
Database
Management
SyStemS

Designing & Building Business Applications

Gerald V. Post

Fourth Edition

Microsoft Access 2007

Database
Management
Systems
Designing and Building
Business Applications
With
Microsoft Access Office 2007

Version 4.0.1 Gerald V. Post
University of the Pacific

Database Management Systems
Designing and Building Business Applications
With Microsoft Access

Copyright © 2008 by Gerald V. Post
All rights reserved. No part of this publication may be reproduced or distributed
in any form or stored in any database or retrieval system without the prior written
consent of Gerald V. Post.

Students:
Your honesty is critical to your reputation. No company wants to hire a thief—
particularly for jobs as critical as application development and database adminis-
tration. If someone is willing to steal something as inexpensive as an e-book, how
can that person be trusted with billions of dollars in corporate accounts?

You are not allowed to “share” this book in any form with anyone else. You can-
not give or sell any information from this publication in any form to anyone else.

To purchase this book or other books: http://JerryPost.com/books

http://JerryPost.com

iv

Brief Contents
1 Introduction

Part One: Systems Design
2 Database Design
3 Data Normalization

Part Two: Queries
4 Data Queries
5 Advanced Queries and Subqueries

Part Three: Applications
6 Forms and Reports
7 Database Integrity and Transactions
8 Applications
9 Data Warehouses and Data Mining

Part Four: Database
Administration
10 Database Administration
11 Distributed Databases
12 Physical Data Storage

vContentsContents
Introduction, 1
Case: All Powder Board and Ski Shop, 2

Inventory, 2
Bindings and Boots, 3
Sales, 4
Rentals, 5

Lab Exercise, 6
Project Outline, 6
Project Plan, 7
Feasibility, 8
The Database Management System, 10

Exercises, 11
Final Project, 13

Database Design, 14
Database Design, 15
Access Data Types, 15
Case: All Powder Board and Ski Shop, 17

Business Objects: First Guess, 17
Relationships, 18

Lab Exercise, 19
Database Design System, 19
All Powder Design, 20

Exercises, 27
Final Project, 29

Data Normalization, 30
Database Design, 31
Generated Keys: AutoNumber, 31
Case: All Powder Board and Ski Shop, 33
Lab Exercise, 34

All Powder Board and Ski Database
Creation, 34
Relationships, 39

Exercises, 43
Final Project, 44

Database Queries and SQL, 45
Database Queries, 46
Case: All Powder Board and Ski Shop, 46
Lab Exercise, 47

All Powder Board and Ski Data, 47
Computations and Subtotals, 55

Exercises, 61
Final Project, 63

Advanced Queries, 64
Advanced Database Queries, 65
Case: All Powder Board and Ski Shop, 66
Lab Exercise, 66

All Powder Board and Ski Data, 66
SQL Data Definition and Data Manipulation,
77

Exercises, 81
Final Project, 83

Forms and Reports, 84
Applications, 85
Case: All Powder Board and Ski Shop, 85
Lab Exercise, 86

All Powder Board and Ski Shop Forms, 86
All Powder Basic Reports, 101

Exercises, 109
Final Project, 110

Database Integrity and Transactions,
111
Program Code in Microsoft Access, 112
Case: All Powder Board and Ski Shop, 112
Lab Exercise, 113

All Powder Board and Ski Data, 113
Database Cursors, Keys, and Locks, 126

Exercises, 135
Final Project, 137

Applications, 138
Applications, 139
Case: All Powder Board and Ski Shop, 139
Lab Exercise, 140

Building the All Powder Application, 140
Exercises, 150
Final Project, 151

Data Warehouses and Data Mining, 152
Data Warehouse, 153
Case: All Powder Board and Ski Shop, 153
Lab Exercise, 154

All Powder Board and Ski Shop, 154
Introductory Data Analysis, 162

Exercises, 169
Final Project, 171

viContents

Database Administration, 172
Database Administration Tasks in Access, 173
Case: All Powder Board and Ski Shop, 174
Lab Exercise, 174

All Powder Board and Ski Shop, 174
Security and Privacy , 177

Exercises, 187
Final Project, 188

Distributed Databases, 189
Location, Location, Location, 190
Case: All Powder Board and Ski Shop, 190
Lab Exercise, 191

All Powder Board and Ski Shop, 191
The Internet, 197

Exercises, 200
Final Project, 201

Physical Database Design, 202
Storing Data, 203
Case: All Powder Board and Ski Shop, 203
Lab Exercise, 203
Exercises, 207
Final Project, 208

1

Objectives

Identify the main elements of the case.•	
Structure the work needed for the case.•	
Create a feasibility analysis of the case.•	
Create a new database.•	

Chapter Outline

Introduction
1Chapter

Case: All Powder Board and Ski Shop, 2
Inventory, 2
Bindings and Boots, 3
Sales, 4
Rentals, 5

Lab Exercise, 6
Project Outline, 6
Project Plan, 7
Feasibility, 8
The Database Management System, 10

Exercises, 11
Final Project, 13

2Chapter 1: Introduction

Case: All Powder Board and Ski Shop
The ski industry has been through many changes in the 50 years since Bill Shimek
founded the ski shop that is now run by his grandson. One of the biggest changes
is reflected in the prominence of “Board” in the shop name. Snowboards revolu-
tionized the industry in several respects. They revived youth interest in the sport,
brought new designs to equipment and resorts, and increased sales dramatically.
On the other hand, the increased changes in ski and snowboard equipment make
it more difficult for shops to stock the hundreds of options and combinations that
enthusiasts might want. Shops have become larger, forcing small firms out of
business. Even large ski shops have had to identify their customers and forecast
customer demands carefully to make sure the high-demand equipment is in stock.
Tracking sales, trends, and buyer needs has become critical to survival.

Another factor in the industry is that the firms increasingly rely on rentals.
Partly because of the rapid changes in the industry, many people prefer to rent
equipment so they can avoid having to buy new boards and skis every year. Con-
sequently, the shop buys several relatively standard boards and skis every year
and rents them out. At the end of the year, the used equipment is sold at a discount
to make room for next year’s models.

Inventory
Monitoring inventory is a first critical step in the process of providing the selec-
tion demanded by customers. Figure 1.1 shows some of the detailed information
needed, as well as the diversity of equipment available. Note that because of the
variety of uses, many different types of snowboards and skis exist. Figure 1.1
also shows the importance of the skill categories. Manufacturers produce special
boards and skis for each of these categories. Of course, it would be impossible
to stock all of the required sizes for rental purposes. Rental boards and skis tend
to be as generic as possible. Even for sales, some sizes of the high-end skis and
boards have to be special ordered.

Within a category, manufacturers tend to sell boards and skis targeted for dif-
ferent levels of skiers—from beginner to intermediate to expert (Type I, Type II,

Inventory

Snowboards
 Manufacturer Mfg ID Size Description Graphics List Price QOH
Freestyle
Pipe
Standard
Extreme

Skis
 Manufacturer Mfg ID Size Description Graphics List Price QOH
Cross country-skate
Cross country-trad.
Telemark
Jumping
Freestyle
Downhill/race

Figure 1.1

3Chapter 1: Introduction

and Type III skier). Even within the type classifications, All Powder salespeople
evaluate customers on the basis of their aggressiveness on the slope. Because of
the size of snowboards, along with the youthful image of the sport, manufacturers
place a high value on the graphics (images and colors) displayed on both sides of
the boards. Customers have often been known to choose a board because of the
graphics. Some of this emphasis has filtered over to skis as well.

Listing the sizes of boards and skis is somewhat tricky, and definitely presents
a challenge to keeping adequate inventory. The length of the ski or board is a
critical number, but the customer’s choice is also based on several other ski mea-
surements. Snowboards revolutionized board and ski design by adding a narrower
waist to aid in turning. This concept migrated to most varieties of skis as well, so
customers often want to know the waist width, sideout depth, and effective edge
length of skis. Generally, boards and skis with narrower waists are targeted for
more advanced skiers. Additionally, the construction of the board or ski, in terms
of materials and thickness, significantly affects its flexibility and handling. Cus-
tomers generally want to feel the ski to evaluate and compare its flexibility, but
measures of stance location (for boards) and the rider weight range provide some
prediction of the handling characteristics. Most skis and boards are also designed
for a particular riding weight. With cross-country skis it is particularly important
to get the proper length for the weight of the skier.

Bindings and Boots
Bindings and boots represent another common problem for All Powder and other
ski shops. Each ski and each board can technically be fitted with several types of
bindings. Each binding type generally requires a matching style of boot and some
of the boots can work only with some bindings. For example, snowboards can
use clincher, strap, or plate bindings. Cross-country skis can use pin, strap, or rod
bindings. Most modern skis use the rod binding, but customers sometimes want
boots that fit the older pin bindings. Downhill, freestyle, and slalom skis use simi-
lar bindings. Because they are the most popular, the store usually stocks several
models—focusing on skill levels.

Boot-Binding Compatibility

 Manuf. Mfg. ID Board/Ski Binding/Style Color Price Cost

Size QOH
34

35

36

...

Figure 1.2

4Chapter 1: Introduction

Figure 1.2 shows an example of the card system that All Powder uses to help

salespeople select bindings and boots. Currently, the salespeople are supposed to
change the quantity on hand whenever a boot or binding is sold. Of course, the
cards are rarely kept up-to-date and the salespeople often have to go search the
physical inventory to see if a size needed by a customer is in stock. Note that
boots and bindings are specifically matched, and a boot for one purpose can rarely
be used for a different application. For example, it would not be possible to use a
cross-country boot in a downhill binding. The binding is usually listed as a type
(rod, step-in, telemark/cable, etc.). On the other hand, it is possible to mount bind-
ings on different types of skis. For instance, you could mount a telemark binding
to a downhill ski. Some of the combinations should be avoided, but this knowl-
edge will not be needed in the database.

Sales
The sales form shown in Figure 1.3 is fairly standard. All of the hard work in
terms of configuration was done by the salesperson. In some cases, the salesper-
son might ask the customer to initial some items that might present compatibility
issues to make sure the customer is aware of the potential problems. The descrip-
tion generally includes the manufacturer’s name and style. The SKU (stock keep-
ing unit) is a special number created within the store to code each item.

Returns are usually accepted on most items as long as they have not been used
outside (e.g., scratched or worn boots cannot be returned). It is important for sales-
people to identify the type of boarding/skiing and the customer’s skill level. This
information is used to send customers mailings about special sales. The owner
also has started thinking about keeping customer sizes in a database. This infor-
mation would be particularly helpful in clearing out the previous year’s inventory
of special sizes (very small or very large), because it would help pinpoint custom-

Sales
Customer Sale Date
First Name Last Name Salesperson
Phone E-Mail Department

Address Shipping Address
City, State ZIP City, State ZIP

Male/Female Ski/Board
Age/Date of Birth Style Skill Level

Item Description New/Used Size Quantity Price Subtotal

 Item Total
 Tax
 Total Due Method of Payment

Figure 1.3

5Chapter 1: Introduction

ers who could use those special sizes. The catch is that the owner is concerned
about privacy issues and fears that customers may not want to have their sizes on
file at the store. However, if a customer has already purchased items in a specific
category and size, that data will be available. The difficulty emerges when sales-
people ask customers for their sizes when they are not purchasing these products.
For instance, it may appear rude to ask a customer who came in to buy ski wax for
his or her jacket size.

The store evaluates salespeople on the level of sales they make, so it is im-
portant to track sales by each employee. Of course, the database should contain
additional information about each employee, such as phone number, address, and
his or her primary department assignment. Of course, clerks rarely write down the
department names properly, so it makes sense to have a separate lookup table for
the department names.

Also, note that some of the best customers participate in several styles, even
crossing between using skis and boards. A customer who is an expert at downhill
skiing might be a beginner with snowboards.

Rentals
The form to handle rentals is similar to the sales form. But notice in Figure 1.4
that columns have been added for return date, condition, and additional charges.
The additional charges are imposed if an item is returned late or if it is returned
damaged. Additionally, customers are required to sign the form to indicate their
agreement with the skill level, rental conditions, and the release printed on the
back of the form. Katy, the current manager, has talked about capturing the signa-
tures digitally and storing them online, but it is not a high priority.

Observe that the current form requires that each rented item be checked off sep-
arately when it is returned. Although the store clerks often complain about having

Rentals
Customer Rental Date
First Name Last Name Expected Return
Phone E-Mail

Address Shipping Address
City, State ZIP City, State ZIP

Male/Female Ski/Board
Age/Date of Birth Style Skill Level

Item Description Size Fee Return Date Condition Charges

 Item Total
 Tax
 Total Due Added Charges

 Method of Payment Signature

Figure 1.4

6Chapter 1: Introduction

to mark each row separately, the store managers have determined that about 20
percent of the time, a customer forgets to return an item and has to bring it back
later.

Renting ski equipment also raises the issue of reservations. On some holidays,
all of the equipment is rented out before 10:00 A.M.. Some long-term custom-
ers have said that they would like to be able to reserve equipment. Currently, the
rental managers will sometimes set aside equipment if a valuable repeat customer
calls in advance. This process works reasonably well, but the managers have talk-
ed about creating a system that is available to everyone. One of the drawbacks is
that they are concerned that the general public might reserve items and then never
show up, leaving equipment idle that could be rented to someone else.

Lab Exercise
The first step in any project is to identify some basic elements of the system. What
are the goals? What is the scope? What tools will be needed? What are the ben-
efits? What are the expected costs? How much development time will be needed?
All of these questions are difficult to answer, and rarely do the answers have a
single value. Instead, you need to create a project plan. The plan will include a
feasibility statement that describes the basic costs and potential benefits. As a real-
world project, you would also include a list of developers and a statement of ex-
pected fees, so the owners can evaluate the decision to hire you.

Project Outline
As a first step in developing the project plan, you need to summarize the overall
project. This summary should contain a brief description of the project, its goals,
and initial lists of primary forms and reports. Ultimately, this summary will also
include the scope and anticipated budget for the project.
Activity: Review the Case and
Research the Industry
For the purposes of this lab, you will
prepare a project proposal for develop-
ing the sales system needed by the All
Powder Board and Ski Shop. The rental
component will be left for another ex-

Project Title: Sales System for Boards and Skis
Customer: All Powder Board and Ski Shop
Primary Contact: Katy
Goals:
Project Description:
Primary Forms:
Primary Reports:
Lead Developer:
Estimated Development Time:
Estimated Development Cost:
Date Prepared:

Figure 1.5

Action
Find information about skis and

snowboards on the Internet.
If necessary, install and upgrade the

DBMS.

7Chapter 1: Introduction

ercise. You should begin by reviewing the description of the company. You should
also use the Internet to check out some of the manufacturers and some of the com-
petitors. You need to be sure that you understand the key factors in the industry.
Figure 1.5 provides a possible structure for your summary. You should review the
case and enter the basic information requested.

Project Plan
The project plan consists of a detailed breakdown of the steps needed to create

the final system. A common approach is to follow the steps of the systems devel-
opment life cycle methodology: Initiation, Analysis, Design, Implementation, and
Review. Some organizations have rigid descriptions of each of the steps involved
in this process. Some organizations adopt a more flexible approach. Either way,
this plan should outline the basic steps that need to be completed and an estimated
schedule.

In the initial phase, it is also helpful to identify any potential risks to the project
development. At various stages, ask what might go wrong. If you are aware of
the potential problems, managers can monitor for them and can prepare solutions
more quickly.
Activity: Create the Initial Project Plan
Project plans and schedules are often
shown with Gantt charts to illustrate
how the various steps depend on each
other. If you have access to software
such as Microsoft Project, it is rela-
tively easy to create the project plan. Figure 1.6 shows the basic steps that the
labs will follow in building the application. Ultimately, you would estimate the
times required for each step. However, until you have read the rest of the book
and worked with the databases, it is difficult to estimate the times needed for each
step. For now, evaluate the steps and try to identify any dependencies between the
tasks. For example, is it possible to create the forms without having the database

1.	 Define	the	project	and	obtain	approval.
2. Analyze the user needs and identify all forms and reports.
3. System Design
 a. Determine the tables and relationships needed.
 b. Create the tables and load basic data.
 c. Create queries needed for forms and reports.
 d. Build forms and reports.
 e. Create transaction elements.
	 f.	 Define	security	and	access	controls.
4. Additional Features
 a. Create data warehouse to analyze data as needed.
 b. Handle distributed database elements as needed.
5. System Implementation
 a. Convert and load data.
 b. Train users.
 c. Load testing.
6. System review

Figure 1.6

Action
Fill in the project milestone dates based

on your school calendar.

8Chapter 1: Introduction

tables and relationships? Assuming you have several people to help, reorganize
the tasks so that as many tasks as possible can be done at the same time.

Feasibility
Feasibility studies are notoriously difficult. The concept is certainly simple: iden-
tify the potential costs and potential benefits of a system and compare them. The
problem is that benefits might not be quantifiable, so it is difficult to attach mean-
ingful numbers. Nonetheless, it is useful to at least write down the anticipated
costs and expected benefits. Even if
numbers are not available, managers at
least can see a concise statement of the
analysis.

Assumptions

Annual discount rate 0.03

Project life/years 5

Costs Present Value Subtotal

One time
DBMS software

Hardware

Development

Data entry

Training

Ongoing
Personnel

Upgrades/annual

Supplies

Support

Maintenance

Benefits

Cost Savings
Better inventory control

Fewer clerks

Strategic
Increased sales

Other?

Net Present Value

Figure 1.7

Action
Create the feasibility plan for the project.

9Chapter 1: Introduction

Activity: Create the Feasibility Analysis
Figure 1.7 shows the basic elements of a feasibility study. You need to create a
spreadsheet with these main categories. Use research to identify approximate
costs of the various components. For example, assume that the shop will need
to purchase a server to host the main database and two client computers for the
sales staff. With Microsoft Access, several configurations are possible. Examine
the software license to determine the number of copies you will need and the ap-
proximate cost. Other numbers, including benefits can be estimated. Remember
that annual costs and benefits should be discounted to compensate for the time-
value of money. Use the present value (PV) function in Excel. Although the ben-
efits are relatively well defined, they can still be difficult to estimate. For example,
how will the system reduce the need for sales clerks? How many or how many
hours? How much do clerks earn? Likewise, in terms of inventory control, how

1. Windows update
 http://windowsupdate.microsoft.com

2.	 Office	update
	 http://office.microsoft.com/productupdates

3. Data access component update
http://msdn2.microsoft.com/en-us/data/aa937730.aspx
Pick the highest numbered MDAC RTM.

Figure 1.8

Figure 1.9

10Chapter 1: Introduction

much money will be saved by not having to slash prices at the end of the season
to clear the unsold inventory? You need to know or estimate the number and value
of items typically left at the end of the season. In practice, the managers might
have answers to some of these questions, but you will still have to do additional
research. In this example, be sure that you spell out your assumptions.

The Database Management System

Activity: Explore the DBMS
Two of the features that make Micro-
soft Access a popular database system
are that it is relatively inexpensive and
easy to install. If you are working in a
classroom lab, your machines should
already have Access installed. If you
are working on your own computer,
check your startup menu to be cer-
tain that Access is available. Note that
Access is not shipped with the Small
Business version of Office. More im-
portantly, you need to make certain that
you system is up-to-date. You should check the three sites listed in Figure 1.8 to
update your computer in terms of the operating system, Microsoft Office, and the
data access components (MDAC). Microsoft often releases updates on these three
sites, so you should check them on a regular basis. Windows Vista should auto-
matically check these sites.

To get a quick perspective of the various components of the DBMS, you need
to build a simple database. Start Access and create a new, blank database. Be-
cause a database consists of tables, the first step is to create a table. Access 2007
opens a new database with a tool to help you create tables. However, this tool
hides many of the details that you need, so it is best to close this screen and use
the Create/Table Design option.

 Figure 1.9 shows an initial definition of a customer table. Create a new table in
Design view, and enter the names of the columns (fields) and select the data types
as indicated. Then close and save the table design; name it “Customer” when
asked.

Now open the table and enter some data for fake customers. You can copy the
data from Figure 1.10 or just create your own. Access provides several tools in
the Table window to examine the data. You can sort by columns or even filter the
rows to see customers that meet some criteria. However, you will rarely give users
direct access to tables. Instead, you will build forms and reports for managers to
use. Close the Customer table.

Figure 1.10

Action
Start Access and create the new table.
Create a new form with the Form

Wizard.
Use the Customer table.
Select all of the columns.
Use the default column layout.
Test the form by entering data.
Save the form.

11Chapter 1: Introduction

Access provides wizards to help build forms and reports. A common data entry
form for the Customer table is relatively easy to create. Access 2007 has several
options to create forms. For simple forms, one of the easiest is to select the Cus-
tomer table in the list on the left side, then choose Create/Form from the menu.
More commonly, you will use Create/Form/ More Forms/Form Wizard because it
provides several useful options to create a form. The form in Figure 1.11 was cre-
ated with the simple form builder. When you save the form it will appear in the list
of objects on the left. However, you should click the display bar at the top of the
list and choose All Access Objects.

Notice that as you type data into the form, the changes are written directly to
the database table. The point of a form is to make it easier to enter and see data.
From a usability standpoint, the layout should match the needs of the users.

Be default, Access 2007 puts form (and report) controls into a layout object
that groups them together. You can switch to the Layout view or the Design view
to see and modify the individual controls or the group. The purpose of the layout
group is to make it easy to modify all of the controls at the same time. For ex-
ample, using the Layout view you can change the size of one input box and all of
them will adjust. An early hint: If you ever need to change the size or location of
a single data control, you have to right-click it and choose Layout/Remove to take
it out of the layout group. However, you can change basic display properties of a
single box and still leave it in the Layout group. For practice, select the LastName
textbox and click the Bold icon. You can also open the Property Sheet to see a list
of the many properties you can assign. Save the form and run it to see the effect
of your change. Similar wizards and properties are used to build reports, but there
are not enough tables and data to justify writing a report yet.

Exercises

Many Charms
Madison and Samantha, friends of yours, have a small business selling charms for
bracelets and necklaces. They buy some of the charms they sell; others they make.
So far, they have run the business as a hobby, selling primarily to friends and rela-
tives. But they have recently established a website to display pictures and prices

Figure 1.11

12Chapter 1: Introduction

of some of the charms. You have agreed to build a database for them to track their
inventory, customers, and sales. Any orders they receive through the website will
be e-mailed, so the website does not have to be connected live to the database.
The database is a relatively traditional sales system, but it is slightly complicated
by the nature of the charms. Charms come in a variety of shapes, sizes, and mate-
rials. For example, customers who want a quarter-moon charm have a choice of 4
mm or 8 mm; and of silver, gold, gold plate, bronze, or painted ceramic. Charms
are also offered in categories such as animals, hearts, birthdays, and so on. Addi-
tionally, the duo offers a variety of chains and pins to hold the charms. Eventually,
they want to track the sales by all of these categories, so they will know which
items are selling the best and which make the most profit. Costs and prices tend to
fluctuate. If they purchase items in large bulk, the per-piece cost is lower, but they
need to know they can sell the entire shipment. If an item sits around too long,
they find that they have to significantly cut the price just to clear out the stock. Of
course, gold items are more expensive, making them more difficult to sell, and
they are reluctant to tie up their money in high-priced merchandise.
1. Research similar sites on the Internet. Describe or sketch the major forms and

reports that the company might use.
2. Create the initial proposal and feasibility study.

Standup Foods
Laura runs a catering company that focuses on Hollywood movie studios. Her
chefs prepare hors d’oeuvres, sandwiches, and other food items that are served to
the cast and crew of various movies and studios. To be fresh, the food is prepared
each day in the main kitchens, and meals are then assembled and displayed on-
site. For some clients, the company vans deliver fresh food every few hours. To
hold costs down, many of Laura’s employees are part time—only a few chefs and
managers are full-time employees. Some of Laura’s clients call at the last min-
ute, so she maintains a large list of potential workers who can perform a variety
of tasks, from driving to food preparation and display, as well as cleanup. The
chefs and managers evaluate workers after each job in terms of timeliness, appear-
ance, friendliness, and the ability to take orders and accomplish tasks. Workers
often perform many tasks at a given event. For instance, a driver might also be a
server. But some tasks require specific certifications. Not all workers are licensed
to drive, and only a few have been trained to perform some tasks such as cutting
meats. Most of the employee ratings are somewhat informal at the moment, but
she would like to computerize them to help her select the best workers for future
jobs. At some point, she would like to offer bonuses or higher pay to workers who
routinely perform well. Another challenge Laura faces is that some clients are fin-
icky about certain types of food. In particular, some movie clients have special
preferences as well as some items that cause allergic reactions. The chefs current-
ly keep these two lists in paper folders for some major performers and actors. But
to be safe, Laura wants to computerize the lists and, ultimately, the recipe ingredi-
ents. Then when a chef plans the meals, the computer could check the list of main
guests and their allergies against the recipe list to identify potential problems.

1. Research similar sites on the Internet. Describe or sketch the major forms and
reports that the company might use.

2. Create the initial proposal and feasibility study.

13Chapter 1: Introduction

EnviroSpeed
Brennan and Tyler are owner/managers of a consulting firm that specializes in
environmental issues. In particular, the company’s scientists are experts in clean-
ups for chemical spills. For example, if a tanker crashes and spills chemicals on
a highway, the company can quickly evaluate the potential problems and identify
the best method to clean up the spill and prevent problems. The company itself
does not clean up the spill, but it has contacts with several crews around the globe
that it can call if local emergency workers need additional help. The primary focus
of the company is to provide expert knowledge in the time of a crisis. This task re-
quires specialized scientists, good communication systems, and in-depth training
and practice. Brennan wants to improve the existing information system to main-
tain a database of case histories. Then, if a similar problem arises in the future,
the scientists can quickly search the database and identify secondary problems to
examine which solutions and ideas were successful and which ones caused more
problems. Tyler has explained that at a minimum, the database has to hold the
contact information for all of the scientists and emergency crews. It must also
list the specialties, training, and skill levels of each person in a variety of areas.
In terms of actual situations, the database should track the identities and roles of
the various people and the key time frames (when reported, response time, and so
on). Scientists also need the ability to list all of the chemicals involved and details
about the terrain (hills, water, soil composition). More subjective data must also
be captured, including comments by the onsite team and a description of the prob-
lem and secondary factors. All proposed solutions should be entered into the da-
tabase, along with comments regarding their strengths and weaknesses as well as
the final selections and an evaluation of the result. It is important to track potential
solutions that were discarded. Even if they did not apply to the original problem,
they might be useful for a future event with different circumstances.

1. Research similar sites on the Internet. Describe or sketch the major forms and
reports that the company might use.

2. Create the initial proposal and feasibility study.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, do the following.

1. Research similar sites on the Internet. List the major forms and reports that

the company might use.
2. Create the initial proposal and feasibility study.

Objectives

Design the initial tables for the case.•	
Create the design in the database design system. •	
Determine the initial relationships for the case.•	
Identify the data types needed for the attributes.•	

Chapter Outline

Database Design
2Chapter

Database Design, 15
Access Data Types, 15
Case: All Powder Board and Ski Shop, 17

Business Objects: First Guess, 17
Relationships, 18

Lab Exercise, 19
Database Design System, 19
All Powder Design, 20

Exercises, 27
Final Project, 29

15Chapter 2: Database Design

Database Design
You can design a database using paper and pencil. As you gain experience and
become more skilled at the task, pencil and paper will be relatively easy to use.
However, when you are learning, pencil and paper are tedious because you find
that you often need to remove items from potential classes, or even alter the entire
diagram. As an alternative, you might consider going directly to the DBMS and
defining the tables or classes off the top of your head. This approach might work
with Microsoft Access if you use the Relationships screen, but you will still find
it time-consuming to continually revise the tables. With any other DBMS, trying
to create tables from the top of your head is foolish because many systems do not
allow you to make major changes to tables once they have been defined.

A few computer-assisted software engineering (CASE) tools remain that can
help you define classes in a graphical environment. They are relatively powerful,
and many have the ability to generate the final tables based on the class diagram.
However, they are also expensive, hard to install, and cumbersome to learn. But if
you work for a company that has invested in these tools, they are an excellent way
to define the database classes.

To learn database design, there is a better tool. The database design system is
an online expert system that enables students to create class diagrams graphically
in a Java-enabled Web browser. The system makes it easy for you to create class-
es (entities) and build associations (relationships). More importantly, it provides
immediate feedback on the design, which is the expert system part. The system
runs on a custom Web server, and diagrams are stored in a central database. This
approach means that you can access your diagrams from almost any computer.
Changes you make in class or in your instructor’s office are saved and are avail-
able when you return to a lab or to your own computer. From an instructional per-
spective, the best part is that the system contains some complex rules to provide
feedback on your diagram. The system recognizes most design errors and points
them out with suggestions to improve the design. Your instructor can obtain the
database design system for your class. If it is available, you should use it to get
the benefit of the immediate feedback. If it is not available, you can draw the class
diagrams with paper and pencil, or with a graphics package such as Visio or even
PowerPoint.

Access Data Types
As a database designer, your job is to define the database tables that efficiently
store the organization’s data and support the business rules. In this process, you
will define the tables in terms of the data columns (attributes) and the table re-
lationships (associations). You will also need to know what type of data will be
stored in each column. Also, for some columns, you will want to specify con-
straints (for example, salary cannot be negative).

Selecting the proper data type can sometimes be a difficult step. Any DBMS
supports only a limited number of domains and you have to understand the ca-
pabilities and limitations of each type. You must also understand the underlying
business data—both the values collected today and the potential values that may
be collected in the future. For example, workers may only use integer values to
represent a quality rating. In the future, however, it is likely that the company will
want to use fractional values as well. Although database types are becoming more
standardized over time, each DBMS uses its own type names. Even more confus-

16Chapter 2: Database Design

ing, the actual values supported can be different even if the data type name is the
same. The most common problem arises with the Integer data type. With some
systems, an Integer is limited to 16 bits, while others default to 32 bits. With any
DBMS, you should consult the help system to determine exactly which data types
are provided and their limitations.

Figure 2.1 shows the main data types available in Microsoft Access. The types
you will use most often are Text, Date/Time, Currency, and Long Integer. When
you need to store date or time values, be sure to use the Date/Time type. It sup-
ports date arithmetic so users can subtract two dates to obtain the number of days
between them. The OLE Object type can hold pictures, spreadsheets, or docu-
ments. However, the new Attachment data type stores images, spreadsheets, and
similar files more efficiently.

The numeric subtypes are generally the most confusing. To truly understand
the numeric types, you need to study the way that computers convert numbers into
binary format, but that study is beyond the scope of this book. The easy answer is
to split types into three groups: integers, floating point, and fixed point. Integers
do not contain fractions or decimal points. The difference between the three types
lies in the size of data that can be held. For example, a 16-bit integer cannot hold
numbers larger than 32,767. So, if you have many items to sell or customers to
track, you need to use a Long Integer, which can hold values to slightly over 2
billion. If you need fractional values, you need to choose the Single or Double
data type. Again, the difference lies in the size of the number and the number of
digits each type can hold. Single-precision numbers hold only seven significant
digits, regardless of where the decimal point falls. Double-precision numbers can
contain 14 significant digits. But, be careful. Even the 14 digits could cause you
problems—if you try to use the Double type for money. Because of the way deci-
mal numbers are converted to binary floating point, some numbers do not convert

Figure 2.1
Name Data Bytes

Text (Characters)
 Fixed
 Variable
 Memo
 Hyperlink

NA
Text
Memo
Hyperlink

255
64K
1G

Variable
Variable
Variable

Numeric
 Byte (8 bits)
 Integer (16 bits)
 Long (32 bits)
 (64 bits)
 Fixed precision
 Float
 Double
 Currency
 Yes/No

Number: Byte
Number: Integer
Number: Long
NA
Number: Decimal
Number: Single
Number: Double
Currency
Yes/No

0-255
+/- 32767
+/- 2 billion

+/- 1 E 28
+/- 1 E 38
+/- 1 E 308
+/- 900.0000 trillion
0/1

1
2
4

12
4
8
8
1 bit

Date/Time Date/Time 1/1/100 –
12/31/9999 (1 sec)

8

Image
Attachment

OLE Object 1 gigabyte Variable

Generated Key
Replication ID

AutoNumber
GUID

Long (+/- 2 billion)
16 bytes

4
16

17Chapter 2: Database Design

correctly and you can get round-off errors. If you need decimal point values and
you need them to be exact, then you should use one of the fixed decimal types:
Currency or Decimal. Currency is designed for monetary data and can accurately
store 15 digits on the left side of the decimal point, and four on the right. The deci-
mal type is both larger and more flexible than Currency. Numbers can have up to
28 total digits (specified by the precision), and you can specify how many digits
fall to the right of the decimal point (given by the scale).

 Although the many data types can be confusing, it is important that you choose
the type carefully. In particular, for numeric types, make sure that you select a data
type that will be able to hold the largest (or smallest) values that might exist in the
data.

Case: All Powder Board and Ski Shop
With any database project, the first step is to understand the various elements of
the organization and the components that will become part of the database ap-
plication. This knowledge is critical, because the database design must reflect the
business rules. In real life, you can ask workers about the processes and underly-
ing assumptions. With a written case, it can be more challenging to determine all
of the necessary rules. On the other hand, real life is messier and people often give
inconsistent answers. It takes experience to learn to talk with users to identify ex-
actly which components are the most important, and how the pieces relate to each
other. Cases avoid this design complication but generally require you to make
assumptions on your own. Since the goal is to make reasonable assumptions, you
should search the Internet or read a few articles on snow boards and skis before
you tackle the database design.

Business Objects: First Guess
One of the first steps in designing the database is to identify the business objects.
In many ways, this case is a fairly typical business problem, so you would expect
to see many of the traditional business objects, such as Customer, Employee, and
Sale. Because the store also rents equipment, there will be a Rental object similar

Figure 2.2

Sale
SaleID
SaleDate
CustomerID
EmployeeID

Employee
EmployeeID
TaxpayerID
LastName
FirstName
Address
City
State
ZIP

Customer
CustomerID
LastName
FirstName
Phone
Address
City
State
ZIP

Rental
RentID
RentDate
CustomerID
ExpectedReturn

18Chapter 2: Database Design

to the Sale object. Figure 2.2 shows initial versions of these four classes. These
objects are relatively standard, but some issues arise in this case. Notice that you
must also begin to think about primary keys. In each of these four tables, the pri-
mary key is a new value that will be generated by the DBMS. In Microsoft Access,
it will be an AutoNumber column. This decision was made because it ensures that
these values are always going to be unique, and they can be created instantly by
the DBMS. In most situations, the actual key values will be hidden from the users,
and they will see only the relevant names.

Notice that several attributes are missing from these initial classes. The main
reason is that it is important to ensure that the columns you include at this stage
are correct. If there is any doubt about a column in a potential class, leave it out
and think about it. A few other classes should be relatively obvious for this case.
In particular, several support tables are used to provide lookup data for other ta-
bles. Ultimately, you will have to define all of the objects, identify the columns for
each table, and specify the data type for each column.

Relationships
Classes or entities are related to other classes. For example, notice that the Sale
table contains a CustomerID property. Values in this column match entries in the
Customer table, which is keyed by CustomerID. So, if you found a CustomerID
value of 112 in the Sale table, you could look up the matching customer data by
finding the row in the Customer table that has a primary key value of 112. This as-
sociation also expresses several business rules. In particular, (1) each sale can be
placed by only one customer, (2) a sale must be identified with a customer, (3) any
given customer can participate in many sales, but (4) a customer might not have
bought anything yet.

Relationships are displayed on the diagram by drawing connecting lines be-
tween the two tables involved. The business rules are shown as annotations at
the end of each connection. Each side of the connection displays minimum and
maximum values. Figure 2.3 shows the association between the Sale and Cus-
tomer table. Notice that the annotations match the four business rules described in
the previous paragraph. The 1…1 notation on the Customer side represents rules
1 and 2. At a minimum, each sale requires at least one customer, and, at a maxi-
mum, a sale can have no more than one customer. Likewise, the 0…* annotation
represents rules 3 and 4. A customer can participate in zero to many sales. There
is no maximum (*), so a customer can participate in any number of sales, and the

Figure 2.3

SaleID
SaleDate
CustomerID
Employee

Sale

CustomerID
LastName
FirstName
Phone
Address
City
State
ZIP

Customer

0...*

1...1

19Chapter 2: Database Design

zero means that a customer might not have bought anything yet. As a database de-
signer, your job is to identify the entities and relationships needed for this case.

Lab Exercise

Database Design System
The database design system is designed as an instructional tool, so your instruc-
tor should have already registered to obtain an instructor account. The instructor
also chooses and schedules assignments for the class. You will need a class code
to register for a class, so be sure you get the correct admission code from your
instructor. You will also need a set of numbers to create a new student account on
the system. Check with your instructor to obtain these numbers. With the two sets
of numbers, and the class admission code, you are ready to create your personal
account.
Activity: Getting Started
Use your browser to navigate to the
database design website and select the
link as a new student who has two key
numbers. Figure 2.4 shows the form
you need to fill out. First, enter the key
numbers that you have. Next, create a username and password that you will re-
member. You must choose a username that is different from all others. Be sure that
you enter your name, e-mail address, and Student ID number correctly. Your in-

Figure 2.4

Action
Browser: http://JerryPost.com/DBDesign
New student who has two key numbers.

Enter the key
numbers you
received

Create a username
and password

Enter your correct
name, e-mail
address and
StudentID

20Chapter 2: Database Design

structor will use the name and ID number to correctly identify you so you receive
credit for working on assignments. Note that your ID and password are encrypted
on the Web site database to protect them. However, if your university still uses
your Social Security number as an identifier, you might want to enter only a por-
tion of the number—and then go ask your university to wake up and create a safer
number. Your e-mail address is important so the system can send you the user-
name and password in case you forget what you selected. When you have entered
the data, click the Submit button. If you have an error in the key codes, or if your
username has already been selected by someone else, you will receive a message
and be asked to correct the items. Note that the key codes can only be used once
and can be discarded after the account has been created.

Once you have successfully created the new account, you must register for the
specific class. As shown in Figure 2.5, you simply choose your university and
your correct class. Enter the admission code provided by the instructor and click
the button to register for the class. If you do not have the proper code and are un-
able to register, you can get the code and return later. From the main page, enter
your username and password to log in. If necessary, once you are logged in, you
can click the link at the bottom of the main design page to register for a class. In
fact, once you get to the design page, if you try to open a problem and the list is
empty, it is most likely because you are not registered for a class.

All Powder Design

Activity: Create Tables and Columns
When you have created an account,
registered for a class, and logged into
the system, you are ready to begin de-
signing the database. Figure 2.6 shows

Figure 2.5

Action
File/Open, choose All Powder case.
Right click/Add Table.
Type “Sale” as the new table name.
Drag columns from right onto table.
Right click name/set data type.

Select a country or
state to narrow the
school list

Select your
university and class

Enter the admit
code

21Chapter 2: Database Design

the main elements of the system with the beginning of the solution. When you be-
gin, the various windows will be empty. You must first open a problem using the
File/Open menu choice and select the Workbook case. When the problem loads,
the right-hand window will display a list of available columns. Initially, it will
probably not include the key columns. You will add those in a minute.

You create a table (class/entity) by clicking the right mouse button on the main
screen where you want the table located. Then select the Add Table option. Re-
name the table by typing “Sale” as the new name, and pressing the Enter key.

Now you get to add columns to the table. All columns are added to a table by
dragging them from the right-hand window and dropping them onto the desired ta-
ble. In the case of the Sale table, you will need to generate a new primary key col-
umn (SaleID). To create a generated key column, drag-and-drop the top label for
Generate Key. Then, rename the newly created column. You rename columns by
double-clicking the name either in the table or in the right-hand window. Be care-
ful: Do not give two columns the same name, even if they are in different tables.
You will not be able to tell them apart in the main list of the right-hand window.
You might want to use an abbreviation and separator, such as Cust_LastName.

