Persistent stored modules (PSM)   In SQL-
99 a proposed method for storing methods 
associated with objects. The module code 
would be stored and retrieved automatically by 
the DBMS.

Pessimistic lock   A complete isolation level 
that blocks other processes from reading a 
locked piece of data until the transaction is 
complete. Program code will receive an error 
message if the data element is locked. 

Physical security   The branch of security that 
involves physically protecting the equipment 
and people. It includes disaster planning, 
physical access to equipment, and risk analysis 
and prevention.

PivotTable   Microsoft’s tool for enabling 
managers to examine OLAP data 
dynamically—typically inside of an Excel 
spreadsheet. The data is extracted from the 
database or OLAP cube, and managers can 
click buttons to examine summaries or details. 

Pointer   A logical or physical address of a 
piece of data.

Polymorphism   In a class hierarchy each new 
class inherits methods from the prior classes. 
Through polymorphism you can override those 
definitions and assign a new method (with the 
same name) to the new class.

Primary key   A column or set of columns 
that identify a particular row in a table. In non-
relational DBMSs, the primary key defines how 
the data will be stored and retrieved.

Private key   In a dual-key encryption system, 
the key that is never revealed to anyone else. 
A message encrypted with a public key can be 
decrypted only with the matching private key.

Procedural language   A traditional 
programming language that is based on 
following procedures and is typically executed 
one statement at a time. Compared to SQL, 
which operates on sets of data with one 



636Glossary

command. 

Procedure   A subroutine or function that is 
designed to perform one specific task. It is 
generally wise to keep procedures small.

Property   An attribute or feature of an entity 
that we wish to track. The term is often applied 
in an object-oriented context. See attribute.

Prototype   An initial outline of an application 
that is built quickly to demonstrate and test 
various features of the application. Often used 
to help users visualize and improve forms and 
reports.

Pseudo column   A computed column 
in a table that can only display data, not 
accept updates. Used to predefine row-wise 
calculations that are commonly used, such as 
Value=price*quantity.

Public key   In a dual-key encryption system, 
the key that is given to the public. A message 
encrypted with a public key can only be 
decrypted with the matching private key.

Query by example (QBE)   A fill-in-the-form 
approach to designing queries. You select tables 
and columns from a list and fill in blanks for 
conditions and sorting. It is relatively easy to 
use, requires minimal typing skills, generally 
comes with a Help system, and is useful for 
beginners.

RANK   A data mining extension to SQL that 
rank orders data. If ties exist, they receive the 
same rank, and the next entry receives rank 
that is equal to its position in the overall list. 
Compare to DENSE RANK.

Rapid application development (RAD)   A 
systems design methodology that attempts to 
reduce development time through efficiency 
and overlapping stages.

Redundant array of independent drives 
(RAID)   A collection of several inexpensive 
disk drives that are treated as a single drive by 
the operating system. Data is written in stripes 
across the drives, supporting parallel operations 
to substantially improve performance and 
backup at the same time.

Referential integrity   A data integrity 
constraint where data can be entered into a 
foreign key column only if the data value 
already exists in the base table. For example, 
clerks should not be able to enter an Order for 

CustomerID 1173 if CustomerID 1173 is not in 
the Customer table. 

Reflexive association   A relationship from 
one class back to itself. Most commonly seen 
in business in an Employee class, where some 
employees are managers over other employees.

Reflexive join   A situation that exists 
when a table is joined to itself through a 
second column. For example, the table 
Employee(EmployeeID, …, ManagerID) could 
have a join from ManagerID to EmployeeID.

Regular expression (RegEx)   A pattern 
matching tool for searching complex strings. 
Search online references for details. It has 
many options to match individual characters, 
sets of characters, repetitions, and sequences.

Relational database   The most popular 
type of DBMS. All data is stored in tables 
(sometimes called relations). Tables are 
logically connected by the data they hold (e.g., 
through the key values). Relational databases 
should be designed through data normalization. 

Relationship   An association between two or 
more entities. See association.

Repeating groups   Groups of data that repeat, 
such as items being ordered by a customer, 
multiple phone numbers for a client, and tasks 
assigned to a worker.

Replicate   Make a deliberate copy of a 
database so it can be distributed to a new 
location and the contents later synchronized 
with the master copy.

Replication manager   In a distributed 
database that relies on replication, the manager 
is an automated system that transfers changes 
to the various copies of the database. It has to 
handle conflicts if two people changed the same 
data before it was replicated.

Report footer   A report element that appears 
at the end of the report. Often used for 
summary statistics or graphs.

Report header   A report element that appears 
only at the start of the report. Often used for 
title pages and overviews.

Report services   A server-based tool that 
processes reports and enables users to browse 
for reports and generate them on demand.

Report writer   A DBMS tool that enables you 



637Glossary

to set up reports on the screen to specify how 
items will be displayed or calculated. Most of 
these tasks are performed by dragging data onto 
the screen.

Resource file   A special text file associated 
with a form or report. It is commonly used to 
hold language translations. The form references 
a tag in the resource file, and the system pulls 
the matching value from the appropriately 
translated resource file for the desired language.

Resume   A VBA error-handling operator that 
tells the processor to return to a new location 
and continue evaluating the code. Resume by 
itself returns to the line that caused the error. 
Resume Next returns to the line immediately 
following the error. Resume <label> sends the 
processor to a new location.

REVOKE   The SQL command used to 
remove permissions that were granted to certain 
users.

RIGHT JOIN   An outer join that includes all 
the rows from the “right” table, even if there 
are no matching rows in the “left” table. The 
missing values are indicated by Nulls. See right 
join and inner join. Left and right are defined 
by the order the tables are listed; left is first.

Rivest-Shamir-Adelman (RSA) encryption   
A dual-key encryption system that was patented 
in the United States by three mathematicians. 
See dual-key encryption.

Role   Security group where permissions are 
assigned by the task or role that is performed 
instead of to individual people. Roles make it 
easier to change employee permissions.

Roll back   A database system transaction 
feature. If an error occurs in a sequence of 
changes, the preceding changes can be rolled 
back to restore the database to a safe state with 
correct data.

Roll forward   If an error occurs in processing 
transactions, the database can be restarted 
and loaded from a known checkpoint. Then 
partially completed transactions can be rolled 
forward to record the interrupted changes.

Roll up   The act of aggregating detail data into 
a display of category summaries. Commonly 
used in examining data in a data warehouse or 
OLAP application. See drill down.

Root   The top-most or entry node in a B-tree.

Row-by-row calculations   The way that SQL 
performs in-line calculations. For example, 
the statement SELECT Price*Quantity AS 
Extended goes through each row and multiplies 
the row’s value for Price times the matching 
value for Quantity.

Scalability   The ability to handle increased 
demands without needing to make major 
changes to an application. Generally applied to 
server hardware, it is often supported through 
server clusters (or farms). 

Schema   A collection of tables that are 
grouped together for a common purpose. 
Generally used as a naming method.

Scope   Refers to where a variable is accessible. 
Variables defined within a subroutine can 
typically be accessed only by code within that 
subroutine. Variables defined within a module 
are globally accessible by any code within that 
module.

Scroll bars   A common graphical interface 
feature used to move material horizontally or 
vertically.

Second normal form (2NF)   A table is in 2NF 
if every nonkey column depends on the entire 
key (not just part of it). This issue arises only 
if there is a concatenated key (with multiple 
columns).