Figure 2.6

Menu

Class
(entity)

Status line

Corrections

Available
columns

22Chapter 2: Database Design

Later, the system can remove the prefix when it generates Oracle tables. Now you
can add some of the other columns needed in the Sale table. Look through the
right-hand window to find the SaleDate and SalesTax entries. You can simplify
your search if you sort the list by right-clicking on it and selecting Sort. Drag the
desired column onto the Sale table. Once a column is in the table, you can change
the order by dragging and dropping it higher or lower in the list.

At this point, you should set the data types of the columns in the table. The de-
fault type is Text, so in many cases you will not have to change it. However, you
should choose Date/Time for the SaleDate, and Currency for the SalesTax col-
umn. Double-click on the column name within the table to open the column edi-
tor. You can select the data type and change the data size if desired. You can also
add a constraint and default value, but you should probably do those later. The
default value is straightforward, but the constraint has to be expressed in Oracle’s
format. Be sure to save your work every few minutes in case you lose the Internet
connection or the server times out.
Activity: Create Relationships
Associations or relationships are a key
element of database design. In a rela-
tional database, columns in one table
are connected to columns in other
tables through common data. In the
case, the Sale table needs to connect
to a Customer table. Eventually, both
tables will contain a CustomerID col-
umn. First, you have to create the Cus-
tomer table, so right-click on the design
screen, add a new table, and rename it.
Again, to ensure that each customer is assigned a guaranteed unique identifier, add
a Generate Key column to it. Rename this new column as the CustomerID. It is
critical that you understand that this key value will be generated for each new cus-
tomer added to the table. This value can only be generated in this table. You would
never create another generated key column and call it CustomerID. Notice that
the column is marked with a solid (red) star to indicate that it is a key with values
generated in this table. How do you get CustomerID into the Sale table? Scroll
the right-hand window to the bottom and notice that CustomerID has been added
to the list of available columns. You could also sort the list and find it alphabeti-
cally. You can now drag this new column into the Sale table. Make sure its data
type is Integer32 (Long). Before attempting to build the relationship, add the other
customer properties to the Customer table by dragging them from the right-hand
window. You can use the Shift or Ctrl key to select multiple columns at a time,
but moving them takes a little practice. You can double-click the table heading to
automatically resize the table design box to fit the columns it contains. Set the ap-
propriate data types.

Now that you have both the Sale and Customer tables, and they both have a
CustomerID column, you can build an association or relationship between them.
Figure 2.7 shows how to create this relationship in the design system. Click on the
CustomerID column in the Customer table and drag it to the Sale table. Release
the mouse button to drop the cursor onto the CustomerID column in the Sale table.
The relationship window then asks you to specify the minimum and maximum

Action
Add Customer and Sale tables.
Add GenerateKey to Customer table.
Rename it to CustomerID.
Drag new CustomerID from right side

into Sale table.
Drag CustomerID from Customer and

drop it on CustomerID in Sale table.
Fill out relationship box.

23Chapter 2: Database Design

values for each side of the relationship. These values specify the business rules,
and are often the most difficult items to identify. In the sale case, the typical as-
sumptions are that exactly one customer can place an order, and a customer can
place from zero to many orders. So, on the Sale side of the window, select the Op-
tional and Many buttons. On the Customer side, choose the One option for both
Min and Max values. Note that if an option was selected by your instructor, the
system will automatically attempt to create the correct relationship for you when
you add the CustomerID column to the Sale table.

Remember that relationships generally involve at least one side in a primary
key. The column names are often the same on each end, but they can be different.
However, the data types do have to match, and the relationship has to be logical.
For example, it would never make sense to connect an ItemID to a CustomerID,
because that relationship would imply that a customer can also be an item and
vice versa. Finally, notice that the integrity and cascade boxes are selected as the
default. You should almost always leave these checked. In the database, cascade
on delete means that if you delete a particular customer, all of the orders placed
by that customer will also be deleted. If you do not specify the cascade, then you
could end up with orders that contain a CustomerID, which has no matching cus-
tomer data. After you close the relationship window with the OK button, you
might have to refresh the display screen by right-clicking the design window and
selecting Refresh.
Activity: Evaluate the Design
One of the most powerful aspects of
the database design system is that it
contains an expert system to help ana-
lyze your design for errors. You can
quickly obtain comments by selecting
the Grade/Grade and Mark option on
the menu. At this point, you only have
two tables partially created, so the most important comment you should receive is
that overall, you are missing several tables. The system might also point out that
you are missing columns from the Sales table, because you have not yet added the
salesperson (employee) and the shipping information.

Figure 2.7

Action
Choose Grade/Grade and Mark.
Click messages in window.
Fix errors by removing columns and

adding new tables.

Drag-and-
drop column

Select min and
max for both
sides of the
relationship

24Chapter 2: Database Design

To illustrate the power of the system, you will add a new table (Item), and then
build a new relationship that is incorrect. Add a new table for Inventory, and add
the SKU column (a common retail abbreviation for stock-keeping unit) used to
identify individual products. Right-click the SKU column in the Inventory table
and set it as a key. Add the Size and QOH columns to the Inventory table. Set their
data types to Single and Integer16 respectively. Now add the SKU column to the
Sale table as an intentional error. Create a relationship from Inventory to Sale us-
ing the SKU columns.

Choose the Grade/Grade and Mark menu option to save the changes and ob-
tain comments on the design. Again, the design is not finished, so focus on the
other error messages. In particular, find the message “For each value of SaleID
in table Sale, can there be more than one SKU?” and click it. Figure 2.8 shows
the resulting diagnostic screen. The SKU column in the Sale table is highlighted
as a potential problem. Indeed, it is an issue, because placing SKU into the Sale
table as shown would mean that for each Sale, only one item (SKU) can be sold.
You can usually double-click the comment to receive additional information about
database design. In this case, notice that SKU is not part of the primary key. You
might consider setting the SKU as a key column in the Sale table to solve the
problem. But that would cause even more problems. For instance, the SaleDate
depends only on the SaleID and not on the SKU. If you leave SaleDate in the table

Figure 2.8

Add SKU
to the Sale
table

Connect the
Inventory table to
the Sale table Errors are

highlighted
Click or double-click the
diagnostic message

25Chapter 2: Database Design

with both SaleID and SKU set as keys, you would be declaring that items within a
single sale can be sold on different dates.

If you set SKU as a key and resubmit the problem for grading, it will return
several messages. One of them will be the question “Does SaleDate in table Sales
really depend on SKU?” Notice that sometimes a table has many errors, so you
must carefully review the entire table to make sure you fix the primary problems
first. The Grade menu also contains an option to generate a separate HTML file
that lists all errors by table. This listing is easier to print.

Primary keys are one of the most difficult things for students to understand
when they first start designing databases. In particular, generated keys are tricky.
In terms of the database design system, primary keys are critical because they
are used to identify the tables. If you make major mistakes in the primary keys,
the system will give confusing feedback because it cannot correctly identify your
tables. For this reason, it is always best to begin with one or two tables, test them,
and then slowly add more tables and relationships.

You still need to fix the problem with the Inventory and Sale table association.
In a broad sense, it seems that there should be some type of connection between
Inventory item and Sale to indicate which items were purchased by the customer.
But placing the SKU attribute into the Sale entity appears to be a bad idea. The
reason is straightforward. If there is an association between Inventory and Sale,
it must be many-to-many. That is, a Sale can include many items (SKUs), and an
Inventory item (SKU) can be sold many times. Relational databases do not handle
many-to-many relationships directly. Instead, you must create an intermediary or
junction table.

Figure 2.9 shows the creation of the intermediary table. It contains the key col-
umns from both the Inventory (SKU) and Sale (SaleID) tables. Both columns are
keyed in the new SaleItem table. Examining the keys within the SaleItem tables
reveals that each sale can contain many items, and each item can appear on many
sales. This is exactly the many-to-many relationship needed. The additional col-
umns of QuantitySold and SalePrice indicate the number of items being purchased
and any discounts applied—for an individual item on a specific sale. The dashed
many-to-many line is never created, it is simply used here to show the goal of the
two relationships.

The new SaleItem table corresponds to the repeating lines of items that you
would see listed on a paper sale form. Examining the two new relationships re-
veals how the table works. Reading from the Sale to the SaleItem table, each sale

Figure 2.9

Inventory

SKU
Size
QOH

Sale

SaleID
SaleDate
CustomerID
EmployeeID

SaleItem

SaleID
SKU
QuantitySold
SalePrice

1...1

1...*

1...1

0...*

26Chapter 2: Database Design

can contain from one to many items, and in reverse, each SaleItem line (SaleID
and SKU) refers to exactly one sale. Essentially the same association exists from
Inventory to SaleItem. However, since items might not have been sold, each item
can appear on zero to many sales lines, and a given sales line refers to exactly
one item. All many-to-many relationships must be split and joined with a junction
table that contains the keys from both of the original tables.
Activity: Fix Inventory Design
Return to the database design system
and delete the association between In-
ventory and Sale. Then remove the
SKU column from the Sale table. Now
you can create the SaleItem table.
Simply drag the two keys (SaleID and
SKU) into the table from the right-hand
window—do not attempt to re-create
them with a generate key. Double-click
to the left of both names to add the sim-
ple key icon (unfilled blue star). Build the two new relationships in the Figure 2.9
example and add QuantitySold and SalePrice to the SaleItem table. Make sure
the SalePrice data type is Currency and that the data size does not exceed 38, the
maximum number of digits allowed in an Oracle number.

If you grade this version, you will see that the detail issues have been corrected.
However, some design issues still exist in terms of handling inventory. The inven-
tory for a ski shop is somewhat more complicated than for a typical retail store. In
particular, snowboards and skis are sold in varying lengths to match the individual
customer. Figure 2.10 shows the two concepts. A manufacturer produces a model
line that exhibits certain characteristics such as width, flexibility, and side cut.
For a model type, several different lengths are available. From the perspective
of the All Powder store, the database has to keep information on each model, but
the actual inventory must refer to a specific item or length within the model type.
Each item will receive a different SKU. For example, SKU 1173 might refer to a

Figure 2.10

Model information
refers to the overall
type of board or ski

Inventory information
refers to an individual
ski or board; defined by
its length

Action
Create the SaleItem table.
Create the ItemModel table.
Include the proper columns.
Set the keys.
Set the data types.
Grade/Grade and Mark.

Item: 196 cm Item: 180 cm

Model: Rossignol Radical

27Chapter 2: Database Design

Rossignol Radical ski that is 196 cm in length, while SKU 1174 references a Ros-
signol Radical ski of 180 cm.

The catch is that it would waste considerable space to repeat all of the model
data for every possible size of ski or board. Consequently, it is important to create
two entities to handle the details: ItemModel and Inventory. Figure 2.11 shows
the basic tables and the resulting relationships. Observe that each model results
in many inventory items (multiple sizes of boards or skis), but each item can be
only one model type. At this point, you should be able to add more attributes and
more tables to the design, but the completion of the design will be left to the next
chapter.

Exercises

Crystal Tigers
Crystal Tigers is a service club with about 150 members. The club primarily spon-
sors events such as community pancake breakfasts, local concerts, and sporting
competitions. The club successfully uses the events to raise money for various
charitable organizations. The club needs a database to help track the roles of the
various members, both in terms of positions within the organization and their
work at the events. The following form represents the basic data that needs to be
collected.

Figure 2.11

28Chapter 2: Database Design

Last Name, First Name
Phone, Cell Phone
Adderss
City, State, ZIPCode

Year Position/Title Comment

Event title
Start Date End Date
Charity
Charity contact
Phone
Amount raised

Member Activitie for Event

Date Hours Activity Comment

1. Analyze the form and create the main classes and associations needed to
maintain the data for this organization.

Capitol Artists
Capitol Artists is a partnership among several commercial artists that work on
freelance and contract jobs for various clients. Some jobs are contracted at a fixed
price, but complex jobs require billing clients for the number of hours involved in
the project. To help the artists track the time spent on each project, the firm wants
you to build an easy-to-use database. On a given day, the artist should be able to
select the time slot, then choose a category and a job. All jobs are given internal
numbers, and each job has only one client. But, it is helpful to list the client infor-
mation on the form once the job has been selected. The artist then enters a short
task description, the billing rate, and any out-of-pocket expenses. The billing rate
is somewhat flexible and depends on the client, the job, the task, and the artist. For
example, the company can charge higher rates for an artist’s creative work time,
but lower rates for copying papers. The following form contains the basic infor-
mation desired.

Employee
Last name, First name
Date

Time Category Client Job# Task Description Hours Rate Expenses
8:00 AM Meeting Name

+
Phone

1173

8:30 AM

9:00 AM

9:30 AM

...

1. Analyze the form and create the main classes and associations needed to
maintain the data for this organization.

29Chapter 2: Database Design

Offshore Speed
The Offshore Speed company sells parts and components for high-performance
boats. Some of the customers modify the boats for racing, others simply want
faster boats for informal races. The engine parts tend to be highly specialized and
new variations are released each year by manufacturers. Compatibility of parts is
always a major issue, but most are tested by the manufacturers with data available
from their websites. Customers tend to order parts through the store, but some-
times they will buy off-the-shelf components. The store also keeps many spare
parts in stock because customers tend to break them often and the profit margins
are good. The store also has arrangements with other firms that can help customers
redesign and upgrade interiors and cabins, for example, provide new upholstery
for seats and complete systems for beds and sinks for cabins. Lately, the store
has been successful in selling and installing high-end GPS and communication
systems. The form below is used to place custom orders for the clients. Discounts
are given to customers based on several subjective factors that will not be entered
into the database.

Customer
Last name, First name
Phone, E-mail
Address
City, State, ZIP

Employee

Sale date
Estiamted receive date

Boat: Brand, year, # engines, length
Engine 1: Brand, year, out drive, year
Engine 2: Brand, year, out drive, year

Manuf. Mfg Part No. Category Description Quantity List Price Extended

Subtotal
Tax
Discount
Total Due

1. Analyze the form and create the main classes and associations needed to
maintain the data for this organization.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following task.

1. Analyze the forms and create the main classes and associations needed to
maintain the data for this organization.

30

Objectives

Understand how to use generated AutoNumber keys.•	
Create tables and specify data types.•	
Create relationships and specify cascades.•	
Establish column constraints and default values.•	
Create lookup lists for columns.•	
Estimate the data volume for the database.•	

Chapter Outline

Data Normalization
3Chapter

Database Design, 31
Generated Keys: AutoNumber, 31
Case: All Powder Board and Ski Shop, 33
Lab Exercise, 34

All Powder Board and Ski Database Creation, 34
Relationships, 39

Exercises, 43
Final Project, 44

31Chapter 3: Data Normalization

Database Design
The main objective of database design is to define the tables, relationships, and
constraints that describe the underlying business rules and efficiently store the
data. The normalization rules are critical to properly identifying the columns that
belong in each table. The first step is to make sure the keys are correct. A key
uniquely identifies the rows in the table. If multiple columns are part of the key,
it indicates a many-to-many relationship between the key columns. Note that if
a base table contains a generated key column, it is the only column that may be
keyed.

If you are uncertain about which columns should be keyed, write them down
separately and evaluate the business rules between the two objects. Figure 3.1
shows a typical situation with orders and customers. First ask yourself: For a giv-
en order, can there ever be more than one customer? If the answer is “yes” based
on the business rules, then you would mark the CustomerID column as key. How-
ever, most businesses have a rule that each order is placed by only one customer,
so CustomerID should not be keyed. Second, reverse the question and ask your-
self: For a given customer, can there be more than one order? Obviously, most
businesses want customers to place repeat orders, so the answer is “yes.” So you
mark the OrderID as key. Since only OrderID is keyed, both columns belong in
the CustomerOrder table.

Once the keys are correct, you need to check each nonkey column to ensure
that it follows the three main normalization rules. First, each column must contain
atomic or nonrepeating data. For example, a single phone number, but not multi-
ple values of phone numbers. Second and third, each nonkey column must depend
on the whole key and nothing but the key. You need to examine each potential
table, determine that the keys are correct, then check each column to ensure that
it depends on the whole key and nothing but the key. If there is a problem, you
need to split the table. Remember that any time you make a change to the keys in
a table, you have to reevaluate all of the columns in that table.

Generated Keys: AutoNumber
Key columns play a critical role in a relational database. The key values are used
as a proxy for the rest of the data. For instance, once you know the CustomerID,
the database can quickly retrieve the rest of the customer data. That is why you
only need to place the CustomerID column in the CustomerOrder table. However,
the database requires key values to be unique. Guaranteeing that key values are
never repeated can be a challenging business problem. In some cases, businesses
have separate methods to create key values. For instance, the marketing depart-
ment might have a process to assign identifier numbers to customers and products.
But the process must ensure that these values are never duplicated. In many situ-

Figure 3.1

OrderID CustomerID

CustomerOrder(OrderID, CustomerID, …)

32Chapter 3: Data Normalization

ations, it is easier to have the database generate the key values automatically. In
particular, orders often require keys that are generated quickly and accurately.

Microsoft Access provides the AutoNumber data type to generate new key val-
ues. You assign this type to the primary key in a table where you want the key
value created. For instance, the CustomerID column in the Customer table, or the
OrderID in the Order table, might be assigned the AutoNumber type. Whenever
a row is added to a table with an AutoNumber column, a new key value is gener-
ated. The keys are long integers and the value is incremented by one each time a
row is inserted. The 32-bit integer supports slightly more than 2 billion positive
values and an equal number of negative values.

In general, the AutoNumber approach is relatively easy to use for most simple
applications. Figure 3.2 shows how you select the AutoNumber data type when
creating a table. No matter how the data is created, whenever a row is inserted a
new key value is generated. The rest of the Access system utilizes the AutoNum-
ber column, making it easy to build input forms. In most cases, you do not have
to display the key value, so users never need to worry about it or even know that
it exists.

The main drawback to the AutoNumber approach is that it is tricky to obtain
the newly generated value. If you have an application that creates a new customer,
you might have to obtain the newly generated key to use it in a second table. Ac-
cess does not provide a function to obtain the new key value. There is a way to
obtain the key in most cases, but you have to be careful, and it requires program-
ming code.

There is one important step you have to take at this stage when you create
tables with the AutoNumber data type. Since the column value can only be cre-
ated in one table, you need to choose the Number/Long Integer data type if you
use that column in a second table. For example, CustomerID can be AutoNumber
in the Customer table, so new values are created when a customer is added. But to

Figure 3.2

33Chapter 3: Data Normalization

use CustomerID in the Order table, it will have to be assigned the Number/Long
Integer data type in that table.

Case: All Powder Board and Ski Shop
When you first approach a database design problem, you will often experience
one of two perspectives: the project seems immensely complicated, or the project
seems too easy. Usually, both perspectives are wrong. Even a difficult project can
be handled if you divide it into small enough pieces, and few projects are as easy
as they first appear. The main issue is to correctly identify the business rules. And
there always seem to be complications with some of the rules. For the All Powder
case, consider the issue of customer skill level. Whether a customer is renting or
buying a board or skis, the salespeople need to match the person to the proper
board or ski based on the customer’s skill level. In terms of business decisions,
managers need to identify the types of customers to plan for the models and in-
ventory decisions for next season.

As shown in Figure 3.3, consider what happens if you try to place the Style
(downhill, half pipe, and so on), and SkillLevel directly into the Customer table.
The problem is that the business rules state that each customer can have one skill
level in many styles, and each style can apply to more than one customer. For
example, customer Jones could be an expert downhill skier but only a beginner
in half-pipe snowboard. However, customer Sanchez is an expert at half pipe but
has never tried any type of skiing. If you place Style and SkillLevel in the Cus-
tomer table, you might try keying only CustomerID. But that action would state
that each customer participates in only one style, with one skill level. On the other
hand, if you key just the Style column, you would be indicating that each style
can be performed by only one person. The only solution is to key both the Custo-
merID and the Style columns. Then each customer can participate in many styles
(with one skill rating per customer per style), and each style can apply to many
people (with possibly different skill ratings). But you cannot leave the Style and
SkillLevel columns in the main Customer table along with columns such as Last-
Name. It is clear that a customer’s last name does not change for each different
style. A customer’s last name depends only on the CustomerID, so you need to
split the tables.

Figure 3.3

Consider what happens if you (incorrectly) try to place Style and SkillLevel in
the Customer table:

CustomerID, LastName, … Style, SkillLevel
CustomerID, LastName, … Style, SkillLevel

Business rule: Each customer can have one skill in many styles.
Business rule: Each style can apply to more than one customer.
Need a table with both attributes as keys.

CustomerID, LastName, … Style, SkillLevel

But you cannot include LastName, FirstName and so on, because then you
would have to reenter that data for each customer skill.

34Chapter 3: Data Normalization

Figure 3.4 shows the resulting design. The Customer table is keyed only by
CustomerID and contains attributes that describe each customer. The Style and
SkillLevel tables are used as lookup tables to ensure that clerks select from the
defined list of choices. Without them, the database would quickly become a mess
because everyone would use different spellings and abbreviations for the entries.
The CustomerSkill table contains the CustomerID and Style as key columns to
support the business rules.

Lab Exercise

All Powder Board and Ski Database Creation
You should use the database design system to refine your table definitions. The
system is designed to check the main design rules and ensure that your tables
meet the requirements of good database design. However, if you make different

Figure 3.5

Figure 3.4

Primary key

Column name
Data type

Additional
data type
information

Customer

CustomerID
LastName
FirstName
Phone
Address
City
State
ZIP

CustomerSkill

CustomerID
Style
SkillLevel

Style

Style
StyleDescription

SkillLevel

SkillLevel
SkillDescription

35Chapter 3: Data Normalization

assumptions about the underlying business rules, you can create slightly different
tables than those recommended by the design system.
Activity: Create Tables
Once you have determined the over-
all Database Design, creating tables in
Access is straightforward. The Design
View visual editor makes it easy to en-
ter column names and select the data
types. One of the strengths of Access is
that it allows you to change the table
design later. So, if you find you made
a mistake, you simply go back and edit
the table. Of course, if you have already entered data into the table and need to
make a major change, it can be more complicated because you will want to save
the data so you do not have to reenter it.

Figure 3.5 shows the basic elements of the Table Design screen. As you enter
the column (field) names, you select the data type from a drop-down list. Addi-
tional choices regarding the data type are made in the lower box. These options
depend on the initial data type, so the elements in the box change. For example,
the text data type is defined with a maximum of 50 characters by default. Access
will efficiently store the data even if it takes less than 50 characters, but it will
not allow anyone to enter a value with more than 50 characters. You will need
to change this limit for some columns. For example, the Email column should
probably allow up to 100 or perhaps 150 characters. Access supports a maximum
of 255 characters in a text column. If you need more than that, you will have
to switch to a Memo type of data. However, there are some limits on searching
memo data, so do not use it unless you truly need the space.

You indicate the primary key by clicking the gray box to the left of the column
name, and then clicking the Primary Key icon on the top menu bar. A small Key

Figure 3.6

Action
Create Customer table in Design view.
Enter column names.
Select data types.
Assign the primary key.
Save the table.

Selected column

Subtype: Single

Number data type

36Chapter 3: Data Normalization

icon is placed in the gray box to indicate the Key column. To set multiple column
fields as keys, you first highlight each column field row that needs to be keyed.
Then click the Key icon. You can select multiple rows by clicking and dragging
the mouse across contiguous rows. Or you can use Shift + click or Ctrl + click to
choose multiple rows. You give the table the appropriate name when you save it.

Although the Access Design view is relatively easy to use, you need to be care-
ful when you select numeric data types. In Figure 3.6, the Size column is given
the Number data type. Number, however, has several subtypes. You select the ap-
propriate subtype in the lower window. In this case, the data type of Single indi-
cates a relatively small floating point number. Most skis and boards are measured
in centimeters, so the numbers are not overly large. However, some manufacturers
might choose to use fractional lengths, so the single-precision floating point is ap-
propriate. This step is sometimes difficult for beginners to catch. If you forget to
choose the single or double precision subtype, you will not be able to enter frac-
tional values (with decimal points). If you ever encounter that problem, simply
return to the Design view and set the proper data type.
Activity: Create Constraints and Default Values
In many cases, you will want the data-
base to enforce the business rules. Plac-
ing the rules in the database means that
they will be enforced in all situations,
without relying on other programs.
Figure 3.7 shows the primary elements
for setting a condition to ensure gender
data is entered consistently. First, select
the column that needs to be controlled. Second, enter a validation rule that speci-
fies the acceptable values or range of values. Many times, you will use rules that
list acceptable values, such as the list of three items for gender. Other times, you
might use a rule which specifies that values must fall within some range. For in-

Figure 3.7

Action
Select the Gender column.
Validation rule: “Female” Or “Male” Or

“Unidentified”.
Validation text: Please enter Female,

Male, or Unidentified.

Selected column

Acceptable values

Message

37Chapter 3: Data Normalization

stance, to indicate that a salary column must be greater than zero, select the Salary
column and enter >0 as the validation rule. Finally, enter a message that will be
displayed to anyone who tries to enter an invalid value. This message can be any
text message, but keep it precise and friendly.

Notice that it is also easy to specify default values. These are values you want
displayed whenever a new row is created. The user can override the default value
and enter something else, but it is often convenient to display a commonly used
value to save time for users who are entering data. For example, a SaleDate can be
set to the Now() function so that the current date is automatically entered.
Activity: Create Lookup Lists
Ultimately, you want to make the data entry process even easier for users. Instead
of waiting for users to guess what values they might enter for gender, you can cre-
ate a simple lookup list that contains the three acceptable values (Female, Male,

Figure 3.8

Value list

Combo box

Selected column

Values in quotes
and separated by
commas

Lookup tab

AutoNumber
generated Lookup list

Figure 3.9

38Chapter 3: Data Normalization

or Unidentified). Figure 3.8 shows the
choices once you select the column and
click the Lookup tab. You can choose
between a combo box and a list box.
The combo box is usually preferred
because it uses less screen space: the
choices are displayed when the user
clicks the familiar drop-down arrow.
For the simple list of pre-defined terms,
choose the Value list and enter the val-
ues in the next row. Each item is en-
tered in quotes and separated by semicolons.

There is a major drawback to entering a list of values into the table definition:
This list is difficult to change later. Consequently, you should use the predefined
list only for items that rarely change. If you suspect the list will need to be up-
dated later, you should create a separate lookup table and store each possible entry
as a row within that table. Then you can use this same process to point to that table
instead of a fixed list, by selecting Table/Query for the Row Source Type.

Switching to data entry mode, Figure 3.9 shows the effect of this design on the
Customer table. In terms of gender, users see a defined list of choices and are not
able to enter other values. Even if a programmer attempted to enter a value not in
the list, the validation rule would prevent the change. Also, notice the effect of the
AutoNumber column for the primary key. Initially, no value is displayed. As data
is entered into the row, Access automatically creates a new key value that is one
unit higher than the prior value. However, note that if you delete a row, the num-
bering does not start over. Eventually, some numbers will be missing from the list.

Figure 3.10

Action
Select the Gender column.
Select the Lookup tab.
Display Control: Combo Box.
Row Source Type: Value List.
Row Source:

“Female”;”Male”;”Unidentified”.
Switch to datasheet view and test it.

39Chapter 3: Data Normalization

Since the actual value does not mat-
ter, only the uniqueness, do not worry
about any missing values.

Access 2007 added a new feature
that is of somewhat dubious value, but
it does have a specific use when you
want to integrate data with Microsoft
SharePoint. Access 2007 now supports
a multivalued field. In simple terms, it
violates first normal form by enabling
you to store multiple entries in a single cell. For example, perhaps the owner wants
to store data in the Sale table so that multiple employees can participate in a sale,
creating a many-to-many relationship between Sale and Employee. Technically,
you should store this data in a third, intersection table that contains both SaleID
and EmployeeID as columns in the primary key. Actually, this is exactly how Ac-
cess handles the problem by creating a hidden table. Behind the scenes, Access
draws data from this table to make it appear that multiple items can be selected for
the SalesPerson.

Figure 3.10 shows how the multivalued field is presented to the user to make
it easier to enter data. In particular, a list of checkboxes is displayed and the user
selects the employees who participated in the sale. The point of the list is to make
it easier for user to enter data and save the developer a few steps by automatically
creating the list of checkboxes. In most situations, you are probably better off ex-
plicitly defining the intersection table and creating your own forms to handle the
data entry. Retrieving data with queries involving the new field adds more com-
plications. Access created a new Employee.Value option to display and search the
list of individual employees.

Relationships

Activity: Define Relationships
When all of the tables have been created, you need to define the relationships. For
now, create at least the CustomerSkill table with two columns in the primary key.
You can click the Relationships button under the Database Tools menu. Select the
tables to be displayed on the screen. Eventually you will need all of the tables, but
sometimes it is easier to start with a smaller group and add tables one at a time
with the Add Tables button. As shown in Figure 3.11, to build a new relationship,
click-and-drag a column from one table and drop it on the corresponding column
of the second table. To edit an existing relationship, double-click the relationship
line. In the Edit Relationships window, verify that the column names are correct.
If a relationship needs to join across multiple columns, you must select the ad-
ditional columns in the list. When they are correct, check all three of the integrity
boxes. These boxes enforce the integrity rules so that users can only enter data
that exists in the original base table. For example, it does not make sense to enter
skill data for a customer number that does not yet exist, so the database will en-
force that rule and display an error message if someone tries to violate it. Click the
OK button to establish the new relationship.

Continue adding tables and building the required relationships. Eventually, all
of the tables should be tied together. An important consequence of building the
relationships is that it forces you to enter data in a specific sequence. In the ex-

Action
Tools/Relationships (or button).
Add all tables.
Move and resize them to fit.
Drag and drop key columns on foreign

keys.
Check integrity and cascade boxes.
Define all relationships.

40Chapter 3: Data Normalization

ample, you must first enter data into the SkiBoardStyle, SkillLevel, and Customer
tables before you can create an entry in the CustomerSkill table. In general, you
should first enter data into the base lookup tables, like the SkillLevel table. This
data is generally relatively static and well-defined. Notice that it could be difficult
to explain this process to users. To look ahead a little, users should never enter
data directly into tables. Instead, you will create forms that make it easy for users
to enter data properly.

CREATE TABLE Customer (
 CustomerID Long,
 LastName Text(50),
 FirstName Text(50),
 Phone Text(50),
 Email Text(150),
 Address Text(50),
 State Text(50),
 ZIP Text(15),
 Gender Text(15),
 DateOfBirth Date,
 CONSTRAINT pk_Customer PRIMARY KEY (CustomerID)
)
CREATE TABLE Rental (
 RentID Long,
 RentDate Date,
 CustomerID Long,
 ExpectedReturn Date,
 PaymentMethod Text(50)
 CONSTRAINT pk_Rental PRIMARY KEY (RentID)
 CONSTRAINT fk_RentalCustomer FOREIGN KEY (CustomerID)
 REFERENCES Customer(CustomerID)
)

Figure 3.11

Figure 3.12

Check all
three boxes

Drag column
and drop

Relationshp line

Verify both
columns

41Chapter 3: Data Normalization

As of the XP/2002 version of Access, you can create tables and relationships
using direct SQL statements. However, the syntax does not support all of the SQL
standard options. For instance, only a single command can be issued at a time.
Figure 3.12 shows how you could use SQL to create two of the tables for the case.
Note that you will have to create each table separately, but they are displayed to-
gether to highlight the relationship. You can open a new query and switch to SQL
view, then enter the CREATE TABLE command and execute the query to create
the table.

Why would you want to use this method to create tables—particularly when
the Table Design view screen is so easy to use? The answer is that the Design
View screen requires someone to create each table and column by hand. That is
fine when you are initially creating tables and if you never have to re-create them.
However, the text-based approach enables you to save the table definitions so that
you can quickly re-create the tables in a new database. It is a useful way to save
backup copies of the table definitions. These backup copies are useful when you
need to modify the tables at some point, or create a new database, or have some-
one else re-create the database on a different machine. The method is also useful
when a design system generates the CREATE TABLE statements for you.

If you create a file listing all of the tables, be careful about the order in which
the tables will be created. Some tables must be created before others. In particular,
a table can only establish a foreign key reference to an existing table. In the exam-
ple, the Customer table has to be created before the Rental table can reference it.
Also, keep in mind that the CREATE TABLE command is a recent feature in Mi-
crosoft Access, so it does not fully support the SQL standard. In particular, it does
not appear to support the ON DELETE CASCADE and ON UPDATE CASCADE
options for the foreign key relationship. You will still have to go to the Relation-
ships screen, edit the relationship, and check those boxes separately. Also, Access
2007 does not support the CHECK and DEFAULT options to specify individual
column constraints and default values.
 Activity: Estimate the Database Size
At some point, you need to estimate the
size of the database project. Of course,
any estimate at this early stage will
be very rough. Your goal is not to be
perfect but to be able to categorize the
overall project size. The information
will help you identify the basic cat-
egory of database server and perhaps
narrow your choice of tools. In particular, it will help you determine whether the
project is too large to be handled in Access, or if you should move up to SQL
Server or Oracle. You still might want to use Access as a front-end tool, but it
would be helpful to know if you need to move the database to a larger server.

To estimate the database size, you begin by estimating the size of each data
table. You must already know which columns belong to each table. Figure 3.13
shows the process for the Customer table. Some of the column size estimates are
straightforward. Look back to Chapter 2 to see that a long integer uses 4 bytes
of storage in Access. The text columns are a little trickier. For instance, although
the database will allow up to 50 characters of text for the last name, almost no
names will actually be that long. Instead, you need to estimate the average length

Action
Create a spreadsheet.
Enter table names as rows.
Add columns for: Bytes, Rows, Totals.
Calculate the bytes per table row.
Estimate the number of rows.
Compute the table and overall totals.

42Chapter 3: Data Normalization

of customer last names. You could use existing data or perhaps take a sample from
a phone book. Perhaps an average last name is 15 characters long. But the DBMS
stores text in Unicode format, which requires 2 physical bytes of storage for each
character, so the average storage space needed for a last name is 30 bytes. Use a
similar process to estimate the number of bytes needed to store an average row of
customer data.

Next, you need to estimate how many new customers will arrive each year. In
a real case, you could look at past records or talk with the expert users. Here, as-
sume it is about 200 per week, but there are only 25 weeks of the ski season; so
estimate 5,000 new customers a year. Multiplying the estimated number of cus-
tomers by the size of an average row yields the initial data size of the customer
table of about 1 million bytes.

Follow a similar process for all of the tables in the case. Figure 3.14 lists some
of the basic assumptions you can use. You should build a spreadsheet that lists
each table, the average number of bytes per row, the estimated number of rows,
and the total estimated size for the table. There is still some flexibility in the final
number, but your estimate should be around 5 to 6 megabytes. Remember that
this is data for only one year. Also, additional space will be required for indexes,
overhead, queries, forms, and reports. But even if the final number is closer to 20
megabytes, Microsoft Access should be able to handle the database on a typically
configured computer.

CustomerID Long 4
LastName Text(50) 30
FirstName Text(50) 20
Phone Text(50) 24
Email Text(150) 50
Address Text(50) 50
State Text(50) 2
ZIP Text(15) 14
Gender Text(15) 10
DateOfBirth Date 8

Average bytes per customer 212
Customers per week (winter) *200
Weeks (winter) *25
Bytes added per year 1,060,000

Figure 3.13

200 customers per week for 25 weeks
2 skills per customer
2 rentals per customer per year
3 items per rental
20 percent of customers buy items
4 items per sale
100 manufacturers
20 models per manufacturer
5 items (sizes) per model

Figure 3.14

43Chapter 3: Data Normalization

Exercises

Many Charms
Samantha and Madison want you to build the database for their charms sales.
They emphasized that the system has to be easy to use. They also pointed out
that a key element of their business is tracking all of the products and the various
suppliers, then monitoring the costs so they can set their prices accurately. They
are also concerned about monitoring how quickly their charms sell. They figure
they will need to start with at least 200 basic charms, but most charms come in
two sizes, along with the different metals and finishes. When asked, the women
indicate they are uncertain how many customers they will have but would like to
get at least 50 sales a week. Although some of the sales might be small, they hope
to build a solid list of clients who return for new purchases on a monthly basis.
To encourage return customers, they are thinking about offering some type of fre-
quent-buyer program, where customers receive discounts or maybe a free charm,
after purchasing a specified number of charms.

1. Define the final tables needed for this case.
2. Create the database.
3. Estimate the size of the database for one year of operation.

Standup Foods
Laura’s business has been established for several years. Many of her clients are
old customers, and she has a couple of thousand in her files—although some have
gone out of business. Her business has grown considerably based on referrals from
existing clients. She gets so many good comments and referrals, she is thinking
that she needs to track which customers pass her name on to others so she can call
them or send thank-you gifts. But, her more immediate concern is tracking em-
ployees. Over the course of a year, she has a relatively high turnover in some posi-
tions. Other employees have been with her for years. In total, she probably deals
with 400 to 500 employees a year. Employees are rated after each job, and typi-
cally employees work 15 to 20 jobs a year for her. On average, employees tend to
have three tasks per event. For instance, a driver will also be a server, and possibly
also a busboy or dishwasher. They are evaluated on 10 items for each task they
perform, as well as given an overall rating. Client food preferences are somewhat
more complex, so Laura wants the capability to add free-form comments to cover
extreme cases. For common elements, such as allergies to nuts, she wants to keep
itemized lists—both for desired items and forbidden items. Some clients are easy
going, but this is Hollywood, so many have long lists of items—often ranging to
50 or even up to 100 items.
1. Define the final tables needed for this case.
2. Create the database.
3. Estimate the size of the database for one year of operation.

44Chapter 3: Data Normalization

EnviroSpeed
For good or bad, Tyler and Brennan have been busy. Their firm has been averag-
ing four to five cleanups a week. Although there are not many permanent em-
ployees (fewer than 100), they have close associations with about 200 experts in
various areas. All of these people need access to the environmental documents and
other information. Additionally, about 400 crews around the world are called in to
work on various problems. The crews consist of 10 to 20 people. Initially, experts
contribute the most information. Sometimes an expert will contribute hundreds of
pages of documents and comments. Once an incident is opened, most of the new
data and the searches come from the emergency crews. Time schedules, environ-
mental factors, and comments can arrive quickly from all of the crew members.
Some of the notes are on paper and saved until the emergency is over, when clerks
enter the basic data to the database. A typical incident can generate dozens of pag-
es of notes and schedules from each crew member. Although there are hundreds
of possible chemicals, the firm has found that only about 50 major chemicals are
typically involved in critical incidents. One important aspect of this case is the
need for experts and crew members to search through documentation based on
key words. For example, crews will need to search for certain chemicals, possibly
in combination with other chemicals, and often include the type of problem, such
as water or road spill. Brennan estimates a typical document needs to include at
least 20 keywords to identify the exact purpose of the document.
1. Define the final tables needed for this case.
2. Create the database.
3. Estimate the size of the database for one year of operation.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following instructions.
1. Finalize your database design.
2. Create the tables in the DBMS.
3. Estimate the amount of data that might be generated for one year.

Objectives

Create or import sample data into a database.•	
Create basic queries to answer common business questions.•	
Use joins to create multitable queries.•	
Use queries to perform simple calculations.•	
Answer business questions involving totals and subtotals.•	

Chapter Outline

Database Queries and SQL
4Chapter

Database Queries, 46
Case: All Powder Board and Ski Shop, 46
Lab Exercise, 47

All Powder Board and Ski Data, 47
Computations and Subtotals, 55

Exercises, 61
Final Project, 63

46Chapter 4: Database Queries and SQL

Database Queries
Relational databases are designed to store data efficiently. Efficiency results in
splitting the data into many tables, interconnected by the data. Consequently, you
need a good query system to retrieve data. SQL is a powerful standard designed
to perform several tasks in retrieving and manipulating data in relational database
systems. Most modern systems implement some version of SQL. The catch is that
the standard continues to evolve, and it takes time for the DBMS vendors to catch
up. Also, vendors tend to include proprietary extensions to provide additional fea-
tures. Because the SQL syntax can be difficult for managers, most vendors also
include some type of query-by-example (QBE) system to make it easier to con-
struct common queries. The visually oriented QBE also saves some typing effort
and provides lists of tables and columns so you do not have to memorize them.
But, ultimately, you need to learn SQL because it is a standard and because some
queries are easier to understand in SQL. With Access, the query designer makes it
easy to switch from QBE to SQL, so you should get in the habit of checking the
SQL to see that the query is being built correctly.