Secure sockets layer (SSL)   An Internet 
standard that uses RSA encryption with public 
keys to establish a secure, encrypted session 
between a browser and a Web server.

SELECT   The primary data retrieval 
command for SQL. The main components 
are SELECT … FROM … INNER JOIN … 
WHERE.

Self-join   A table joined to itself. See reflexive 
join.

Serialization   A transaction requirement 
that specifies that each transaction is treated 
completely separately and run as if there were 
no other transactions.

Set   One type of Cassandra data collection 
(along with list and map). It enables a single 
column to hold multiple values stored as key-
value pairs. Order is unimportant but usually 
alphabetical. Columns are defined with angle 
brackets:   email   set<text>



638Glossary

Shell site   See cold site.

Single-row form   An input form that displays 
data from one row of a table at a time. The 
most common input form, since the designer 
has full control over the layout of the form.

Snapshot   In a constantly changing database, 
you can take a snapshot that provides a copy of 
the data at one point in time. 

Snowflake design   A database design used for 
OLAP. A fact table is connected to dimension 
tables. The dimension tables can be joined to 
other dimension tables. It is less restrictive than 
the star design.

Solid-state drive (SSD)   A data storage device 
that uses electronic flash (non-volatile) memory 
instead of moving disks. Modern versions are 
usually smaller than rotating disks, draw less 
power, and are tens or hundreds of times faster 
at data storage and retrieval.

Sparse table   A table that contains missing 
data for many columns. Often an indicator that 
non-relational systems might be more efficient 
at storing and retrieving data because they use 
space only for actual data.

SQL   A standardized database language, used 
for data retrieval (queries), data definition, and 
data manipulation.

SQL 1999 (SQL3)   Approved in 1999,  SQL 
1999 was largely designed to add object-
oriented features to the SQL language.

SQL 2003   An almost completed new version 
of SQL. Its primary contribution is a formal 
definition of integrating XML and multimedia 
into relational databases.

SQL 2008   The latest release of the SQL 
standard which is primarily an updated version 
of SQL 2006. Added support for XQuery and 
procedural code (persistent stored modules).

SQL injection attack   An attack on the 
application and database usually performed 
by an outsider. The person enters special text 
into a text box to try and alter the SQL query. 
The special text often includes the comment 
character (--) and quotation marks. Your 
application code should test all user input and 
remove those characters.

Star design   A database design used for 
OLAP. A fact table is connected to dimension 

tables that provide categories for analysis. 
More restrictive than the snowflake design, all 
dimension tables are directly connected to the 
fact table.

Startup form   A form that is used to direct 
users to different parts of the application. Often 
used as the first form to appear. Options on the 
form should match the tasks of the users. Also 
called a switchboard form.

Storage area network (SAN)   A high-
speed network that moves disk drives out of 
the computer and into a separate location. 
Separating the disk drives from the processor 
makes it easier to share the data, to back it up, 
and to scale up by adding new processors.

Style sheet   A special file that describes the 
desired layout, fonts, and styles for a set of 
Web pages. It is a powerful method to establish 
and change styles on many Web pages through 
making minor changes to one file.

Subform form   A form that is displayed inside 
another (main) form. The data in the subform 
is generally linked to the row currently being 
displayed on the main form. 

Subquery   Using a second query to retrieve 
additional data within the main query. For 
example, to retrieve all sales where price was 
greater than the average, the WHERE clause 
could use a subquery to compute the average 
price. 

Subroutine   A separate section of code 
designed to perform one specific purpose. A 
subroutine can use parameters to exchange data 
with the calling routine.

Subtable   In SQL 1999 a subtable inherits all 
of the columns from a base table. It provides 
inheritance similar to that of the abstract data 
types; however, all data is stored in separate 
columns.

Super-aggregate   In a query, totals of totals. 
An important concept in OLAP queries provide 
by the ROLLUP option. 

Support   A data mining measure in association 
rules, measured by the percent of transactions 
that contain both items.

Surrogate keys   Internally generated keys 
used to identify objects. They are often 
better keys than keys created by external 
sources because they are easier to guarantee 



639Glossary

uniqueness. See AutoNumber.

Switchboard form   See startup form.

Synonym   A short name for the full database 
path. Advantages of the short name are that it 
is easy to remember and the user never needs 
to know where the data is located. In addition, 
if everyone uses the synonym, database 
administrators can easily move the server 
databases to different locations just by altering 
the synonym’s properties.

Syntax   The specific format of commands that 
can be created in a program. Programs consist 
of logical steps, but each command must be 
given in the proper syntax for the compiler to 
understand it. Compilers generally check for 
syntax and prompt you with messages. 

Tab order   The sequence of controls followed 
on a form when the user presses the tab or 
return keys.

Table   A collection of data for one class or 
entity. It consists of columns for each attribute 
and a row of data for each specific entity or 
object.

Tablespace   In Oracle a tablespace is disk 
space that is allocated to hold tables, indexes, 
and other system data. You must first know the 
approximate size of the database.

Tabular form   An input form that displays 
data in columns and rows. It is used when there 
are few columns of data or when the user needs 
to see multiple rows at the same time.

Template   A special form (or report) that 
defines the standard elements to be applied to 
all forms. It also specifies styles and common 
code. It is used to improve consistency of forms 
and reports within an application.

Text box   A common form control that is used 
to display and enter data.

Third normal form (3NF)   A table is in third 
normal form (3NF) if each nonkey column 
depends on the whole key and nothing but the 
key.

Three-tier client/server   A client/server 
system with a middle layer to hold code that 
defines business rules and consolidates access 
to various transaction servers. 

Toggle button   A three-dimensional variation 
of the check box. It is used to signify a choice 

of options.

Toolbar   A small object in applications that 
can hold buttons and text menus. Users can 
execute commands with one or two mouse 
clicks. Used to hold frequently used commands, 
and commands that are used across the entire 
application, such as printing.

Tooltip   A short message that is displayed 
when the user moves the mouse cursor over 
an item on the screen. Extremely useful for 
identifying the purpose of icons.

TOP   A SQL SELECT clause provided by 
Access that restricts the displayed output to 
a specified number of rows. You can set the 
number of rows directly or use a percentage of 
the total number.

Transaction   In a database application a 
transaction is a set of changes that must all be 
made together. Transactions must be identified 
to the DBMS and then committed or rolled 
back (if there is an error). For example, a 
transfer of money from one bank account to 
another requires two changes to the database—
both must succeed or fail together.

Transaction log   A sequential file that records 
transactions as they are being created. If 
something happens during the transaction 
update, the DBMS uses the transaction log 
to complete or roll back the incomplete 
transactions. 

Transaction processing   Collecting data for 
the purpose of recording transactions. Common 
examples include sales, human resource 
management, and financial accounting.

Trigger   An event that causes a procedure to 
be executed. For example, clicking a button can 
be a trigger, as can a change in a data value.

Tunable consistency   A concept emphasized 
in the Cassandra distributed DBMS. A 
developer can choose the level of consistency 
required for read and write operations, such 
as a single node, agreement across all nodes, 
or consistency across a quorum. Higher 
consistency (ALL) is closer to SQL but can 
result in delays.

Tuning   Setting indexes, rewriting queries, and 
setting storage and other parameters to improve 
the database application performance.