This chapter focuses on the data retrieval aspects of queries. SQL can also be
used for data definition (e.g., CREATE TABLE), and for data manipulation (e.g.,
UPDATE and DELETE). These features and more complex queries are covered in
Chapter 5. Once you learn the foundations of queries presented in this chapter, the
other topics are easier to understand.

In any database, it helps to have a copy of the class (relationship) diagram handy
when you are writing queries. One of the more difficult aspects to creating a query
is to find which tables hold the data you need. This problem is one of the reasons
it is so important to label your tables and columns carefully when you create the
database. Managers need to be able to identify the tables and columns that match
the business questions. With dozens or even hundreds of tables with confusing or
abbreviated names, it can be difficult to find the correct data.

Case: All Powder Board and Ski Shop
Before you can build queries, you need data in the tables. Even with a small num-
ber of tables, it is time-consuming to create reasonable data. You have to match the
foreign keys across the relationships. For instance, it is straightforward to create
basic customer data, although it would take a while to type in data for a thousand
customers. But then, when you want sales data, you have to select CustomerID
values from the existing list. You also have to create ski and board models and
then generate data for items with appropriate attributes, then choose the proper ID
values for the sales and rentals. In a typical business project, you can test the da-
tabase with a few dozen examples, and then wait for the business to generate real
data to analyze. In a class setting, it is better to use sample data. For that reason,
sample data is available for the tables in the All Powder case. The one catch is that
your tables might not contain exactly the same columns. So you might have to edit
the data slightly in Excel before you import it into your database. This data was
randomly generated with specially built generators. The business interpretations
might not be useful, but the dataset is consistent.

47Chapter 4: Database Queries and SQL

Lab Exercise

All Powder Board and Ski Data
At this point, the main tables of your database should be similar to those in Figure
4.1, although several supporting tables have been removed from the figure. The
Manufacturer, Customer, Sale, and SaleItem tables are common to most business
databases. The Rental and RentItem tables simply mirror the sale aspects. The
Inventory and ItemModel tables arose because of the characteristics of the board
and ski products.

To save time and effort, a sample database is included with initial data that you
can use to test queries. In real-world cases, you will need to import data. Access
is quite flexible about important data, but it still takes time to setup the database.
sample data files are provided for each of these tables, plus the common support-
ing tables. Access can easily import the data files into your tables. To import data,
you will first have to extract the files from the compressed archive. Also, if your
table definitions are different from these, you will have to edit the data files. For
example, your ItemModel table might not have all of the columns. In this case,
you can open the data file in a spreadsheet program, delete the unneeded columns,
and save the file in comma-delimited format.
Activity: Create Basic Queries

Creating a query requires that you translate a business question into a form
that the query system can process. Sometimes this step is straightforward, other
times it is difficult. It helps if you format your query in terms of the four main
questions: (1) What do you want to see? (2) What do you know or what are the
constraints? (3) What tables hold the data? (4) How are the tables connected? You
can use the query grid in Access to reduce the typing, or you can switch to SQL.
Either way, you have to answer the four questions. Figure 4.2 shows the basic

Figure 4.1

48Chapter 4: Database Queries and SQL

elements of the query grid. Tables that
have been selected are displayed in the
top half of the grid screen. Connec-
tions among them will be displayed as
lines. Columns or computed fields that
you want to see are displayed in the top
row of the grid. Conditions that apply
to individual columns are displayed in
the Criteria row. You can also sort the
results by selecting the appropriate sort
order in any column.

Begin with a straightforward query: Display the snowboards with a list price
under $300 for riders over 150 pounds. The potential buyer wants to know what
color and graphics are available for boards that meet those conditions. The most
difficult step in this query is to identify the table and columns that match the con-
ditions. For example, snowboards are identified by the Category column in the
ItemModel table. If you examine the data, you will see a Board entry for each
item that is a snowboard. The list price, maximum weight, color, and graphics
columns are also in the ItemModel table.

Figure 4.3 shows the basic query, both using the query grid and switching to
the SQL. In the grid, once you have selected the ItemModel table, you can double-
click or drag the desired columns down to the display grid. In SQL, you would
type the names of the columns you want to see immediately after the SELECT
command. Notice that Access automatically includes the name of the table (Item-
Model.Category). With only one table, this step is not required, but Access plans
ahead in case you add more tables that might have similar column names. The
conditions you are given (snowboard, list price, and weight) are entered on the
Criteria row of the grid, or typed immediately after the WHERE clause of the
SQL statement. The grid conditions can be tricky at first. Notice that you enter <
300 in the ListPrice column. Since it is in the ListPrice column, this line is read as
ListPrice < 300. Because the three conditions are on the same Criteria row, they
are connected with ANDs, meaning all three conditions must be true. The SQL

Figure 4.2

Action
Choose Create/Query/Query Design.
Add the ItemModel table.
Select columns for Category, ListPrice,

WeightMax, Color, and Graphics.
Enter conditions for Board, ListPrice,

and Weight.
Run the query.

Switch to SQL
or view results

Select tables

Display fields/
columns

Conditions

Show table list

49Chapter 4: Database Queries and SQL

WHERE clause is a little easier to read, but it has more parentheses than neces-
sary. At any time you can switch between the grid and the SQL by selecting the
desired view. The results show the 11 boards that meet the desired conditions.
Activity: Create and Test Multiple Boolean Conditions

Interpreting business questions can sometimes be difficult because of the ambi-
guity of natural languages. It is one of the reasons SQL remains so important. SQL
requires you to specify exactly what you want to see and to write the conditions
mathematically. Of course, these conditions can become relatively long when the
business question is complex. Consider a customer who wants skis for jumping.
She wants them made from composite materials, and the main color can be red

Figure 4.3

Figure 4.4

Display snowboards with a list price under
$300 and max weight over 150 pounds.

SELECT ItemModel.Category, ItemModel.ListPrice, ItemModel.WeightMax,
ItemModel.Color, ItemModel.Graphics
FROM ItemModel
WHERE (ItemModel.Category=”Board”) AND (ItemModel.ListPrice<300) AND
(ItemModel.WeightMax>150)

Three main conditions

Ski for jumping.
Composite material.
Red or Yellow as main color.
Yellow skis must be under $300.
Red skis must be under $400.

50Chapter 4: Database Queries and SQL

or yellow. She does not want to spend
more than $300, but if they are red, she
is willing to pay up to $400.

Begin with a new query, and again
recognize that all of the attributes are in
the ItemModel table. Looking through
the data, the first three conditions are
straightforward: the Category is Ski,
the ItemMaterial is Composite, and the
Style is Jump. The colors appear to be
straightforward, except that the choice is connected with Or. Whenever a query
contains both And and Or conditions, you must be careful, so start with basic con-
ditions and check the results as you go. Figure 4.4 shows the initial query with the
three main conditions that must always hold (ski, jump, and composite).

Now you can think about how to add the other two aspects of the question. If
yellow skis must cost less than $300, what happens if you add both conditions to
the query? Figure 4.5 shows the query and the results. Since all of the conditions
are on the same Criteria row, all five must be true at the same time. The query
therefore returns only yellow skis.

To see the red skis, you somehow have to add the option of Red as a color, but
you also have to establish the higher acceptable price for red skis. The solution is
to add a new criteria row. Again, the Category, ItemMaterial, and Style are set to
Ski, Composite, and Jump. As shown in Figure 4.6, the Color this time is set to
Red and the ListPrice must be under $400. Conditions on multiple rows are con-
nected with Or clauses, so the final query displays skis that are yellow or red. The
yellow skis must be composite jumping skis priced below $300. The red skis must
be composite jumping skis priced below $400. Note that the grid requires you to
duplicate the main conditions that hold true across the yellow and red skis.

Figure 4.5

Action
Create a new query in Design View.
Add the ItemModel table.
Add columns: Category, Color,

ItemMaterial, Style, and ListPrice.
Set requested conditions.
Check the SQL.
Run the query.

Yellow and price conditions

All five conditions must hold, so only one row matches

51Chapter 4: Database Queries and SQL

If you switch from the grid view to the SQL view, the SQL query looks com-
plex. Part of the problem is the excessive use of parentheses, but the query is also
longer than it needs to be because Access duplicates the three main conditions.
Figure 4.7 shows the SQL version generated from the query grid. However, you
would never type the query in that way. Instead, the query can be simplified by
removing the excess parentheses and the unneeded table name prefixes. The lower
half of Figure 4.7 shows the simpler SQL query. You should enter this query into
the SQL editor in Access and verify that it produces the same answers as the grid
query. The SELECT statement lists the columns that you want to see. The FROM
clause lists the single table. The WHERE clause begins with the three items that
must be true. It also includes the two choices of colors with their associated price
limits.

Figure 4.6

Figure 4.7

Add a new Criteria row for red skis

SELECT ItemModel.Category, ItemModel.Color, ItemModel.ItemMaterial,
ItemModel.Style, ItemModel.ListPrice
FROM ItemModel
WHERE (((ItemModel.Category)=”Ski”) AND ((ItemModel.Color)=”Yellow”)
AND ((ItemModel.ItemMaterial)=”Composite”) AND ((ItemModel.Style)=”Jump”)
AND ((ItemModel.ListPrice)<300)) OR (((ItemModel.Category)=”Ski”) AND
((ItemModel.Color)=”Red”) AND ((ItemModel.ItemMaterial)=”Composite”) AND
((ItemModel.Style)=”Jump”) AND ((ItemModel.ListPrice)<400));

Simplified:

SELECT Category, Color, ItemMaterial, Style, ListPrice
FROM ItemModel
WHERE (Category=”Ski” AND ItemMaterial=”Composite” AND Style=”Jump”)
AND ((Color=”Yellow” AND ListPrice<300)
OR (Color=”Red” AND ListPrice<400));

52Chapter 4: Database Queries and SQL

Activity: Use Multiple Tables in a Query
Relational databases require the ta-
bles to be carefully designed so that
the DBMS can efficiently store large
amounts of data. This process entails
placing data into multiple tables. Con-
sequently, a key feature of SQL is its
ability to join the tables to make it
easy to retrieve data from many tables
with one query. The Access query grid
makes it easy to join tables. Once the
tables are joined, you can generally
treat the columns as if they came from
a single table.

To understand the joining process,
create a new query and add just the Sale table. The objective is to find all of the
sales in May that were made with a cash payment. Figure 4.8 shows the initial
query. Note the use of the Between clause to specify the month of May. Also ob-
serve that Access automatically places pound signs (#) around the dates. These
marks enable you to enter dates in any common date format. Notice that the query
returns the CustomerID, but no one is going to memorize CustomerID numbers.
Instead, you need to look up matching customer names. If you look at the relation-
ship diagram (part of it is shown in Figure 4.1), you find that the CustomerID and
matching names are stored in the Customer table. You could take each of the ID
values returned by the Sale query and create a new query on the Customer table

Figure 4.8

Action
Create a new query in Design View.
Choose the Sale table.
Select columns: SaleID, SaleDate,

CustomerID, and PaymentMethod.
Set conditions for Cash sales in May.
Choose Query/Show Table (or button).
Add the Customer table.
Add columns: LastName, FirstName.
View the SQL.
Run the query.

Sales in May Cash payment

53Chapter 4: Database Queries and SQL

to find the names; however, the table JOIN command is much easier and more
powerful.

With the Sale query in Design view, click the Show Table button on the menu.
Then add the Customer table to the query. The Customer table is added to the top
half of the query screen, and the join to the Sale table is shown with a connecting
line between the CustomerID columns. This connection exists because the rela-
tionship was created when the tables were designed. Most of the time, these auto-
matically created joins will be correct. But sometimes you will have to delete or
add connections. You can remove a join by right-clicking on the line and selecting
the delete option. You can create a new join by dragging a column name from one
table and dropping it onto the matching column in the second table.

Figure 4.9 shows the basic query design. Once the tables are joined correctly,
you can move any column down to the query grid. In this case, place the Cus-
tomer LastName and FirstName columns in the grid. Run the query to see that the
DBMS automatically looks up the names that match the ID values. If you want to
double-check the lookup, you can add the CustomerID column from the Customer
table and see that it matches the CustomerID values from the Sale table.

Figure 4.10 shows the SQL for the same query. The FROM and INNER JOIN
statements specify the tables and how they are joined. If you read the FROM state-
ment carefully, you can see that it provides the same information as the query grid
join. It lists the two tables and specifies that they are connected by the CustomerID
column. Because the column has the same name in both tables, you are required
to specify the full name of the column in the ON statement. For two tables, the
FROM and INNER JOIN syntax is relatively easy to follow. With more tables, the
join begins to look a little messier. Consequently, it is often easiest to join tables
using the visual connections in the query grid, and then switch to SQL view to
ensure that the query is correct.

Figure 4.9

Matching names

54Chapter 4: Database Queries and SQL

To see the power of the SQL joins, consider a slightly more challenging busi-
ness question: Which customers bought Atomic skis in January or February? Note
that Atomic is the name of a ski manufacturer. Before leaping into the Access
query screen, it is best to think about the query and look at the relationship screen
for a minute. As shown in Figure 4.11, you can begin with what you want to see:
the names of the customers. These are in the Customer table. Now, what facts do
you know? In this case, you are given the name of the manufacturer, the Item-
Model.Category, and the range for the SaleDate. You should also begin writing
down the tables you need to provide these facts: Customer, Sale, ItemModel, and
Manufacturer so far. When you examine the relationships for the database, you
will see that these four tables are not enough—they do not connect together. You
will also need the SaleItem and Inventory tables.

 Figure 4.12 shows the final query in Design view. Notice the large number
of tables involved. But you need to verify that each connection is correct for the
specific problem. Once the tables have been selected and joined, you can quickly
place the columns you need on the query grid, and then enter the desired condi-
tions. Running the query reveals the two people who meet the desired conditions.

Figure 4.13 shows the matching SQL for the same query. The INNER JOIN
and ON statements seem complex, but you do not need to worry about the order
of the statements, so it is more flexible than it first appears. The main thing is to
make sure you list all of the tables and include the correct connections within the
ON statements. Nonetheless, it is easier to join tables with the visual design, and
let it enter the matching SQL statements. You can always switch to the SQL view
to examine the statements or make minor changes.

Figure 4.10

SELECT Sale.SaleID, Sale.SaleDate, Sale.CustomerID, Customer.LastName,
Customer.FirstName, Sale.PaymentMethod

FROM Customer INNER JOIN Sale ON Customer.CustomerID = Sale.
CustomerID

WHERE (Sale.SaleDate Between #5/1/2006# And #5/31/2006# AND Sale.
PaymentMethod=”Cash”);

What do you want to see? Customer names, SaleDate

What do you know? Manufacturer name, SaleDate
range, Category is Ski

What tables are involved?
How are they joined?

Customer ... Sale ... ItemModel,
Manufacturer

SELECT LastName, FirstName, SaleDate
FROM Customer, ..., Sale, ..., ItemModel, Manufacturer
INNER JOIN ...
WHERE Manufacturer.Name=”Atomic”
 AND Sale.SaleDate BETWEEN 1/1/2006 And 2/28/2006
 AND ItemModel.Category=”Ski”

Figure 4.11

Which customers bought Atomic skis in January or February?

55Chapter 4: Database Queries and SQL

Computations and Subtotals

Activity: Compute Values with Queries
In general, it does not make sense to

store some columns in the database. In
particular, the DBMS query system has
the ability to perform common calcula-
tions. Figure 4.14 shows how the query
system can easily calculate the profit
margin for each item. In this case, the
table holds the item’s list price and the
acquistion cost. The profit is simply the

Figure 4.13

Figure 4.12

SELECT Customer.LastName, Customer.FirstName, ItemModel.Category,
Manufacturer.Name, Sale.SaleDate

FROM Manufacturer INNER JOIN (ItemModel INNER JOIN (Inventory INNER
JOIN (SaleItem INNER JOIN (Sale INNER JOIN Customer ON Customer.
CustomerID = Sale.CustomerID) ON Sale.SaleID = SaleItem.SaleID) ON
Inventory.SKU = SaleItem.SKU) ON ItemModel.ModelID = Inventory.ModelID)
ON Manufacturer.ManufacturerID = ItemModel.ManufacturerID

WHERE (((ItemModel.Category)=”Ski”) AND ((Manufacturer.Name)=”Atomic”)
AND ((Sale.SaleDate) Between #1/1/2004# And #2/29/2004#));

Action
Create a new query in Design view.
Add the ItemModel table.
Select columns: Category, ItemMaterial,

and ListPrice.
Create new column as Profit: [ListPrice]-

[Cost]
Run the query.

56Chapter 4: Database Queries and SQL

difference between the list price and the cost. In the grid, you enter the name of
the new column (Profit), followed by a colon (:) and the calculation (ListPrice -
Cost). Observe that Access will place square brackets around the column names.
It does this to be cautious. Anytime a column name is a reserved word or contains
special characters (such as a space or the # sign), you must place the brackets
around the column name. Notice that the query is sorted by Category and List-
Price. You make these selections on the Sort row. The SQL is also straightforward.
To add the computed column to the display, enter the calculation in the SELECT
line, followed by AS and the name of the new column.

Calculations written in this form are always performed on data on the same
row. It does not calculate across rows.
You can use the standard mathemati-
cal operators (add, subtract, divide,
and multiply). You can also use sev-
eral standard functions built into Ac-
cess. Figure 4.15 shows some of the
commonly used functions. Most are
straightforward, but the date func-
tions require a little explanation and

Figure 4.14

Calculated column

SELECT Category, ItemMaterial,
ListPrice, ListPrice-Cost AS Profit
FROM ItemModel
ORDER BY Category, ListPrice DESC;

Action
Create a new query in Design view.
Add the Sale table.
Select columns: SaleID and SaleDate.
Create new column as LateDate:

[SaleDate] + 30.
Create a nother new column as LateMonth:

DateAdd(“m”,1,[SaleDate]).
Run the query.

57Chapter 4: Database Queries and SQL

practice. The Format function enables you to specify detailed formats for date and
numeric columns.

To illustrate the power of some of the date functions, create a new query us-
ing the Sale table and display the SaleID and SaleDate columns. Now, as shown
in Figure 4.16, add a new column as SaleMonth: Format(SaleDate,”yyyy-mm”).
Be sure to enter the quoted format correctly—it controls the way the date will be
displayed. In this case, it will display the four-digit year, followed by a two-digit
number for the month. You may want to format months this way to ensure that
they sort correctly. The Format function has many options, and you will have to
consult the Access Help documentation for details.

 The DateAdd and DateDiff functions are even more versatile. Create a new
query, again using the Sale table. Display the SaleID and the SaleDate. Then, as
shown in Figure 4.17, add the column LateDate: SaleDate + 30. This calculation
generates the new date that is 30 days in the future. Now, add the column Late-
Month: DateAdd(“m”, 1, SaleDate). Run the query to compare the two calcula-
tions. The first one adds 30 days to the SaleDate. The second adds one month to

Figure 4.16

Figure 4.15

Lcase To lower case
Len Length/number of characters
Mid Get substring
Trim Remove leading and trailing spaces
Ucase To upper case

Date Current date
DateAdd Add days, months, years to a date
DateDiff Subtract two dates
Format Highly detailed formatting
Now Current date and time

Abs Absolute value
Cos Cosine, all common trig functions
Int Integer, drop decimal values
Sgn Signum
Round Round-off

58Chapter 4: Database Queries and SQL

the SaleDate. Of course, you could specify any number of days or months and the
system would correctly compute the date across month or year boundaries. For
many business questions, you will only need the standard SQL date arithmetic.
But occasionally, you will find it useful to apply the power of DateAdd or DateD-
iff. DateDiff is similar to DateAdd, but it subtracts two dates. In both the addition
and subtraction, you can specify how you want the date arithmetic performed—by
dates (“d”), months (“m”), years (“yyyy”), or other options. Check the Access
documentation to see how to count the number of workdays or even the number of
Fridays between two dates. Note: You might have to open the Visual Basic Editor
before the Help system can find the documentation for some of these specialized
functions. To open the VB Editor, open a form in Design view and then select
View/Code.
Activity: Calculate Totals and Subtotals
Business managers often need to
compute totals across rows of data.
SQL provides several aggregation
functions to perform these tasks. The
most commonly used functions are
Sum, Average, and Count. Of the
three, the Count function can be the
most confusing to use. Just remem-
ber that it simply counts the number
of rows, while Sum adds up the num-

Figure 4.17

SaleDate + 30 days
SaleDate + one month

Action
Create a new query in Design view.
Add the Sale table.
Select columns: ShipState and SalesTax.
View/Totals (or Totals button).
Select “Where” for Total row in State.
Enter “CA” as a criteria.
Select “Sum” for SalesTax Total row.
Run the query.

59Chapter 4: Database Queries and SQL

bers within a row. The challenge is to identify when you need to use Count instead
of Sum.

The Sum function is straightforward. For example, how much sales tax does
the company owe to the State of California? Begin by creating a new query based
on the Sale table, because it has the ShipState and SalesTax columns. As a crite-
rion for ShipState, enter the CA abbreviation for California. Run the query, and
you should see two columns: each row will have CA in the state and a value for
the SalesTax. To compute the total, return to Design view. You now need to indi-
cate that you want to compute totals by clicking the Totals button on the menu bar.
As shown in Figure 4.18, this button adds the Total row to the grid. Select the Sum
option under the SalesTax column and the Where option for the ShipState column.
The Sum option makes sense since you want the total of the sales tax. When you
run the query, you will see a single value—the total amount of sales tax collected
for the state of California.

Figure 4.19 shows the SQL syntax for the query. Note that setting the Where
option for the SaleState was not strictly necessary, but it makes the SQL clearer.
Note the use of the column alias SumOfSalesTax to provide a name for the output
column. You can set this name to almost anything, but it should indicate the busi-
ness interpretation of the column. Of course, you can use multiple tables with the
FROM and INNER JOIN syntax.

To understand some of the power of SQL, what if you want to see the total tax
owed to each state? Of course, it would be possible to edit the CA condition and

Totals button adds
the Total row

Calculation functions

Figure 4.18

SELECT Sum(Sale.SalesTax) AS SumOfSalesTax
FROM Sale
WHERE Sale.ShipState=”CA”

Figure 4.19

60Chapter 4: Database Queries and SQL

replace it with each state, but there is
an easier way. Close this query and
begin a new query the same way. Add
the Sales table and use the ShipState
and SalesTax columns, but do not
specify any limiting conditions. Click
the Totals button to see the totals row.
Select the Sum option under the Sal-
esTax column, but do not change the
setting for the ShipState. The default option for the Totals row is Group By. This
choice instructs the DBMS to identify each unique entry in that column and com-
pute the selected subtotal for each element. Figure 4.20 shows the query and the
result. The result lists each state, followed by the total sales tax collected for that
state.

Figure 4.21 shows the corresponding SQL statement. The main addition is the
actual GROUP BY clause. Note that any column listed in the GROUP BY clause
must be included in the SELECT clause. It would not make sense to compute
subtotals and then not display the values you are grouping. Of course, you could
compute the average or count the number of items in a group just as easily. In fact,
you can compute multiple functions at the same time, just by including multiple
copies of the desired column and selecting a different aggregation function.

For practice, you should compute the total value of sales to customers in Colo-
rado (the state code is CO). Create a new query and add the Sale and SaleItem

Action
Create a new query in Design view.
Add the Sale table.
Select columns: ShipState and SalesTax.
View/Totals (or Totals button).
Select “Sum” for SalesTax Total row.
Run the query.

Group By produces
subtotals for all values in
the specified column

Figure 4.20

SELECT Sale.ShipState, Sum(Sale.SalesTax) AS SumOfSalesTax
FROM Sale
GROUP BY Sale.ShipState;

Figure 4.21

61Chapter 4: Database Queries and SQL

tables. Use the ShipState column from the Sale table. To compute the total value
of the actual sale is slightly trickier. You need to multiply the QuantitySold by the
SalePrice from the SaleItem table, then compute its sum. To be safe, first do the
multiplication and check your progress. In a new field, enter the name SaleTotal,
followed by a colon, and the formula: QuantitySold * SalePrice. Enter CO as the
criteria to select the state, then run the query and check the results to see if they
make sense. You might want to list the QuantitySold and SalePrice separately, and
then use a calculator or spreadsheet to verify some of the calculations. Returning
to Design view, you need to compute the total. Click the Totals button and select
Sum for the SaleTotal column, and Where for the ShipState column. Technically,
the query will work if you leave the ShipState as Group By, but the SQL is clearer
and potentially faster if you use Where. Figure 4.22 shows the query.

Exercises

Crystal Tigers
Enter sample data for the Crystal Tigers service club database. You can make up
data, but remember that it has to be consistent. You might want to share data with
other students so that everyone has a larger database to work with. Then create
queries to provide the following business information.
1. List all of the members who have been president of the organization.
2. List the charities for which the club has raised more than $1,000.
3. Pick an event and list all of the members who worked at that event.
4. Count the number of events and the amount of money raised for each charity.
5. List the total number of service hours provided in the latest year.

SELECT Sum([QuantitySold]*[SalePrice]) AS SaleTotal
FROM Sale INNERJOIN SaleItem ON Sale.SaleID = SaleItem.SaleID
WHERE Sale.ShipState=”CO”;

SaleTotal
$4,964.00

Figure 4.22

62Chapter 4: Database Queries and SQL

6. List the number of service hours provided by each member.
7. List the members who have held the most number of officer positions.

Capitol Artists
Enter sample data for the Capitol Artists business. You can create random data,
but remember that it has to be consistent. You might want to share data with other
students so that everyone has a larger database to work with. Then create queries
to provide the following business information.
1. Pick a date and an employee and list all of the tasks by that person on that

date.
2. List all of the tasks performed for a specific job (e.g., Job #1173).
3. List all of the client jobs that had active tasks on a specific date.
4. Count the number of meetings held regarding one client (pick any client).
5. List the employees who have attended the most number of meetings.
6. Pick a job and compute the amount of money billed (hours * rate).
7. List the clients in order of the ones that have provided the greatest revenue

(billing + expenses).

Offshore Speed
Enter sample data for the Offshore Speed company. You can create random data,
but remember that it has to be consistent. You might want to share data with other
students so that everyone has a larger database to work with. Then create queries
to provide the following business information. If you have not created data that
matches these questions, either add more data, or change the query to match your
data. For instance, if you do not have any sales of propellers, pick a category of
item that you have sold several times.
1. Pick a month and list all of the customers who purchased propellers

(Category).
2. List all of the parts sold on a particular day.
3. What is the most expensive steering wheel we have sold?
4. List the manufacturers sorted by the number of parts we sell from each one.
5. List the employees to identify the best salespeople in terms of value.
6. List the brands of boat for which we sell the most oil pumps (Description).
7. For a given order, compute the total value of the order and the sales tax,

assuming a 6 percent tax rate.

63Chapter 4: Database Queries and SQL

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following tasks.
1. Create a few rows of sample data for all of the tables.
2. Identify at least five business questions that a manager would commonly

ask and provide the queries to answer those questions. At least two of the
questions should involve subtotals or averages.

3. Exchange three business questions with other students in your class and write
the queries for the questions you receive.

64

Objectives

Create more complex SELECT queries using subqueries.•	
Understand the role of INNER and LEFT joins.•	
Create theta joins using inequalities to match categories.•	
Use a UNION statement to merge rows of data.•	
Use DDL to CREATE and DROP tables.•	
Use DML to INSERT, UPDATE, and DELETE data.•	

Chapter Outline

Advanced Queries
5Chapter

Advanced Database Queries, 65
Case: All Powder Board and Ski Shop, 66
Lab Exercise, 66

All Powder Board and Ski Data, 66
SQL Data Definition and Data Manipulation, 77

Exercises, 81
Final Project, 83

65Chapter 5: Advanced Queries

Advanced Database Queries
SQL is a powerful language. For many queries, you will not need the full power of
SQL, but some seemingly innocent business questions can be tricky to answer. In
these cases, you need some additional capabilities. Some of these capabilities can
be challenging to understand, but if you follow the examples carefully, you should
be able to use the ideas to create similar queries in the future.

Subqueries are one of the more interesting features of SQL. A subquery is a
query that calls a second query to obtain additional data. Instead of looking up
a second set of numbers yourself, you can add a second query to do the work
automatically.

Joins offer other powerful options. Joins are commonly used as a lookup link
between tables, making it easy for you to build a query that uses data from mul-
tiple tables. However, joins have several options to help you answer even more
complex questions. It is especially important that you understand the difference
between inner and outer joins.

One of the strengths of SQL is that it operates on sets of data. Instead of think-
ing in terms of individual rows, you can concentrate on collections of rows that
meet specified conditions. SQL offers some interesting set-operation commands
that provide detailed control over rows of data. For example, the UNION state-
ment combines rows of data from multiple SELECT statements.

Chapters 2 and 3 hinted at the ability of SQL to define tables. In fact, you can
use a DBMS without the fancy visual screens. Generally, everything you need to
do can be handled with SQL commands. For example, the data definition com-
mand CREATE TABLE is a powerful method to create new tables. Storing these
SQL statements in a text file makes it easy to quickly rebuild or transfer a data-
base. Similarly, the data manipulation commands (INSERT, DELETE, and UP-
DATE) are powerful tools for copying and deleting rows, and quickly changing
thousands or millions of pieces of data.

Figure 5.1

66Chapter 5: Advanced Queries

Case: All Powder Board and Ski Shop
As the queries become more complex, it is better to work from a common set of
data. Figure 5.1 shows the primary tables for the All Powder Board and Ski Shop.
Your tables and sample data should be very close to these tables. Note that several
supporting tables are not displayed in this diagram, but you will also need those in
your database. As explained in Chapter 4, you can import the sample data to these
tables. If you add more data, your query results may be slightly different from the
ones shown in this chapter. Although the query is more important than the actual
results, the results are useful to help you decide if you have constructed the query
properly.

One of the greatest challenges with any database query is that most queries
return values, but they might not be answers to the question you thought you were
asking. You must learn to build the queries and test each intermediate step care-
fully so that you can be sure the final result is an accurate answer to the question
being asked.

Lab Exercise

All Powder Board and Ski Data
Subqueries are used to create a second (or more) query to look up additional data
that can be used in the primary query. The value is often used within a WHERE
clause to make comparisons in more depth. For example, Katy the manager wants
to identify the best customers of the shop. In particular, she would like to know
which customers have placed the most sales. You could just give her the complete
list of customers and the sales made by each person. Eventually, however, this
list would be too long. Instead, she wants a list that displays the customers whose
total purchases are larger than the average purchase per customer. Although the
business question is reasonable, this question is slightly tricky because you have
to build the query in pieces.

Figure 5.2

67Chapter 5: Advanced Queries

Activity: Create a Subquery
The first step in the query is to recognize
that you need to compute total sales by
customer. The phrase “by customer” is
an indication that you need to compute
subtotals using the GROUP BY clause.
Figure 5.2 shows the initial query that
computes these subtotals. Of course, it
lists the sales for every customer, and
Katy wants only the ones with greater-
than-average sales. But this query is an
important step and needs to be saved as
“CustomerSales”.

The next step is to use this first que-
ry to compute the average amount of
sales for customers. This computation
is straightforward. Simply build a new
query using CustomerSales as the only table, and calculate the average of the sales
column. Figure 5.3 shows the basic query and the result based on the current data.
Notice that the SQL is straightforward. In this case, the SQL is critical for the next
step. It is not necessary to save this query, but you might want to leave the SQL
window open for the final step.

 The last step is to create a new query that answers the overall question to de-
termine which customers spend more than average. The new query will also be
based on the CustomerSales query created in the first step, so just add that query.
This time, select the LastName, FirstName, and SalesValue columns. If you ran
the query at this point, you would get the same results as in the first query. Instead,
you want to add a criterion to only display the customers with a SalesValue greater
than the average. The simple approach is to enter the value 942.11 as a condition
in the query. Although this approach works this time, it does not work very well
over time. It would require the owner to run the average query first, then copy the
value into the Design view of the main query. It makes more sense to automate
the entire process. So instead of entering the actual number as the condition, you
need to enter the subquery calculation. You can write the complete SQL state-

Figure 5.3

Action
Create a new query in Design view.
Tables: Customer, Sale, SaleItem
Columns: CustomerID, LastName,

FirstName, SalesValue: [QuantitySold]
* [SalePrice].

Sum the SalesValue, Group By the rest.
Save query as CustomerSales.
Create new query in Design view.
Table: CustomerSales query.
Columns: SalesValue.
Set Totals and select Avg.
Run the query.

SELECT Avg(CustomerSales.SalesValue)
AS AvgOfSalesValue
FROM CustomerSales;

$942.11

68Chapter 5: Advanced Queries

ment, but it must be contained within
parentheses. Figure 5.4 shows the final
query that you can give to Katy. Notice
that it is sorted in descending order by
SalesValue so that the customers with
the largest total purchases are listed at
the top. Also, always remember to put
the subquery inside parentheses; other-
wise the query will not run at all. If you
want to save some typing and reduce
errors, you should create the subquery first in a separate query to test it. When it is
correct, you can copy the SQL statement and paste it into the WHERE clause for
the final query. Again, remember to add the parentheses around the subquery.
Activity: Build Outer Joins
Joining tables is one of the more com-
plex issues in SQL. Up to this point, the
joins have been simple equality joins
designed to show how a column in one
table links to data stored in a related ta-
ble. It is important that you understand
the effect of this join. Jim the sales
manager and David the rental manager
want to know if customers who rent
equipment also purchase items for sale.
As with many questions, there are sev-
eral different ways to build this query.
Figure 5.5 shows the effect of an inner join. Build a new query and add the Rental
and Sale tables. Join these tables through CustomerID by dragging and dropping
the CustomerID from one table onto the column in the other table. When you dis-
play both CustomerID values in the query and run it, you can see that they are the

Figure 5.4

SELECT LastName, FirstName, SalesValue
FROM CustomerSales
WHERE SalesValue > (SELECT Avg(SalesValue) FROM
CusmterSales)
ORDER BY SalesValue DESC;

Action
Create a new query in Design view.
Table: CustomerSales query.
Columns: LastName, FirstName,

SalesValue.
Criteria for SalesValue (enter in SQL)
>(SELECT Avg(SalesValue) FROM

CustomerSales).

Action
Create a new query in Design view.
Tables: Rental and Sale.
Columns: RentDate, SaleDate, and

CustomerID from both tables.
Join the tables on CustomerID.
Run the query.
Join the tables on RentDate=SaleDate.
Run the query.

69Chapter 5: Advanced Queries

same. The effect of this join is that the results show the customers (ID only) who
participated in a sale and a rental—at any time.

If you want to know which customers made a purchase and rental on the same
day, you could add a condition that RentDate equals SaleDate. Or you could add
a second join that connects RentDate and SaleDate. Figure 5.6 shows the query
with the second join condition. Notice the use of the AND in the join statement.
This query demonstrates the effect of the inner join. In many respects, it is equiv-
alent to a WHERE clause. The inner join restricts the rows that you will see by
forcing values to be equal.

On the other hand, perhaps Jim would like to see a list of all of the custom-
ers who participated in sales, and then check to see which of those have rented
items. You need to build a new query. This time include the Customer table so
their names can be displayed. Then add the Sale and Rental tables. Delete the
join from Customer to Rental. That join would force all of the CustomerIDs to be
equal which is not what Jim wants. Then connect Rental to Sale by CustomerID,

Figure 5.6

Figure 5.5

SELECT Rental.RentDate, Rental.CustomerID, Sale.CustomreID, Sale.SaleDate
FROM Rental INNER JOIN Sale ON Rental.CustomerID=Sale.CustomerID

SELECT RentDate, Rental.CustomerID,
Sale.CustomerID, SaleDate
FROM Rental
INNER JOIN Sale
 ON Rental.RentDate = Sale.SaleDate
 AND Rental.CustomerID=Sale.CustomerID

70Chapter 5: Advanced Queries

but this time, double-click the resulting
line to modify the join properties. Fig-
ure 5.7 shows the basic query. Select
the option to display all of the values
from the Sale table and only the match-
ing values from the Rental table. As
shown in the SQL, this option sets up a
LEFT JOIN, which displays all values
in the Sale table (the left table in the
SQL query list), even if the customer
never rented items. If you have prob-
lems running the query, you might have
to remove the Customer table from the
query. Sometimes Access cannot figure out how to establish left joins when more
than two tables are in the query. In these cases, you build the left join with only
two tables, save the query, then create a second query based on the saved query
and any other tables needed.

Figure 5.8 shows some of the results from running the query. Notice that sev-
eral of the rows show missing values for the Rental.CustomerID. These are the
customers who purchased items, but have never rented an item. If you want to see
only this list, you can add the condition that Rental.CustomerID Is Null. Observe
that the full list from the main query might not include all of the customers. To
review your knowledge of joins, you should be able to identify the customers that
might not be in this list. Looking at the design, notice that there is still an inner
join between the Customer and Sale tables. Consequently, customers who have
not participated in sales at all will not be displayed in this list. If you truly wanted
a list of all customers, you would have to use a left join from the Customer to the
Sale table. However, you will probably have to do one of the joins at a time, save
the query, and then do the second join.

Figure 5.7

Action
Create a new query in Design view.
Tables: Customer, Sale, Rental.
Columns: LastName, FirstName, and

CustomerID from Sale and Rental.
Delete join from Rental to Customer.
Add join from Sale to Rental.
Double-click this new join.
Select option to include all from Sale.
Run the query.

SELECT LastName, FirstName, Sale.
CustomerID, Rental.CustomerID
FROM (Customer
INNER JOIN Sale
 ON Customer.CustomerID=Sale.CustomerID)
LEFT JOIN Rental
 ON Sale.CustomerID=Rental.CustomerID

Join Properties:
LEFT JOIN

71Chapter 5: Advanced Queries

Recall the question of listing the

customers who have purchased items
but have not rented anything. With the
left join, it is straightforward to get this
list by adding the Is Null condition. But
you must be very careful when creat-
ing this query. If you forget to specify
the left join and stick with the standard
inner join, the query will indicate that
no customers match that condition. The

Figure 5.8

Customers who
purchased items without
renting anything have
missing (Null) values for
the Rental.CustomerID

Figure 5.9

Action
Create a new query in Design view.
Tables: Customer and Sale.
Columns: LastName, FirstName, and

CustomerID.
Criteria for CustomerID (use SQL):

Not In (SELECT CustomerID FROM
Rental).

Check the SQL.
Run the query.

SELECT LastName, FirstName, Customer.CustomerID
FROM Customer INNER JOIN Sale ON Customer.CustomerID=Sale.CustomerID
WHERE Customer.CustomerID Not In (SELECT CustomerID FROM Rental)

72Chapter 5: Advanced Queries

reason for this result is that an inner join automatically leaves out the customers
you are searching for. This question can also be answered with a subquery. Figure
5.9 shows the subquery approach. Start a new query and add the Customer and
Sale tables. Sort the columns by LastName and FirstName. Then add the condi-
tion CustomerID Not In (SELECT CustomerID FROM Rental). As always, re-
member to put the subquery in parentheses. This query will retrieve all Customers
who have participated in sales but have not rented any items. You should compare
the results from this version to the left join version to ensure that both queries re-
turn the same results. Most systems support either method to answer the question,
but there can sometimes be performance differences between the two approaches.
Access seems to be faster using left join, but you would have to time large sets of
data to measure the difference.
Activity: Create Complex Joins

Jim the sales manager is concerned
about excess inventory. He wants to be
able to monitor the status of quantity on
hand (QOH) for all inventory items. He
is particularly concerned about identi-
fying which models are selling quickly
versus models that have large numbers
of items sitting around. Remember that
models are product lines from the man-
ufacturers, while individual items are
specific sizes within a model group. He
wants the totals for the model. To see
if there is a problem, construct a new
query that totals the quantity on hand
and sorts it in descending order by
ModelID. Figure 5.10 shows the total
QOH for the various models. Save the query as “ModelsOnHand.”

Figure 5.10

Action
Create a new query in Design view.
Table: Inventory.
Columns: ModelID and

QuantityOnHand.
Sum the QuantityOnHand and sort it in

descending order.
Run the query.
Save it as ModelsOnHand.
Create a new table in Design view.
Columns: CategoryID, CategoryName,

LowLimit, HighLimit.
Save it as SalesCategory.
Enter data.

73Chapter 5: Advanced Queries

But Jim does not want to wade through the entire query every day. Instead,
he is proposing a categorical system, where items with more than a certain QOH
will be called slow sellers, and items
with minimal QOH will be hot sell-
ers. He also wants a few categories in-
between. While you have the tools to
build this query, there is one catch: he
wants the ability to fine-tune the num-
bers on the ranges for each category.
The solution is to create a new table
that defines the category and the up-
per and lower limits for each category:

Figure 5.11

SELECT ModelsOnHand.ModelID, ModelsOnHand.SumOfQuantityOnHand,
SalesCategory.CategoryID, SalesCategory.CategoryName
FROM ModelsOnHand INNER JOIN SalesCategory
ON (ModelsOnHand.SumOfQuantityOnHand>=SalesCategory.LowLimit)
AND (ModelsOnHand.SumOfQuantityOnHand<SalesCategory.HighLimit);

Figure 5.12

The join cannot be displayed in
design view and must be entered
by hand in SQL view

Action
Create a new query in Design view.
Tables: ModelsOnHand and

SalesCategory.
Columns: ModelID,

SumOfQuantityOnHand, CategoryID,
and CategoryName.

In SQL view add the inequality join.
Run the query.

74Chapter 5: Advanced Queries

SalesCategory(CategoryID, CategoryName, LowLimit, HighLimit). If the QOH
for a model is greater than or equal to the LowLimit and less than the HighLimit,
it falls into the specified category. The CategoryID ensures a unique key and could
be used to sort the rows if necessary. Figure 5.11 shows the initial categories.

Using the categories in a query requires slightly tricky join conditions. You need
to use inequality (theta) joins. Begin with a new query based on the ModelsOn-
Hand query and the SalesCategory table. Display the ModelID and SumOfQuan-
tityOnHand along with the CategoryName. But do not attempt to join the tables in
Design view. Instead, switch to SQL view and modify the FROM clause to match
the Figure 5.12 inequality join statement. Access can handle inequality joins but
cannot display or edit them in Design view. Figure 5.12 also shows the sample
result from the query. Save the query as ModelSales so Jim can perform some ad-
ditional analysis on the data.

Jim might create a new simpler query that counts the number of models that
fall within each of the categories. Fig-
ure 5.13 shows the basic query. It is
built simply using the results of the
previous query. This query hides the
complicated details as Jim needs to see
only the simple data results. The final
aggregation query uses the CategoryID
to sort the results logically; otherwise,
they would be sorted alphabetically by
the category name. Fortunately, most of
the models appear to be in the catego-
ries indicating that they sell relatively
quickly. Although, the category defini-

Figure 5.13

Action
Create a new query in Design view.
Tables: Customer and Sale.
Columns: CustomerID, LastName,

FirstName, and SaleDate.
Set January sale date in criteria row.
Switch to SQL.
Copy the entire statement.
Add the word Union.
Paste the SELECT statement and change

the date condition to March.
Run the query.

75Chapter 5: Advanced Queries

tions might not be accurate, Jim can quickly alter the range numbers and rerun the
query to see the results.
Activity: Combine Data Rows with UNION
You need to understand the role of the UNION command. It is designed to com-
bine rows from multiple queries. Read that line carefully. It says combine rows
not columns. If you have two queries that retrieve similar columns of data, the
UNION statement will combine the results into one set of data. To illustrate the
process, consider a request that Katy made to see a single list of customers who
purchased items in January or in March. You could build this query using simple
WHERE conditions, but if you want to list people twice if they bought items both
in January and in March, the UNION query is easier.

As shown in Figure 5.14, create a new query using the Customer and Sale ta-
bles. Display the CustomerID, LastName, and FirstName columns. Add the Sale-
Date column, but uncheck the box to display the date. Add the condition to select
sales only in January. If you run the query at this point, you will see a list of
customers who bought items in January. To get the March customers, switch to
SQL view. Mark the entire SQL statement and copy it. Delete the semicolon at
the end, add the word UNION after the existing query, then below that, paste a
copy of the query. Now modify the dates in this copy to indicate March instead
of January. Finally, in the first SELECT
statement (January), add a computed
column to display “Jan” As SaleMonth.
Do the same thing for the second SE-
LECT statement, but display “Mar” for
March. This column will identify each
row to indicate the month for the sale.
Run the query, and you will see a com-
bination of rows from both queries. If
you want to sort the data by Customer
or by date, first you will have to save

Figure 5.14

SELECT Customer.CustomerID, LastName, FirstName, “Jan” As SaleMonth
FROM Customer INNER JOIN Sale ON Customer.CustomerID = Sale.CustomerID
WHERE (((Sale.SaleDate) Between #1/1/2004# And #1/31/2004#))
UNION
SELECT Customer.CustomerID, LastName, FirstName, “Mar” As SaleMonth
FROM Customer INNER JOIN Sale ON Customer.CustomerID = Sale.CustomerID
WHERE (((Sale.SaleDate) Between #3/1/2004# And #3/31/2004#));

List customers who
bought items in
January or in March.

It could be done with
simple conditions, but
it is good practice for
UNION.

Action
Create a new query in Design view.
Tables: Rental, RentItem, Inventory, and

ItemModel.
Columns: RentDate, Category, RentFee.
Set totals to sum RentFee.
Set “Where” and criteria for RentDate to

Between [Start Date] And [End Date].
Run the query.

76Chapter 5: Advanced Queries

the query, then you can build a second query based on the first and sort the col-
umns as needed.
Activity: Create Parameter Queries
Parameter queries are useful when you need to create a query that a manager runs
on a regular basis but needs to change some of the constraints. For instance, you
often use parameters to set starting and ending dates so the manager can easily
select a range of data without having to know anything about building queries.
The example in Figure 5.15 shows a query that displays the total rental income
by Category for a specified range of dates. Save the query as RentalsByTime, so
David the rental manager can run the query whenever he needs. When the query is
run, two boxes pop up to request the starting date and ending date.

You can build complex queries and insert parameters to request specific data
from the person running the query. In your query, simply enter a brief description
in brackets, and treat that parameter as any other number or date. When the query
runs, the user will enter a value and it
will be applied to the query. It is a use-
ful method to quickly build queries that
users can control without having to al-
ter the query.

Figure 5.15

Action
Create a new query in Design view.
Do not select any tables.
Switch to SQL view.
Enter the CREATE TABLE command.
Run the query.

77Chapter 5: Advanced Queries

SQL Data Definition and Data Manipulation

Activity: Create Tables
Although Access makes it easy to create and delete tables using the visual design-
er, sometimes you will need to know how to create a table using the data definition
language (DDL) CREATE TABLE command. After working with the database for
a while, you realize that it would be nice to have a separate table that lists sales-
people and other contacts at the manufacturers. Each person has a direct phone
number and an e-mail address. To practice building tables, Figure 5.16 shows the
CREATE TABLE command for the new Contacts table. Essentially, you list each
desired column along with its data type. Note that you have to choose the basic
data type, and not the higher-level type you might select in the designer. For in-
stance, you have to enter “Long” instead of just “Number.”

To enter the code, you must open the SQL Query window. Create a new query
and close the Table Selection window without choosing any tables. Then click the
SQL button or select it from the View option. Delete any statements in the win-
dow and type the CREATE TABLE query as shown.

You should also create the primary key constraint to indicate the ContactID is
the sole primary key column. If you need multiple columns, simply create a com-
ma-separated list. The foreign key constraint is similar, but you must also specify
the table and column that is referenced by the foreign key. The Access 2002 ver-
sion does not support the ON DELETE CASCADE or ON UPDATE CASCADE
options for the foreign key, so you should add them by hand in the relationships
screen. If you have a more recent version of Access, you should try adding these
two lines immediately after the foreign key constraint to see if support has been
added. To run the query, you must use the exclamation point Run button. You can
only run this query one time, otherwise it will try to create duplicate copies of the
same table with the same name—which is not allowed.

CREATE TABLE Contacts
(
 ContactID Long,
 ManufacturerID Long,
 LastName Text(25),
 FirstName Text(25),
 Phone Text(15),
 Email Text(120),
 CONSTRAINT pk_Contacts PRIMARY KEY (ContactID),
 CONSTRAINT fk_ContactsManufacturer FOREIGN KEY (ManufacturerID)
 REFERENCES Manufacturer(ManufacturerID)
);

Figure 5.16

CREATE TABLE MyTemp
(
 ID Long,
 LName Text(25),
 FName Text(25)
);

Figure 5.17

78Chapter 5: Advanced Queries

Generally with Access, it is easier to create tables with the design screen. How-
ever, sometimes you will want to create temporary tables—eventually within a
section of program code. For the next section, you will need a temporary table to
transfer data. Figure 5.17 shows the table that you need to create.

The SQL ALTER TABLE command can also be used to add new columns to an
existing table. However, you rarely need this command, since it is easier to use the
table design view in Access to add a new column to a table.
Activity: Insert, Update, and Delete Data
SQL also provides data manipulation
language (DML) commands to insert,
update, and delete rows of data. Con-
sider the INSERT command first. The
simple version of the command shown
in Figure 5.18 inserts a single row into
one table. Notice that you specify the
table columns in the first list and the
corresponding values in the second
list. By listing the column names, you
choose to enter the data in any order
and to skip columns. Of course, you will rarely enter data this way, but occasion-
ally it comes in handy. More importantly, the SQL statement can be generated
using programming code with complex routines to extract data from one source,
clean it up, and transfer it to the desired table.

On the other hand, a second version of the INSERT command is more useful
because of its power. You use it to transfer large blocks of data from one table
into a second table. Note that the second table must already exist. The example

in Figure 5.19 copies some data from the Customer table and transfers it to the
temporary MyTemp table you created in the previous section. Again, you list the
columns for the new table that will hold the data, then write a SELECT statement
that retrieves matching data for those columns.

You should keep in mind that the SELECT statement can be as complex as you
wish. It can include calculations, multiple tables, complex WHERE conditions,
and subqueries. For complex queries you should first build the SELECT statement
on its own and test it to ensure that it retrieves exactly the data you want. Then
switch to the SQL view and add the INSERT INTO line at the top. The ability to
perform calculations has another benefit. You can add a constant to the SELECT

Action
Create a new query in Design view.
Do not select any tables.
Switch to SQL view.
Type the INSERT command: INSERT

INTO Customer (LastName,
FirstName, City, Gender) VALUES
(‘Jones’, ‘Jack’, ‘Nowhere’, ‘Male’);.

Run the query.

INSERT INTO Customer (LastName, FirstName, City, Gender)
VALUES (‘Jones’, ‘Jack’, ‘Nowhere’, ‘Male’);

Figure 5.18

INSERT INTO MyTemp (ID, LName, FName)
 SELECT CustomerID, LastName, FirstName
 FROM Customer
 WHERE City=’Sacramento’
;

Figure 5.19

79Chapter 5: Advanced Queries

statement that will be inserted as data
into the second table. For example, you
might write SELECT ID, Name, “West”
to insert a region name into a new table.
The INSERT INTO command is useful
when you need to expand a database or
add new tables. You can quickly copy
selected rows and columns of data into
a new table.

The UPDATE command is used to
change individual values for specified
rows. It is a powerful command that af-
fects many rows. You must always be
cautious when using this command be-
cause it can quickly change thousands
of rows of data. To illustrate the power of the command, consider that the manu-
facturers have announced that costs will increase by 4 percent for the 2006 boards.
The ItemModel table contains an estimate of the Cost for each model, so you need
to increase this number by 4 percent, but only for the boards.

To be safe, begin by creating a query that displays the Cost for the 2006 boards.
You should run the query to ensure that it returns exactly the data that you want to
update. Next, as shown in Figure 5.20, select the Query/Update Query option on
the main menu to display the Update To row on the grid. In the Cost field, enter

Action
Create a new query in Design view.
Table: ItemModel.
Columns: Category, ModelYear, and

Cost.
Criteria: Category=”Board” And

ModelYear=2004.
Run the query.
Choose Query/Update Query.
Under Cost set Update To:

Round([Cost]*1.04,2).
Run the query.

UPDATE ItemModel SET Cost = Round([Cost]*1.04,2)
WHERE (Category=”Board”) AND (ModelYear=2004);

Figure 5.20

Run

Query / Update Query

New value

80Chapter 5: Advanced Queries

the new calculation as Round([Cost] * 1.04, 2) to indicate the 4 percent cost in-
crease. Note that you will have to type the brackets around the Cost column name.
If you do not, Access might place the entire formula in quotes, which would result
in an attempt to write the formula text into the column instead of the actual val-
ues. The Round function is used to ensure that the final Cost value is rounded off
to cents instead of extended fractions. You can run the query by clicking the Run
button on the main toolbar.

Notice that the SQL statement is straightforward. It is also easy to change mul-
tiple columns at one time. On the grid, just add the new column and the new for-
mula. In SQL, add a comma after the first calculation and enter a new one in the
SET clause. Of course, you can use multiple tables. In SQL, they are added with
the standard join statement; but it is generally easier to add the tables in the De-
sign view grid and let Access build the join statement. If necessary, you can then
switch to SQL to modify the lines.

The DELETE command is similar to
the INSERT and UPDATE commands,
but it is more dangerous. It is designed
to delete many rows of data at a time.
Keep in mind that because of the rela-
tionships, when you delete a row from
one table, it can trigger cascade deletes
on additional tables. For the most part,
these deletes are permanent. If you are
not careful, you could wipe out a large

DELETE
FROM MyTemp
WHERE ID > 100;

Figure 5.21

Figure 5.22

DROP TABLE MyTemp;

Action
Create a new query in Design view.
Table: MyTemp.
Columns: ID, LastName, FirstName.
Criteria: ID > 100.
Test the query.
Choose Query/Delete Query.
Run the query.

81Chapter 5: Advanced Queries

chunk of your data with one delete command. To minimize the impact of these
problems, you should always make backup copies of your database—particularly
before you attempt major delete operations. You should probably take a break and
do that now. Use Windows to copy the main database file.

To be extra safe, this example is just going to delete data from the temporary
table that was created in the previous section. Create a new query in Design view
using the MyTemp table. To see the rows you are going to delete, add all three
columns to the display and set a condition to show only rows with an ID > 100.
You can then use the Query/Delete Query option to setup the delete query. If you
switch to the SQL view, you will see that the individual columns are listed. These
columns are not necessary because the query will always delete the entire row.
Figure 5.21 shows both the Design view and the basic SQL needed to delete the
specified rows. In practice, it is best to stick with simple WHERE clauses when
possible. However, it can be complex and include subqueries. Particularly in
the complex cases, you should first build a SELECT statement using the same
WHERE clause to ensure that you are deleting exactly the rows you want to de-
lete. Then convert the query into a Delete Query, or delete the SELECT statement
and replace it with the DELETE command.

The DROP TABLE command is even more dangerous. It removes the entire
table and all of its data. Generally, you should only use it for temporary tables. As
shown in Figure 5.22, the syntax is straightforward; just make sure you enter the
correct table name. Again, it would be wise to make a backup copy of your data-
base before removing tables.

The main aspect to remember about these commands is that they operate on
sets of rows that you control with the WHERE clause. The WHERE clause can be
complex and can include subqueries with detailed SELECT commands. All of the
power of the SELECT command is available to you to control inserting, updating,
and deleting rows of data.

Exercises

Many Charms
You will need to create some additional sample data for each table. Madison and
Samantha know that they will want certain information on a weekly basis, but
they will not be able to build complex queries to retrieve the data. You will have
to build a few queries for them that they can run when they want to see the results
or need to change prices. Some of the queries should be parameter queries so they
can easily select the values they need to control the results. Note: You will have to
modify the queries slightly to match the data that you have entered.

1. Which customers who ordered bracelets have not ordered necklaces?
2. Which customers bought more gold charms than silver ones?
3. Which categories generated the most profit over a parameterized time period?
4. Are expensive charms more profitable than mid-priced or low-priced

charms? Hint: Create categories based on the prices.
5. Create a parameterized query to enable Samantha to increase the prices of a

certain category of charms by a given percentage.

82Chapter 5: Advanced Queries

6. Create a new table with SQL and copy into it all of the customers who have
not purchased items within the last three months.

7. Delete customers from the new table in the prior exercise who have spent
more than $100 in the past year.

Standup Foods
You will need to create some additional sample data for each table. Laura knows
she will want certain information on a weekly basis, but she will not be able to
build complex queries to retrieve the data. You will have to build a few queries for
her that can be run to display results or change prices. Some of the queries should
be parameter queries so Laura can easily select the values she needs to control the
results. Note: You will have to modify the queries slightly to match the data that
you have entered.
1. Identify the employees who have below-average overall job evaluations.
2. Identify the main menu items that have not been served to a particular

director or other celebrity. (Pick one from your list who wants something
different.)

3. Which customers have not yet referred her business to other clients?
4. Create a category table to segment the employee ratings (excellent, good,

average, poor). Use the table to identify the employees with excellent
evaluations as both server and dishwasher.

5. Create a temporary table and copy into it information about employees who
have worked as drivers but have not driven within the last month.

6. Delete from the temporary table in the previous question the drivers whose
average evaluations are less than 6 (on the 10-point scale).

7. Write a parameterized query that enables Laura to increase the base wage
rate of employees by specifying a category, a minimum overall average
evaluation, and the percentage increase.

EnviroSpeed
You will need to create some additional sample data for each table. Brennan and
Tyler know that they will want certain information on a weekly basis, but they
will not be able to build complex queries to retrieve the data. You will have to
build a few queries for them that they can run when they want to see the results
or need to change prices. Some of the queries should be parameter queries so they
can easily select the values they need to control the results. Note: You will have to
modify the queries slightly to match the data that you have entered.
1. List the experts who have worked with two or more crews in the same

month.
2. Which experts have not contributed any documents within the last three

months?
3. List the crews that are more than 25 percent larger than the average crew.

83Chapter 5: Advanced Queries

4. Create a table to categorize the expense of cleanups. For example, spills
costing more than $1 million to clean up are expensive; cleanups costing
$500,000 to $1 million are merely costly; and so on. Create a query to apply
these categories to the actual spills.

5. Write a query that retrieves documents based on a list of keywords entered by
a user. The keywords might appear anywhere in the document, and the final
query should sort the list based on the number of matches.

6. Write a parameterized query to update a severity value for an incident by
allowing the user to enter a chemical name and a point increase in severity.

7. Write a query to copy the data on experts to a new table who have
participated in a total of at least three incidents in the last year.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, answer the questions below. You will have to create sample
data for each of the tables.
1. Identify and create at least two parameter queries that would be useful to

managers. Share the business question (not the query) with other students and
solve their queries.

2. Identify a business question to list items greater (or less) than average. Write
the query to return the results.

3. Create a temporary table and write a query to copy some rows of data from
one table into the new table.

4. Write a delete query to remove a few rows of data from the temporary table.
5. Write an update query using parameters to change the value of one of the

numeric columns in a table based on a percentage and conditions entered by
the user.

Objectives

Create forms (main, grid, and subforms) that make it easy for users to enter data.•	
Create reports to display and summarize data.•	
Build applications that connect forms and reports.•	
Add toolbars and menus to forms.•	
Add	help	files	to	the	database	application.•	

Chapter Outline

Forms and Reports
6Chapter

Applications, 85
Case: All Powder Board and Ski Shop, 85
Lab Exercise, 86

All Powder Board and Ski Shop Forms, 86
All Powder Basic Reports, 101

Exercises, 109
Final Project, 110

85Chapter 6: Forms and Reports

Applications
The main purpose of the DBMS is to store data efficiently and provide queries to
retrieve data to answer business questions. But from the perspective of businesses,
the true value of the DBMS lies in the applications that can be built on top of the
database. One of the strengths of Access is the tools provided to build forms and
reports. Once the database is designed, you can use the wizards to quickly build
basic forms and reports. You will still need to edit the designs to clean them up to
make them easier to use..

Forms are used to make it easier for users to enter data. You would never want
users to enter data directly into the tables. For example, look again at the Sales
table. It contains mostly ID numbers, and you cannot expect workers to memorize
thousands of ID numbers. Instead, you build forms to match the processes and
styles of the business. Likewise, you rarely ask managers to build queries them-
selves. Instead, you create reports that display details and subtotals within a layout
that is easy to read. You can even include charts to make it easy to compare values
or examine trends over time.

Access provides some support for Web pages. However, these tools will work
only on internal servers. For the most part, you cannot use Access forms and re-
ports to provide data on the Internet to typical users. For those types of tasks, you
should switch to Visual Studio and ASP.NET.

Case: All Powder Board and Ski Shop
The primary application at All Powder Board and Ski Shop is the need to track
sales and rentals. Of course, these applications also require you to build forms and
reports for inventory items and customers as well. Eventually you will have forms
that store data into each of the tables in the relationship diagram. However, before
you leap to the Forms wizard, make sure you understand the three major form
types shown in Figure 6.1: main form, grid form, and main with subform. A main
form shows one row of data at a time, such as a form to edit basic information
about one customer. A form appears similar to the Table view in that it shows sev-

Main

Grid

Main and
Sub-form

Figure 6.1

Customer

 Last Name

 First Name

 Phone

 Address

 City

 Style Style Description Category

Ski Board Style

Sale

 Customer Salesperson

 ItemID Description Price Quantity Value

86Chapter 6: Forms and Reports

eral rows at one time. Main and subforms combine the two: the main form shows
one row of data from one table and the grid subform shows matching rows from
a related table. The classic business example is the Sale form and SaleItem grid,
where the main form shows data from one sale, and the grid shows the repeating
items purchased and stored in the SaleItem table. At this point, your responsibil-
ity is to examine the business operations and determine the best type of form to
handle each operation.

Lab Exercise

All Powder Board and Ski Shop Forms
Many of the forms in an application are straightforward main forms. Users want
to see data for one row—such as one customer or one employee. You generally
create main forms when you need more control over the layout.
Activity: Create Basic Main Forms
Figure 6.2 shows a simple version of
the form to edit customer data. In its
simplest layout, the main form contains
labels and text boxes for each column
in the table. You can enter any text into
the label to help tell the user what data
is to be entered into each text box. The
data on the form is bound to the data-
base table. Changes made to the data in
the text boxes are automatically written
to the database table. However, these changes are written only at certain times—
such as when the user moves to a new row. The importance of the main form is
that you have considerable control over the layout and presentation of the items.
You can change the image of the form by setting the properties for the form or the
controls to control things such as size, position, and color. You can add new con-

Action
Start the form wizard.
Select the Customer table.
Transfer all columns to the right window.
Use the Columnar layout.
Select a style.
Enter a name for the form.

Label Text box

Combo box

Record navigation

Figure 6.2

87Chapter 6: Forms and Reports

trols to display images or include but-
tons to delete or find records.

Access 2007 introduced two main
options for forms: (1) a tabbed display
of multiple forms, and (2) the layout
control on a form that treats controls as
a group. Both of these options are used
in this form. The tabs option is set for
the entire database, not for individual
forms. Its use generally comes down
to individual preference but it tends to
force all forms to be the same size. It is set or removed using the Office But-
ton in the top-left corner of Access and clicking the Access Options button. Un-
der the Current Database list, you can set either Overlapping Windows or Tabbed
Documents.

You created a version of this form in Chapter 1 using the simple form builder.
To explore some of the options, this chapter focuses on using the Form Wizard.
Creating a main form is straightforward using the wizard. To build the Customer
form, create a new form using Create/Forms/More Forms/Form Wizard. Figure
6.3 shows the most important step of the wizard: choosing the tables and fields.
For this form, select the Customer table and choose all of its columns by transfer-
ring them to the box on the right. In the next step, select the Columnar form, which
is how Access describes the main form type. Then you can select the overall style.
If you are ambitious, you can create your own template styles for other developers
in your company to use. The style simply applies some basic design elements to
the form, such as font size and background colors. For the most part, you want to
pick a style that is easy to read. Also, be sure that you remain consistent. All of the
forms in an application should have the same style. Figure 6.2 shows a Customer
form that should be similar to yours. If you finish the wizard and realize that you

Figure 6.3

Select table

Select/transfer fields

Action
Switch Customer form to design view.
Add a command button.
Select Record Operation/Delete Record.
Add a command button to insert records.
Run the form and test the buttons.
View/Tab Order and verify sequence.
Save the form.

88Chapter 6: Forms and Reports

made a mistake or simply want to change the design, the easiest way to make the
change is to delete the form and start over.

The wizard does a decent job of displaying the data for the form, but invariably
you will want to modify the design of the form. Sometimes you simply need to
change the layout, formatting, and colors. At other times you want to add but-

Figure 6.4

Switch to
design or
display view

Select to
open form
properties

Field list box

Toolbox to
add controls

Properties
to control
objects

Form Properties
Record Source=Customer table

Control Properties
Control Source=CustomerID column

Figure 6.5

89Chapter 6: Forms and Reports

tons to open additional forms or reports, or to add or delete data rows. As shown
in Figure 6.4, you can switch to Design view to edit the details of the form and
its controls. The layout view is useful for changing alignments or sizes of group
objects. Design view provides more detailed control over each individual object.
Right-click a control, the form background, or the small square in the top-left cor-
ner of the form to set the various properties. The property box shows you which
properties can be set for each item and helps you select the appropriate values.
The toolbox contains additional controls that you can place on the form. The field
list box is a quick way to add a standard data field to the form. For example, if you
delete one of the existing fields and its label, you can open the field list box and
drag the field back onto the form.

To understand how the form works, you should look at two main properties: the
Record Source for the form and the Control Source for a text box. As shown in
Figure 6.5, in this example, the Record Source is the Customer table and the Con-
trol Source is the CustomerID. The Record Source is a table or query that retrieves
all of the columns that can be displayed and edited on the form. The field list box
uses this query to show you the fields available to be placed on the form. In this
example, remember that only the Customer table was selected when the form was
created. You could have added columns from additional tables, in which case the
Record Source would be a query. You can still make changes—simply click the
Ellipses button (…) and you will be shown a query edit screen in which you can
add more tables and columns. However, you must be careful to make sure the
query is updatable. The main trick is to use the primary key from only one table.
You can pull in other columns from additional tables, but use the primary key
from only one table. This condition is critical to understanding the role of forms:
Each form is designed to edit only one table at a time. You can stretch that state-
ment a little and actually change some data values in several tables, but the main
form should only be used to add data rows to a single table. Once you have the
table or query chosen, you can set the Control Source for each individual control.
Of course, it is much easier to let the wizard or the field list box do the work, but

Figure 6.6

90Chapter 6: Forms and Reports

once in a while you might have to edit a Control Source—particularly if you go
back and change the name of a column in a table.

Adding labels and command buttons to the form is a common step. For in-
stance, you might want to add buttons to make it easier to add and delete a data
row. If you run the form, you will see that the menu provides options to delete
and add rows, but users sometimes forget to check the menu. They also might not
know that they should click the selection bar at the left side of the form. It is often
useful to place buttons on the form to delete and add new rows of data. To begin
the process in Design view, select the command button in the toolbox and click a
desired location on the form. Figure 6.6 shows the main command button wizard
screen. It provides many common options that you might want to use on a form.
In this case, select the Record Operations and then Delete Record options. You
can use one of the default icons or enter a word that will be placed on the button.
The wizard writes the code necessary to carry out the desired command. This code
is stored in a subroutine on the form, and you should give it a descriptive name so
you can find it later if needed. In this case, cmdDelete is a useful name, where the
cmd prefix indicates that the routine is tied to a command button. The wizard then
creates the button and the necessary code. If you selected an icon for the button,
set the button’s control tip property to add a short description of the button’s role.
In this case, “Delete this customer” is a good start. It will be displayed when the
user rolls the cursor over the button. Follow the same procedure to create a button
to add a new customer. To see the code that was created, right-click the button and
choose Build Event. For simple events, the Access 2007 wizard relies on macro
commands. Macros are more difficult to edit and have fewer options than VBA
code. Later, when you want to add more complex processing to your form, you
will probably want to write in VBA code instead of using macros. For buttons
without macros, the Build Event link provides an option to display code, or you
can click the View Code icon in the Tools section of the ribbon.

One last element of the form is important. The controls have a tab order that
specifies how the focus shifts when the user presses the Enter or Tab keys. Gener-
ally, the tab order should be set so that the user’s focus moves from the top to the
bottom of the form. When you add controls to a form, this order is often altered.
Right-click the form and use the Tab Order option to rearrange the sequence.

Figure 6.7

91Chapter 6: Forms and Reports

Activity: Create Grid Forms
Grid forms are another simple type
of form. They are used when a table
has a limited number of columns and
rows. The columns should all fit on one
screen because users find it difficult to
edit data if they have to scroll horizon-
tally. The number of rows should be
limited because the grid form has few
methods for searching, and users should not be forced to scroll through thousands
of rows to change one piece of data. Figure 6.7 shows an initial grid form for the
SkiBoardStyle table. Notice that the data in this table is generally used only to
provide consistent values to other tables. This form will generally be used only
by an administrator once in a while to modify or add a style. The data all fit on
one screen, making it easy for you to find the items to be altered and to compare
the various entries across the rows. In practice, you will use grid forms for similar
tasks aimed at administration. Think hard before you use one of these forms for
general users. Although you have some control over the form design, your options
are limited, so users need to know what they are doing.

You create a grid form in much the same way as a main form. Start the wizard,
select the table, and choose the columns you want on the form. As shown in Fig-
ure 6.8, the different step is to select the Datasheet option. You could also choose
the Tabular style which provides a few more design options but tends to have
thicker lines between rows and columns. The datasheet style is similar to editing
data directly in a table, but you can impose more limits and controls on the user.
So, if you find that you want to give users the ability to edit data directly, create a
datasheet form instead.

Figure 6.8

Tabular style
has more design
flexibility

Datasheet style
is simpler than
tabular

Action
Create a new form with the wizard.
Table: SkiBoardStyle.
Columns: All.
Select the Datasheet layout.
Test the form.

92Chapter 6: Forms and Reports

Look closely at the data in Figure
6.7 and you will see that the Category
data actually comes from a second ta-
ble: ProductCategory. Of course, you
should also build a grid form to enable
administrators to update this table as
well. However, you also need to make
it easier for people to enter data into
the Category column of the main Ski-
BoardStyle table. If users have to re-
type the data for every row, they might
abbreviate or misspell the entries—
leading to inconsistent data that is dif-
ficult to search. Instead, you want to
create a combo box on the form that
makes it easy for users to select the de-
sired category.

As shown in Figure 6.9, switch the form to Design view and you will see that
it looks much like a main form. However, the layout of the form is ignored when
it is displayed as a datasheet. In particular, the order of the columns is set by the
tab order and not by the position on the form. The goal is to replace the Category
text box with a combo box, so the first step is to delete the Category text box and
its associated label. Then, you can use the toolbox to place a combo box on the
form.

The combo box wizard supports three uses: to look up data from a second table,
to select from a fixed list of values, or to search the existing form for matching

Action
Switch to form Design view.
Delete the box for Category.
Add a combo box.
Select the first lookup option.
Choose the ProductCategory table.
Choose the Category and

CategoryDescription columns.
Set column widths.
Select the Category column.
Store value into the Category column.
Rename the combo box.
Set the tab order.
Run the form and test the combo box.

Figure 6.9

Delete the text box

Add a ComboBox

93Chapter 6: Forms and Reports

data. In most cases, you want the first option. You should almost always avoid the
second option because it is difficult to change the values later. You generally want
to place the values within a separate table and build a form so they can be altered
later without having to modify this form. The third option is sometimes useful on
main forms but can be confusing because it is used to search for data instead of

Figure 6.10

Figure 6.11

ProductCategory

Board
Boots
Clothes
Electronic
Glasses
Ski

SkiBoardStyle

Style Desc Category
Downhill ... Ski

Select

Display

Click the arrow

Select the item

Chosen value is
transferred to the form

94Chapter 6: Forms and Reports

entering data. The first option is the one needed in this case, so select the table
that holds the data that will be displayed in the combo box list (ProductCategory).
Choose both the Category and the CategoryDescription columns to be displayed
in the combo box list. The wizard gives you the option to hide the key column,
which is commonly done for numeric AutoNumber keys. In this case, the key col-
umn is text, so make sure it is displayed.

Figure 6.10 shows the role of the combo box and one of the trickiest steps in the
combo box wizard. The purpose of a combo box is to display a list of predefined
items from a table or query (ProductCategory in this case). To enter data into the
SkiBoardStyle table, users select one of the items from the complete list, and the
chosen value is entered into the Category column of the SkiBoardStyle table. In
the screen of this wizard you specify the Category column of the SkiBoardStyle
table as the place to hold the chosen value. The screen immediately prior to this
one is where you select the key column in the display list—the Category column
in the ProductCategory. The screen in Figure 6.10 is the one that generally causes
the most problems. You must be sure to store the value in the appropriate column
or the combo box will not work. Once the wizard has completed, you should set
the properties of the combo box to give it a better name (cboCategory in this case),
and double-check the tab order of all of the controls.

 As shown in Figure 6.11, when you run the form, the datasheet rows appear
similar to the original version. However, when you click on an entry in the Cate-
gory column, you will see the arrow box for the combo box. Clicking on the arrow
generates the list shown in the figure. Selecting an item transfers it to the form and
the table. It is important that you understand the role of the combo box in relation-
al databases. Remember that normalization splits the database into tables that are
connected through primary and foreign keys. Generally, these keys are numeric,
and often they are generated by the DBMS, so they have no overt business inter-
pretation. It would be difficult for users to remember these numbers, but they have
to be entered correctly into many tables. The combo box solves the usability prob-
lem by displaying a list of data. When an item is chosen, the matching key value is
entered into the foreign key column automatically. With numeric keys, you gener-
ally want to hide the key; users do not even need to know that it exists.
Activity: Create Main Forms and Subforms
Now that you understand the main and
grid forms, it is time to combine them
into a main form and subform. Remem-
ber where this process began—with
business forms, particularly the sale
form. A typical business sale form has
data for the sale (SaleID, SaleDate) and
customer (name, address, and so on). It
also has a section of repeating data to
hold the specific items being purchased
by the customer. This repeating section
was split into the SaleItem table, with
some elements placed in the Inventory
and ItemModel tables. The purpose of
the main form and subform is to recombine these tables. Keep in mind that each
form can be associated directly with only one table. In this case, the sale form will

Action
Create a new form with the wizard.
Sale table, all columns.
Customer table use name, phone, and

e-mail columns.
Employee table, use the name.
SaleItem table, all columns except

SaleID.
ItemModel table, use Category,

ModelID, and ListPrice.
Finish the wizard and test the form.

95Chapter 6: Forms and Reports

be based primarily on the Sale table,
and the subform will be based primarily
on the SaleItem table. Additional data
from the other tables can be displayed
on the forms, but only the primary keys
from those two tables will be used.

The wizard is again used to start the
forms. Begin by selecting all of the col-
umns from the Sale table. Then select
the LastName, FirstName, Phone, and Email columns from the Customer table.
Remember, do not use the Customer.CustomerID column. Also, you should add
the Employee LastName and FirstName so they can be displayed on the form for
the salesperson. Next, use all of the columns from the SaleItem table except the
SaleID column, because you do not want to have it repeated on every row of the
subform. From the ItemModel table, bring the Category, ModelID, and ListPrice
columns so they can be displayed as a description on each row of the subform.

Figure 6.12

Figure 6.13

Fix layout
and sizing

Need
ComboBox

Multiply price
by quantity

Compute subtotal

Action
Switch to Design view/
Replace CustomerID, EmployeeID, and

PaymentMethod with combo boxes.
Use the Row Source property of the

combo boxes to set a sort order.
Set tab order and run the form.

96Chapter 6: Forms and Reports

The next step in the wizard is to
make sure that it recognizes the main/
subform relationship by Sale. Figure
6.12 shows the step where you can tell
the wizard how to organize the form
layout. If your database relationships
are correct, it generally picks the cor-
rect layout, but sometimes you have
to override this choice. Here, the Sale
is the main form, and the repeating
sections are moved to the subform.
You can use the default options for
the other choices in the wizard.

The initial form generated by the
wizard will work, but it usually needs
some work. You will have to fix the
layout, the widths of the text boxes, and add combo boxes. For subforms that con-
tain numeric data (price and quantity), you will also want to compute the subtotal
of the value and display it on the main form. Figure 6.13 shows the initial form.
Before trying to improve the form, take a minute to run the form and see how the
subform works. Notice that as you switch to a different sale, the subform picks
up the items for just that sale. The subform is linked to the main form through the
SaleID, and the form processor knows how to retrieve and display just the match-
ing data.

To improve the form, begin by replacing the foreign key ID text boxes with
combo boxes. Make sure that you assign a new name using the combo box proper-
ties. Note that all of the controls on the form are contained within a layout group.
When you delete a textbox, the others immediately move to cover the space. Do
not worry about it yet. Simply add the combo box and enter the details. When fin-

Figure 6.14

Action
Open the sub form in Design view.
Insert a combo box for the SKU.
Add a text box to compute

Value=QuantitySold*SalePrice.
Add a text box to the footer to compute the

subtotal: =Sum(QuantitySold*SalePrice).
Set tab order.
Test the sub form calculations.
Open the main form in Design view.
Add subtotal text box and use the

expression builder to copy the subtotal
value from the subfrom subtotal.

Test the form.

97Chapter 6: Forms and Reports

ished, you can drag the combo box to the desired location until it gets joined into
the layout group. However, the layout group makes it difficult to arrange the items
aesthetically. For more flexibility, you should remove the controls from the layout
group. Simply select them and use right-click to choose Layout/Remove. You can
select all of them and then use right-click to save time. You should now be able to
drag the controls on the main form to better locations.

Figure 6.14 gives you an idea of how to rearrange and resize the main form
controls. Be sure that you set the tab order. You also might consider adding com-
mand buttons to delete and add sales. Also, set the default value for the SaleDate
to be =Date() so that the current day will always be entered for new sales. Run the
form and check that the combo boxes work correctly and that you sorted the data
correctly when you created them. If you need to adjust them, you can simply de-

Figure 6.15

Open the Sale form

Select the subform

Double click the
subtotal control

Formula to copy
the subtotal value

Figure 6.16

98Chapter 6: Forms and Reports

lete one and start over. Or, adjust the properties for the combo box. For example,
the Row Source property contains a SELECT query and you can edit it by adding
an ORDER BY LastName, FirstName to the end of the query. You can use the El-
lipses button (…) to open the query in Design view to add the sort order.

The next step is to improve the subform. It is a little challenging because it is
difficult to get all of the columns to fit horizontally on the form. You might have
to widen the form and the subform box. You set the column widths while the form
is running by dragging or double-clicking the column dividing lines. You can also
use the layout view to help align items while the form is displaying data. The next
changes are often easier if you close the main form and open the subform alone
in Design view. First, you should replace the SKU box with a combo box to mini-
mize data entry errors. Next, add a text box to the bottom of the form, and enter “=
SalePrice * QuantitySold” as the Control Source. Give it the name “Value” in its
properties. Next, expand the form footer and add a new text box to it. It’s formula
should be “= Sum(SalePrice * QuantitySold)”, and give it the name “Subtotal.”
Format them both as Currency with two decimal places. Figure 6.15 shows how
the forms will appear when you run the main Sale form.