Two-phase commit   A mechanism for 



640Glossary

handling concurrency and deadlock problems 
in a distributed database. In the first phase 
the coordinating DBMS sends updates to 
the other databases and asks them to prepare 
the transaction. Once they have agreed, the 
coordinator sends a message to commit the 
changes.

Unicode   A standard method of storing and 
displaying a variety of character sets. Almost 
all current world character sets have been 
defined, as well as several ancient languages. 
It uses 2 bytes to represent each character, 
enabling it to handle over 65,000 characters or 
ideograms. 

Unified Modeling Language (UML)   A 
standardized modeling language for designing 
and documenting computer and business 
systems.

UNION   An SQL clause to combine rows 
from two SELECT statements. Both queries 
must have the same number of columns with 
the same domains. Most systems also support 
INTERSECT and EXCEPT (or SUBTRACT) 
operators.

Universally unique identifier (uuid)   A type 
of large number defined by an ISO standard to 
enable a computer to generate values that will 
be unique across any computer. Several types 
are defined (at least 4). Some use the unique 
MAC network card address and a timestamp. 
Others use pure random numbers, which might 
overlap with a tiny probability. Often used 
as generated key values in distributed (non-
relational) databases.

UPDATE   A SQL data manipulation command 
that changes the values in specified columns. 
A WHERE clause specifies which rows will be 
affected.

Use case   In UML, a diagram that shows how 
a specific group of people will use the system.

User interface   The look and feel of the 
application as it is seen by the user. Graphical 
interfaces are commonly employed in which 
users can manipulate icons and data on the 
screen to perform their tasks. 

Validation tables   Simple tables of one or 
two columns that contain standardized data for 
entry into other tables. For example, a list of 
departments would be stored in a validation 
table. To enter a department name into an 

Employee table, the user would be given a 
choice of the rows in the validation table.

VARCHAR   A common method for storing 
character data. It stands for variable characters. 
Each column of data uses the exact amount of 
bytes needed to store the specific data. 

Variable   A location in memory used to hold 
temporary values. Variables have a scope and 
a lifetime depending on where they are created 
and how they are defined. They also have a 
specific data type, although the Variant data 
type in VBA can hold any common type of 
data.

Variable length storage   A system of storing 
data columns where only a pointer is stored in 
the actual row. The actual data is stored in a 
pooled area.

Vertical partition   Splitting a table into 
groups based on the columns of data. Large 
columns or columns that are seldom used (e.g., 
pictures) can be moved to slower, cheaper 
storage devices.

View   A saved query. You can build new 
queries that retrieve data from the view. A view 
is saved as an SQL statement—not as the actual 
data.

Virtual machine (VM)   A method of running 
multiple computer operating systems on one 
physical computer. Each VM has its own 
disk space and operating system and appears 
to be a separate computer. The underlying 
computer needs to support multiprocessing and 
have sufficient memory. VMs are relatively 
easy to backup and transfer to other physical 
computers.

Visual Basic (VB)   A stand-alone 
programming language sold by Microsoft and 
used to develop applications for the Windows 
environment. The professional version supports 
database connections. The program can be 
compiled into a stand-alone executable file.

Visual Basic for Applications (VBA)   The 
programming language that underlies almost all 
of Microsoft’s tools, including Access. 

Volume table of contents (VTOC)   A design 
tool that can be used to outline the overall 
structure of an application. It generally shows a 
sequence of interrelated menus.

WHERE   The SQL clause that restricts the 



641Glossary

rows that will be used in the query. It can also 
refer to data in subqueries.

Wide area network (WAN)   A network that is 
spread across a larger geographic area. Parts of 
the network are outside the control of a single 
firm. Long-distance connections often use 
public carriers.

With … End With   In VBA, a shortcut for 
examining or altering several properties for a 
single object. Once the object is specified in 
the With statement, you simply refer to the 
properties inside the “loop.”

WITH GRANT OPTION   A security 
permission option that transfers the ability to 
assign permissions to the specified role or user.

World Wide Web (WWW)   A first attempt to 
set up an international database of information. 
Web browsers display graphical pages of 
information. Hypertext connections enable 
you to get related information by clicking 
highlighted words or icons. A standard method 
for displaying text and images on client 
computers. 

XML   See extensible markup language.

XML schema   A definitional file that describes 
the tags, data types, and attributes allowed in an 
associated XML data file.

XQuery   A standardized language to retrieve 
individual elements or groups of data from an 
XML file or text group.



642IndexIndex
Symbols
1NF. See first normal form 

(1NF)
2NF, 129
3NF, 132
4NF, 137
24-7, 492
*, asterisk as many, 54
→, dependency, 137, 180
=, equals, 202
^, exponentiation, 299
>, greater than, 202

with ANY and ALL, 266
|, in statistics, given, 463
\, integer divide, 299
<, less than, 202

with ANY and ALL, 266
∩, logical and, 463
*=, older SQL Server LEFT 

JOIN notation, 257
{ordered} association, 61
%, pattern match any, 202
_, pattern match one, 202
/, slash, UML note, 73
@, SQL Server variable indi-

cator, 383
∑, summation, 210

A
abstract data types, 25
access controls, 502
accessibility, 410, 423, 500
accessible, 316
access methods comparison, 

575
ACID transactions, 375
active data objects (ADO), 

540
Active Directory, 502
address, 567
ad hoc queries, 592
administrative tasks, 407, 480
advanced encryption system 

(AES), 507
advocate, 483
aesthetics, 312
AFTER UPDATE, 361

aggregation
design, 61
SQL, 210

alias
table, 223

ALL, 266
ALLOW FILTERING, 610
Alter Table

SQL syntax, 248
ALTER TABLE, 282
Amazon, 590
Amazon EC, 549
Amazon EC2, 614
Amazon S3, 549
Americans with Disabilities 

Act (ADA), 412
analytic functions, 455
AND, 205
ANY, 266
application, 2, 4, 6, 30, 81, 

396
accessibility, 410
administration, 407
deployment, 424
features, 396
structure, 402
Web, 19, 400

application design, 81
application development, 30, 

336
application structure

Sally’s Pet Store, 404
Apte, C., 477
architecture, 403
arithmetic operations, 299
arithmetic operators, 209
association role, 53
association rules, 463

data configuration, 464
example, 466

associations, 53
assumptions, 52
atomic attribute, 181
atomicity, 375
attributes, 48
authentication, 509
autonumber, 116
average function, 211

B
back end, 540

database, 402
backup, 483
backup and recovery, 492, 527
Baeza-Yates, R., 587
Baralis,E., 394
base entity, 55
batch operations, 503
BEFORE UPDATE, 361
begin a database project, 47
begin analyzing a form, 121
behavioral security, 496
benefits

project, 35
Ben-Gan, I., 394
Bertino, E., 519
best or worst query

SQL search, 217
BETWEEN, 209
beyond third normal form, 135
BigQuery, 590
binary data, 578
binary large object (BLOB), 

72
binary search, 434
biometric, 502
bitmap index, 575
Boolean algebra, 201, 204
bound object frame, 330
Boyce-Codd normal form 

(BCNF), 135
formal definition, 183

browser, 543
Bruce, J., 557
brute force attack, 507
B+Tree, 571
Burns, R., 557
business data, 17
business events, 73
business intelligence (BI), 