Notice that the subtotal is not displayed on the main form. To get it there, you
need to copy its value from the subform. Return to the main form in Design view
and add a text box beneath the subform. The copy is made dynamically by using
a formula, but the formula is slightly complex. Instead of trying to memorize the
formula syntax, you can use the Expression Builder to create the formula for you.
On the properties for the Sale form Subtotal text box, click the Ellipses button to
open the Expression Builder. Figure 6.16 shows the rest of the steps. Open the
Sale form and select the subform to see its controls. Find the Subtotal control and
double-click it. The proper formula will be entered into the edit box. Click the OK
button to return to the properties. Set the format to Currency and run the form to
test it. You should also add one more text box to compute the total. Enter the for-
mula as “= Subtotal + SalesTax” and set its format to currency.

Figure 6.17

99Chapter 6: Forms and Reports

 Figure 6.17 shows the final form. Your version should be similar to this one,
but there is always room for flexibility within a design. Notice that some of the
text boxes are disabled to prevent clerks from changing the data. In particular, the
SaleID and totals are generated by the system and should not be modified by the
users. The controls have an Enabled property that you can set to False.
Activity: Customize Form Properties
The form wizards are easy to use
and do a decent job. However, you
eventually will want to customize the
forms to improve the layout or add
more features. In some cases, you
might need to make major changes to
the data connections, or you might even want to build a form from scratch. Prop-
erties are the key to all of these issues. Once you know where to look, you will
see that the wizards simply take the answers to your questions and assign values
to properties on the form. Once you understand these various properties, you can
edit them yourself to obtain more control over the forms.

Figure 6.18 shows the basic Customer form in design view. Right-click the
small square in the upper left-hand corner of the form and choose the Properties
option to open the Properties window that is also displayed. The Record Source
property is one of the most important properties affecting the overall form. This
property defines the data that will be displayed and edited on the form. Currently,
it is set to the simple Customer table. If you select that property, you will see a
small ellipses button (…). Click that button and the designer will open a query
edit window. You can add items to the query or you can sort the data to control the
order in which it will be displayed. Be careful with adding tables to the query—

Figure 6.18

Form properties

Action
Make a copy of the Customer form.
Set the background color of the header to

yellow.

100Chapter 6: Forms and Reports

some queries are not updateable, and the form will no longer be able to collect
data. However, this trick is useful when you want to display additional data on a
form. The Sale form is a common example. The main Sale form would be based
on the Sale table, but you could also include the customer name and phone num-
ber columns from the Customer table.

Once you modify the data source, the form will have access to the additional
columns. However, they will not be displayed on the form. There are two ways to
add text boxes to a form: (1) You can click the Text Box icon in the Toolbox and
click a location on the form, or (2) You can open the Field List box on the forms
toolbar and drag the desired column onto the form. The advantage of the second
approach is that it automatically applies the appropriate styles if you are using
a template. If you use the first method, you will have to set the text box display
properties yourself. However, the Format Painter simplifies the task. Simply click
a text box that has the properties you want, click the paint brush in the toolbar, and
finish by clicking the new text box to paint it with those properties. To get more
information about any property, simple select it in the Property window and press
the F1 key for help. Using the form’s Record Source, and the text box (or List
Box) you can build a form from scratch and customize it anyway you want. How-
ever, it takes considerable time. Remember to use the Format/Align commands to
ensure everything lines up properly.

The form has three sections (header, detail, and footer), and you can set fore-
ground and background colors separately for each section. Each control item on
the form also has its own collection of properties. The properties vary depending
on the type of control, but most have a Control Source property that links them to
a specific column, along with visual properties such as fonts, location, and colors.

For practice with properties, in the Customer form set the background color of
the header section to yellow. Right-click the header background and select Proper-
ties. Select the Background property, click the ellipses button and choose a color.
Run the form to test it. Adjust the layout or colors to improve the appearance.

Figure 6.19

Customer break

Sale break

SaleItem detail

101Chapter 6: Forms and Reports

All Powder Basic Reports

Activity: Create Reports with Subtotals
Most managers want reports so they
can evaluate the progress of their
business. Today, much of the busi-
ness data could be displayed within
forms—if the managers have suffi-
cient access to the online system and
if they are comfortable with reading
the data on the screen instead of on
paper. However, reports are also use-
ful when managers need to see lists of
items with subtotals. Remember that
queries can print detailed data rows
or summary totals, but not both at the
same time. And query results are difficult to format. Instead, you want to use the
Report Writer to format results, draw lines, and compute subtotals.

The first issue in building a report is to identify the level of detail that will be
needed. The Report Writer can always compute subtotals across groups, but you
need to ensure that your query retrieves the level of detail desired by the manag-
ers. As an example, consider a basic sales report by customer. Managers want to
list each customer, followed by the sales placed by that customer. If they also want
to include the individual items purchased on each sale, that level of detail is differ-
ent than if they simply want to see the total value of the sale. For now, assume that
they want to see the detailed item list.

You can use the report wizard to build this report. Similar to building forms,
your first step is to choose the tables and columns of data that you want on the
report. In some ways, queries for reports are simpler because you do not have to
worry about keeping the query updatable. However, the form wizard in Access

Figure 6.20

Select this button
to calculate
subtotals easily

Action
Create a new report with the wizard.
Customer table, use all columns.
Sale table, use all columns.
SaleItem table, use all columns.
Verify the group breaks.
Click the Summary Options button.
Compute totals for the Quantity.
Finish the wizard and switch to design

view.

102Chapter 6: Forms and Reports

2007 also relies on layout groups. The results are unwieldy if you include too
many columns. It is best to choose a small set of three or four columns (with pri-
mary keys) from each desired table. When the wizard has created the base form,
you can add the other columns. In this case, take the CustomerID and name col-
umns from the Customer table, the SaleID and SaleDate from the Sale table, and
all but the SaleID table from the SaleItem table. If you want to display additional
descriptions of the items, you would also have to include the Inventory and pos-
sibly ItemModel tables, but for now, leave those out. Figure 6.19 shows one of
the more important screens of the report wizard. You need to make sure that the
wizard picks up the breaks correctly, and that your detail section is correct.

Customer break

Sale break

SaleItem detail

Figure 6.22

Figure 6.21

103Chapter 6: Forms and Reports

As shown in Figure 6.20, the next
step is a little tricky. It is easy to miss
the Summary Options button. Click-
ing this button gives you options
shown in Figure 6.21 to automati-
cally calculate subtotals. The button
only appears when you have numeric
columns that can be summed or aver-
aged. You then select the columns to
compute subtotals or averages.

In this particular example, it does
not make sense to sum either of the
two numeric columns (quantity and
price). You really need to sum the value of price times quantity, which can be done
later on the form. If you want to do it at this step, you need to base the report on
a query that already computes a column to multiply the two values, then you can
sum the resulting column. However, in this case, it is useful to temporarily sum
the QuantitySold column and then modify the formula later.

Figure 6.22 shows the initial report created by the wizard. Notice that it has the
three sections defined by the group breaks. However, even with the limited num-
ber of columns, the report is a little messy—largely because it relies on the layout
groups. It also needs a column in the detail section to multiply price by quantity,
and then compute the total in the footer sections. It would also be useful to split
the output so that sales for each customer appear on separate pages.

The report can be cleaned up by switching to Design view. First, you have to
move all controls inside the 6.5 inch margin and drag the right edge inside that
limit so everything fits on one page. Second, you have to expand the header sec-
tions; then place columns into those sections and arrange them, instead of having
them squeezed onto one line. For example, place the customer name in the Cus-
tomer header. You will have to remove the label and the text box from the lay-

Action
Move items around to improve the look.
Add a text box in the Detail

section called Value to compute
[QuantitySold]*[SalePrice]

Set currency format.
Edit the Sum calculations to be

Sum([QuantitySold]*[SalePrice].
Edit the Record Source to add columns
Run the form and clean up the layout.

Figure 6.23

Customer break

Sale break

SaleItem detail

Value text box
properties

104Chapter 6: Forms and Reports

out group to move them. You might
consider creating new layout groups
within the header sections, but it is
not necessary. You can move the la-
bels from the Page Header to the De-
tail Header by using the Layout/Move
Down a Section command.

Figure 6.23 shows some of the
ways to rearrange the form. Notice
the sections that correspond to the
group breaks. The Customer and Sale breaks have headers and footers. The titles
are displayed in the headers, and the sum in the footers. The figure also shows the
addition of the Value text box in the detail section. It computes QuantitySold *
SalePrice to get the value of the items being purchased.

You can add more columns to the report by editing the record source for the re-
port. Click the square in the top-left of the report. In the Property Sheet, click the
ellipses button for the Record source to open the query editor. Add columns from
the three tables that you want to display on the report, such as phone and e-mail
from Customer, and shipping address from Sales. When you close the editor, save
the changes to the property sheet. Switch the window to Add Existing Fields, and
drag the new fields onto the report.

Figure 6.24 shows the final design for the Customer Sale form. Notice the
cleaner layout of the controls. Also, notice the page break at the bottom of the
Customer footer. It ensures that each new set of customer data will begin on a new
page. The calculations for the sum have been corrected so that they total Quanti-
tySold * SalePrice instead of just QuantitySold. The interesting aspect of the sums
is that the formula for all three controls is exactly the same. The only difference

Action
Create a new query to total sales by

customer.
Save the query.
Create a new report based on the query.
For the Customer group, set the Keep

Together property to Whole Group.
Run the report.

Figure 6.24

Page break

Correct total

105Chapter 6: Forms and Reports

is the section on the report. The total on the Sale footer computes the sum just for
that sale, while the total control on the Customer footer computes the total for the
customer, across all sales for that customer. The total control on the Report footer
computes and displays the total for all sales printed on the report.

Figure 6.25 shows a portion of the final version of the report. Notice that the
page shows sales for only one customer. The Value calculation is correct, and the
sums for the Sale and Customer are correct. Although the report will use a consid-
erable number of pages, the details and summary values can be read easily. If the
managers truly want this level of detail, the report should work well.

It is possible that managers do not need the detailed list of items sold. Perhaps
they need only the total value of the sale for each customer. The report would cer-
tainly be shorter. Because this level of report requires a different level of detail,
you will first have to create a query that extracts the main data and computes the
sales value and the total value for each sale. The Report Writer will then compute
the totals per customer.

 Figure 6.26 shows the query used to create the total value of the items for each
sale. The design is straightforward—add the desired columns from the Customer,
Sale, and SaleItem table. Then add the computed column Value to compute Sale-
Price by QuantitySold. Save the query and build the report based on that query.
Be sure that the wizard creates a group break based on the CustomerID. You can
clean up the report in Design view. Move the columns for LastName, FirstName,
Phone, and Email from the detail section to the Customer header section.

Figure 6.25

106Chapter 6: Forms and Reports

Figure 6.27 shows the Design view for the new report after it has been cleaned
up. Clicking the Sorting and Grouping button on the tool bar brings up the options
to control how the grouping is handled. In this case, for the CustomerID, set the
Keep Together option to Whole Group. This value tells the Report Writer to avoid
splitting customer data across pages. If data for a customer would be split by a
page break, the Report Writer will move the entire group to a new page. These op-
tions are useful and can provide detailed control over the report layout. However,
you have to be careful. If a customer has so many sales that the data will not fit on
one page, the system will still be forced to spread the data across multiple pages.
The options are particularly useful for relatively small groups of data.
Activity: Create Subreports
Access supports subreports, which are similar to subforms in that a repeating
group can be displayed as a linked report within the main report. It is primar-
ily useful when you need two or more repeating groups of data. For example,
for each customer you might want to display a list of sales and a list of rentals.

SELECT Customer.CustomerID, Customer.LastName, Customer.FirstName,
Customer.Phone, Customer.EMail, Sale.SaleID, Sale.SaleDate, Sale.ShipCity,
Sale.ShipState, Sum([SalePrice]*[QuantitySold]) AS [Value]
FROM (Customer INNER JOIN Sale ON Customer.CustomerID = Sale.
CustomerID) INNER JOIN SaleItem ON Sale.SaleID = SaleItem.SaleID
GROUP BY Customer.CustomerID, Customer.LastName, Customer.FirstName,
Customer.Phone, Customer.EMail, Sale.SaleID, Sale.SaleDate, Sale.ShipCity,
Sale.ShipState
ORDER BY Customer.LastName, Customer.FirstName;

Figure 6.26

Figure 6.27

107Chapter 6: Forms and Reports

With subreports, you can display the
lists side by side. The two subreports
are linked by CustomerID to the main
customer group, but not to each other
since sales and rentals are not neces-
sarily related.

The wizard does much of the work,
but not all of it. This report needs to
be built in three sections: (1) the Cus-
tomer report, (2) the Sales subreport,
and (3) the Rentals subreport. You can
use the wizard to build each report,
and then drag the subreports onto the
main Customer report. Begin by cre-
ating the Customer report with some
of the basic data from the Customer
table. Then build the Sale subreport with the SaleID, CustomerID, and SaleDate
from the Sale table and the columns from the SaleItem table. Group the report by
SaleItem instead of the Sale table. Third, build the Rental subreport in a simlar
manner using the RentalID, CustomerID, and RentalDate from the Rental table,
along with the columns from the RentalItem table.

To build the final report, open the new Customer report in Design view. Ex-
pand the detail section so it has room to hold the subreports. Drag the SaleItem
subreport onto the detail section and resize it horizontally and vertically so it fits
on the page. On the subreport, delete and shrink any report and page header and
footer sections. Add a text box to compute and display the value = SalePrice *
QuantitySold, and resize the width of the lines and the page so you will be able to
fit the two reports on the page. To link the subreport to the main report, you need
to set the link properties on the subreport. Carefully, right-click on the border of

Action
Create a simple report based on the

Customer table.
Create a Sale sub-report from the Sale and

SaleItem tables, grouping it by SaleItem..
Create a Rental sub-report from the Rental

and RentalItem tables.
Open the Customer report in design view.
Drag-and-drop the two subreports onto the

Detail section of the Customer report.
Use properties of the subreports to set the

Link Child and Link Master Fields to
CustomerID.

Run the report.

Link main
customer
report
(master)
to subreort
(child)

Figure 6.28

108Chapter 6: Forms and Reports

the subreport and open the property list. Then set the master and child properties
to CustomerID, which tells the subreport (child) to display only the data for the
matching customer. Figure 6.28 shows the layout of the form and the property
values needed to link the forms. The next step is to add the subreport for rentals
following the same process. Be sure to set the link master and child properties.
You will also want to rearrange the text boxes so that the two subreports fit side
by side on one page. You should also consider adding a border around each of the
subreports to highlight them on the main report. You will probably want to add
totals on each of the subreport report footers.

Figure 6.29 shows a sample page from the new report. The subreport also sup-
ports properties to control automatically expanding the report to handle additional
rows, or autosizing to restrict it if there are only a few rows in the report. You also
might want to include a page break at the bottom of the detail section so that each
customer report is printed on a separate page, but that decision will depend on the
sizes of the subreports, which depend on the number of items purchased or rented.
One of the most time-consuming elements in creating reports is setting the layout,
sizing, and design elements to make the report compact, yet readable. The main
aspect of this report is the dual column layout to show the separate sale and rental
items.

Figure 6.29

109Chapter 6: Forms and Reports

Exercises

Crystal Tigers
The Crystal Tigers club is mostly interested in tracking members and events. The
officers who will use the system do not know much about computers, but they can
enter data into forms. They are also interested in a few key reports. For instance,
they want to be able to get totals for the amount of hours their members devoted
to charity events. They also want monthly summaries of the amount of money
raised. The vice president also wants to be able to print a simple listing of the of-
ficers with their phone numbers and e-mail addresses. Sometimes she also wants a
similar list of members who have participated in the initial steps of an event. She
wants to be able to carry the list with her when the event starts so she knows who
to contact if problems arise.
1. Create the basic forms needed to enter data into the database.
2. Build a form similar to the one defined in Chapter 2.
3. Create the main reports needed by the organization.

Capitol Artists
Job tracking is the most important aspect of the application needed by Capitol Art-
ists. In particular, the employees need to be able to quickly select a job and enter
the time and expenses for the task performed. This data is then used to create a
monthly billing report for the client. Consequently, you need to focus on creating
the forms to capture this data. You need to make sure they are fast and easy to use.
The managers also want weekly reports showing the hours and money generated
by each employee so they can use the data for personnel evaluations.
1. Create the basic forms needed to enter data into the database.
2. Build a form similar to the one defined in Chapter 2.
3. Create the main reports needed by the managers.

Offshore Speed
Special orders have always been a complex problem for the Offshore Speed man-
agers. Customers come to the shop because it is one of the few that can obtain
the custom parts they want. But the company has always had problems training
employees to collect all of the order data and to keep track of getting the orders
placed and delivered in a timely manner. Some of these orders include contracts
with other local firms to perform customization and finish work on the boats. Al-
though these firms do excellent work, most are terrible at keeping records. Con-
sequently, the managers want to use the system to generate reports on individual
boats for each contract shop that can be used to remind the other owners of the
details. The company also needs reports on the inventory status of the specialized
parts. They have trouble keeping some items in stock, and other items seem to sit
on the shelves forever. They have no good way of keeping track at the moment.
1. Create the basic forms needed to enter data into the database.
2. Build a form similar to the one defined in Chapter 2.
3. Create the main reports needed by the managers.

110Chapter 6: Forms and Reports

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following tasks.

1. Create the main forms needed for the database, including forms that will be
used by administrators.

2. Build the forms similar to the ones used to define the project. That is, build
database forms that match the existing user forms.

3. Create the main reports needed. Think about the analysis that managers will
want to do and provide reports that help them. Consider adding charts to
compare data.

111

Objectives

Define	customized	functions.•	
Improve forms by responding to form events.•	
Execute customized SQL statements from code.•	
Define	transactions.•	
Create new rows and use the generated key value.•	
Write cursor-based programs that compare data across rows.•	
Set up and handle optimistic and pessimistic locking conditions.•	

Chapter Outline

Database Integrity and
Transactions

7Chapter

Program Code in Microsoft Access, 112
Case: All Powder Board and Ski Shop, 112
Lab Exercise, 113

All Powder Board and Ski Data, 113
Database Cursors, Keys, and Locks, 126

Exercises, 135
Final Project, 137

112Chapter 7: Database Integrity and Transactions

Program Code in Microsoft Access
Access supports code modules that contain functions that you can use through-
out your application. Access also supports detailed code behind each form that
is activated in response to events on the form. However, Access does not support
data triggers that attach to database events. Because of this emphasis on forms,
data integrity code, locking, transactions, and key generation are handled within
the necessary forms. For instance, you will generally have to write code within a
sales form to handle transactions and data locking. In some ways, this approach
is easier to understand because you write the code within each form. On the other
hand, similar code might have to be written several times, and it is up to each ap-
plication developer to ensure that problems are handled correctly in every form.

To understand how the code and event models work, this chapter begins with
some easy examples. Pay close attention to the code and where it is located. For
example, code written in a module can be accessed throughout the application, but
code written within a form is generally only called in response to events on that
form.

Case: All Powder Board and Ski Shop
Figure 7.1 shows the Sales form developed in the last chapter. Notice that it has
a box to enter the sales tax. If you look at the underlying Sale table, you will see
that it contains a column to hold the sales tax amount for each sale. You could ar-
gue that the sales tax does not have to be stored, since it can always be computed
from the other sales data. But what happens if the tax rate changes? Or, what if the
round-off computation is modified? Then the company’s sales tax records will no
longer exactly match the data filed with the state and local governments. It is safer
to store the actual tax amount collected to ensure consistency. However, now you
need a method to compute the sales tax on each sale—you certainly cannot expect
clerks to compute the amount or even to look it up correctly in a table. Instead,
you need to write a function that will compute the sales tax correctly and transfer

Figure 7.1

113Chapter 7: Database Integrity and Transactions

it to the form and the database. Sales taxes can be highly complex. Some items are
taxable, while others are not. Since each state and local district is different (and
there are several thousand tax districts in the U.S. alone), this presentation is sim-
plified and assumes a single tax rate to be applied to all sale and rental items.

The first question you must answer when creating custom code is to determine
where it belongs. In this example, you might consider putting it on the Sales form,
but since the code will also be useful for rentals, it makes more sense to general-
ize it and place it in a module so that it is available to any form, query, or report
within the application. Placing the code in a special module also makes it easier
to find later.

Lab Exercise

All Powder Board and Ski Data
Most forms require some amount of programming. Code is used to improve data
integrity and to make the forms easier to use. Functions and modules are used to
centralize code so it is easy to find and change elements later.
Activity: Create Sales Tax Function
Begin by creating a new module, which
brings up the Visual Basic editor. Be-
fore defining the function to create the
sales tax, add the command Option
Explicit at the top of the module. This
option forces you to declare (Dim) all
variables that you use, and helps spot
typographical errors. Figure 7.2 shows
that the function is a simple calcula-

Figure 7.2

New module

Visual Basic editor

Application code

Action
Create/Other/Macro/Module
At the top add: Option Explicit.
Add the function ComputeSalesTax.
Use Debug/Compile to find errors.
Close the module.

114Chapter 7: Database Integrity and Transactions

tion. Be sure to use a variable for the
tax rate, since it makes the code easier
to understand and reduces errors when
someone tries to modify it later. Also,
be sure you use the Round function
to truncate the tax due at two decimal
places. Save and close the module. You
can now use this function in queries
and forms just as you would use any
other function.

The next step is to use the formula to
automatically compute the sales tax on
the Sales form. The challenge at this step is to identify when you want to compute
the tax. Why does that matter? The problem is that there are times you do not want
to compute the tax. For example, if a sale has been completed and a manager is
simply reviewing the form, you should not recompute the tax because the rate
might have changed. So, you only want to compute it for a new sale. Realistically,
it only needs to be computed when all of the sale items have been selected, but the
form has no way to know when the sale is completed. It is possible to recomputed
the sales tax every time an entry is changed in the SaleItem subform, but that pro-
cess is a little complicated. Probably the easiest solution is to compute the sales
tax due when the user clicks on the SalesTax box. For new orders, a simple click
generates the correct value and the order total.

You need to attach a line of code to the Enter event of the SalesTax box (see
Figure 7.3). Right-click on the text box and choose the Build Code option.
Use the Code Builder option to open the Visual Basic editor. Select the Enter
event from the drop-down list of events. Enter the computation as “SalesTax =
ComputeSalesTax(SubTotal),” where SubTotal is the name of the box on the form

Figure 7.3

Choose the
Enter event

Call the new
function

Right click
and Build
Code

Action
Edit the Sale form in Design view.
Right click the SalesTax box and select

the Build Event/Code Builder option.
Select the Enter event
Add the line: SalesTax =

ComputeSalesTax(Subtotal).
Run the form.
Click on the SalesTax box to test the

calculation.

115Chapter 7: Database Integrity and Transactions

that copies the subtotal amount from the subform. The Enter event is fired when-
ever the user clicks on or tabs to the specified text box.

To test the code, run the form and create a new order. Select an employee as
the salesperson and choose the customer from the list. Select a product to sell
(100003), enter the QuantitySold (1) and the SalePrice (300). Select a payment
method. Initially, the Sales Tax entry will be empty. Click on the tax box and
the 7 percent tax will be computed and entered. The total sale value will also be
updated.

In real life, program code rarely runs correctly the first time. To find mistakes,
you need to use the debugger. Open the Sales form in Design view and return to
the code (Use the View Code icon on the Design/Tools menu.). Click on the gray
column just to the left of the calculation line in the subroutine. The line should be
highlighted in red as a break point. Return to the form and run it so that you can
click on the Sales Tax box. Figure 7.4 shows that this time, the Visual Basic editor
pops up, with the interpreted stopped on the break line. You can use the F8 debug
key to step through line-by-line to see how the program behaves. Rolling the cur-
sor over a variable displays its current value.
Activity: Update Inventory with Form Events
Maintaining quantity-on-hand statistics
for inventory is one of the trickiest ele-
ments in programming business forms.
Reexamine the Inventory table and no-
tice that it contains the column Quan-
tityOnHand. This value represents the
current number in stock for a specific
item. The value of the column is that
clerks can quickly check the column to
see if certain sizes are available. Also,
managers can get a quick look at the

Figure 7.4

Action
Open the SaleItem subform in Design

view.
Open the form properties and modify

the Record Source query to add the
QuantityOnHand column.

View the Field List box.
Drag QuantityOnHand onto the form.
Run the form and improve the layout.

Set a break
point

Use F8 to step
through the code

Roll the cursor over
a variable to see its
current value

116Chapter 7: Database Integrity and Transactions

list of items that might be under- or overstocked. Technically, this value would
not have to be stored in the database—if you have a complete list of all purchases,
sales, and adjustments, you could use a query to compute the total number cur-
rently in stock. However, with thousands of items and sales, this query might take
too long to run. Consequently, you need a mechanism to update this value on the
fly. Whenever an item is sold, the corresponding quantity should be subtracted
from the quantity on hand. In Access, this subtraction has to occur on the Sale
form.

The first step in modifying the Sale form is to add the QuantityOnHand col-
umn to the SaleItem subform so clerks can see the status of each item. Since
QuantityOnHand is already in the Inventory table, you simply have to modify the
subform to display it. Open the SaleItem Subform and click on the Form Proper-
ties button. Click the Ellipses button on the Record Source property to build the
query. Add the QuantityOnHand column from the Inventory table. Close and save
the query, which returns it to the form. Figure 7.5 reviews the steps needed to add
the field to the subform. You will need to resize the Sale form to display the new
column.

Now that the QuantityOnHand is displayed on the sale subform it is relatively
easy to update as items are selected. Remember that you can attach code to any
event on the form or events on specific controls. Before attempting to write the
code to modify the QOH, it is best to look at some of the form events. The Visual
Basic editor gives you a complete list of form and control events through the
drop-down lists. However, the editor does not explain the sequence of events.
Figure 7.6 shows the primary events that are triggered as a form is opened and
closed. The Current event of the form fills the form with data from the current
row. Then controls trigger Enter and GotFocus events. Controls also experience

Figure 7.5

Form
properties

Drag QOH from Field
List onto form

Build query to add
QuantityOnHand

117Chapter 7: Database Integrity and Transactions

BeforeUpdate and AfterUpdate events, which are triggered just before and just
after the data is transferred to the database when it is changed.

It is important to understand the event sequence for a control being edited. Fig-
ure 7.7 shows the main events as sample data is changed in a text box. You can
write code that is activated in response to each event. The trick is to determine the
proper event. In many cases, the BeforeUpdate and AfterUpdate events are useful.
The BeforeUpdate event is often used to perform complex validation checks on
the value before writing it to the database. You can cancel the update if something
is incorrect. The AfterUpdate event is used when you want to make sure that the
change was correctly recorded and need to take some action in response to the
change. The AfterUpdate event is useful for handling the change to QuantityOn-
Hand. The inventory level will be changed only when the initial item selection has
been successful.

Figure 7.7

Figure 7.6

32

32

131

131

131

131

131

Enter

GotFocus

Change: keystrokes

Exit

LostFocus

BeforeUpdate

AfterUpdate

Control Event

time

1) Open 2) Load 3) Resize 4) Activate 5) Current 6) Enter 7) GotFocus

Open a form

Close a form

Forms Controls

5) Close 4) Deactivate 3) Unload 2) LostFocus 1) Exit

Change rows

118Chapter 7: Database Integrity and Transactions

You begin by adding the subtraction code to the AfterUpdate event of the Quan-
titySold field. Figure 7.8 shows the two lines of code you need to enter at this
stage. The Refresh command forces newly added rows to be saved before attempt-
ing to change the QOH. You should open the Sales form and create a new order:
select a salesperson and a customer. Choose product 950049 because it has a QOH
of 10. Next, enter a value of 2 for the QuantitySold and see what happens to the
QuantityOnHand column. When you exit the QuantitySold column, the value is
written to the database, your new code is executed, and two units are subtracted
from the QuantityOnHand.

Before celebrating and moving on, you need to think about some potential
problems. These problems may highlight the event-driven nature of the form, but
they also exist with a database trigger approach. In particular, you should deter-
mine what happens if the clerk makes a mistake: instead of two items sold, he
meant to enter one, so he returns to the QuantitySold box and changes the value.
Try this and see what happens. Your code dutifully subtracts another unit from
the QuantityOnHand, but, the new value of seven items in is wrong. Since the
company really sold only one item, it should be nine units. The problem is that
you have to add the original two units back to the total. In more general terms, if
the QuantitySold value is not zero, your code must add that original value back to
the total, and then subtract the new QuantitySold. That is, your calculation should
be QuantityOnHand = QuantityOnHand – QuantitySold + OldQuantity. The only
problem is to find the OldQuantity.

Look again at the Figure 7.7 events. If you wait until the AfterUpdate event,
the only value you can get is the new
number that was entered. In fact, any
event after the Change event is too
late—the original value will be gone.
Actually, GotFocus is even too late, be-
cause someone might change the data,
leave the text box and return, trigger-
ing a new GotFocus event and losing
the original value. That leaves the En-
ter event. When the user first enters the
box, you can obtain the original value.

Figure 7.8

Action
Edit the SaleItem subform in Design

view.
Right click the QOH box and build code.
Select the AfterUpdate event.
Add code to refresh the row and subtract

QuantitySold from QuantityOnHand.
Test the form.

QuantityOnHand =
QuantityOnHand -
QuantitySold

119Chapter 7: Database Integrity and Transactions

But it does not do you any good within the Enter event. As soon as the event is
finished, the subroutine ends and the number will be discarded. The AfterUpdate
event cannot refer to data in other events. You need a place to temporarily store
the OldQuantity value so that it will be available to the AfterUpdate calculation.
The solution is to create a new variable on the form code page that is outside of all
of the events, making it accessible to all of them. Before modifying the code, you
should open the Inventory table and correct the total to nine units.

 Figure 7.9 shows the new code to update the inventory. The value for Old-
Quantity is assigned in the Enter event. By declaring the variable outside of the
individual routines, it is global to the form and exists as long as the form is open,
and can be used by any routine on the form page. Notice the use of the condition
to handle the case where the QuantitySold is missing (null). Without this test, the
code might crash if the data is missing. Null values in operations lead to more null
values, or sometimes a total crash if Null cannot be converted to an integer. When
you have entered the code, save and close the subform. Run the Sale form and
return to the new sale. Change the QuantitySold value from one to two and watch
the QuantityOnHand change from nine to eight, just as it should.

This trick with events is impressive, but not perfect. What else could go wrong?
Think about other possible changes. What happens if the clerk selects a different
SKU after the QuantitySold has been updated and the QuantityOnHand has been
changed? To handle this problem, you would have to add the quantity back to
the QuantityOnHand for the original SKU, and then subtract it for the new SKU.
Or what if the user deletes the SKU item or even the entire order? You need to
add the original QuantitySold back to
the QuantityOnHand before the row is
deleted. Although these issues seem to
be similar to the first problem, they are
harder because they require changing
a QuantityOnHand value for an SKU
that is no longer displayed on the form.
You will have to write SQL commands
that can execute changes directly to the
database.

Figure 7.9

Option Compare Database
Option Explicit

Dim OldQuantity As Integer

Private Sub QuantitySold_AfterUpdate()
 Me.Refresh ‘ Save data for new rows
 QuantityOnHand = QuantityOnHand - QuantitySold + OldQuantity
End Sub

Private Sub QuantitySold_Enter()
 If IsNull(QuantitySold) Then
 OldQuantity = 0
 Else
 OldQuantity = QuantitySold
 End If

End Sub

Action
Open the SaleItem subform in Design

view.
Choose View/Code.
Add and modify the code as specified to

handle changes in quantity.
Test the form.

120Chapter 7: Database Integrity and Transactions

Activity: Building and Executing SQL Commands in Code
Remember the power of the DML
SQL commands (INSERT, UPDATE,
and DELETE). In most cases, they are
too powerful to trust to typical users.
(Oops, half the database has just been
deleted!) On the other hand, they are
useful within your code when you need
to make changes automatically. You
might have a form that collects a few
pieces of information and then builds
an SQL command that can be executed
immediately. Or, as in the inventory
case, your code might have to update a
row of data that is not displayed on the
form. This latter situation arises when a
clerk changes the value of the SKU item being sold. Figure 7.10 shows the chang-
es needed in the Inventory table. When the first SKU (950049) is entered, your
code subtracts the two units from the quantity on hand. When the clerk changes
the SKU to 950050, you need code to add the two units back to the 950049 row
and subtract them from the 950050 row. The code for subtracting the 2 units from
the new row is straightforward because it is the current row and the correspond-
ing quantity on hand is directly accessible. The catch is that the old row (950049)
is no longer active, and you will have to write an SQL statement to change the
value.

Again, you need to keep track of the original value of the SKU. As shown in
the first part of Figure 7.11, your code for the combo box Enter event stores the
current SKU value in a temporary variable. Be sure you create the new variable at
the top of the form. Then, if the SKU is changed in the combo box, the code first
updates the QOH for the current SKU (950050). It then creates an SQL statement
to update the QOH for the prior SKU. Before attempting to write the code, think
about how you would write the SQL statement by hand. If you want to add two
units back to QuantityOnHand for the 950049 SKU, it would be: UPDATE Inven-
tory SET QuantityOnHand = QuantityOnHand + 2 WHERE SKU = ‘950049’.

Figure 7.10

Action
Open the SaleItem subform in Design

view.
Add the oldSKU variable.
Add the SKU event code as described.
Place a breakpoint in the code before the

Execute line.
Test the form by changing an SKU

number.
Examine the SQL line before it runs.
Add the delete code as shown.
Test multiple changes to validate the

code.

950049 10

950050 10

8

8

10Enter SKU 950049, Quantity 2

Change SKU to 950050

SKU QOH
subtract

subtract for 950050

add back for 950049

121Chapter 7: Database Integrity and Transactions

The UPDATE statement is straightforward, but you have to be careful to in-
clude the quotes around the SKU value. The table definition declares the SKU
as a text column—just in case the store wants to use nonnumeric codes in the
future. Consequently, all SKU values have to be enclosed in quotes within an SQL
statement. Figure 7.11 shows how the SQL string is built in pieces. First, the lit-
eral portion “UPDATE …” is created. Next, the value of the QuantitySold is ap-
pended with an ampersand (&), followed by more literal text “WHERE …” that
also includes the first single quote mark. The old SKU value is then appended,
followed by the trailing single quote character. To test this code, you should place
a breakpoint on this line, then examine the string that gets assigned to make sure
it is correct. In particular, double-check that there are spaces between the words.
If you have a complex SQL statement that does not seem to work but you cannot
identify the problem, you can display the value in the Immediate window. Then
copy the statement and return to Access to build a new query. Paste the SQL state-
ment into the SQL query window and run it. Access will give you more detailed
error messages. The final part of the code simply creates a new Active Data Object
Database (ADODB) command. It connects to the current database and runs the
SQL statement.

Maintaining quantity on hand is a good way to learn the details of form events.
It forces you to think about how users interact with the form and the effects of
user changes. As a developer, you must always think of different ways that people
will use your application. Always assume that someone will follow a different
path and consider how that will affect the data. Now, what happens if a user de-
letes an item from the list of sale items? If your code has already subtracted units
from inventory, you must restore those values. This process is similar to the two
cases already examined. But it is more difficult because Access allows users to
delete multiple rows at one time. You need code that captures each SKU and the
corresponding quantity. Then, when the rows are deleted, your code goes through
the list of deleted items and restores the quantity on hand for each entry. Handling

Figure 7.11
Private Sub cboSKU_Enter()
 If IsNull(cboSKU.Value) Then
 OldSKU = “-1”
 Else
 OldSKU = cboSKU.Value
 End If
End Sub
Private Sub cboSKU_AfterUpdate()
 If OldSKU <> “-1” And Not IsNull(QuantitySold) Then
 QuantityOnHand = QuantityOnHand - QuantitySold
 Dim sql As String
 sql = “UPDATE Inventory SET QuantityOnHand = QuantityOnHand + “ _
 & QuantitySold & “ WHERE SKU=’” & OldSKU & “’”

 Dim cmd As ADODB.Command
 Set cmd = CreateObject(“ADODB.Command”)
 cmd.ActiveConnection = CurrentProject.Connection
 cmd.CommandText = sql
 cmd.Execute
 End If
End Sub

122Chapter 7: Database Integrity and Transactions

this list efficiently requires a dynamically created array. A complete description of
the code would be too long for this lab. However, Figure 7.12 shows the code so
your application can be complete. Notice that two events are used: Delete and Af-
terDeleteConfirm. The Delete event is triggered once for each row being deleted,
so this is where the SKU and QuantitySold values are collected and stored in tem-
porary arrays. The AfterDeleteConfirm event is fired once—when users agree to
delete the rows. At this time, a loop updates the QOH for each of the saved values,
using an SQL statement that is executed in a separate routine.
Activity: Define Transactions
Transactions consist of multiple chang-
es that must succeed or fail together.
Access provides some support for
transactions using the ADODB transac-
tion code. However, you need to know
that Access does not provide a backup
journal log. If the system crashes in the
middle of a transaction, it wipes out
the transaction point. That is, all of the
updates will fail: there is no easy way
to find the point at which they failed or
to know which transactions to restart.

Figure 7.12

Action
Create the Rental Discount form in

Design view.
Add the text boxes and button.
Save the form.
Open the Rental form in Design view.
Add a button to open the Discount form.
Modify the open code as indicated.
Run the form and test the button.

Dim DelQuantity() As String
Dim DelSKU() As String
Dim nDel As Integer
Private Sub Form_Delete(Cancel As Integer)
 If IsNull(cboSKU.Value) Or IsNull(QuantitySold) Then Exit Sub
 If (nDel = 0) Then
 ReDim DelQuantity(Me.CurrentView)
 ReDim DelSKU(Me.CurrentView)
 End If
 DelSKU(nDel) = cboSKU.Value
 DelQuantity(nDel) = QuantitySold
 nDel = nDel + 1
End Sub
Private	Sub	Form_AfterDelConfirm(Status	As	Integer)
 Dim i As Integer
 For i = 0 To nDel - 1
 DeleteOneRow DelSKU(i), DelQuantity(i)
 Next i
 nDel = 0
End Sub
Private Sub DeleteOneRow(ByVal SKU As String, ByVal Qty As String)
 Dim sql As String
 sql = “UPDATE Inventory SET QuantityOnHand = QuantityOnHand + “ _
 & Qty & “ WHERE SKU=’” & SKU & “’”
 Dim cmd As ADODB.Command
 Set cmd = CreateObject(“ADODB.Command”)
 cmd.ActiveConnection = CurrentProject.Connection
 cmd.CommandText = sql
 cmd.Execute
End Sub

123Chapter 7: Database Integrity and Transactions

But, at least you will not end up with half a transaction completed and the rest
missing.

Katy, the manager at All Powder, has noticed that many customers do not like
being charged for damages caused to the rental equipment. Some of them believe
that the equipment has simply worn out and failed. She has also noticed that there
can be several complaints about a specific rental—particularly when it involves
multiple items. David, the rental manager, agrees, but still wants to be able to
track the cumulative charges. He has suggested that any reduction in the damage
charge be recorded as a discount to that customer. That way, he can track the to-
tal damages, as well as which customers might receive the most discounts. Katy
also likes the discount idea, because she wants to implement a discount program

Figure 7.13

Figure 7.14

Button to open
discount form

124Chapter 7: Database Integrity and Transactions

for employees who rent equipment. Since multiple discounts can be applied to a
single rental, a new table is needed. Figure 7.13 shows the table keyed by both
RentID and DiscountDate.

You can build a form to handle data entry for the employee discounts, but do
not do that now. It is a little more complicated to correctly handle the customer
discounts for disagreements over the damage charges. You need a transaction that
decreases the repair charges and adds a row to the RentalDiscount table for the
same amount. To begin, you need to create a Rental form similar to the Sales
form. Figure 7.14 shows a standard Rental form. Notice that it needs subtotals for
the rental amount and for the charges. Any repair charges would be entered when
the items are returned. Eventually, you also need to add a standard command but-
ton to open the form to give the discounts, but it is easier to create the form first
and then return to add the button on the Rental form.

Figure 7.15

Figure 7.16

RentID and
Amount are
filled in by
code on the
Rental form

Date default
value is set to
=Now()

This is an unbound form built from design view with
no Record Source

Private Sub cmdDiscount_Click()
On Error GoTo Err_cmdDiscount_Click
 Dim stDocName As String
 Dim stLinkCriteria As String

 stDocName = “GiveRentDiscount”
 DoCmd.OpenForm stDocName, , , stLinkCriteria
 Forms!GiveRentDiscount!txtRentID = RentID
 Forms!GiveRentDiscount!txtDiscountAmount = SubTotalCharges

Exit_cmdDiscount_Click:
 Exit Sub

Err_cmdDiscount_Click:
 MsgBox Err.Description
 Resume Exit_cmdDiscount_Click
End Sub

125Chapter 7: Database Integrity and Transactions

 Figure 7.15 shows the Discount
form (GiveRentDiscount). It is built
from the blank form design view and
not tied to the database. Add the text
boxes by hand and be sure to give them
names, such as txtRentID. Set the de-
fault value on the date field to Now(),
so the current date and time are entered
by default. You can manually add the button, but if the wizard creates any code for
the Click event, keep the subroutine, and delete all of the code from inside of it.
Save the form.

The next step is to place a button on the Rental form that will open this Dis-
count form and transfer two values automatically: RentID and Amount. Figure
7.16 shows the code used on the Rental form button. The wizard to open a form
generated most of the code automatically. You only have to add the two lines that
transfer the RentID and Charges to the Discount form. You do that by assigning
the values on the current Rental form to the corresponding text boxes on the dis-
count form by using the name of the Discount form and the desired text box. Save
the forms and test the data transfer.

 The code for handling the actual discount is a little more complex. One com-
plicating factor is the question of how to apply the discount. Should the charges be
subtracted from one of the rental items or several of them? If the managers want
to subtract only some of the charges, you will need to implement a mechanism
on the Discount form to identify which charges should be reduced and by what
amount. You might add a drop-down list to do one item at a time, or a subform
with text boxes on each line. Either way, the process becomes too complicated for

Action
Open the Rental Discount form in Design

view.
Add the specified code to the button click

event.
Test the forms.

Private Sub cmdDiscount_Click()
 Dim cmd As ADODB.Command
 Dim SQL1 As String, SQL2 As String
 Set cmd = CreateObject(“ADODB.Command”)
 cmd.ActiveConnection = CurrentProject.Connection
 SQL1 = “UPDATE RentItem SET RepairCharges=0 WHERE RentID=” & txtRentID
 SQL2 = “INSERT INTO RentalDiscount (RentID, DiscountDate, DiscountAmount, Reason)” & _
 “ VALUES (“ & txtRentID & _
 “, #” & txtDiscountDate & “#” & _
 “, “ & txtDiscountAmount & _
 “, ‘” & txtReason & “’)”
 On Error GoTo Err_DiscountTrans
 cmd.ActiveConnection.BeginTrans
 cmd.CommandText = SQL1
 cmd.Execute
 cmd.CommandText = SQL2
 cmd.Execute
 cmd.ActiveConnection.CommitTrans
 lblMessage.Caption = “Changes recorded.”
Exit1:
 Exit Sub
Err_DiscountTrans:
 cmd.ActiveConnection.RollbackTrans
 lblMessage.Caption = Err.Description
 Resume Exit1
End Sub

Figure 7.17

126Chapter 7: Database Integrity and Transactions

this lab. The code in Figure 7.17 assumes that all repair charges are being reduced
to zero. The first SQL statement updates the RentItem table and sets the repair
charges to zero for the specified RentID. The second SQL statement records the
change by inserting a new row into the Discount table. The string is built by ap-
pending the values from the form text boxes. Notice that the date is surrounded
by pound signs (#), and the reason by single quotes (‘). Since the code requires
changes to two tables, the BeginTrans function is called on the database connec-
tion to establish the start of the transaction. If no problems arise, the code executes
linearly and commits the two changes to the database. A simple message is then
displayed on the form and the code exits.

Notice the use of the ON ERROR GOTO statement to handle potential errors.
This line states that if something goes wrong in the processing, the computer will
immediately jump to the specified location in the code (Err_DiscountTrans). Here,
the error message is written to the form, and the transaction is rolled back. The
code then exits the subroutine. This error control structure is commonly used in
this version of Visual Basic. In fact, the command button wizards write this code
for all of the routines. However, you will have to add customized code to the error
routines. For example, you should at least display the error message so you and
the users know something went wrong. Also try to handle the error and clean up
the database where possible.

Database Cursors, Keys, and Locks

Activity: Read Rows of Data
Direct SQL commands are useful for
DML issues where you need to change
or delete rows of data. When you need
program code that has to examine sev-
eral rows of data, you should use da-
tabase cursors. Consider the business
question of sales by week. Katy wants
to know if weekly sales increase more
in the first part of the year or in the last
part. In particular, she wants to know
the average percent increase in weekly sales for the first weeks (1 to 15) compared
to the last 15 weeks (38 to 52). Remember that SQL can perform calculations on
data within the same row. SQL can also compute subtotals for groups of data.
However, it is difficult to get SQL to compare data by subtracting values across
two rows. Instead, it is easier to write a query that does the main computations,
and then use cursor code to do the comparisons.

Begin by creating a query that computes total sales by week. Figure 7.18 shows
that the query is slightly tricky. You can use the Format(SaleDate, “ww”) state-
ment to convert the date to week of the year. However, because the Format func-
tion returns a string for the week number, it does not sort correctly. So you have to
use the Val function to convert the weeks into values that are sorted numerically.
Run the query and you will see that it returns the total value of sales for each week
of the year. Note that there are 53 weeks instead of the expected 52, but the last
week does not have seven days. The issue of 52 and 53 weeks per years is impor-
tant when setting up accounting systems for retailers but can be ignored for this
lab. Save the query as qryWeeklySales and close it.

Action
Create a new query in Design view.
Tables: Sale and SaleItem.
Create column SaleWeek:

Val(Format([SaleDate],”ww”)).
Create column Value:

[QuantitySold]*[SalePrice]).
Sum the Value column.

127Chapter 7: Database Integrity and Transactions

The next step is to compute the per-

centage change between the rows. Be-
cause you will need code for this step,
begin by creating a new form in Design
view. Add a command button and a text
box to display the result. Give mean-
ingful names to both controls, such as
txtAverage. Figure 7.19 shows the ba-
sic form.

The next step is to write the code that computes the average percent increase.
For each pair of rows, the code needs to subtract the two values and divide by the
value in the prior row to yield a percentage change. This percentage needs to be
summed and eventually divided by the number of calculations to obtain the aver-
age percent increase. Figure 7.20 shows the main code. The SQL statement is
opened as a recordset, which retrieves one row of data at a time. The avg1 variable
keeps the running total of the percentage increase, while n counts the number of
operations. The role of the “prior” variable is the most important. At the end of the

Figure 7.18

Figure 7.19

Action
Create a new blank form.
Add a button.
Add a text box named txtAverage.
Add the specified code to the button
Run the form and test the code.
Place a breakpoint and step through the

code as it runs.

Val(Format([SaleDate], "ww)")

128Chapter 7: Database Integrity and Transactions

loop, it is assigned the value obtained from the current row. When the next row is
retrieved, the program can now compare the current (new) value to the old (prior)
value. This trick is useful for many cursor-based programs, so you should study
the code until you understand it. You should also place a breakpoint at the start of
the code and then step through it line by line so you can see how it operates.
Activity: Generate and Use Keys
Access uses the AutoNumber field type
to indicate when a key should be gener-
ated. For standard forms, the process is
relatively automatic. For example, the
Customer table uses AutoNumber for
the CustomerID. Whenever a new cus-
tomer is added in the Customer form,
a new value is generated and stored
automatically. For many common op-
erations, this process works well and is
mostly invisible to the user and devel-
oper. However, some cases cause more
problems—particularly when you need to perform operations outside the common
forms. Consider a case where you need custom code to generate each sale and

Dim rst As ADODB.Recordset
Set rst = CreateObject(“ADODB.Recordset”)
Dim SQL As String
SQL = “SELECT SaleWeek, [Value] FROM qryWeeklySales”
rst.Open SQL, CurrentProject.Connection, adOpenStatic, adLockReadOnly
Dim avg1 As Double, n as Integer
Dim prior As Currency
Dim prior as Currency
prior = -1
Do Until rst.EOF
 If (prior > 0) Then
 avg1 = avg1 + (rst(“Valu”) - prior) / prior
 n = n + 1
 End If
 prior = rst(“Value”)
 rst.MoveNext
Loop
rsc.Close
Me.txtAverage = avg1 / n

Figure 7.20

Open the SQL statement or table

Skip the first week because there
is no prior value

Compute the percent change and
keep a running total

Save the current value and move
to the next row

Action
Create a new blank form.
Add boxes for CustomerID,

EmployeeID, SKU, and txtSaleID as
the generated key.

Create a command button and add the
indicated code.

Test the form.
Place a breakpoint at the top of the code

and step through the code.

Customer ID card is scanned

Create new sale

Scan an item

Save sale item, update QOH and totals

Repeat until done (payment key)

Get SaleID

Save SaleID, SKU, Quantity

Figure 7.21

129Chapter 7: Database Integrity and Transactions

enter the sale items. For example, perhaps you have a barcode scanner and want to
automate as much of the checkout process as possible.

Figure 7.21 outlines the basic events that will occur. Notice that when the new
Sale is created, Access will generate a new key value. You need to get this value
so that you can save it in the SaleItem table for each scanned item. The immedi-
ate question is how do you get this value? This question is somewhat challenging
to answer and highlights one of the biggest problems with using AutoNumber.
The other issue with AutoNumber is that the techniques are not portable to other
systems.

The most important issue to recognize is that you cannot get a reliable value
for the generated key if you use an SQL DML command. For example, if you is-
sue an INSERT command on the Sale table, Access will automatically generate
and insert a new key value for SaleID. However, there is no way to know what
value was generated. You may consider issuing a select statement using the other
columns in a complex where clause. But if you do, there is no guarantee that those
values are unique, so you cannot be completely certain that you will obtain the
correct SaleID value. However, there is a way to use cursor code to obtain the
newly generated value.

Even if you have a scanner handy, you probably do not want to write the inter-
face code for it. To simulate the data from the scanner, begin by creating a form in
Design view that has text boxes for the three main keys: CustomerID, Employee-
ID, and SKU. Figure 7.22 shows a sample form with default values that will work.
Add a command button and delete the main wizard code. Also, add a text box to
display the SaleID that will be generated within the code.

 Figure 7.23 shows the code that runs the process. First, a query is used to look
up the ListPrice of the scanned SKU. Second, a new sale row is created and the
foreign key values of CustomerID and EmployeeID are entered into the row along
with the current date. When these values are added, Access generates the new
SaleID key value, so you need a line of code to capture this value and save it in
a variable. Otherwise, the value will disappear when the sale recordset is closed.
Third, a new SaleItem row is added. The SaleID stored in the temporary variable
is placed into the data row, along with the values for the SKU, ListPrice as the

Figure 7.22

IDs and SKU would be scanned, but
to test code, set default values

130Chapter 7: Database Integrity and Transactions

SalePrice, and a QuantitySold of one unit. Calling the Update method saves the
data to the database, and the recordset can be closed. The last step is to display the
newly generated SaleID on the form so you can see it. If you open the main Sale
form and go to the last record, you should see this new sale with one item having
been sold. Of course, you could modify the code to handle multiple items scanned,
along with a screen to add the payment data, but they are not needed at this point.
This trick of using cursor code to add a row and entering at least one column value
is the only way to guarantee that you
get the generated key value in Access.
Activity: Compare Pessimistic and
Optimistic Locks
The issue of locking records to prevent
concurrency errors could be applied to
the rental discount form. Think about
the possible errors if one clerk enters

 Dim sqlSale As String, sqlItem As String, sqlSaleItem As String
 Dim rstSale As ADODB.Recordset, rstModel As ADODB.Recordset
 Dim rstSaleItem As ADODB.Recordset
 Set rstSale = CreateObject(“ADODB.Recordset”)
 Set rstModel = CreateObject(“ADODB.Recordset”)
 Set rstSaleItem = CreateObject(“ADODB.Recordset”)

 sqlSale = “SELECT SaleID, CustomerID, EmployeeID, SaleDate FROM Sale”
 sqlItem = “SELECT ModelID, ListPrice FROM Inventory INNER JOIN ItemModel ON “ & _
 “Inventory.ModelID = ItemModel.ModelID WHERE SKU=’” & SKU & “’”
 sqlSaleItem = “SELECT SaleID, SKU, SalePrice, QuantitySold FROM SaleItem”

 Dim cnn As ADODB.Connection
 Set cnn = CurrentProject.Connection
 ‘ Get the List Price for the SKU
 rstModel.Open sqlmodel, cnn, adOpenStatic, adLockReadOnly
 Dim ListPrice As Currency
 ListPrice = rstModel(“ListPrice”)
 rstModel.Close
 ‘ Open the Sale table and create a new sale
 rstSale.Open sqlSale, cnn, adOpenDynamic, adLockOptimistic
 Dim SaleID As Long
 rstSale.AddNew
 rstSale(“SaleDate”) = Now
 rstSale(“CustomerID”) = CustomerID
 rstSale(“EmployeeID”) = EmployeeID
 SaleID = rstSale(“SaleID”)
 rstSale.Update
 rstSale.Close
 ‘ Add the SKU to the SaleItem table using the new SaleID
 rstSaleItem.Open sqlSaleItem, cnn, adOpenDynamic, adLockOptimistic
 rstSaleItem(“SaleID”) = SaleID
 rstSaleItem(“SKU”) = SKU
 rstSaleItem(“SalePrice”) = ListPrice
 rstSaleItem(“QuantitySold”) = 1
 rstSaleItem.Update
 rstSaleItem.Close
 txtSaleID = SaleID

Figure 7.23

Action
Create a new blank form.
Add a combo box to select customers.
Add a text box to enter a new ZIP Code.
Create a button and add the indicated

code for it.
Test the form.

131Chapter 7: Database Integrity and Transactions

new values for damages while a second one is offering a discount. However, the
differences between pessimistic and optimistic locking are difficult to understand,
and it is better to start with a simple problem that is independent of the other
forms. Consider a program that changes ZIP Codes for customer data.

Create a new form in Design view that is not bound to the database. As shown
in Figure 7.24, add a combo box to select a customer. Add a text box to enter a
new ZIP code. Create a command button that will execute the code to change the
ZIP Code for the selected customer. If you use the wizard to add the button, edit
the wizard code to leave the error-handling code, but remove the one or two lines
of working code.

Figure 7.25 shows the code used to update the ZIP code for the selected custom-
er. The SQL statement selects the desired customer through the WHERE clause,
and the new ZIP code is assigned using the data cursor.

You need two processes that change the same data to test the data locks and
concurrency. To be able to see the effects of locks, create a quick and simple form
to view a few of the columns of the Customer table. Use the form wizard to create
a form based on the Customer table showing CustomerID, LastName, FirstName,
and ZIP. Choose the datasheet view so you can see several rows at one time. Fig-
ure 7.26 shows the basic form. To display this form and the TestLock form at the
same time, remember that you have to switch to Windows view.

By default, Access forms are set to optimistic locking, and it is the form lock-
ing that is easiest to test. Open both forms and position them on the screen so you
have easy access to both of them. Click on the ZIP code for the first customer and

Combo box to
select customer

Figure 7.24

 Dim rst As ADODB.Recordset
 Set rst = CreateObject(“ADODB.Recordset”)
 Dim SQL As String
 SQL = “SELECT CustomerID, ZIP FROM Customer “ & _
 “ WHERE CustomerID=” & cboCustomerID
 Dim cnn As ADODB.Connection
 Set cnn = CurrentProject.Connection
 rst.Open SQL, cnn, adOpenDynamic, adLockOptimistic
 rst(“ZIP”) = NewZIPCode
 rst.Update
 rst.Close

Figure 7.25

132Chapter 7: Database Integrity and Transactions

change the last digit. But keep the cursor inside the ZIP box; that is, do not press
the Tab or Enter keys.

Switch to the CustomerLocks form, select the first customer in the combo box.
Enter a new ZIP in the text box. Then click the button to submit the changes. You
should not receive any error messages. Return to the CustomerLocks forms and
press the Tab key to accept the changes. Figure 7.27 shows the error message you
will receive, indicating that another process (the TestLocks form) has changed the
same data before you finished editing the value. You are given the choice of ac-

Figure 7.26

Figure 7.27

Change the ZIP but
do not leave the cell

Select the first
customer, enter a ZIP
code and change it

Switch back
here and Tab
out of the cell

Error message
that value was
changed

133Chapter 7: Database Integrity and Transactions

cepting the new value (Drop Changes)
or of forcing your changes to overwrite
the change made by the TestLocks form
(Save Record). The key to understand-
ing that this process uses optimistic
locks is to recognize that even though
you began by editing the form, Access
still allowed the TestLocks program to
change the underlying data.

You can set pessimistic locks on any
form by setting its properties. Switch to the CustomerLocks form in Design view
and find the Record Locks property. Currently, it is set to “No Locks.” Change this
value to “Edited Record,” which will assign a pessimistic lock to any row edited
on the form. Return to the runtime view of the form. Again, make a change to the
ZIP code for the first customer, then click on the TestLocks form. Make sure the
first customer is selected and a new ZIP code is specified, then click the Change
button. Figure 7.28 shows the result of these steps. The code on the TestLocks
form is prevented from making changes to this row of the customer data because
the row is locked. The error trapping on the TestLocks form catches the error,
skips the update, and displays the error message. If you check the underlying Cus-
tomer table, you will see that the data has not been changed. Close the error mes-

Action
Create a CustomerLocks form as a

datasheet into the Customer table.
Run the form.
Edit a ZIP code but do not leave the cell.
Switch to the new form and run it for the

same CustomerID.
Return to the table and press the Tab key.

Select the first
customer, enter a ZIP
code and change it

Change the ZIP but
do not leave the cell

The change is not
made and the error is
trapped because the
row is locked

Figure 7.28

134Chapter 7: Database Integrity and Transactions

sage box and return to the Customer-
Locks form. Press the Tab key to switch
to a new row and complete the update.

The choice of pessimistic or optimis-
tic locking depends on how often you
expect collisions to arise and on how
you want to handle them. Optimistic
locking is considerably more efficient
and is the preferred solution. However,
all of your update code will need an
error-handling section that recognizes
an update has occurred and makes a de-
cision of how to proceed. Figure 7.27
shows that forms automatically handle the problem by displaying the two main
choices. Essentially your code would have to create the same form. For example,
you could create a more sophisticated message box in the TestLocks error section
that offers the two main choices. Figure 7.29 shows the foundations of the code.
The error handler displays the message and lets the user choose to retry or can-
cel the operation. The Cancel option discards the current changes and allows the
changes made by the other process to remain. The Retry option cancels the current
operations to be safe and then restarts the changes which should now succeed (un-
less some process intervenes again).

This code is difficult to see in operation and hard to test. To trigger the error,
you would have to add a delay in the middle of the update code, which would give
you enough time to switch to the other form and make an intervening change. Un-
fortunately, Access does not have an internal Wait function, so you would have to

write one using the Timer function. But if you have time, you should test the code
to see that it correctly handles changes under optimistic locking.

Action
Switch to Design view on the change

form and add the specified error-
handling code.

Open the CustomerLocks form in Design
view and set the Record Locks property
to Edited Record.

Run both forms.
Change a ZIP Code in CustomerLocks.
Enter a new ZIP Code in the change form

for the same customer.

RetryUpdate:
 rst.Open SQL, cnn, adOpenDynamic, adLockOptimistic
 rst(“ZIP”) = NewZIPCode
 rst.Update
 rst.Close

Exit_cmdNewZipCode_Click:
 Exit Sub

Err_cmdNewZipCode_Click:
 If (MsgBox(Err.Description, vbRetryCancel) = vbCancel) Then
 Resume Exit_cmdNewZipCode_Click
 End If
 rst.Cancel
 rst.Requery
 Resume RetryUpdate

Figure 7.29

135Chapter 7: Database Integrity and Transactions

Exercises

Many Charms
Inventory control is a critical success factor for determining profitability at Many
Charms. Madison and Samantha need to watch the quantity on hand—particularly
for the high-cost items. The suppliers are a complicating factor. Some of them are
known for being inconsistent in delivering items ordered. As a result, Samantha
and Madison have to carefully check every shipment they receive and cross-match
it to the orders. Many times the shipment is missing items, and once in a while,
the companies send items that were not ordered. These items have to be returned,
but the supplier billing is just as bad. Madison has to watch the supplier bills
continually to ensure that they are billed only for items they actually ordered and
received. As a result of problems, she also wants to track the unordered items that
were sent back, so if they show up on a bill, she can provide the details of when
the item was returned.
1. Create a form to handle purchase orders to suppliers. Create a second form to

handle received shipments. Be sure that it can handle receipt of partial orders
and track the day that each partial order arrives. It must also handle receipt of
unordered items (which should be stored in a separate table).

2. Add a button to the Received Orders form so that if they receive an
interesting unordered item, it can be added to the orders and inventory and
paid for. Create it as an entirely new order and be sure to handle optimistic
locks and transactions.

3. Create a form that enables Madison to select product and metal categories,
and then enter a percentage price increase. Write the SQL update code so that
this increase is applied to the list price of the selected categories.

4. The company ships orders to three states, each of which charge different rates
of sales tax. Write a function that takes the state code and the amount and
returns the tax due.

5. Create a form and write a program that for a given type of charm and type of
metal, computes the average of (1) the number of days between sales of that
item, and (2) the average number of days between purchase orders for that
item.

Standup Foods
While food items and celebrities are important aspects of the business, the day-
to-day operations depend on managing the employees. In particular, Laura wants
to reward the workers who continue to do well. The evaluation and rating system
she has implemented is a major component of this plan. Now, she has to set up the
system to make it easy to use so everyone can enter the necessary data. She also
needs a way to analyze the data to help managers select the best employees for the
next job, and to reward people who do well.
1. Create a form to enter data about an event, with an emphasis on the jobs

performed by the employees and their evaluations. Make sure the form
includes the revenue received from the event, the costs, and the dates
involved. Create a separate form to enter and display data about employee
specializations.

136Chapter 7: Database Integrity and Transactions

2. Create a form for Laura that lets her select a job category and then displays
the top-rated employees in that category. (Hint: Create a subform and modify
its Record Source query using code.) Create a text box so Laura can enter an
average rating as a cutoff value. Create a second text box so Laura can enter
a percentage raise increase. Add a button and write the code to give that raise
increase to all of the selected employees.

3. Sometimes managers need to hire part-time workers on the spot. Create a
simple form that lets managers add basic employee data without allowing
them to see or change data for other employees.

4. Workers often want to estimate how much money they will make after all
withholdings are deducted. Calculating withholdings is a complex process,
but create a simple version to use as an estimate. The function should include
number of exemptions, wage rate, and hours worked as inputs. It returns an
estimate of the take-home pay. Use sample paychecks or research the Internet
to estimate the tax withholding based on the number of exemptions. Create
a simple form so employees can plug in these three values and receive the
estimate.

5. Laura needs to provide some documentation to the bankers regarding the
firm’s growth. Create a new table with columns for month, revenue, costs,
and percent change for revenue and cost. Write a query to compute the total
revenue and costs per month and insert those values into the new table. Write
a cursor-based program to compute the percent changes and insert the values
into the appropriate columns.

EnviroSpeed
Tracking the knowledge of the workers and experts along with recording the expe-
riences obtained in the many cleanup situations is a primary element of the com-
pany. You need to create forms that make it easy for workers to enter the data and
knowledge gained. However, for the company to stay in business, you also need to
track costs and revenue. Revenue is generally straightforward—the company bills
based on the underlying costs, but payments are generally received over time. You
will need a form to record receipt of payments by the customers.
1. The company is trying to standardize its fee structure. Write a function

that has inputs for the cost of the crews, the cost of expert time, the cost of
chemicals, transportation costs, the cost of equipment, and miscellaneous
costs. Compute a billing fee based on a percentage profit from each of
these costs (crews: 20 percent, experts: 30 percent, chemicals: 15 percent,
transportation: 10 percent, equipment: 50 percent, miscellaneous: 15
percent). Also include a $50,000 fixed cost for overhead.

2. Create a form that enables managers to quickly put together a crew in an
emergency. The form will have selection boxes for specialty and years of
experience (subtract date hired from today). Clicking a button will retrieve a
list of crew members meeting the desired conditions. Double-clicking on a
name should add that person to the crew required for this disaster.

3. In the middle of an incident, crew members still need to record all of the
details so they can be retrieved later. Create a form that enables them to
enter the needed information. Be sure to include a way to quickly add a list

137Chapter 7: Database Integrity and Transactions

of chemicals encountered in the incident. They should primarily be able to
select from a known list, but they sometimes encounter new chemicals. Be
sure to control for concurrency, since several people may be entering data at
the same time.

4. Write a program that evaluates payments by each customer. Assuming
payments are due at the end of each month, assesses an interest charge of
one-half percent of the outstanding balance. Also, assess a late fee of $200
for each month that a payment is late. Automatically add these values to the
customer’s balance. Note: You will have to enter several payments and late or
missing payments to test the function.

5. Enter enough sample incident data to cover at least a year. Write a cursor-
based program to calculate and display the percent increase in revenue per
month.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following tasks.
1. Make the forms easier to use by automating as many tasks as possible.
2. Examine the case for situations where you can use SQL to update records

selected by the users. For example, consider price increases, employee raises,
and automated inventory orders.

3. Look for potential reports that require comparing data over time. Write the
cursor-based code to generate the necessary change data.

Objectives

Build applications that connect forms and reports.•	
Add toolbars and menus to forms.•	
Add	Help	files	to	the	database	application.•	

Chapter Outline

Applications
8Chapter

Applications, 139
Case: All Powder Board and Ski Shop, 139
Lab Exercise, 140

Building the All Powder Application, 140
Exercises, 150
Final Project, 151

139Chapter 8: Applications

Applications
The main purpose of the DBMS is to store data efficiently and provide queries to
retrieve data to answer business questions. But from the perspective of businesses,
the true value of the DBMS lies in the applications that can be built on top of the
database. Chapter 6 shows you how to build the forms and reports that make up
the heart of an application. This chapter shows you the additional steps needed to
make the application integrated and easy to use.

A finished application contains all of the forms and reports needed to solve a
particular problem. It also needs finishing touches such as menus and other navi-
gation links between forms. Additionally, you usually have to create Help files to
provide assistance to users when they first learn the system.

Case: All Powder Board and Ski Shop
The primary application at All Powder Board and Ski Shop is the need to track
sales and rentals. Of course, these applications also require you to build forms
and reports for inventory items and customers as well. As shown in Figure 8.1,
these forms and reports are integrated into a common style and structure. A startup
form is often used to direct users to the rest of the application. Buttons are used to
link to forms and reports. You can also create custom menus to highlight the main
operations available to users on a particular form. Finally, you need to build help
files to provide additional information or instructions to users.

Figure 8.1

Startup form

Help files

Startup
form

Custom ribbon

Integrated
forms and
reports

140Chapter 8: Applications

Lab Exercise

Building the All Powder Application
Integrating the forms and reports is the first major step in creating the applica-
tion. You need to identify the tasks performed by various user groups. With this
knowledge, you can sets of forms and reports that match the tasks of each group.
While you are integrating the forms and reports, you should also make all of them
consistent. Actually, you should create a design template and standard for an ap-
plication before you begin creating forms and reports. The template contains the
primary elements that you want on every form, such as a menu, logo, title, and
perhaps a Close button. A design standard spells out details such as the fonts, page
sizes, margins, colors, and naming conventions.

Microsoft Access has several predefined formats that you could choose to en-
sure consistency across your application. Technically, it is possible to edit these
styles or create your own. Microsoft even provides an unsupported tool to help
you. Search for the AutoFormat Editing Tool or AutoFormat Editor.zip. You
would then have to publish the changes to every developer’s computer, but it does
simplify editing the styles. Once they styles have been created or modified, they
are used the same as the existing styles, so the process is not discussed in this
chapter.

One of the drawbacks to the styles within Access is that they can be applied
only when the form or report is first built. Consequently, they work best if you
choose a style and layout before you start building any forms and reports. It is
also difficult to include common elements, such as icons and standard buttons.
For these items, you need to create a base form (and report) and copy the elements
whenever you create a new form.

In some cases, you might want to create a database template (accdt file exten-
sion). You can define tables, or connections to a corporate server, along with basic
forms and reports. Users can build a new database using this template and simply
add the new forms or reports they might need for their specific application. For
this level of customization, you should download the free 2007 Access Developer
Extensions (ADE) from the Microsoft Web site.

Figure 8.2

Logo

Title
Close
button

Messages

141Chapter 8: Applications

Activity: Create a Style
When you create a form or a report
with the wizard, one of the last steps
is choosing an overall design. If one of
these designs matches the typical styles
for your organization, you can take a
big step forward by requiring all devel-
opers to use the same style.

On the other hand, if you do want to
create a relatively complex style, you
could create a blank form that contains
the elements you want. You can then
copy the data elements from an exist-
ing form onto the new template. You will still have to assign properties to the vari-
ous textboxes and labels, but the paintbrush tool makes this step relatively easy.
Figure 8.2 shows the primary elements that you will usually include on any form.
You can create this form in design view and save it as TemplateForm.

Unfortunately, the wizard cannot apply this template form when it builds a new
form. It also cannot build the data elements onto this form. So, if you want to use
it you have two choices: (1) Copy the data elements from an existing form onto
this one, or (2) Copy these common elements from the template form onto the
form created by the wizard. Your choice of methods depends on the degree of
customization you create in the template form. Beyond the basic elements placed
on the form, the sample template simply sets the background property to white. In
this situation, it is easiest to use the wizard to generate a new form and then paste
the common elements onto that form. A related approach is to write a short pro-
gram that can assign more complex formats automatically. Essentially, the code

Figure 8.3

Action
Create a blank form in Design View.
Add a logo and sample title.
Add a button to close the form.
Add a label that can be used to display

messages to the user.
Set the message label’s Visible property

to No.
Apply the template form to the Customer

form and save it as CustomerD.

142Chapter 8: Applications

loops through all of the text boxes and labels on the form and applies formats in
terms of colors and font sizes.

Open the existing Customer form and copy the various template elements onto
the form. Set its background color to white. Note that copying a button does not
automatically copy the code for the button. You will have to manually copy the
code, or use the wizard to rebuild it. Figure 8.3 shows the resulting Customer
form with the template objects. You have to follow a similar process for all of the
other forms. You should also follow a similar process to set design standards for
reports.

This approach is not the most elegant method of establishing styles, but lack of
templates is one of limitations in Microsoft Access. Your only other approach is to
write a detailed style sheet that specifies all of the background colors, font sizes,
and form layout elements. Then every developer will follow the style guide to en-
sure that all forms have the same appearance.
Activity: Create the Startup Form
Once you have created the forms and
reports, you need to combine them into
an application. A Startup or Switch-
board form is a key element of an appli-
cation. It is a form that contains links to
the other forms and reports. Generally,
it is easy to create; the challenge lies in
determining how to organize all of the
forms and reports. In most cases, users
will see the application only through
your forms. They will almost never
want to open forms directly from the
Access forms list. You have to create a structure, beginning with the startup form
that guides them through their tasks. This process will often include links on other
forms as well. You will have to test this sequence with the users to make sure that
it matches their job workflow.

Figure 8.4

Action
Create a blank form in Design view.
Set the properties to remove the scroll

bars and navigation buttons.
Add command buttons to open other

forms (Form Operations/Open Form)
and reports.

Use colors and graphics to make the form
appealing.

Run the form and test all buttons.

Start in
design view Add

command
buttons

Open forms
or reports

143Chapter 8: Applications

To create a switchboard form, begin with a new form in Design view. Avoid
the wizard because it severely limits your form. Add labels to place a title on the
form. Use the form’s properties to improve the appearance of the form, removing
the navigation buttons and perhaps adding a picture. Then add buttons that open
the initial forms and reports.

In large applications, you might want to create additional forms that would
function as submenus. For instance, you might have a special menu form just for
administrators. This approach reduces clutter on the main form and hides details
from other users to make their job easier. Figure 8.4 shows the main steps used to
add a command button. In the subsequent steps, you choose the form to be opened
(Sales), and give the button a descriptive label instead of an icon. The wizard also
gives you the opportunity to name the function to match the button (cmdSales).
Giving the functions meaningful names makes it is easier to find the appropriate
routines. You should also add command buttons to the other forms so the users
have all of the necessary commands readily available. For example, you should
include a button on the Sales form to open the Customer form. In this case, use
the wizard option to open the form for the matching customer. You can assign the
menu form to open when the database starts using the Office icon. Click the Office
icon and click the Access Options button. Pick the Current Database options and
choose the startup form in the Display Form combo box. You can use the same
form to assign an application title and icon if desired. When you close the form
and restart, the main menu will open.

Note that Access contains a wizard to build a Switchboard form. This form
does approximately the same thing as the startup form. However, you should
avoid using it. The wizard provides minimal control over layout and style. More
importantly, the resulting form is exceedingly difficult to modify. The approach
described in this section is considerably more flexible and it is easy to modify as
your application changes.
Activity: Customizing Ribbons or Menus
Startup forms and command button
links help users navigate from one
form to another, but in complex ap-
plications, users might need additional
support. Office 2007 replaced standard
menus with ribbons. Although the rib-
bons are difficult to customize by us-
ers, application developers can modify
or completely replace the ribbon op-
tions in Access applications. The rib-
bons provide a convenient location for
quick links to common activities that
are needed in any form. For instance,
you can include a Print button for all
reports, so users always know they can
click one button to print whatever re-
port they are viewing. Replacing the existing ribbon also hides common database
commands from the user—providing some protection by making it harder for us-
ers to change things they should not change, such as table designs. However, re-
member that if users hold down the shift key while starting your database, all

Action
Create a table with columns:

RibbonName (text) and RibbonXML
(memo).

Save it as USysRibbons
Add a row of data: Name=Home,

XML=Figure 8.5
Close and restart the database
Create code in Module1 to handle events
In VBA Editor use Tools/References to

add Microsoft Office 12 Object Library
Use the Office Button to assign the new

ribbon.
Close and restart the database.

144Chapter 8: Applications

startup options will be bypassed, leaving the standard ribbon options. This trick is
actually useful if you happen to replace a ribbon and need to get back to the origi-
nal commands. The challenge is to identify the tasks and options that users need to
have available on the toolbar.

Ribbons are relatively powerful and can contain icons, text boxes, checkboxes,
toggle buttons, and similar controls. In a sense, each tab on a ribbon represents a
miniature form. You add controls and then provide code that responds to various
events, such as a click by the user. You can even create the ribbon options dynami-
cally by specifying program code to be called at various stages in the construction
of the ribbon. These options are described in the Microsoft documentation on the
MSDN Web site. You can find it by searching for “Customizing the 2007 Office
Fluent Ribbon for Developers.” The example provided in this lab is much simpler
and just shows the basics of creating and implementing a new ribbon.

Like many other features in Office, ribbons are based on XML. The exact lay-
out of the XML code is described in the Microsoft documentation, but you can
create a simple tab with a few basic items. However, the first question you face is
where to store the XML. Access provides a simple method—create a special table
to hold the name of the ribbon tab and its XML code. You can also store the XML
in a file or build it programmatically and call a special function to load it into the
database. The table method is easier.

Figure 8.5 shows the XML code to create a new Home tab and populate it with
three buttons. These buttons will eventually be hooked to code that opens the in-
dicated forms. The first step is to create a table to hold the XML that defines the
ribbon. Then you can write the short function to make the buttons work. Create
a table in design mode. Add two columns: RibbonName and RibbonXML. The
name column must be of type text and the XML must be of type memo. You can
set RibbonName as a primary key. Save the table with the special name: USysRib-
bons. Because of the special name (USys), you will not see it in the list of tables.
If you want to see it or edit it, click the Office Button, Access Options, Current
Database and click the Navigation Options button. Set the check box to Show
System Objects.

<customUI	xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>
 <ribbon startFromScratch=”true”>
 <tabs>
 <tab id=”tabMain” label=”Home”>
 <group id=”grpSales” label=”Sales”>
 <button id=”cmdHome” label=”Home”
 onAction=”GoToStartup” size=”large”
 imageMso=”OpenStartPage” supertip=”Return to home page.” />
 <button id=”cmdSales” label=”Enter a Sale”
 imageMso=”AccessFormModalDialog” size=”large”
 onAction=”OpenNewSalesForm” />
 <button id=”cmdRentals” label=”Enter a Rental”
 imageMso=”AccessFormModalDialog” size=”large”
 onAction=”OpenNewRentalsForm” />
 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

Figure 8.5

145Chapter 8: Applications

Data for each tab is stored in one row of the USysRibbons table. Enter Home as
the name of the ribbon and enter the XML code from Figure 8.5 exactly as shown.
If you make a mistake in the code, the ribbon will not work and you will not re-
ceive an error message.

You can activate the ribbon for the entire application or assign it to a single
form. Ribbon buttons generally apply to the entire application. But first you have
to close and restart the database so that it rereads the ribbon table. When it restarts,
click the Office Button and Access Options. Scroll down the Current Database
page until you see the Ribbon Name option. Choose the new Home ribbon in the
combo box. Close the form and close and restart the database for the changes to
take effect. When you restart the database, your new Home tab should be visible.
If it is not, you most likely made a mistake in the XML code.

Your buttons will not work yet because you still have to write the code (or
macros) to handle the click events. VBA code is more powerful and easier to edit.
Open the Module1 that was created earlier to hold public functions. You will prob-
ably have to set a reference to the ribbon objects, so Click Tools/References and
scroll down to enable the Microsoft Office 12 Object Library. Figure 8.6 shows
the three subroutines you need to add. Their names must match the names you en-
tered in the XML code and they must be declared as Public. Ultimately, you could
add any code to the routines, but these buttons simply need to open the specific
forms, so you can use the DoCmd object. When the functions are defined, you can

Figure 8.7

‘	Use	Tools/References	to	add	the	Microsoft	Office	12	Object	Library

Public Sub GoToStartup(control As IRibbonControl)
DoCmd.OpenForm “AAMain”
End Sub

Public Sub OpenNewSalesForm(control As IRibbonControl)
DoCmd.OpenForm “Sale”, acNormal, , , acFormAdd
End Sub

Public Sub OpenNewRentalsForm(control As IRibbonControl)
DoCmd.OpenForm “Rental”, acNormal, , , acFormAdd
End Sub

Figure 8.6

Form

Properties:
Help File: AllPowder.chm
Help Context ID: 1

Help File

AllPowder.chm

1 Topic A
2 Topic B
3 Topic C
4 Topic D
5 Topic E
6 Topic F

HTML
Topic

HTML
Topic

HTML
Topic

HTML
Topic

HTML
Topic

HTML
Topic

compile

146Chapter 8: Applications

test your new ribbon buttons. Simply click the buttons and ensure the matching
form opens.

Ribbons can be relatively complex and contain several types of controls. How-
ever, be careful to not confuse the users. The icons used in the example are part of
the Microsoft Office group and you can find a list on the Internet if you search for
imageMso or imgMso. It is also possible to create your own icons, but you have to
use a different loading process.