439, 458
business objects, 48
business questions, 12, 254

convert to SQL, 190
business rules, 11, 54, 360

effect on database design, 
141



643Index

C
calculations within a program, 

298
cancel data changes, 362
cancel trigger, 362
candidate key, 181
cascading delete, 140
cascading style sheet (CSS), 

544
cascading triggers, 363
CASE, 275
Cassandra, 3, 28, 590, 601
Cassandra Query Language 

(CQL), 607
Castano, S., 519
Catania, B., 519
catching errors, 419
Celko, J., 295
centralized computers, 500
certificate authority, 509
charts, 331, 346
check box, 314
clarity, 312
class, 48
class diagram, 49, 51

convert to normalized tables, 
143

Corner Med, 86
pet store, 68
Rolling Thunder Bicycles, 

83
class hierarchy, 64
classification analysis, 460

data configuration, 461
example, 461

client-server database, 536
client-server model, 19
client-server system, 536
cloud computing, 548
cloud database, 548, 614
cluster

computer, 528
data, 579

cluster analysis, 467
data configuration, 468
example, 468

CMYK, 340
COBOL, 21, 539
Codd, E.F., 21, 98, 135

code, 356
data lookup, 358
procedural, 354

cold site, 499
collaboration diagram, 46
color scheme, 400
column

non-relational, 604
column family, 604
command button, 316
command-line tools, 15
comma separated values 

(CSV), 441
commercial database systems, 

20
COMMIT, 368
Commit Work

SQL syntax, 248
common-language runtime 

(CLR), 234
complex controls, 331
complex questions, 252
components, 10
composite keys, 114
composite primary key, 606
composition

design, 62, 150
compound primary key, 606

queries, 612
computational order, 445
computations

aggregation, 209
row-by-row arithmetic, 209
SQL, 209

computed total, 124
computed value, 73
computer-aided software engi-

neering (CASE), 489
computer crash, 366
computer security, 481
concatenate strings, 299
concatenation, 212
concurrent access, 369

distributed databases, 533
reduce problems, 371

condition, programming, 302
conditions, 359
conditions on totals, 216
confidence, association rules, 

463

confidentiality, 500
configuration, 425
consistency, 312, 375, 598

design, 398
tunable, 599

consistent application design, 
398

Constantine, L., 98
constantly changing data, 377
constraint

SQL, 192, 282
context sensitive help, 412
controls

complex, 331
form, 313

Cooper, A., 429, 352
Corner Med

database design, 82
introduction, 32

Corner Med class diagram, 86
correlated subquery, 269
costs

project, 33
count function, 210
count versus sum, 210
CREATE a SCHEMA, 281
create a table in DB Design, 

101
CREATE DOMAIN, 281
CREATE FUNCTION, 358
Create Index

SQL syntax, 248
CREATE INDEX, 436
Create Table

SQL syntax, 248
CREATE TABLE, 27, 281
Create Trigger

SQL syntax, 248
Create View

SQL syntax, 248
CREATE VIEW, 283
criteria (WHERE), 201
cross join, 194
CUBE, 453
cube browsers, 448
currency data type, 71
cursor

change or delete data, 381
parameters, 383
scrollable, 380



644Index

custom Help, 412

D
data

categories in DB, 296
ownership, 497

data administration, 480
data administrator (DA), 482
database, 2

design, 48
non-SQL, 29
Operation and maintenance, 

490
relational, 23, 50
size, 166
structure, 485

database administration, 480
database administrator (DBA), 

483
database cursor, 378, 379
database design, 94, 99, 112, 

445, 489
Boyce-Codd normal form 

(BCNF), 135
domain-key normal form 

(DKNF), 137
first normal form, 125
fourth normal form (4NF), 

137
importance, 112
initial form evaluation, 123
non-relational DBMS, 603
notation, 116
revisited, 336
second normal form, 128

Database Design System, 99
database engine, 10
database implementation, 489
database independence, 541
database management system 

(DBMS), 2
administration tasks, 483
advantages, 16
components, 10
drawbacks, 29
evolution, 21

database normalization, 117
database operations, 561
database planning, 488
database project

start, 47
database role, 504
databases

book examples, 31
samples in book, 31

database security, 481
database trigger, 356
database usage, 565
data-bound control, 313
Data change events, triggers, 

73
data clustering, 579
data column storage, 576
data configuration

classification, 461
data consistency, 482
data definition, 280
data definition language 

(DDL), 189, 280
data dictionary, 11, 162
data domain, 69
data flow diagram (DFD), 46
data focus, 17
data hierarchy, 444
data in control on form, 296
data independence, 18
data integrity, 139
data manipulation language 

(DML), 189, 283
data mining, 13, 439, 458

data configuration, 459
data normalization, 50, 112

checking your work, 135
in non-relational DBMS, 592

data partitioner, 597
data partitioning, 580
data replication, 530
data repository. See data dic-

tionary
data rules, 139
DataStax, 591
data storage methods, 565
data stored in a table, 296
data transfer rates, 529
data transmission, 546
data transmission issues, 546
data trigger, 360
data type, 69

binary object, 72
comparison table, 70

currency, 71
date and time, 72
numeric, 69
size table, 71
specifying in DB Design, 

107
text, 69
user defined, 73
variable, 296

data variables in programming 
code, 296

data volume, 166, 440, 484
data warehouse, 30, 437

goals, 438
issues, 439

DateAdd, 300
Date, C.J., 179, 180, 524, 557
DateDiff, 300
date subtraction, 213
date syntax notation, 209
DB2, 20
DB Design, 166
DB Design system, 99

introduction, steps, 99
relationship edit form, 104
star as key indicator, 102

deadlock, 374, 533
debugging, 420
declarative language, 190
DECLARE CURSOR, 379
decryption key

storing, 509
default value, 163
degree, 572
Delete

SQL syntax, 248
DELETE, 284
deletion anomaly, 125
DeMorgan’s law, 206
DENSE_RANK, 455
depend, 120
dependency, 119
deploy an application, 424
depth, 571
derived, 63
DESC, 200
design

application, 81, 403
forms and reports, 310
human factors, 311



645Index

OLAP database, 445
reports, 338

design stage, 9
determinant, 180
development, 7
development process, 17
dimensions, 443
direct access, 574
direct access storage, 592
direct manipulation of objects, 

333
dirty read, 376
disaster plan, 499
DISTINCT, 200
distributed database, 116, 521, 

590
advantages, 525
creating, 526
query processing, 529
rules, 524

Distributed Transaction Coor-
dinator, 535

distributed transaction man-
ager, 535

division of duties, 506
dockable, 409
domain, 69
domain-key normal form 

(DKNF), 137
Doorn, J., 179
double precision, 71
drag-and-drop, 334
drill down, 444
drop down list, 315, 546
Drop Index

SQL syntax, 248
Drop Table

SQL syntax, 249
DROP TABLE, 282
Drop Trigger

SQL syntax, 249
Drop View

SQL syntax, 249
Dunham, J., 587
duplication, 113, 438
durability, 376
DynamoDB, 590

E
effective design, 310

Ellis, J., 557
encapsulation, 64
encryption, 507
enterprise relationship system, 

8
enterprise version, 528
entity, 48
entity-relationship diagram, 51
equi-join, 276
Eriksson, H., 98
error

logging, 420
error handling, 419
ESRI ArcGIS, 470
estimate table size, 167
event model, 316
events, 73

business, 73
data changes, 73
user interface, 73

Excel spreadsheets, 441
EXCEPT, 272
EXIST, 277
EXISTS, 267
extensible markup language 

(XML), 22
extraction, transformation, and 

transportation (ETT), 
439

F
fact table, 443
Fagin, R., 137, 179
Faroult, Stephane, 295
fault tolerance, 528
feasibility study, 33
feedback, 312
Ferraggine, V., 179
Ferrari, E., 519
FETCH, 380
file server, 537
file storage, 582
file system, 560
filter

row, 223
filter data, 191
first normal form (1NF), 125

formal definition, 181
problems, 128

Fisher, M., 557

fixed width, 576
fixed width text storage, 576
flashing controls are bad, 317
flexible columns, 595
floating point, 70
focus

control, 316
focus on data, 17
fonts, 400

system defined, 410
foreign key, 115
form, 5

startup, 403
formal definitions of normal-

ization, 180
form layout, 320
forms

creating, 325
graphics features, 330
linked, 327
multiple, 332
single-row, 322
startup, 324
subform, 322
tabular, 321

forms builder, 14
four questions for query, 191
four questions to retrieve data, 

191
fourth normal form (4NF), 137

formal definition, 184
Friedman, J., 477
FROM

SQL, 199
front end, 540

application, 402
FULL JOIN, 257
function

SQL analytic, 455
user defined, 357

functional dependency, 180
functions

SQL, 212
functions, common program-

ming, 300

G
Gantt chart, 76
generalization, 149

design, 63



646Index

generated key, 55
generate key values, 377
generate tables in DB Design, 

108
generating keys

replicated data, 532
geocode, 470
geographic analysis

data configuration, 470
example, 471

geographic information sys-
tem (GIS), 26, 469

global, 298
global lock manager, 375
globally-unique identifier 

(GUID), 116, 533
GoDaddy, 509
Golfarelli, M., 477
Google, 590
Google Bigtable, 549
Google Earth, 470
gossip, 597
grading DB Design solutions, 

105
Grant

SQL syntax, 249
GRANT, 503
graphical approach limitations, 

335
graphics features, 330
graphs, 14
Gray, J., 394
group breaks, 343
GROUP BY, 214
GROUP BY CUBE, 454
GROUPING, 453
GROUPING SETS, 454

H
Hadoop, 590
Han, J., 477
Hardman, R., 394
hashed-key storage, 574
Hastie, T., 477
HAVING, 216
heads-down data entry, 310

Hearst, M., 429, 352
help

context sensitive, 412
help system, 407
hidden dependency, 136
hierarchical database, 21, 600
hierarchy of values. See data 

hierarchy
high performance, 28
horizontal partition, 580
hot site, 499
HTML, 544
human factors design, 311
hypertext markup language 

(HTML), 414

I
identify columns and proper-

ties, 100
identify columns in different 

tables, 220
IF, THEN, ELSE, 360
image, 578
image data, 578
IN

SQL, 258
index, 433, 567

importance in Cassandra, 
609

multi-level, 600
problems, 437

inequality join, 276
Information_Schema, 487
inheritance, 26, 63
initial form evaluation, 123
input and output, 359
input and output in programs, 

300
InputBox, 301
input mask, 313
input parameter, 358
Insert

SQL syntax, 249
INSERT, 283

Cassandra, 613
Cassandra insert converrted 

to update command, 
614

Insert (copy multiple rows)
SQL syntax, 249

INSERT INTO, 442
insertion anomaly, 125
installation program, 425
INSTEAD OF, 364
integer, 69, 296
integrity, 139, 375, 483, 500

data, 598
interactive data browsing, 443
international

data formats, 319
forms and resource files, 317

international dates, 72
Internet applications, 335
INTERSECT, 272
introduction to programming, 

296
inventory handling with trig-

gers, 384
inventory, trigger code, 384
Is Null, 257
isolation, 375
isolation level, 373
iteration, 301, 303
Ivory, M., 429, 352

J
Java, 15, 544
Javascript, 547
JDeveloper, 544
jet engine, 10
JOIN

inequality, 276
multiple columns, 272
not available in non-relation-

al DBMS, 590
reflexive, 273
SQL, 193, 199

joining many tables, 220
joining tables, 219
journal, 493

K



647Index

Kamber, M., 477
Keil, M., 41
Kent, W., 179
Kerberos, 502
key, 181

generate, 377
primary, 51

key generation, 377
keyspace, 604
key-value pairs, 28, 590
keywords, 415
Kollar, L., 394
Korfhage, R., 587

L
label report, 341
labels, 313
LAG, 458
large projects, 71, 75
latency, 547
layout, 399
LEAD, 458
leaves, 571
LEFT JOIN, 256, 442
lifetime, 297
lift, association rules, 463
LIKE

SQL pattern, 202
LIMIT, 611
linked forms, 327
linked list, 569
Linux, 29
list

Cassandra data collection, 
596

list of values (LOV), 547
Liu, B., 477
local area network (LAN), 

168, 495, 527
local variable, 297
lock

optimistic, 370
pessimistic, 373

logarithmic, 300
log file, 367
logging errors, 420
Long, D., 557
LONG RAW, 578
looking up data with code, 358
Loomis, M., 587

loops, 303, 359

M
MAC address, 595
management utilities, 15
managerial controls, 500
managing tablespaces, 582
Mann, J., 41
Mann, Keil, 41
many-to-many association, 60
many-to-many relationship, 57
many-to-many relationships.

convert to many-to-one for 
design, 146

map
Cassandra data collection, 

596
market basket analysis, 463. 

See also association 
rules

master-detail, 114
maximum number of objects, 

54
McConnell, S., 98
McLaughlin, M., 394
measures, 445
Melnyk, R.B., 41
menu, 407

ribbon bars, 324
metadata, 162, 486
methods, 24, 48
Microsoft Access, 7, 357, 425, 

487, 537
Microsoft ASP .NET, 544
Microsoft Azure SQL, 549
Microsoft Excel, 450
Microsoft MapPoint, 470
Microsoft Project, 76
Microsoft SQL Server, 7, 20
middle tier, 539

application, 402
minimum number of objects, 

54
mirror copy, 494
missing values, 443
mistakes by humans, 313
mobile devices, 401
models, 46
module, 298
monetary values, 71

monitoring performance, 490
MsgBox, 301
MSysObjects, 487
multidimensional expressions 

(MDX), 448
multi-level indexes, 600
multiple databases, 482, 485
multiple forms, 332
multiple JOIN columns, 272
multiple processors, 494
multiple relationships on one 

table, 194
multiple repeating groups, 127
multiple tables in query

SQL, 218
multiple users, 369
multiple windows, 327
multiplicity, 53
multi-valued, 119
multi-valued dependency 

(MVD), 184
MySQL, 20, 234, 544

N
n-ary association, 60, 147
natural language, 187
navigation controls, 322
nested conditions, 302
nested query, 252
nested repeating groups, 127
network attached storage 

(NAS), 495
network database, 23, 600
network speeds, 527
NEW ROW, 361
node, 571
non-relational database, 589
non-relational DBMS, 550
non-SQL, 29
normalization, 50, 117. 