You can also control the Navigation pane so that it highlights your forms and
reports as business applications. Microsoft has a Marketing Projects sample da-
tabase (MarketingProjects.exe) that you can download to see more options with
ribbons and the navigation pane.
Activity: Write Help Files
A finished application also needs cus-
tomized Help files. Users should be
able to press the F1 key or select the
Help menu option and receive addition-
al information to help them perform a
task or understand the data that needs
to be entered. Detailed Help systems
can become complex, with large ap-
plications requiring hundreds of pages
of Help text and instructions. On large
projects, companies often hire a special
team just to create and edit the Help
files. For these situations, you will want
to purchase a dedicated Help System
editor. However, Microsoft has a free
Help Compiler system that can be used
to create Help files. You can write the
Help text without this system, but you
need it to compile the files into a Help
package. Search the MSDN site for the
htmlhelp.exe file. Figure 8.7 shows the basic steps involved in creating a help
system. First you write individual help pages as HTML text files. These pages
can have links to each other and to external websites. One of the pages should be
the startup page, and each page should contain a list of keywords. You also create
a mapping file that assigns a number to each page. The Help Compiler converts
all of the pages into a single chm file. Finally, in each Access form, you set the
properties to the name of this compiled form, and the number of the topic associ-
ated with that page or even a particular control. When the user presses the F1 key,
the system looks up the page that matches the number and displays it in the Help
viewer. Users can also search by table of contents or by keywords.

 Figure 8.8 shows that you can create Help pages using a simple text editor, or
you can use most HTML editors. You should create a style sheet to ensure con-
sistency across all of the files. More importantly, use the H1, H2, and H3 heading
tags to define the major topics covered in each page. These headings can be used
by the Help compiler to generate the table of contents. The keywords are entered
in the special <OBJECT> tag. This tag can be created using the Microsoft HTML
Help editor, or you can copy, paste, and edit the keyword information. At this

Action
Create at least three HTML help files for

the All Powder forms using an HTML
editor or Wordpad.

If necessary, download and install the
HTML Help workshop.

Create a new project in the workshop.
Add the HTML files.
Edit the HTML files to add keywords.
Create the mapping file with a text editor

and add it to the project.
Set project options to build the TOC and

index files.
Compile and test the help file.
Edit the database forms and add the help

file name and ContentID.
Run the form and press the F1 key to test

the help files.

147Chapter 8: Applications

point, you should create two or three HTML files and test the pages and the links
to make sure they work together.

Once you have created the individual HTML pages, you should create the map-
ping file that assigns a number to each topic. In HTML, you refer to each topic by
the name of the file, but Access references topics by a number. As shown in the
sample in Figure 8.9, you can assign almost any number (it uses a long integer),
but it helps if you group the numbers by topic to make them easier for you to find
later. This data is stored as a simple text file. It is typically named “topics.h,” but
that is not a strict requirement. Be careful with the entries in the topics.h file: You
must separate the names from the numbers with at least two spaces and you can-
not use tabs.

Once the pages have been created, you compile the files into a single chm file
that is distributed with the Access mdb file. The Help compiler does most of the
work, you simply add the files to the system and set a few options. Begin by start-
ing the HTML Help Workshop and creating a new project file. Use the Menu but-
ton to add the html topic files to the project. Use the API menu button to add the
topics.h header file to the project under the Map option. Use the Options menu
button to set the title and default file for the project. Use the Files tab to tell it to
automatically create the contents file and include the keywords from the HTML
files to build the index. You might have to click the tabs for Contents and Index
to force the compiler to create new versions of these files. Figure 8.10 shows the
basic elements of the HTML Help compiler and the resulting compiled Help file.

#define	AllPowder	 100
#define	Customers	 10000
#define	Sales	 20000

Figure 8.9

<Object type=”application/x-oleobject”
classid=”clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e”>
 <PARAM name=”Keyword” value=”Contents”>
 <PARAM name=”Keyword” value=”Introduction”>
 <PARAM name=”Keyword” value=”Start”>
 <PARAM name=”Keyword” value=”Management”>
</OBJECT>
<HTML><HEAD>
<TITLE>All Powder Board and Ski Shop</TITLE>
<LINK rel=”stylesheet” type=”text/css” href=”Styles.css”>
</HEAD><BODY>
<H1>Introduction to the All Powder Board and Ski Shop</H1>
<TABLE><TR>
<TD></TD>
<TD>All Powder Board and Ski Shop sells and rents snowboards and skis for
all levels of riders and skiers.</TD>
</TR></TABLE>
<H2>The Board and Ski Shop</H2>

Customers
Sales

</BODY></HTML>

Figure 8.8

148Chapter 8: Applications

The final step is to set up the Access forms so that they open the correct Help
file to the correct page. Keep your list of mapping numbers handy, you will have
to enter them into the form properties. Figure 8.11 shows the two properties (file-
name and topic number) that have to be set. These values have to be entered onto
every form. You can also assign different topics to individual controls on a page,
but remember that this means you have to write more Help topics. Make sure that
you place the Help file in the same folder as the database file. When you have set

Figure 8.11

File name

Topic number

Figure 8.10

149Chapter 8: Applications

these properties for all of the forms, you should run the application and test each
page to ensure that it brings up the correct topic. Someone should also proofread
all of the topics to make sure they contain no errors.
Activity: Deploy an Application
Building an application is relatively
complicated. You have to create all of
the forms and reports with a consistent
format, tie them together with a startup
form, create menus and toolbars, and
write help files. As shown in Figure
8.12, because Access stores most of
this work in one file (plus the .chm help
file), it is relatively easy to install the
application. As long as you do not care
about security or need to worry about
distributed databases. These topics are covered in Chapters 10 and 11, and both
result in the creation of additional files that need to be distributed and installed.

The easiest installation process arises when you do not need to worry about se-
curity controls, and you have a single mdb and single chm file. You can just copy
the two files into a folder on the user’s computer. Be sure the user has read and
write permissions to that folder as controlled by the operating system. Add an icon
to the desktop, set the desired startup options (Tools/Startup), and you are fin-
ished. On the other hand, you should test your application on a second computer
before you try to give it to a user. One of the problems you have to watch for is to
be sure the help file links point to just the name of the help file—without any drive
or path names.

Action
Test your application.
Copy the accdb and chm files to a second

computer.
Add a desktop shortcut to the application.
Run the application and test it.
If you have the Access runtime, use

its installation software to build an
installation file and test it.

Figure 8.12

Developer files

Application usersFiles to transfer:
Name.accdb or Name.accde
Name.chm
Or, use MDB files
Name.mdb or Name.mde
Security files (optional)
Replica files (optional)

150Chapter 8: Applications

Another problem you are likely to encounter is that each computer running
your application will need a licensed copy of Microsoft Access installed. Usually
you do not want users to run Microsoft Access and alter your application. Is there
a way to install the application without providing a full copy of Microsoft Access?
Chapter 10 explains how you can create an MDE file so that users cannot alter
your forms, reports, and code; even if the user does have a full copy of Access.
However, even with an MDE file, users still need a full copy of Microsoft Ac-
cess. To solve that problem, you can get a copy of the Microsoft Access Runtime
system. It is sometimes called the Developer Extensions and is part of the Visual
Studio Tools for Microsoft Office. The easiest way to buy the tool is to become a
member of the Microsoft Developer’s Network (MSDN). This tool includes a set
of files that runs your application without needing to install the full version of Ac-
cess. It also includes a tool to package all of the files into an installation program.
For any project that requires multiple files or installation on more than a couple
of computers, you should probably get this tool just to help with the installation
tasks.

Exercises

Crystal Tigers
The Crystal Tigers club is mostly interested in tracking members and events. The
officers who will use the system do not know much about computers, but they can
enter data into forms. They are also interested in a few key reports. For instance,
they want to be able to get totals for the amount of hours their members devoted
to charity events. They also want monthly summaries of the amount of money
raised. The vice president also wants to be able to print a simple listing of the of-
ficers with their phone numbers and e-mail addresses. Sometimes she also wants a
similar list of members who have participated in the initial steps of an event. She
wants to be able to carry the list with her when the event starts so she knows who
to contact if problems arise.
1. Create a design template and standardize the forms and reports.
2. Build the forms and reports into an application with a start up form.
3. Create the Help files for the system; remember that the users have limited

computer experience.
4. Copy your files to a second computer, add a desktop icon, and test the

application.

Capitol Artists
Job tracking is the most important aspect of the application needed by Capitol Art-
ists. In particular, the employees need to be able to quickly select a job and enter
the time and expenses for the task performed. This data is then used to create a
monthly billing report for the client. Consequently, you need to focus on creating
the forms to capture this data. You need to make sure they are fast and easy to use.
The managers also want weekly reports showing the hours and money generated
by each employee so they can use the data for personnel evaluations.
1. Create a design template and standardize the forms and reports.
2. Build the forms and reports into an application with a start up form.

151Chapter 8: Applications

3. Create Help files for the system.
4. Copy your files to a second computer, add a desktop icon, and test the

application.

Offshore Speed
Special orders have always been a complex problem for the Offshore Speed man-
agers. Customers come to the shop because it is one of the few that can obtain
the custom parts they want. But the company has always had problems training
employees to collect all of the order data and to keep track of getting the orders
placed and delivered in a timely manner. Some of these orders include contracts
with other local firms to perform customization and finish work on the boats. Al-
though these firms do excellent work, most are terrible at keeping records. Con-
sequently, the managers want to use the system to generate reports on individual
boats for each contract shop that can be used to remind the other owners of the
details. The company also needs reports on the inventory status of the specialized
parts. They have trouble keeping some items in stock, and other items seem to sit
on the shelves forever. They have no good way of keeping track at the moment.
1. Create a design template and standardize the forms and reports.
2. Build the forms and reports into an application with a start up form.
3. Create Help files for the system.
4. Copy your files to a second computer, add a desktop icon, and test the

application.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following tasks.
1. Define a form template and standards for consistency.
2. Build the forms and reports into an application with a start up form.
3. Build a toolbar that makes the application easier to use.
4. Create Help files for the system.
5. Copy your files to a second computer, add a desktop icon, and test the

application.

152

Objectives

Extract data from spreadsheets and import it into a data warehouse.•	
Create and browse an OLAP cube.•	
Analyze time series data.•	
Analyze geographic data.•	
Analyze data with statistical tools.•	

Chapter Outline

Data Warehouses and Data
Mining

9Chapter

Data Warehouse, 153
Case: All Powder Board and Ski Shop, 153
Lab Exercise, 154

All Powder Board and Ski Shop, 154
Introductory Data Analysis, 162

Exercises, 169
Final Project, 171

153Chapter 9: Data Warehouses and Data Mining

Data Warehouse
Data warehouses have evolved because of the need for online analytical process-
ing (OLAP) and its conflicts with online transaction processing (OLTP). The goal
of a data warehouse is to hold consistent data, possibly obtained from several
sources, which can be quickly searched and analyzed. Unfortunately, Access was
never designed to function as a data warehouse, and it does not include much
in the way of analysis functions. However, it is extremely flexible at importing
and exporting data, which makes it easy to extract and transform data from other
sources. In particular, it can interact with Microsoft Excel, which does have many
tools for analyzing data. Also, either as a standalone tool or in conjunction with
Excel, the PivotTable is a powerful OLAP cube browser.

Case: All Powder Board and Ski Shop
Like most businesses, the managers of All Powder need to analyze data to spot
trends and to solve problems. One of the most challenging aspects of a board and
ski shop is the huge variety of inventory needed. As vendors produce even more
styles and variations, it becomes difficult to stock all of the items in a collection
of sizes. Yet, if the store does not have the desired items in stock, it will lose sales.
This balancing act between inventory costs and sales revenue has destroyed many
other firms. The owners of All Powder are committed to running a large enough
shop so that they can afford to carry a good selection of snowboards and skis.
However, managers need to constantly evaluate styles and products so items can
be cleared out if needed. For that analysis, one of the main tools they need is an
OLAP cube browser or PivotTable that shows sales split by several features and
categories. Figure 9.1 lists some of the main dimensions that managers want to
examine in terms of sales. Because they are not certain about the validity of the
last three, they are displayed with question marks.

Managers also occasionally raise some more challenging statistical questions,
such as whether customers who rent equipment are likely to buy that equipment,
and whether skiers buy specific types of poles or boots with their skis. They also
need to forecast sales by categories. In particular, they often argue about whether
certain styles are increasing or decreasing in popularity. Some of these analyses
might require the help of a statistician to build a formal model, but the managers
would at least like to see some rough analyses.

Figure 9.1
Sales Dimensions
State (ship)
Month
Category
Style
SkillLevel
Size
Color
Manufacturer
BindingStyle
WeightMax?
ItemMaterial?
WaistWidth?

154Chapter 9: Data Warehouses and Data Mining

Lab Exercise

All Powder Board and Ski Shop
As organizations grow over time, the internal processes undergo changes, data
also changes, systems improve, and number systems rarely stay the same. Conse-
quently, most information systems consist of a mix of technologies and databases.
Rarely is the data consistent across all of these systems. Before the database was
created for the All Powder shop, the managers kept limited records in Microsoft
Excel. These records are not perfect. They are organized by Sales and by Rentals,
and the data is not normalized. Also, the records focused primarily on the equip-
ment and did not keep data on customers. From our modern database perspective,
the records are a pain—but at least they are electronic and not paper so you do not
have to enter all of the data by hand.

Nonnormalized data is common in business, and you will often be asked to
convert this data into a relational database. Fortunately, you can use the power of
SQL as a magical “super tool” to impress mere mortals with your skills.
Activity: Extract and Transform Data
If you need to save time in the lab, you
can skip the first section and use the
sample Lab9 database that already has
the old data loaded. But, remember that
with data warehouse projects, a great
deal of time is spent on cleaning and
importing data

Figure 9.2 shows the layout of the
data in the two worksheets. Again, no-
tice that lack of normalization. Each
row represents an item being sold or rented. Fortunately, the worksheets repeat
the SalesID and RentalID so you can still recover which items are grouped onto

Figure 9.2

Action
Choose External Data/Import/Excel.
Read the Sales spreadsheet into a new

table.
Read the Rental data into another new

table.
Create new entries for CustomerID and

EmployeeID equal to zero.

155Chapter 9: Data Warehouses and Data Mining

a single sale or rental. Likewise, they repeated the descriptive item data for each
time the model was sold. To be really safe, you should eventually check to see
that they were consistent in recording this data. For example, ModelID BVG-290
might have been given different descriptions at different times. If there are many
inconsistencies of this type, it will be difficult and time-consuming to clean up this
data. Most of the corrections would have to be handled manually, unless you have
a third source of data that you know is correct. These are the types of problems
you often face when extracting data from diverse systems.

The first step in extracting and transforming this data is to get it into the data-
base where you can use SQL to work on it. Fortunately, Access can quickly read a
worksheet into a new table. Use File/Get External Data/Import to find the spread-
sheet, select the worksheet, and read it into a new table. You should give the table
a simple name, such as OldSales because spaces and hyphens will make it harder
to type later. Read the sales and rental worksheet data into separate temporary
tables.

Looking through the temporary Sales table, you will see that the data needs
to be split into four tables: SaleItem, Sale, Inventory, and ItemModel. Go back
and examine the relationships for those tables, and you will see that because of
the dependencies, you will have to enter data first into the tables for ItemModel,
Inventory, Sale, and finally SaleItem. The relationships and foreign keys require
that data be entered in that order. You must also be careful with the Customer
and Employee data. If you try to create a row in the Sale table, the system will
automatically try to set a value of zero for the CustomerID and EmployeeID. But
there is no matching data for a zero ID in either of these tables. So either you try
to force a blank CustomerID and EmployeeID, or you create a new Customer and
new Employee called “walk-in” and “staff.” This latter approach is slightly better
than relying on blank data. Your first task, therefore, is to create these new entries
in the respective tables. As shown in Figure 9.3, if you use SQL in a Design View
query, you can force the ID values to zero, which makes these anonymous entries
easy to find.

Before moving on to the next steps that will alter the data in your main tables,
it is critical that you make a backup copy of the database. Go to Windows now
and copy the database file so you can return to this point if anything major goes
wrong.

SQL makes it relatively easy to extract the new model data and copy it to the
ItemModel table. The first step is to create a SELECT query that retrieves the
model data from the temporary tables and removes the duplicates. This process
is slightly complicated because of the two tables. It is possible that a product has
been sold but not rented and vice versa. The easiest way to handle this problem
is to write two queries and use UNION to combine the results. Figure 9.4 shows
the basic query to retrieve the model attributes from the OldSale table. Recall that
you have to add the DISTINCT keyword by hand. Move this query to the side and

Figure 9.3

INSERT INTO Customer (CustomerID, LastName)
Values (0,’Walk-in’)

INSERT INTO Employee (EmployeeID, LastName)
Values (0,’Staff’)

156Chapter 9: Data Warehouses and Data Mining

build a similar one from the OldRentals
table. Be extremely careful to list the
columns in exactly the same sequence.

Add the data rows from the two que-
ries with the UNION statement. Figure
9.5 shows the basic structure of the
query, but yours will contain several
more columns. Save this query as qry-
OldModels so you can use it as one set
of data.

Now that you can retrieve the new model data, it is relatively easy to write a
query to insert these rows into the base ItemModel table. Build a new SELECT
query using the qryOldModels query with all of its columns. Add the DISTINCT
keyword to be absolutely certain that all duplicates are removed. Run the query to
make sure it retrieves the data. As shown in Figure 9.6, switch to SQL view and
at the top of the query, add the phrase: INSERT INTO Item Model (ModelID, …).
Because you do not have data for all of the columns, you must list them in the pa-
rentheses, in the order of the columns being selected. Run the query and all of the
new models will be added to the ItemModel table.

 Follow a similar process to add the SKU, ModelID, and Size columns to the
Inventory table. Note that you should set the QuantityOnHand to zero for each of
these items since the store probably does not have any of the old models in stock.
If they do happen to have a few of the older items around, the quantity can be

Figure 9.4

Action
Create a new query in Design view.
Retrieve DISTINCT data from the new

sales table.
Retrieve DISTINCT data from the new

rental table.
Connect the two queries with a UNION.
Save the query.

SELECT DISTINCT OldSales.ModelID, OldSales.ManufacturerID, OldSales.Category,
OldSales.Color, OldSales.ModelYear, OldSales.Graphics, OldSales.ItemMaterial,
OldSales.ListPrice, OldSales.Style, OldSales.SkillLevel, OldSales.WeightMax, OldSales.
WaistWidth, OldSales.BindingStyle
FROM OldSales;

SELECT DISTINCT ModelID, ManufacturerID, Category, …
FROM OldSales
UNION
SELECT DISTINCT ModelID, ManufacturerID, Category, …
FROM OldRentals

Figure 9.5

157Chapter 9: Data Warehouses and Data Mining

entered by hand later. Figure 9.7 shows the final step that inserts the data into the
Inventory table. Notice the use of the column alias to force a zero value into the
QuantityOnHand column for each row.

The Sale and Rental data is considerably easier because they are separate, and

you will not need the UNION com-
mand to merge the two sets of data. In
fact, you can copy the Sales (or Rental)
data with one SQL command. First,
build a query to retrieve the distinct
sales data from the OldSales table. Be
sure to include the DISTINCT key-
word in the SELECT statement. After
you test the SELECT statement, add
the INSERT INTO line above it. Fig-
ure 9.8 shows an additional trick that
is often helpful. Remember that the
SaleID column is AutoNumber, so if
you added new rows of data to your
Sale table, it might have generated val-
ues that would conflict with the values
from this older dataset. To avoid this problem, you can add an offset number to
the old SaleID (+5000 in this example). If you choose a large enough offset, this
step will ensure that all of the new ID values will be safe. However, you must also
remember to add the same calculation in the final step of transferring the SaleItem
rows.

Figure 9.6

INSERT INTO ItemModel (ModelID, ManufacturerID, Category, Color,
ModelYear, Graphics, ItemMaterial, ListPrice, Style, SkillLevel, WeightMax,
WaistWidth, BindingStyle)
SELECT DISTINCT qryOldModels.ModelID, qryOldModels.ManufacturerID,
qryOldModels.Category, qryOldModels.Color, qryOldModels.ModelYear,
qryOldModels.Graphics, qryOldModels.ItemMaterial, qryOldModels.ListPrice,
qryOldModels.Style, qryOldModels.SkillLevel, qryOldModels.WeightMax,
qryOldModels.WaistWidth, qryOldModels.BindingStyle
FROM qryOldModels;

INSERT INTO Inventory (ModelID, SKU, Size, QuantityOnHand)
SELECT DISTINCT qryOldInventory.ModelID, qryOldInventory.SKU,
qryOldInventory.Size, 0 As QuantityOnHand
FROM qryOldInventory;

Figure 9.7

Action
Create a new query that retrieves

DISTINCT values from the saved
UNION query.

Verify that it works.
Add an INSERT INTO statement above

the SELECT statement to copy the data
to the ItemModel table.

Run the query.
Use a similar process to add SKU,

ModelID, and Size to the Inventory
table.

Follow a similar process to copy
the Sales, Rental, SalesItem, and
RentalItems tables.

INSERT INTO Sales (SaleID, SaleDate, ShipState, ShipZIP, PaymentMethod)
SELECT DISTINCT OldSales.SaleID+5000, OldSales.SaleDate, OldSales.
ShipState, OldSales.ShipZIP, OldSales.PaymentMethod
FROM OldSales;

Figure 9.8

158Chapter 9: Data Warehouses and Data Mining

Figure 9.9 shows that the query for the SaleItem table is almost identical to the
query that copied the sale data, but with slightly different columns. Remember
that if you transform the SaleID in the Sale table, you must make exactly the same
transformation for the SaleItem table. Otherwise, the data will never match and
cannot be joined. If you forget, you will most likely receive several error mes-
sages. But some of the data might be joined to your existing Sales data, making
it difficult to reverse the query. Finally, you need to do the same two steps for the
Rental and RentalItem tables. At this point, you have successfully imported the
old data and cleaned it up so it can be used within your database.
Activity: Create PivotTable to Browse the Sales Cube
Investigating sales by a variety of di-
mensions is an important task for the
managers and owners of All Powder. It
would be difficult to train all of them
to build queries to examine all of the
items that might be of interest. A faster
and more flexible solution is to create
an OLAP cube that contains the sales
value (Price * Quantity) as the factor,
along with the dimensions. Using Mi-
crosoft’s PivotTable technology, the
cube can be manipulated to see subto-
tals and sort or filter the dimensions. PivotTables can be displayed and manipulat-

Figure 9.10

Figure 9.9

INSERT INTO SaleItem (SaleID, SKU, QuantitySold, SalePrice)
SELECT DISTINCT OldSales.SaleID+5000, OldSales.SKU, OldSales.
QuantitySold, OldSales.SalePrice
FROM OldSales;

Action
Create a new query in Design view.
Tables: Sale, SaleItem, Inventory,

ItemModel, Manufacturer.
Columns: ShipState, PaymentMethod,

SaleMonth with a format of
“yyyy-mm”, and Value =
QuantitySold*SalePrice.

Sum the Value column.
Test the query and save it.

Format SaleDate as year
and month: yyyy-mm

Include all desired
sale dimensions Compute Value as

quantity times price

159Chapter 9: Data Warehouses and Data Mining

ed on Access forms, in Excel spreadsheets, or even on Web pages generated from
within Access. You can also create PivotCharts that let managers select the data to
be displayed.

Begin the process by creating a que-
ry that includes all of sale and model
dimensions needed by the managers.
Then add the value column. As shown
in Figure 9.10, the SaleDate column
needs to be formatted to display just the
year and the month. The format “yyyy-
mm” displays the month as a number
so that it sorts correctly. The PivotTable
does not directly support hierarchies of
data (such as year, quarter, and month)
so you have to format the date as the
lowest level that you want displayed,
then build groups later to provide rol-
lup capabilities. Compute the sum of
the value column and leave everything
else as Group By columns. You should
sort the data by year and month, but it
can also be sorted later. Save the query as “qryMonthlyPivot.”

With the query in place, you can create the PivotTable form. The easiest ap-
proach is to use the PivotTable form wizard. First select the qryMonthlyPivot in
the Navigator pane. On the ribbon, select Create/Forms/More Forms/PivotTable.

As shown in Figure 9.11, the PivotTable wizard creates a blank screen with
four sections and a list of the columns from the query. The four sections are (1)
filter fields, (2) column fields, (3) row fields, and (4) the value field. The first three
represent the dimension elements; the fourth is the fact data that you wish to sum.

Figure 9.11

Action
Select the qryMonthlyPivot in the

Navigation pane.
On the ribbon, find Create/Forms/More

Forms/PivotTable.
Drag the SaleMonth and drop it on the

column fields position.
Drag the Category and ShipState fields

and drop them on the row fields
position.

Drag the Value field and drop it in the
middle Detail section.

Drag the other fields and drop them at the
top as filter fields for future use.

Scroll the main grid to the far right.
Drop the Value field in the Totals

column.

Place columns (month)

Place rows (State,
Category)

Place other colmns

Place Value last

160Chapter 9: Data Warehouses and Data Mining

Because of the way the table dynamically adjusts to changes, be sure to place the
fact field last.

In this example, begin by placing the SaleMonth field to create the columns.
Simply drag it from the list and drop it on the area indicated for columns. The
managers primarily want to see the Category and ShipState as rows of the cube.
Drag each of those fields to the left side of the screen. If you drag them one at a
time, simply drop the remaining fields on top of the first ones you placed. If they
are not displayed in the order you want, you can drag them to rearrange the se-
quence. The other fields, such as Color and Style, might also be used by the man-
agers, but including them would make the table too large. Place all of the other
dimensions (not Value) onto the filter location at the top of the table. From here,
managers can choose to restrict the display based on various conditions. They can
also change the composition of the table by replacing Row or Column fields with
a Filter field. Finally, drag the Value field onto the middle of the table.

The next step is to scroll to the right edge of the PivotTable and notice that the
Total column is empty. You also have to drag the Value field and drop it onto this
column to be able to see subtotals. However, by default, the PivotTable shows too
much detail—it tends to compute subtotals for every single item. To hide this un-
necessary detail, right click on the SaleMonth heading to select all of the columns,
then choose the Hide Details option. Figure 9.12 shows the initial structure of the
PivotTable.

The next step is to create the time hierarchy (year-quarter-month) to enable
managers to roll up the data or drill down, depending on the detail they want
to see. The PivotTable uses Groups to establish the year and quarter elements.
You highlight the columns that belong together, right click the highlighted area
and choose the group option. It is also important that you use the properties to
rename the individual cells so they are meaningful to the managers. To begin the
process, you must build the lowest-level groups first (quarters). Click the cell
2003-01, then shift-click the cell for 2003-03 to highlight the first three months.

Figure 9.12

Right click to select
all columns and
choose Hide Details

161Chapter 9: Data Warehouses and Data Mining

Right click the highlighted area and
choose the Group Items option. A new
cell labeled SaleMonth1 will be added
to the left of the original SaleMonth
cell. Select this new cell and click the
Property Sheet option in the Tools tab
of the Design menu.Click the Captions
tab, and rename the caption to Quarter.
Immediately below that cell, you will
see a new cell labeled Group 1. Change
its caption to 2003-Q1 because it repre-
sents the group you just created. Repeat
the same process for each three-month
interval. Be careful to label the quarters
correctly. It is easy to make mistakes:
The process becomes tedious because
you have to do it for all four years.
Note that the last quarter will already
be grouped under the “Other” label, you only have to change the label to 2006-
Q4. Once the quarters are defined, you can aggregate them into years using the
same process. Click the 2003 Q1 cell and right-click the 2003-Q4 cell to highlight
all four quarters. Right click to group the items. Notice that a third grouping cell
has been added at the top of the form. Rename it to “Year,” then rename the Group
1 cell to “2003.” Repeat the grouping process for 2004 and 2005. The 2006 data
is already grouped; you need only to rename the cell. A faster way to create these
date groups is to use the Format function within the query for each level that you
need to create. But, it is helpful to know that you can create your own groups as
needed.

To see the purpose of the groups, scroll back to the left side and click the Year
cell. On the PivotTable toolbar, click on the Collapse icon (red minus sign), or
right-click the year cell and choose Collapse from the menu. The Collapse op-
tion rolls up the data and displays the group (year) totals instead of the details

Action
Create quarterly groups.
Click on the first month and right click

on the third month to highlight them.
Right click and select the Group/Group

Items option.
Right click on the new cell SaleMonth1

and change its Caption property to
Quarter.

Right click on the Group1 cell and set its
caption to 2001-Q1.

Repeat the process for all quarters.
Use a similar process to group the four

years.
Use the Collapse option to reduce the

grid display.

Figure 9.13

162Chapter 9: Data Warehouses and Data Mining

(months). Figure 9.13 shows the PivotTable collapsed on the years and on the Cat-
egory row dimension. Managers can expand or contract individual years and quar-
ters. They can also use the drop-down boxes on any of the dimensions to quickly
display the subtotals for combinations of attributes.

If the managers prefer graphical displays, you can use a similar process to cre-
ate a PivotChart. Just be careful not to put too many items on the chart at one
time—it quickly becomes unreadable. Instead, focus it to one or two of the major
dimensions and place the rest into the filter area. From there, managers can move
the dimensions onto the chart to see exactly the combinations of data that interest
them. For even more flexibility, you can build the same PivotTable in Excel. Man-
agers can use familiar Excel tools to format, chart, or manipulate the data. You can
even include a button on a form to open the Excel file directly from the database
application.

Also, you should always remember the power of SQL when analyzing data.
Although the queries are difficult for managers to create, as a developer you can
build some standard queries for them to run. For instance, managers might be in-
terested in seeing a list of customers who have rented but not purchased any skis.

Introductory Data Analysis

Activity: Analyze Time-Series Data
Most database systems do not provide
sophisticated statistical analysis and
data mining as part of the base system.
In general, you will have to purchase
specialized software to perform the
analysis that you want. Some compa-
nies sell data mining tools that perform
a variety of analyses. Most of these
tools are stand-alone and can extract
data from various sources. In addition
to performing a wide variety of func-
tions, they are also optimized to handle large sets of data.

However, if you do not have these tools available, you can still use Microsoft
Excel to perform some fundamental analysis. Excel is somewhat limited by the
amount of data it can handle, but it is relatively easy to use, and managers can use
typical Excel tools to interact with the results. For other problems, you could write
your own data mining tools within the Visual Basic programming language, but
you should also consider hiring an expert in statistics and numerical analysis.

The data for the All Powder case is small enough that it can be used within
Excel. To illustrate the basic capabilities available, the following analyses rely on
the same query that powers the PivotTable (qryMonthlyPivot). Begin with a time-
series analysis that examines total monthly sales for some of the main product
categories. Ultimately, managers want a chart with time on the horizontal axis,
sales on the vertical axis, and lines for two or three product categories. To create
this chart, it is best to have a table of data that shows the months as rows, and the
columns as the product categories. This table is similar to the PivotTable built in
the previous section, but with the rows and columns switched. To create this chart,
start Excel and create a new PivotTable, using the same qryMontlyPivot query
already saved in the database. On the Excel menu, choose Data/PivotTable. In

Action
Create a new Excel spreadsheet.
Choose Insert/PivotTable.
Select External data source.
Click Choose Connection button.
Browse to your database and select the

query built in the previous section.
Create a PivotTable with the SaleMonth

field as rows, the Category field as
columns, and Value as the Detail.

163Chapter 9: Data Warehouses and Data Mining

the wizard, select the option for Exter-
nal data source, then click the Get Data
button. Choose the MS Access Data-
base, click the OK button, and then
search for the All Powder database.
Find the qryMonthlyPivot and move
it with all of its columns to the right
window. Do not worry about filtering
or sorting the data, just return it to Ex-
cel. Create the PivotTable on the main
page, and you will see a layout screen
similar to the one in the previous sec-
tion. For the time-series analysis, drag the SaleMonth field to the row location,
drag the Category field to the columns, and finish by dragging the Value field onto
the detail section.

Once the data is in Excel, you can use Excel tools to analyze it. For the time-
series analysis of sales, select the PivotChart option in the ribbon and pick a line
chart. Excel will create a chart on a new worksheet. You need to modify several
properties to make this chart useful. First, remove some of the categories. Click
the drop-down arrow on the legend box and uncheck the minor categories, leaving
only Boards, Skis, Boots, and Clothes. Each of the categories appears to show an
upward trend. To verify that, right-click on one of the data lines and select the Add
Trendline option. Choose the linear method and forecast it ahead for three periods.
Follow the same procedure for each of the four data series. You should also go
back and set the properties of each trend line to match the color of the underlying
series.

Figure 9.14 shows the time-series chart with the properties modified to make it
readable on paper. The trend lines provide some interesting insight into the sales.
First, notice that the overall trends for snowboards and skis are almost identical.

Figure 9.14

Action
Select the PivotChart option in the

ribbon.
In the PivotChart worksheet remove all

categories except Boards, Skis, Boots,
and Clothes.

Right click each series and Add
Trendline.

Choose a linear trend and forecast it for
three periods ahead.

164Chapter 9: Data Warehouses and Data Mining

Second, observe that although all four
categories exhibit increasing sales over
time, the sales for boots are not in-
creasing as fast as sales for snowboards
and skis. In looking at the properties
for the trend lines, notice that you can
also display some of the statistics used
to generate them. Excel provides sev-
eral statistical tools to analyze data. For
example, managers might be interested to compare the sales of boards and skis
more carefully. You can use a T-test to see if there is a significant difference in
the means of the sales. Note that you have to install several data analysis add-ins
when you install Office. Also, you have to activate the add-ins by selecting them
from the Tools/Add-Ins menu option. Once the tools are installed, you can use
Tools/Data Analysis to perform the T-test on the two data series. Try it and you
will find that because of the large variance in sales, the means are not significantly
different. The Data Analysis add-in also provides tools for regression computa-
tions and some time-series analyses, such as moving average smoothing.
Activity: Analyze Geographic Data
The Office 2000 version of Excel con-
tained a mapping tool that made it pos-
sible to display some geographic re-
lationships. Its main advantage is that
it was bundled with Office. Unfortu-
nately, Office XP does not contain that
tool, but Microsoft does ship the Map-
Point software that performs even more
sophisticated graphs (for a fee). Other
companies sell even more sophisti-
cated geographic information system
software (notably ArcInfo from ESRI).
Although you might not have this soft-
ware available in your lab, it is worth
seeing the steps and the maps to learn some of the capabilities and how it can be
used to analyze and explore data.

Figure 9.15 shows that a PivotTable is used to retrieve the desired data and for-
mat it into rows and columns. Recall that a simple SQL query would not separate
the categories into separate columns. Also, the PivotTable data is copied onto a
second worksheet that does not include the first row of the PivotTable. This row
tends to throw off the MapPoint data wizard and needs to be removed, but the
PivotTable has no mechanism to remove it. Be sure you save the entire worksheet
file.

To create the map, you insert a MapPoint chart onto a third worksheet file, and
start the Data Mapping Wizard from the toolbar. Figure 9.16 shows that the wiz-
ard enables you to dynamically link to the worksheet file. You are then asked to
browse and find the spreadsheet and select the worksheet and columns you need.
The next step is to select the type of chart you want on the map. To display only
a single series at a time, choose the Shaded Area option. This choice draws the

Action
Make sure the Data Analysis Add-Ins are

installed in Excel (Tools/Add-Ins).
Choose Tools/Data Analysis.
Select T-Test Two-sample with unequal

variances.
Compare the Board and Ski sales.

Action
If you have Microsoft MapPoint start a

new Excel worksheet.
Create a PivotTable with rows for

ShipState and columns for Board,
Boots, Clothes, and Skis.

Create a second worksheet that copies
the main data and titles from the
PivotTable without the first title rows.

Save the file.
Insert a MapPoint chart.
Follow the wizard instructions to add a

North American map with pie charts.

165Chapter 9: Data Warehouses and Data Mining

states in darker shades that represent higher levels of sales. To show multiple se-
ries on the same state, you need either the pie or column chart.

Figure 9.15

The PivotTable
places the data into
rows and columns

A dynamic copy of
this sheet is used to
remove the top rows

Figure 9.16

166Chapter 9: Data Warehouses and Data Mining

 Figure 9.17 shows the resulting chart. The shop managers are probably most
interested in looking for differences between sales of skis and boards. With more
realistic data, perhaps there would be a geographic pattern, but no regional trends
leap out of this chart. A few states seem to have a substantially higher portion of
sales in snowboards, but they are randomly scattered across the country. These
cases might be important, or they might be due to random fluctuations. Either
way, it would be worthwhile to talk with customers in these states.

Wyoming stands out as unique because only clothes have been shipped there.
This piece of information could be highly important, or it might be due to a lim-
ited number of customers from Wyoming. Observations of this type often arise in
data mining applications. One of the goals of data mining is to highlight patterns
and unusual situations. It is up to the analyst to determine if the relationships are
important. It is up to the managers to decide how to use the results to increase
sales and profits.
Activity: Analyze Data with Regression
Linear regression is a tool that is relatively easy to use and is supported by a va-
riety of platforms, including Excel. Again, with Excel, you need to install and
select the Data Analysis tools. Linear regression can be used for many things, and
many options and features exist in high-end tools. Its primary purpose is to com-
pare sets of data in terms of closeness. The classic two-dimensional example is
illustrated in Figure 9.14 where the best line is found that fits the set of points. In
multidimensional terms, it is commonly used to determine how a set of exogenous

Figure 9.17

167Chapter 9: Data Warehouses and Data Mining

(independent) variables influence an
endogenous (dependent) variable.

In the All Powder case, the manag-
ers would like to analyze the state data
and see if the total sales within a state
are heavily determined by the popula-
tion or income level of the state. In this
case, the population and income are
exogenous variables (predictors), and
the sales total is the endogenous vari-
able to be predicted. As a data mining
tool, regression has some strengths and
weaknesses. Its main strength is that it
has been heavily analyzed and applied
for many years, and the results are rela-
tively easy to understand and interpret.
Its main drawback is that the results are
largely determined by averages, so the conclusions apply to the average or general
group, but not necessarily to the outliers. Sometimes the most valuable insights
come from understanding the outliers—such as the people who do not buy certain
items, or the few leading edge customers who pursue new sports before the crowd
arrives.

Demographics and economic data on states and counties can be found in the
federal government publications. The http://www.fedstats.gov site contains links
and search engines to an enormous amount of data. For this exercise, the 2002
population and 2001 total personal income by state have been saved in an Excel
spreadsheet. As shown in Figure 9.18, a basic query can be used to compute the
total sales by state for the year 2006. But if you look closely at the results of the
query, you will spot a problem. Only 47 states are represented in the sales data.
The spreadsheet file contains data on 51 states (counting the District of Columbia
as a state). You will need to match the rows from the query with the data in the
spreadsheet and discard the states for which your sales query has no data. Fortu-
nately, SQL makes this process easy. Simply import the spreadsheet data into a
temporary table, join it to the sales query rows, then save the resulting data into a

Action
Use the database command External

Data/Excel to read the demographic
spreadsheet data.

Create a query to combine the sales data
by state with the demographic data.

Copy and paste the three columns of data
into a new worksheet.

In Excel, choose Tools/Data Analysis/
Regression.

Select the Value column as the Y-range
and the population and income columns
as the X-range.

Check the top row as label option
Run the regression.

Figure 9.18

168Chapter 9: Data Warehouses and Data Mining

new worksheet. In Access, use the File/Get External Data/Link Tables command
to open the spreadsheet. This way, you can link directly to the worksheet without
copying the data into a new table. Create a new query that joins the SalesByState
query and the new StateDemographics table. Run the query, highlight all of the
rows, copy and paste them into a new Excel spreadsheet.

Start the Excel regresison wizard with Data/Analysis/Data Analysis/Regres-
sion. As shown in Figure 9.19, you will have to select the Y (dependent) variable
as the Value column, as well as the X (independent) variables as the Population
and Income columns. To make the results easier to read, when you select the data,
you should also include the top row that contains the label for the column. Then
make sure you check the Labels box in the wizard so it knows the first row is not
part of the numeric data. Most of the time you will want to accept the default op-
tion to place the results in a new worksheet.