See data normalization
check your work, 135
formal definitions, 180

NoSQL database, 590
NOT

SQL, 201
null, 69, 196
Null, 443
numeric data type, 69
N’ ‘, Unicode string, 202



648Index

O
object-oriented approach, 313
object-oriented (OO) database, 

24
Object Properties, 25
offset, 561
OLAP

database design, 445
different from query, 443
versus queries, 443

OLAP data analysis, 448
OLAP database design, 445
OLAP in SQL, 450
OLD ROW, 361
OLE Object, 578
one-to-many relationship, 144, 

322, 345
online analytical processing 

(OLAP), 13, 30, 432
online transaction processing 

(OLTP), 432
OODBMS, 28
open a problem in DB Design, 

100
open source, 589
optimistic lock, 370
option button, 314
OR, 205
Oracle, 7, 20, 234, 487, 575
ORDER BY

SQL, 200
OUTER JOIN, 256
output, 191
output for a query, 191
OVER, 457

P
package, 77

UML, 77
packaging files, 424
page footer, 343
page header, 343
parameter, 304
parameter, cursor, 383
parent/child form, 327
partition

data, 580
SQL OLAP window, 456

PARTITION BY, 456

partitioning key, 606
pass-by-reference, 304
pass-by-value, 304
passwords, 501
pattern matching, 202

regular expressions, 233
patterns in data, 458
PCTFREE, 577
PCTUSED, 577
Pednault, E., 477
peer-to-peer, 590
Penker, M., 98
percentage calculation, 262
performance, 11, 433, 484
Perlasca, P., 519
Perna, J., 394
Perry, J., 41
persistent objects, 28
persistent stored module 

(PSM), 27, 357
pessimistic lock, 373
Peterson, T., 477
Pet Store

class diagram, 68
Pfeiff, B., 477
PHP, 544
physical configuration, 494
physical data storage, 560
picture, 324
Pinkelman, J., 477
PivotChart, 450
PivotTable, 450
pointer, 435, 567
pointers and indexes, 567
polymorphism, 65
Post, Gerald, 41, 477
PostgreSQL, 20
primary key, 51, 594

differences in Cassandra, 
605

generate, 377
privacy, 496
private key, 508
Privileges for Grant and 

Revoke
SQL syntax, 249

procedural language, 355
procedure, 540
procedures, 359. See 

also functions

programming, 355
programming introduction, 

296
programming tools, 359
project

steps to start, 33
project costs, 33
project management, 75
projects

large, 46
properties, 48

forms, 327
proprietary file format, 441
prototype, 403
pseudo column, 124
public key, 508
public variable, 298
publish, 531

Q
Quality

testing queries, 285
queries as controls, 504
query, 187, 196

basics, 196
join tables, 219
multiple tables, 218
processing distributed data-

base, 529
quality test, 285
saved, 253
single table, 197
updateable, 326
vendor differences, 196

query as control, 504
query by example (QBE), 188
query language tasks, 189
query processor, 12
questions to retrieve data, 191

R
Rai, A., 41
RAID, 598
Raise_Application_Error, 363
Raiserror, 363
RANGE, 457
RANK, 455
rapid user response, avoid, 

317



649Index

Raskin, J., 429, 352
READ COMMITTED, 376
READ UNCOMMITTED, 

376
real, 296
recursive association. See re-

flexive association
recursive query, 274
red-green color, 317
red star in DB Design as gen-

erated key, 102
redundant array of indepen-

dent drives (RAID), 
494

Rees, R., 557
referential integrity, 139, 599
reflexive association, 66, 151
reflexive join, 273
RegEx, 233

patterns, 235
table of some characters, 236

regular expressions, 233
relational database, 23, 50
relationships, 50, 53

creating in DB Design, 102
many-to-many, 57

reorganize the database, 564
REPEATABLE READ, 376
repeated sections, 125
repeating groups, 125
repeating section, 337
replicate, 530
replication level, 597
replication mangement, 530
report design, 14
report footer, 343
report header, 343
reports, 5, 337

label, 341
subtotals, 341
tabular, 341
terminology, 339

report service, 13
report writer, 13
resource file, 318
restrict, SQL, 192
Reuter, A., 394
Revoke

SQL syntax, 249
REVOKE, 503

ribbon bars, 324
Ribeiro-Neto, B., 587
RIGHT JOIN, 257
Rivero, L., 179
Rivest-Shamir-Adelman 

(RSA) algorithm, 508
Rizzi,S., 477
role, 504
Rollback

SQL syntax, 249
ROLLBACK, 374
Rolling Thunder Bicycle 

Company
introduction, 33

Rolling Thunder class dia-
gram, 83

roll up, 444
ROLLUP, 452
root, 571
row-by-row calculations, 211
row filter, 223
ROWNUM in Oracle, 215
ROWS n PRECEDING, 456
row trigger, 361

S
Sally’s Pet Store

inventory trigger example, 
384

Sally’s Pet Store
introduction, 31

Sanders, R., 394
Sarka, D., 394
SavePoint

SQL syntax, 249
SAVEPOINT, 368
scalability, 10, 528
scale, 589
schema, 281, 485
scope, 297, 360
Scott, J., 477
SCROLL, 380
scroll bars, 324
second normal form (2NF), 

128
formal definition, 181
problems, 132

Section508, 411
secure sockets layer (SSL), 

509

security, 496
behavioral, 496
logical, 496, 500
physical, 496
threats, 498

security testing, 423
Select

SQL syntax, 250
SELECT

SQL, 192, 199
Select Into

SQL syntax, 250
SELECT INTO, 358
self-join, 273. See relfexive 

join
separation of jobs. See divi-

sion of duties
sequence, 359
sequential storage, 566
SERIALIZABLE, 376
serialization, 373
server configuration, 425
server database, 540
server node, 597
set

Cassandra data collection, 
596

sets of data, 23, 253, 379
SET TRANSACTION, 373, 

376
shell site, 499. See cold site
SIGNAL, 362
Silverston, Len, 98
single-row form, 320
single table queries, 197
Smyth, P., 477
snapshot, 493
snowflake design, 446
social interaction, 589
software updates, 507
solid state drives (SSDs), 598
sparse tables, 595
spatial, 470
SQL, 188, 354

data definition language 
(DDL), 280

data manipulation language 
(DML), 283

introduction, 198
OLAP additions, 450



650Index

procedural language, 356
SQL 99, 376
SQL analytic functions, 455
SQL data definition, 280
SQL injection attack, 423
SQL keywords, 198
SQL OLAP windows parti-

tion, 456
SQL Server, 234
SQL Server Integration Ser-

vices (SSIS), 440
SQLSTATE, 380
SQL syntax, 248
Standard Metropolitan Statisti-

cal Area (SMSA), 471
star design, 447
start transaction, 367
START TRANSACTION, 

367, 376
startup form, 324, 403
startup forms, 320
statechart, 74
static, 297
statistical tools, 439, 448
storage area network (SAN), 

495
storing tables, 565
stress testing, 422
string, 296
string operations, 212
style sheet, 399

help file, 414
style sheets, 320
subclasses, 63
subform forms, 320
subquery, 252, 262

calculations or lookup, 262
correlated, 269
sets of data, 264

subroutine, 304
subscribe, 531
subtable, 26
subtotal, 190

SQL, 214
subtotal report, 341
subtypes, 149
super-aggregate, 452
support, association rules, 463
surrogate keys, 115
switchboard form. See startup 

form
synchronization, 531
synchronize, 597
syntax, 356
system tables, 11

T
table, 50, 113
table alias, 223
table definition, 163
table operations, 561
tablespace, 484, 582
tab order, 316, 400
tabular form, 320
tabular report, 341
template, 320, 398
testing, 420

application integration, 422
form and module, 421
integrated application, 422
performance, 422
queries, 285
security, 423
stress, 422
usability, 422

text box, 313
text data type, 69
theta join. See inequality join
third normal form (3NF), 132

formal definition, 183
threats, 498
three-tier client-server, 539
three-tier client/server, 539
Tibshirani, R., 477
time stamp, 372
TO_CHAR, 454
toolbar, 407
tooltip, 410
TOP

SQL, 215
totals

avoid storing, 372
transaction, 366, 533

example, 366
start, end, 367

transaction log, 493
transaction processing, 431
transfer data, 578
transitive dependency, 182
trigger, 74, 360

cancel, 362
cascading, 363
INSTEAD OF, 364
loops, 363

trigonometric, 300
trigonometric functions, 213
try/catch error trapping, 419
Tsichritzis, D., 352
tunable consistency, 599
tuning, 492
tuples, 180
two-phase commit, 534

U
unauthorized disclosure, 500
unauthorized modification, 

500
unauthorized withholding of 

information or denial of 
service, 500

UNDER, 26
Unicode, 317
Unified Modeling Language 

(UML), 52
UNION, 270
universally unique identifier 

(uuid), 595
Update

SQL syntax, 250
UPDATE, 284

Cassandra, 613
updateable query, 326
UPDATE WHERE, 361
Urman, S., 394
usability, 399
usability testing, 422
use case, 324
user-defined functions, 357
user defined type, 73
user identification, 501
user interface events, 73
user requirements, 48
USER_TABLES, 487

V
VARCHAR, 577
variable, 296, 359
variable length, 577
VBA, Visual Basic, 358



651Index

Verisign, 509
vertical partition, 581
view, 224, 253
view integration, database 

design, 153
virtual machine, 601
virtual machine (VM), 494
Visual Basic, 540
volume, 565
Vossen, G., 394

W
Web, 28

databases, 589
Web 2.0, 589
Web application, 19, 330, 400
Web applications

performance needs, 592
Web forms, 371
Web server, 542
Web server database, 543
WebSphere, 544
Weikum, G., 394
WHERE

SQL, 192, 199
SQL criteria, 208
versus HAVING, 216

WHERE CURRENT OF, 383
wide area network (WAN), 

527
Widom, J., 394
Windows Help 3, 417
Windows help file, 413
WITH GRANT OPTION, 503
WITH RECURSIVE, 274
World Wide Web, 308, 542
Wu, M.S., 179

X
XHMTL, 417
XML Data, 228
XML data type, 596
XML schema, 227
XQuery, 22
XQuery in Oracle, 231

Y
Yahoo, 590

Z
Zikopoulos, P.C., 41


	Database Management Systems
	Gerald V. Post
	Copyright

	Preface
	Goals and Philosophy
	Workbooks
	Learning Assessment 
	Organization
	Pedagogy
	Features of the Text 
	End-of-Term Projects 
	Database Design and the Unified Modeling Language 
	Instructional Support 
	The Online System 

	Contents
	Brief Contents
	Full Contents


	Chapter 1: Introduction
	Introduction
	Two-Minute Chapter
	A Small Sample Database Application
	Databases and Application Development
	Components of a Database Management System
	Database Engine
	Data Dictionary
	Query Processor
	Report Service
	Forms Development
	Management Utilities and Security

	Advantages of the Database Management System Approach
	Focus on Data
	Data Independence
	Data Independence and Web Applications

	Leading Commercial Database Systems
	The Evolution of Database Management Systems
	Hierarchical Databases
	Network Databases
	Relational Databases
	Object-Oriented Databases

	Key-Value Pairs: Cassandra
	Drawbacks to Database Management Systems
	Application Development
	Introduction to this Book’s Databases
	Sally’s Pet Store
	Corner Med
	Rolling Thunder Bicycles

	Starting a Project: The Feasibility Study
	Costs
	Benefits

	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading

	Part 1: Systems Design
	Chapter 2: Database Design
	Introduction
	Two-Minute Chapter
	Models
	Getting Started
	Designing Databases
	Identifying User Requirements
	Business Objects
	Tables and Relationships
	Definitions
	Primary Key

	Class Diagrams: Introduction
	Classes and Entities
	Associations and Relationships
	Class Diagram Details

	Quick Start
	Creating a Class Diagram
	Primary Keys and Relationships

	Class Diagrams: Details
	Association Details: N-ary Associations
	Association Details: Aggregation
	Association Details: Composition
	Association Details: Generalization
	Association Details: Reflexive Association

	Sally’s Pet Store Class Diagram
	Data Types (Domains)
	Text
	Numbers
	Dates and Times
	Binary Objects
	Computed Values
	User-Defined Types (Domains/Objects)

	Events
	Large Projects
	Rolling Thunder Bicycles
	Application Design
	Corner Med
	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading
	Appendix: DBDesign

	Chapter 3: Data Normalization
	Introduction
	Two-Minute Chapter
	Tables, Classes, and Keys
	Composite Keys
	Surrogate Keys
	Notation

	Database Normalization: Atomic Values and Dependency
	Atomic Data Values
	Dependency

	Sample Database for Typical Sales
	Initial Objects
	Initial Form Evaluation
	Problems with Repeating Sections

	First Normal Form
	Repeating Groups
	Multiple Repeating Groups
	Nested Repeating Groups

	Second Normal Form
	Problems with First Normal Form
	Second Normal Form Definition

	Third Normal Form
	Problems with Second Normal Form
	Third Normal Form Definition
	Checking Your Work

	Beyond Third Normal Form
	Boyce-Codd Normal Form
	Fourth Normal Form
	Domain-Key Normal Form
	Summary

	Data Rules and Integrity
	The Effects of Business Rules
	Converting a Class Diagram to Normalized Tables
	One-to-Many Relationships
	Many-to-Many Relationships
	N-ary Associations
	Generalization or Subtypes
	Composition
	Recursive (Reflexive) Associations

	The Pet Store Example
	View Integration
	The Pet Store Example
	Rolling Thunder Sample Integration Problem

	Data Dictionary
	DBMS Table Definition
	Data Volume and Usage

	 Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading
	Appendix: Formal Definitions of Normalization

	Part 2: Queries
	Chapter 4: Data Queries
	Introduction
	Two-Minute Chapter
	Three Tasks of a Query Language
	SQL SELECT Overview
	Four Questions to Retrieve Data
	What Output Do You Want to See?
	What Do You Already Know?
	What Tables Are Involved?
	How Are the Tables Joined?

	Sally’s Pet Store
	Vendor Differences
	Query Basics
	Single Tables
	Introduction to SQL
	Sorting the Output
	Distinct
	Criteria
	Pattern Matching
	Boolean Algebra
	DeMorgan’s Law
	Useful WHERE Clauses

	Computations
	Basic Arithmetic Operators
	Aggregation
	Functions

	Subtotals and GROUP BY
	Conditions on Totals (HAVING)
	WHERE versus HAVING
	The Best and the Worst

	Multiple Tables
	Joining Tables
	Identifying Columns in Different Tables
	Joining Many Tables
	Hints on Joining Tables
	Table Alias
	Create View

	Newer Searches and Patterns
	XQuery
	Regular Expressions (RegEx) Patterns

	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading
	Appendix: SQL Syntax

	Chapter 5: Advanced Queries and Subqueries
	Introduction
	Two-Minute Chapter
	Sally’s Pet Store
	Outer Joins (LEFT JOIN)
	Subqueries: IN and NOT IN
	Subqueries
	Calculations or Simple Lookup
	Calculations for Percentages
	Subqueries and Sets of Data 
	Subquery with ANY, ALL, and EXISTS

	Correlated Subqueries
	More Features and Tricks with SQL SELECT
	UNION, INTERSECT, EXCEPT
	Multiple JOIN Columns
	Reflexive Join
	CASE Function
	Inequality Joins
	Exists and Crosstabs
	SQL SELECT Summary

	SQL Data Definition Commands
	SQL Data Manipulation Commands
	INSERT and DELETE
	UPDATE

	Quality: Testing Queries
	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading
	Appendix: Introduction to Programming

	Part 3: Applications
	Chapter 6: Forms and Reports
	Introduction
	Two-Minute Chapter
	Effective Design of Reports and Forms
	Human Factors Design
	Standard Form Controls
	User Interface—Events
	User Interface—Accessibility Issues
	User Interface—International Environment
	Style Sheets and Templates

	Form Layout
	Tabular Forms
	Single-Row or Columnar-Forms
	Subform Forms
	Startup Forms

	Creating Forms
	Updateable Queries
	Linked Forms
	Properties and Controls
	Controls on Forms
	Multiple Forms

	Direct Manipulation of Graphical Objects
	Sally’s Pet Store Example
	The Internet
	Complications and Limitations of a Graphical Approach

	Database Design Revisited
	Reports
	Report Design
	Terminology
	Basic Report Types
	Charts

	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading

	Chapter 7: Database Integrity and Transactions
	Introduction
	Two-Minute Chapter
	Procedural Languages
	Where Should Code Be Located?
	User-Defined Functions
	Looking Up Data

	Programming Tools
	Data Triggers
	Statement versus Row Triggers
	Canceling Data Changes in Triggers
	Cascading Triggers
	INSTEAD OF Triggers
	Trigger Summary

	Transactions
	A Transaction Example
	Starting and Ending Transactions
	SAVEPOINT

	Multiple Users and Concurrent Access
	Optimistic Locks
	Pessimistic Locks: Serialization
	Multiuser Databases: Concurrent Access and Deadlock

	ACID Transactions
	Key Generation
	Database Cursors
	Cursor Basics
	Scrollable Cursors
	Changing or Deleting Data with Cursors
	Cursors with Parameters

	Merchandise Inventory at Sally’s Pet Store
	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading

	Chapter 8: Application Development
	Introduction
	Two-Minute Chapter
	Design Consistency
	Page Design Templates
	Usability 
	Fonts and Customization
	Mobile Devices

	Application Structure
	Designing Applications
	The Startup Form
	Sally’s Pet Store: Application Organization
	Administrative Tasks

	Menus and Toolbars
	Purpose of the Menu
	Toolbars
	Creating Menus and Toolbars

	Accessibility
	Custom Help
	Creating a Help File for Windows
	Context-Sensitive Help
	Windows Help 3/Help Viewer

	Handling Errors
	Catching Errors
	Logging Errors
	Debugging

	Testing
	Form and Module Testing
	Integrated Application Testing
	Stress or Performance Testing
	Usability Testing
	Security Testing

	Deploying an Application
	Packaging Files
	Installation Programs
	Server and Database Configuration

	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading

	Chapter 9: Data Warehouses and Data Mining
	Introduction
	Two-Minute Chapter
	Indexes
	Binary Search
	Pointers and Indexes
	Creating Indexes
	Problems with Indexes

	Data Warehouses and Online Analytical Processing
	Data Warehouse Goals
	Data Warehouse Issues

	Data Extraction, Tansformation, and Transportation
	OLAP Concepts
	OLAP Database Design
	Snowflake Design
	Star Design

	OLAP Data Analysis
	Cube Browsers
	OLAP in SQL
	SQL Analytic Functions
	SQL OLAP Windows Partition

	Data Mining and Business Intelligence
	Data Configuration
	Classification
	Association Rules/Market Basket Analysis
	Cluster Analysis
	Geographic Analysis

	Summary
	Key Terms
	Review Questions
	Exercises
	Additional Reading

	Part 4: Database Administration
	Chapter 10: Database Administration
	Introduction
	Two-Minute Chapter
	Data Administrator
	Database Administrator
	Database Structure
	Metadata
	Database Tasks by Development Stages
	Database Planning
	Database Design
	Database Implementation
	Database Operation and Maintenance

	Backup and Recovery
	Physical Configuration
	Security and Privacy
	Data Privacy
	Threats
	Physical Security
	Managerial Controls
	Logical Security
	Division of Duties
	Software Updates

	Encryption
	Sally’s Pet Store
	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading

	Chapter 11: Distributed Databases
	Introduction
	Two-Minute Chapter
	Distributed Databases
	Goals and Rules
	Advantages and Applications
	Creating a Distributed Database System
	Network Speeds
	Query Processing and Data Transfer
	Data Replication
	Generating Keys with Replicated Data
	Concurrency, Locks, and Transactions
	Distributed Transaction Managers
	Distributed Design Questions

	Client/Server Databases
	Client/Server versus File Server
	Three-Tier Client/Server Model
	The Back End: Server Databases
	The Front End: Windows Clients
	Maintaining Database Independence in the Client

	Centralizing with a Web Server
	Web Server Database Fundamentals
	Browser and Server Perspectives

	Data Transmission Issues in Applications
	Cloud Databases
	Cloud Computing Basics
	Data Storage in the Cloud
	Sally’s Pet Store

	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading

	Chapter 12: Physical Database Design
	Introduction
	Two-Minute Chapter
	Physical Data Storage
	Table Operations
	Retrieve Data
	Store Data
	Reorganize the Database
	Identifying Problems

	Data Storage Methods
	Sequential Storage
	Pointers and Indexes
	Linked Lists
	B+Trees
	Direct or Hashed Access
	Bitmap Index
	Comparison of Access Methods

	Storing Data Columns
	Text and Numbers
	Image and Binary Data
	Transferring Data with Delimited Files

	Data Clustering and Partitioning
	Data Clustering
	Data Partitioning 

	Managing Tablespaces
	Sally’s Pet Store
	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading

	Chapter 13: Non-Relational Databases
	Introduction
	Two-Minute Chapter
	Non-Relational Databases: Background
	Key-Value Pairs
	Sparse Data and Flexible Columns
	Distributed Data
	Consistency and Integrity
	Optimizing Data Storage for Queries

	Cassandra
	Installation Issues
	Pet Store Web Example
	Database Design
	Primary Keys
	Initial Queries
	Indexes
	Querying Tables with Compound Keys
	INSERT and UPDATE

	Cloud Databases
	Summary
	Key Terms
	Review Questions
	Exercises
	Web Site References
	Additional Reading

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