Figure 9.20 shows the results of the regression for this example. Notice that
the R-square value is relatively high, indicating that this simple model describes
a little under 90 percent of the variance in the sales. Second, notice that only the
population coefficient is significantly different from zero at a 5 percent level of
significance (P-value less than 0.05). The coefficient value is positive, indicating
that states with higher populations tend to purchase more items from All Powder.
In fact, the company receives about $1.76 in sales for every thousand people. In
general, this population result is not too surprising. Larger states with more people
mean that there will be more boarders and skiers. The lack of significance on the
income term is a little more interesting. There is a question of whether or not it
really is insignificant, or if there is simply too little data or too few variables in

Figure 9.19

169Chapter 9: Data Warehouses and Data Mining

the model. These questions should always be examined for insignificant variables.
But, if it is true, it means that the sport has changed. Historically, because of the
costs, snow sports have generally appealed more to wealthier people. In terms of
the business and marketing, it would mean the company should consider a major
shift in advertising and promotion if the sports now appeal to all income levels. Of
course, considerably more data would be needed before making this commitment,
but it is worth investigating. In truth, for this case, the customers were gener-
ated based on city populations, so the statistical results match the underlying data
model. Actual sales data would provide more interesting results, but the process is
the same.

Exercises

Crystal Tigers
The Crystal Tigers club does not have a huge amount of data to analyze within the
organization. However, they are interested in comparing their service data and the
organizations they work with to see if they are serving the needs of the commu-
nity. Periodically, they survey people in the surrounding areas to determine if they
have heard of the club, if they know what charities the club supports, and their
overall opinion of the club. In the process, they also ask citizens about the events
and problems that most affect their lives. A substantial part of the survey is a list-
ing of support organizations with which the club is considering partnering. Crystal
Tigers has collected this survey data every six months for the last three years, and
they get several hundred responses each time. All of the data is stored in Excel
spreadsheets.
1. Create two sample spreadsheets with the survey data. Create tables in Access

to hold the normalized data. Write the SQL statements to transfer the data.
Build this code into a form and button that will automate the transfer.

2. Create a query and a PivotTable that will enable managers to analyze the
survey data.

Figure 9.20

Relatively high R-square

Population is a significant
predictor, income is not

170Chapter 9: Data Warehouses and Data Mining

3. Create a PivotTable that will enable managers to analyze the existing club
service data. Use two possible fact fields: hours worked and money raised.
Include all of the dimensions you think managers might need.

4. Do a time series analysis of the money raised. Managers are particularly
interested in trends and in identifying the months that raise the most money.

5. Assume you have data on money raised for several years (make up
monthly totals if necessary). Obtain personal income data for your state or
metropolitan area over those years and see if the income level is correlated
with the money raised.

Capitol Artists
The managers of Capitol Artists are primarily interested in identifying the best
employees and the most profitable customers. The job tracking system ultimately
generates a considerable amount of data—at the hourly and daily level. Note that
all employee tasks are supposed to be recorded in the system based on client, job,
and the task involved. The firm has considerable information on clients, including
a size classification (tiny, small, medium, and large), and type of company (such
as print shop, marketing, retail, and medical). This additional client information is
currently stored in a spreadsheet, with one page devoted to each client.
1. Create three sample client worksheets with sample data. Modify the Access

tables as needed to handle this new data. Create a form that will enable a
clerk to find the worksheet and transfer the data to Access.

2. Create a PivotTable that will enable managers to analyze the hours worked
and revenue generated by employees, day of week, client, client size, and so
on.

3. Create a PivotChart that compares employees based on billable hours by day
during the past month.

4. Assume that you have approximate sales numbers representing the size of
each of the clients (make up the data). Create a categorical variable for the
client industry (for example, 1= print shop, 2=marketing, and so on). Perform
a regression to see if the client size or industry influences the amount of sales
revenue Capitol Artists generates.

5. If you have mapping software available, analyze the client revenue by
location.

Offshore Speed
Inventory control is critical for Offshore Speed because it has to stock thousands
of small parts for different engines and drives. All of these parts are grouped into
categories in terms of the manufacturer, and the location within the engine or boat.
Lately, the owners think there has been an increased demand for oil pump impel-
lers, but they are not certain because there are several different brands. They also
suspect that sales of electronic navigation devices have tapered off. Although they
have the sales data available, they are not sure how to analyze and compare it.
Of course, the sales data for the past three years is stored in Excel spreadsheets.
One sheet for each month of sales, and each line contains a sale number, date,
part number, quantity, and price. Unfortunately, the part numbers do not match

171Chapter 9: Data Warehouses and Data Mining

the new ones entered into the database. However, there is a separate spreadsheet
that maps the two numbers. The first column lists the old number and the second
column contains the new number.
1. Create at least two sample spreadsheets for the older sales, and the

spreadsheet that maps the old numbers to the new ones. Create a form that
can be used by a clerk to pick a spreadsheet and import the data into the new
database.

2. Create a PivotTable that will enable managers to analyze sales by category,
manufacturer, and time. Note that category should be a hierarchy. For
example, managers might want to see detailed parts, or just the parts that are
used in engines (or drives, or steering, and so on).

3. Create a PivotChart that analyzes sales of the major categories over time
based on monthly sales.

4. For some reason, an employee of the company has kept records of the
weather for the last three years. She has a spreadsheet that contains the date,
the amount of rain on that day, and the high temperature for the day. Create a
regression to see if there is a relationship between the weather and your sales.
(Make up some sample weather data, or find it on the Internet for your area.)

5. If you have mapping software available, analyze the client revenue by
location.

6. If you have access to software that performs association or market basket
analysis, this case would be a good application to see what types of parts
might be purchased together.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following tasks.

1. Identify at least one primary fact attribute that managers would want to track,
along with several dimensions. Create the query and PivotTable to analyze
the data.

2. Identify any data that could be analyzed over time, and create a PivotChart
and an Excel spreadsheet to forecast the data.

3. Identify any data that could benefit from market basket or association
analysis. If you have access to the software, create the queries and analyze
sample data.

4. Identify any data that could benefit from geographic analysis. If you have
access to the software, create the queries and analyze sample data.

5. Identify any correlations or regression analysis that might help managers
better understand the operations and effects of various attributes. If possible,
collect sample data and analyze it.

172

Objectives

Evaluate and improve the application performance.•	
Establish backup and recovery methods and plans.•	
Install simple security controls to provide basic protection of the data.•	
Protect the forms, reports, and code from unauthorized changes.•	
Protect the data with user-level security controls.•	

Chapter Outline

Database Administration
10Chapter

Database Administration Tasks in Access, 153
Case: All Powder Board and Ski Shop, 154
Lab Exercise, 154

All Powder Board and Ski Shop, 154
Security and Privacy , 157

Exercises, 167
Final Project, 168

173Chapter 10: Database Administration

Database Administration Tasks in Access
One of the appealing features of Microsoft Access is that it is easy to use and does
not require complex administration chores. On the other hand, the lack of sophis-
ticated administration tools makes it less valuable for large-scale applications. Al-
though Access does not have the powerful tools to support thousands of users, it
does have some useful features to help developers and database administrators.

Every DBMS maintains an internal list of all of the database objects, such as
table, query, and report names. Only recently has the SQL standard proposed a
common method to obtain these names. Consequently, most systems have pro-
prietary tables and columns for the metadata tables. In Access, you rarely need
to deal with these tables directly. Instead, it is easier to use the visual administra-
tor and simply select the items you want to modify. Someday you might need to
examine a list of the tables from within your code, however, so you should learn
about the system tables.

For safety and to reduce clutter, the metadata tables in Access are normally
hidden. Figure 10.1 shows that you can use the Office Button/Access Options to
make the system tables visible. All system table names begin with MSys, and the
MSysObjects table contains a list of all tables in the database. You can open the
table to see its structure, but do not change any of the data. The Type column is set
to 1 to indicate a table object, so you could run a query against the system table to
see a list of all tables in the database. Microsoft also provides the Active Data Ob-
ject Extensions (ADOX) control to provide programmatic access to the metadata
in an underlying DBMS, and you can read the Microsoft documentation to learn
how to use ADOX to read the list of tables in a DBMS. For now, return to Access
Options and uncheck the box to show the system objects.

Performance is always a tricky issue in a DBMS. Small tables with a limited
number of joins and a handful of simultaneous users rarely encounter performance
problems. Also, with hardware improvements, Access has been able to handle

Figure 10.1

MSysObjects
lists all tables

Check to see
system tables

Office Button/
Access Options

174Chapter 10: Database Administration

even larger applications without experience performance problems. However, you
will encounter some databases that will need changes to improve performance.

Backup and recovery are relatively simple in Access since it does not write a
transaction log or journal. You can back up an Access database simply by copying
the file. Also, Access does not really provide recovery facilities, so if the system
crashes in the middle of an application, few steps are needed because most of the
data in transition will be lost.

Security is more complex. By default, Access is completely open and everyone
has full access to the data, forms, reports, and code. The assumption is that gen-
erally only trusted users will be given access to the database, and then they have
the ability to use any part of the database. Microsoft now provides several secu-
rity features to provide different levels of protection. It is even possible to set up
user accounts and assign separate permissions to access individual tables, queries,
forms, and reports. Once you set up user-level security, someone needs to be as-
signed to handle the user accounts.

Case: All Powder Board and Ski Shop
Ultimately, the owners of All Powder want to assign individual user permissions.
Although the shop trusts its employees, it often hires students to work as clerks,
and the owners would like to limit what the clerks can do with the application.
The issue is only partly a matter of trust: It is also useful to protect the database so
clerks and other users cannot change form layouts or accidentally delete items.

The managers are also somewhat concerned about performance, particularly
at the checkout machines. Sometimes the store’s checkout lines get hectic, so the
application has to be fast. Some of the issues can be handled by installing more
computers. The salesperson can enter the basic customer data immediately, and
the checkout clerk simply selects the customer and enters the product numbers. Of
course, having more computers means that the company will need a network. It
also means that more people will be simultaneously accessing the data, increasing
the risk of collisions and locks.

Lab Exercise

All Powder Board and Ski Shop
DBMS developers learned early that indexes can significantly improve the perfor-
mance of a relational DBMS. Key columns and join columns are almost always
indexed because they often represent single-item lookups. Without an index, the
computer has to search each row sequentially to find a match. An index can ex-
ponentially reduce the number of lookups in a search. On the other hand, indexes
have to be updated whenever data is changed, deleted, or added. As a result, plac-
ing too many indexes on a table can result in even worse performance.
Activity: Evaluate the Application Performance
Your job is to find the balance with
enough indexes to improve perfor-
mance for key tasks, but not so many
that other portions become too slow.
This balance is unique to each applica-
tion and can be difficult to find. Ulti-
mately, you will have to fine-tune the

Action
Choose Tools/Analyze/Performance.
Select all objects.
Run the analysis.
Add indexes if they are reasonable.

175Chapter 10: Database Administration

application over time. A few simple rules help you begin: (1) All primary keys
should be indexed, (2) Join columns should be indexed—particularly in large ta-
bles, (3) Heavily searched or sorted columns should be indexed, and (4) Transac-
tion tables that are constantly changed (such as SaleItem) should have few index-
es. The first rule is so strong that Access automatically builds the index for every
column in a primary key.

Access provides a tool to help you determine which columns should be indexed
and other ways to improve performance. Use the Database Tools/Analyze Perfor-
mance menu option to start the analyzer wizard. Figure 10.2 shows the first step
of the wizard. You can select the items that you want to examine for performance.
You can select individual items, groups of objects (such as all tables), or choose
the tab for All Object Types to select everything in the database. Selecting all ob-
jects is a good way to cover all possibilities, but it might be overwhelming. Try
it first, if there are too many suggestions to scroll through, start over and do one
group at a time. At a minimum, you need to analyze the queries.

Figure 10.3 shows sample analyzer results. It attaches a level of importance to
each recommendation, and you should seriously consider the higher-level recom-

Figure 10.2

Figure 10.3

Select all objects

Select all items

Recommendations
are the highest
priority

Some suggestions
cannot be taken
because of
business rules The optimize

button applies the
recommendation

176Chapter 10: Database Administration

mendations. Notice that many of them involve indexes. The index for LastName,
FirstName makes sense because customer data is often sorted that way.

At this point, you have three methods to create the recommended index. (1)
Click the Optimize button and the wizard builds the index for you. This is by far
the easiest method. (2) Open the table in Design view and choose the Indexes
menu option. Add an index name along with the columns to be indexed. Gener-
ally, you will use this method to check to see that the wizard correctly built the
requested index. Figure 10.4 shows the index list with the newly created index. (3)
You can use the SQL command: CREATE INDEX LastFirstName ON Customer
(LastName, FirstName). While this method might seem cumbersome, it is a useful
way to write down the indexes and store them in a file. This list could be used to
re-create the database on a different machine and to document database definition
in case of a disaster.

Again, remember that you will rarely want to accept all of the analyzer’s rec-
ommendations. If you know that a table is heavily involved in transactions, you
want to avoid creating too many indexes on it. If in doubt, test the application
both ways for a few days and carefully observe the performance. If an applica-
tion is too slow, remove the associated indexes and test again. Also, some of the
recommendations cannot be taken because it would violate the business rules. In
the example, SKUs are currently numeric, so the wizard will suggest converting
that column to a Long Integer instead of text. But the managers are planning to
implement new SKUs with alphabetic characters, so you should avoid the wiz-
ard’s recommendation—unless the performance gain is so large that it becomes
necessary to talk the managers into always using simple numbers.
Activity: Backup and Recovery
Access does not really provide backup and recovery tools. About the only solution
is to use Windows to back up the database file. The Office Button/Manage/Backup
link essentially makes a copy for you from within the database. Several tools

Figure 10.4

Indexes

SQL: CREATE INDEX ...

Single column indexes

177Chapter 10: Database Administration

are available to make backup copies
of regular files, and all of these work
on the Access database file. One useful
technique is to compress the file using
a Zip format. Windows XP and above
have a built-in capability to create a
compressed (zipped) folder. Just cre-
ate the folder and drag the database file
into it to compress it. The compressed
folder is often small enough to e-mail or copy to a secure tape or drive that can be
moved offsite.

One catch with the Windows approach is that you should make sure that no
one else is using the database when you make the backup copy. For small busi-
nesses that shut down over night, this requirement is easy. For operations that
run 24 hours a day, it is more complicated, and a key aspect of backup is setting
a schedule and notifying everyone of the backup time. Although it might slightly
interfere with the business, a full copy provides the advantage of ensuring that
you have a clean, consistent copy of the database.

There is an important tool that you need to run on a regular basis in Access da-
tabases. To see the effect of this utility, first go to Windows, browse to the folder
that holds the main database file, and write down the size of the file. Then se-
lect the Office Button/Manage/ Compact and Repair menu option. After a few
moments, the database will close and restart. Return to the Windows folder and
check the size of the database. It should be substantially smaller. The main effect
of this process is to completely remove the items that have been deleted. Remem-
ber that to save time Access simply flags an item as deleted. It is not actually re-
moved from the database until you run the compact and repair utility. This utility
is also useful if the system crashes while the database is open. It fixes some basic
index issues and can repair common damage issues.

The compact and repair utility cannot repair databases with large errors—par-
ticularly those caused when disk drives fail. Keeping full backup copies is critical.
However, in an emergency, it is sometimes possible to recover data and perhaps
even forms and reports from a damaged copy of Access. The trick is to create a
completely new, blank Access database. Then use the External Data/Import utility
to import whatever pieces you can obtain from the damaged file.

Security and Privacy

Activity: Simple Access Security Controls
Setting and maintaining detailed lists
of users and access rights can be a
time-consuming job. In many small ap-
plications, it is not necessary to provide
this level of control. In these cases only
a few people may need to use the da-
tabase, and you simply need to restrict
access to those selected people and prevent others from using it at all. You can use
the simple security controls provided within Access and avoid the management
task of setting full security controls.

Action
Choose Office Button/Manage/ Compact

and Repair Database.
Close the file but not Access.
Run Compact and Repair again, this time

enter a new name for the compacted
database to use as a backup copy.

Action
Choose Database Tools/Encrypt with

Password.
Enter test as a password.
Close the database and reopen it.

178Chapter 10: Database Administration

Figure 10.5 shows the steps needed to assign a database password. The one
trick is that you must open the database in Exclusive mode—which means that no
one else can be using the database when you set the password. To open a database
in exclusive mode, you have to use the Open command under the Office Button
and browse to the location of the database file. Then carefully select the Exclusive
option at the bottom right of the browser screen. Once the file is open, use the
Database Tools/Encrypt with Password ribbon option, and use the pop-up box to
enter the new password. When you close the database and reopen it (it no longer
needs to be opened exclusively), you will be asked for the password. Without the
password, no one else can open the database. You can use the same process to
remove or “unset” the password. Keep in mind that the database password is all
or nothing. Anyone who knows the password has full control over everything in
the database. Many times, this level of protection is sufficient, but make sure you
have backup copies in case things are accidentally deleted.

This password also encrypts the database, solving a second problem. Without
encryption, someone could use a utility program to open the database file and ex-
amine or change the data without ever starting Microsoft Access. Encryption pro-
tects the database from this attack, but you should also be careful to set network
security rights so that no one else can find or read the file. Attackers will then have
to circumvent two security blocks instead of one to get to the file. The network ac-
cess rights are set within Windows by right clicking on the filename and following
the options on the security tab.

The option to encrypt the database is straightforward, and you do not have to
open the file in exclusive mode. Choose Tools/Security/Encrypt/Decrypt Database
on the menu. Then browse to a folder and enter a new filename for the secured
database. The encrypted file is essentially gibberish so no one can find the specific
data. However, they can still destroy data by writing random bytes into the file, or
even delete the entire file. You still need the Windows security controls to remove
write and delete access to the file to prevent these problems.

A different issue with security involves Trojan Horses and code embedded in an
Access document. An attacker (or phisher) might send a small database to some-
one and when it opens, the malicious code could install spyware or cause damage
to computer files. To reduce this threat, Office initially treats all code as untrusted

Figure 10.5

Close the database and
reopen it in Exclusive mode

Database Tools/Encrypt
with Password

Enter the password and verify it.
Close the database and reopen it

179Chapter 10: Database Administration

and blocks it from running. You have undoubtedly seen the startup messages ask-
ing if you want to enable your database to run. Although this process is probably
slightly safer, it is a nuisance within a company application. Access 2007 pro-
vides two ways to signify that your database code is safe and should be trusted—
avoiding the continual notification. The first, and older method, is to purchase a
developer security certificate and sign your code. For code that you wish to sell or
distribute, this approach is the best, but you have to pay an annual fee. The second
approach is easier, and useful for applications used within a single company. You
can use the Trust Center to define a location on each computer, or on the network,
that contains trusted files. Placing the Access database file in that folder then en-
ables it to run in full mode without warning messages. Use the Office Button/Ac-
cess Options to open the Trust Center.
Activity: Create an ACCDE File to Protect Forms and Reports
Access provides another useful utility
that you can use to protect your forms,
reports, and code. This option is par-
ticularly useful when you are hired to
create a database for a client and you
do not want the client to see or modify
your proprietary code. The client still
needs access to the data and to use the
forms, so securing the database is not enough. You need to lock down your forms
and reports. Simply choose the Database Tools/Make ACCDE File from the menu.
This option creates a completely new file with an mde suffix. Figure 10.6 shows
that when you distribute this file to the client, no one can open the forms (or re-
ports or modules) in Design view. They will not be able to change the layouts or to
see or modify your code. It is a convenient way to protect your trade secrets and to
prevent accidental changes.

Action
Choose Database Tools/Make ACCDE

File.
Close the database and open the new

ACCDE database.
Try to edit a form.

Figure 10.6

Database Tools/Make
ACCDE File

Keep the original file safe. It is the only way
to edit the forms, reports, and modules.

Design view is
disabled for everyone

180Chapter 10: Database Administration

When you create ACCDE files, be extremely careful. No one can edit forms,
reports, or modules in an ACCDE file—including you! Make sure that you keep
your original mdb file in several safe locations. When you need to ship a new ver-
sion to the client, you have to make the modifications in the original accdb file,
and then rebuild a new accde file.

If you are building Access databases for clients, you should also download the
Microsoft Developer’s tools, which are free with the Access 2007 version. In par-
ticular, you want the runtime module which enables you to package your database
and distribute it to clients who can run it on their computers without needing to
purchase and install Microsoft Access. They will not be able to modify or create
new forms and reports, but they will be able to run you application as a standalone
program.
Activity: Setting User-Level Security Controls
Sometimes a business application re-
quires you to control access to individ-
ual tables, forms, and reports for spe-
cific users. In this situation, you need
to convert the database to implement
full user-level security controls. Un-
fortunately, Microsoft removed user-
level security controls in Access 2007.
However, Access 2007 can still read
(and create) the older MDB file format
which does support user-level security.
Consequently, the first thing you have
to do is create a blank database in the
older MDB format and import all of the
objects from your 2007 version. Then
you can run the security wizard. The
steps are a little tricky, but the security wizard handles most of the work for you.
To understand the steps and questions asked in the wizard, you need to understand

Action
Create a new blank database in the older

MDB format.
Open the new database and use External

Data/Import to copy everything from
your original database.

Database Tools/Users and Permissions/
User-Level Security Wizard.

Create a new workgroup.
Select the Backup Operators group.
Set a password for your username.
Add three users.
Make sure you are in the Admins group.
Close the database.

Database
Adminstrator

Database Application

Form1 Form2 Form3 Form4

assign
permissions

User 1

User 2

Workgroup data-
base usernames
and passwords

credentials

login

Figure 10.7

181Chapter 10: Database Administration

the overall process. Ultimately, if you need user-level security, you should switch
to a SQL Server (or Oracle) database instead of Access.

The first issue to face is that Access needs to be able to identify the individual
users. Figure 10.7 outlines the basic process. The main database application con-
tains forms, reports, and tables. As the database administrator (DBA), you want
to assign individual permissions to separate users for each object. For instance,
sales clerks would be able to read some supplier data, but not change it, and prob-
ably would not need access to the main supplier form. But, before you can assign
any permissions, the database application needs to be able to identify the user.
Access identifies users by setting up a separate workgroup database that contains
usernames and passwords. The main application is associated to this workgroup
database. When the application is opened, users must enter a correct username and
password. Obviously, this workgroup database must be secure so that no one can
alter data. Access handles this issue by automatically encrypting the workgroup
database. Of course, someone has to maintain the workgroup database and handle
problems such as users forgetting their passwords. From an enterprise perspective,
the workgroup database approach has some problems. Mainly, it requires compa-
nies to maintain separate lists of users and passwords for applications. Although
workgroup databases can be reused in other applications, they rarely are config-
ured that way. Consequently, users end up needing to know dozens of usernames
and passwords. For small companies with one or two applications, this issue is
less important.

Before running the security wizard, you should write down a list of usernames
and initial passwords that will be asked to enter into the workgroup database.
While you are identifying users, you should also classify them in terms of tasks or
groups. You almost never want to assign permissions to individual users. Instead,
you place users into groups and assign database permissions to the groups. Figure
10.8 illustrates the main concept. By assigning permissions to the groups, you
should only have to set permissions one time. As individual users are added to or
removed from groups, their permissions automatically change.

Before running the security wizard, you should have a list of groups and a list
of users and the groups they should be assigned to. You should also have an initial
start on the permissions matrix that lists the various resources and the group per-

Figure 10.8

 Sales Customer Item
 table table table
Sales clerks S,U,I S,U,I S
Sales managers S,U,I,D S,U,I S
Rental managers S,U,I S

Sales Managers Sales Clerks

Individual users

182Chapter 10: Database Administration

missions for each item. Start the wizard with the Tools/Security/User-Level Secu-
rity Wizard menu option. Most times, you will create a new workgroup—unless
you have already developed similar projects and want to use the same list of users.
Figure 10.9 shows an important step in the wizard that sets up the workgroup file.
Generally, you should avoid making the workgroup file the default. If you do, you
will be asked to log in every time you open an Access database. You should cer-
tainly never pick this option in a shared computer lab.

For the most part, you can select the default options in the security wizard.
However, Figure 10.10 shows some options that you should carefully consider.
The wizard can create some predefined user groups that might be useful. In partic-
ular, the backup user group is a good idea, since it automatically sets permissions

Figure 10.9

Figure 10.10

183Chapter 10: Database Administration

properly for someone to make copies of the data, but still prevents them from
modifying anything. You might also want to use some of the other groups—such
as the Full Permissions group. Keep in mind that there is also an internal Admin-
istrators group that you will want to use for the DBA, but it is always created
automatically.

Figure 10.11 shows that eventually you reach another important screen in the
wizard, where you need to enter your list of users. By default, the wizard picks up

Figure 10.12

Figure 10.11

184Chapter 10: Database Administration

the current user on your system (you).
Make sure that you assign a password
to your username. If you forget, the
password will be blank, so you can still
log in, but so could any attacker. You
will have to add all of the users and
passwords from your list. Note that it
is possible to add users later, but it is
slightly easier to enter them now. Note
that you are entering users, not groups.

Figure 10.12 shows the screen that
enables you to assign users to groups.
Again, this task can be performed later.
And you will have to add your applica-
tion groups later and assign people to
those groups. However, it is critical that
you assign at least one user to the Ad-
mins group now. By default, the wiz-
ard will assign the current user (you)
to the Admins group. To be safe, select
the option to see the list by group and
double-check that (1) there is at least
one name in the Admins group, and (2)
only people who need this high-level
permission are in the group. The Admins group always has full control over all
objects in the database, including the ability to reassign permissions and change
group memberships. You should keep this list as small as possible. But keep in
mind that you could use two people in this group in case one person is on vaca-
tion or sick and someone needs a password changed. When the wizard finishes, it

Action
Open the database using the desktop link.
Log in with your username and

password.
Choose Database Tools/Users and

Permissions/User
and Group Accounts.
Select the Groups tab and add

SalesClerks and SalesManagers groups.
Add one of your new users to each

group.
Choose Database Tools/Users and

Permissions/User and Group
Permissions.

Grant specified permissions for the two
groups to the Sale, SaleItem, Customer,
and Inventory tables.

Assign appropriate permissions to the
database and the forms.

Close the database.
Log in as a sales clerk and test the

permissions.

Figure 10.13

Select the
Groups tab to
enter new group
names

Select users
and add them
to groups to
grant additional
permissions

185Chapter 10: Database Administration

displays a report that lists the filenames and the workgroup ID. Keep this report in
a safe place: It can be used to re-create the workgroup file if it is damaged.

When the wizard is finished, close the database. Because it is encrypted and
tied to the workgroup file, you cannot open the database directly. Instead, click on
the link that the wizard created. If you examine the properties of the link, you will
see that it associates the workgroup file with the database application. When the
database starts, you will be asked to log in using the username/password pair that
you created earlier. Since you still have some administrative tasks to perform, log
in using an account that is a member of the Admins group.

The next step is to create the customized groups and assign users to them. Use
the Database Tools/users and Permissions/User and Group Accounts menu option.
Use the Groups tab to enter the custom group names. Simply click the New button
and enter the group name and an ID value. The ID value should be random so that
no one can guess it. If you ever need to re-create the workgroup file, you should
write down the personal IDs that are created. But in general, it is easier and safer
to keep backup copies of the workgroup file. For now, at least create the Sales-
Clerks and SalesManagers groups. Figure 10.13 shows the screen used to assign
users to groups. Simply select the user, then add the desired group to the right-side
window. You can also add new users from this screen with the New button.

Once the groups and users have been created, you need to assign the desired
permissions within the database. Note that unless you changed the access for the
Users group during setup, users will have no access to any of the database objects.
So you have to grant all of the permissions that each group will need. Use the
Database Tools/Users and Permissions/User and Group Permissions menu option
to assign permissions. One of the first permissions that you will have to grant to
all of the groups is the ability to open the database. Figure 10.14 shows the basic
process. Make sure you select the Groups option to assign permissions to groups
and not to individual users. Selecting the object type (Database) displays a list of
permissions available for that object. In this case, you need to assign Open/Run to
the groups for SalesClerks and SalesManagers.

Other permissions are assigned using the same method. Examine your permis-
sions matrix for the SalesClerks group and customers. Sales clerks need to be

Figure 10.14

Assign by groups

Click the Apply button
to activate changes

New groups need
to be able to open
the database

186Chapter 10: Database Administration

able to read, update, and insert customer data. But they should not have the abil-
ity to delete customers; that permission is reserved for the sales managers. Select
Table as the object type, then click the Customer table in the right-side window.
Set the check-boxes to give the appropriate permissions for the SalesClerks and
SalesManagers groups. Then switch the object type to Form, and make sure both
groups have Open/Run permission for the Customer form and for the startup form.
Eventually you can assign the other permissions needed by each group.

For now, reopen the database using the shortcut link. This time, log in as one of
the sales clerks and make sure the user can open the customer form and update the
data but not delete any rows. Close the database and reopen it as an administrator.
Now you can set all of the access rights listed in your permissions matrix. Keep
in mind that you need to test all of the permissions. Check to ensure that users can
perform their jobs without receiving security notices, and that the users do not
have too many permissions. It is time-consuming to test all of the permissions,
and you should eventually enlist the help of the actual users to do final testing and
adjustments. To speed up the testing process, you should open two copies of the
database—one logged in as a user for testing, and one logged in as an administra-
tor to change the permissions.

To implement a secured database, you need to copy the actual database file
(AllPowder.mdb), the workgroup file (Security.mdw), and the startup link (re-
named to be StartAllPowder.mdb). Moving the databases means that you will
have to edit the properties in the startup link so it points to the correct locations on
the new machine. Right-click the link and select the Properties option. As shown
in Figure 10.15, you will have to set the Target and Start-In folder. The target con-
tains the names and full pathname location of three files: (1) The Microsoft Ac-
cess executable file, usually installed to its default location; (2) the full pathname
of the secured database (this one you will usually have to change); and (3) the full
pathname of the workgroup database (you will also have to change this path). You
should generally set the start-in folder to be the same as the location of the main
database.

Figure 10.15

Copy	files:
1) Secured database
2) Workgroup database
3) Startup link

“C:\Program	Files\Microsoft	Office\Office12\
MSACCESS.EXE”
“D:\FullPathname\AllPowder.mdb” /WRKGRP
“D:\fullPathname\Security.mdw”

Edit the properties
for the startup link

187Chapter 10: Database Administration

When you find yourself performing these steps on a real-world database, stop
and think for a few minutes. If the application truly needs this higher level of
security, you will be better off using SQL Server (or Oracle) for the database and
Visual Studio for the forms. These tools have security built in from the ground up
along with better management tools.

Exercises

Many Charms
Samantha and Madison do not believe that security will be a critical issue at Many
Charms. The database will run on one machine, and rarely be used by anyone
except the two of them. On the other hand, they do need a system for which it is
easy to create backup copies. For some security, they are willing to use the single
database password. On the other hand, they are concerned about performance. Al-
though they do not expect too many orders to arrive at one time, they do want to
examine some lengthy reports to evaluate sales trends.
1. Run the performance wizard to improve the performance of the database—

particularly in terms of the reports and queries needed.
2. Create a backup option that makes it easy for the managers to create a backup

copy. As much as possible, keep it down to one button. But provide some
notices about moving the backup copy offsite in case of fire.

3. Add the security provisions needed by Samantha and Madison.

Standup Foods
Security is a serious concern for Laura. The database contains a large amount of
data about employees—and movie star preferences. Managerial employees will
need access to the database to enter a considerable amount of information regard-
ing other employees and the status of the event. Consequently, employee access
has to be carefully thought out. Managers should have the ability to enter data on
employees who report to them, but should not be able to even see most data on
other employees. You will have to use queries to provide this level of security.
Assigning access to the entire employee table would give managers too much per-
mission. Instead, you will have to set up queries that retrieve the data for specific
managers and then give the managers access to the data through that query.
1. Run the performance wizard to improve the performance of the database.
2. Create a backup option and a written set of procedures that Laura can follow

to ensure the data is protected.
3. Create the security provisions needed by Laura. Concentrate on the

permissions needed to handle evaluation of employees by a manager—
without allowing the manager full access to data for all employees.

EnviroSpeed
The knowledge in the EnviroSpeed database is a major strategic asset to the com-
pany. This data represents experience gained over several years and enables the
company to be considerably more productive and profitable than its competitors.
Tyler and Brennan believe it is critical to protect this asset. On the other hand, it
is also critical that employees and hired experts have immediate access to all of

188Chapter 10: Database Administration

the knowledge during a disaster cleanup. Security controls need to be set carefully
to protect the database from outside hackers. Fortunately, Brennan and Tyler can
trust all of the employees and experts, and do not believe it is necessary to track
the exact usage by each person to prevent theft.
Run the performance wizard to improve the response times of the database.
1. Create a backup option and a written set of procedures to follow to protect

the database.
2. Create the security provisions needed. Concentrate on protecting the data

from external attacks.

Final Project
The main textbook has an appendix with several longer case studies. You should
be able to work on one of these cases throughout the term. If you or your instruc-
tor picks one, perform the following tasks.

1. Run the performance wizard and improve the responsiveness of the
application. Identify the main areas that will be stressed as loads increase.

2. Create a backup option and a written set of procedures to protect the
database.

3. Identify the main risk factors and implement the security provisions needed
to protect the data, but still ensure users have the access needed to perform
their jobs efficiently.

189

Objectives

Split a database and link the parts for use on a LAN.•	
Replicate a database and synchronize the changes.•	
Create Web pages to edit data over the Internet.•	
Export	and	import	data	as	XML	files.•	

Chapter Outline

Distributed Databases
11Chapter

Location, Location, Location, 190
Case: All Powder Board and Ski Shop, 190
Lab Exercise, 191

All Powder Board and Ski Shop, 191
The Internet, 197

Exercises, 200
Final Project, 201

190Chapter 11: Distributed Databases

Location, Location, Location
Even small companies often need to access data in multiple locations. This distrib-
uted access generates several issues in database management. The most important
question you will face is where to store the data. The answer depends on how the
database is used, how fast the connections are, and whether everyone needs 24-
hour access to immediately current data. The first step in designing a distributed
system is to answer these questions and determine the most efficient method for
handling data updates in the various locations. Note that efficiency also includes
cost issues.

Microsoft Access provides some support for distributed databases, but does
not have as many options as SQL Server or the other big systems. The two main
techniques supported are linked files, and data replication. However, support for
replication was dropped with the new Access 2007 accdb file format. You can still
use replication if you use the older mdb file format. Also, with some additional
tools Access can also be used as a database server for small Web sites. Internet
connections are rapidly becoming a useful way to handle distributed access to
data. Interestingly, with most Internet database approaches, the data itself is actu-
ally centralized in one location. The browser and Internet protocols provide users
access to the database from any location with an Internet connection—including
wireless devices.

Case: All Powder Board and Ski Shop
Initially, you might think that All Powder, having only one store, would not care
much about distributed databases. Certainly if the owners consider adding a sec-
ond store, the issues become more complex. This situation will be examined in a
second lab exercise. In the meantime, even with one store some distributed issues
need to be addressed. The distributed aspect arises because there will be several
locations within the store that need access to the database—the checkout stations,
the rental desk, and a couple of offices. Figure 11.1 shows that each of these loca-
tions will have a computer that needs to run the forms and share the data.

Figure 11.1

Server

Network
switch

Offices/Managers

Checkout

Rental desk

191Chapter 11: Distributed Databases

Distributed questions within a single building are much easier to solve than
those spreading across wide geographic areas. The reason is because of the speed
of local area networks (LANs). Within the store, it is relatively easy to install a
high-speed LAN that can transfer data as quickly as a typical computer can trans-
fer data to an internal hard drive. Consequently, it is possible to store the database
in one location and share it with all of the other computers—with no noticeable
delays.

Lab Exercise

All Powder Board and Ski Shop
Consider the in-store situation with a high-speed LAN and the need to run the
database on several computers at the same time. Currently, you have a single ac-
cdb file (plus the security workgroup file if you are using the secured copy). How
would you use this single file on six different computers at the same time? You
could copy the file to all six machines, but remember that the file contains all of
the forms, reports, and data. Any changes to the data on one machine are not go-
ing to be available to the other computers.

With a LAN, you could put the single copy of the database on the server on a
shared folder. Each workstation would open the same copy of the database. This
way, everyone is using the same copy of the data, so all changes are available to
everyone. The drawback to using a single file for the database is that all of the
forms and reports are also shared—which places a load on the network. Each time
a form is opened, it has to be transferred across the network. Another problem
is that you cannot make design changes to forms or reports until everyone has
closed the database. Even if you simply need to tweak a report that only one per-
son needs, you have to wait until everyone closes the database—because all users
are sharing the same forms and reports file.
Activity: Split and Link the Database
One solution to these issues is to split
the database into two components: (1)
the data tables with relationships, and
(2) the forms, reports, queries, and
modules. The main data file will reside
on the shared server. The file contain-
ing the forms and queries can be copied
and placed on each individual machine.
With this approach, forms and reports
load quickly—even if they contain graphics. Minor changes can be made to the
files on individual workstations, although at some point you have to copy the
changes to all computers. Figure 11.2 shows the concept of the split database. The
key to making it work is that the forms database contains links to the actual data
tables stored on the shared server. These links are shown as virtual tables in the
forms copy of the database, and can be referenced the same as a native table.

Splitting the database into these elements has an additional impact that can be
useful later as the company expands. At some point, the data can be transferred to
a more powerful DBMS. The forms and reports will still work! You generally just
have to change the links to point to the new, larger DBMS.

Action
Choose Database Tools/Move Data/

Access Database.
Choose the name and location for the

back-end database.
Examine the contents of the two

databases.

192Chapter 11: Distributed Databases

To illustrate the process, it is best to use the unsecured database. The process
will work on the secured database, but either way, you will have to rebuild the
security conditions. In practice, you would build the split database first and then
set the security conditions. You could split a database manually; the process is not
too difficult. You simply create a new database and import all of the tables from
the original. Then you delete the tables from the original database and build links
into the new back-end database. To make the process even easier, Access con-
tains a database splitter wizard. To use this wizard, open the main database and
choose the Database Tools/Move Data/Access Database menu option. There are
no options, but you will be asked to select a name and location for the new back-
end database that will contain the tables. Figure 11.3 shows the results. You end
up with two accdb files, one for the front end, one for the back end. You should

Figure 11.3

Tables and
relationships

Figure 11.2

Back-end database:
Tables and relationships

Front-end database: Links to
back-end tables.
Contains all forms and reports

Model

Inventory

SaleItem

Customer

Sale

 Sale
ID Date
Customer

SKU Qty Price

Links to tables

Forms, Queries,
Reports, Modules

193Chapter 11: Distributed Databases

open both files and see what pieces exist. The back-end database contains only
tables. The front-end database contains links to the tables, but not the actual data.
It also contains all of the forms, reports, queries, and modules. Run the forms in
the front-end database to verify that they work.

 Once the tables are linked, you can treat them as if they were local tables.
When Access needs data, it automatically goes across the network and retrieves
it. In the All Powder store, you can place the back-end database on the server, and
then put copies of the front-end database on each machine. Be sure you set secu-
rity permissions in both the back-end and front-end databases first. One issue does
arise with linked databases: What happens if you move the back-end database?
The front-end forms will not be able to find the tables to establish the link. Access
contains a Linked Table Manager to solve this problem. As shown in Figure 11.4,
right-click on the linked tables in the front-end database and select the Linked
Table Manager. Then select (check) all of the links and click the OK button. At
this point, Access will prompt you for the new location of the back-end database.
Simply browse to its location and select it. The Linked Table Manager will rebuild
all of the links.
Activity: Replicate and Synchronize a Database
Linked tables are an efficient and easy solution when all of the computers are con-
nected by a high-speed LAN. If the company decides to open a second store, even
if it is in the same city, it is usually too expensive to link the stores with a high-
speed network. Within each store, the LAN probably runs at 100 megabits per
second (Mbps), but connections between stores are expensive and pricing is based
on the transmission capacity. Even relatively low-speed simple T1 connections at
1.544 Mbps can cost $500 to $1,000 per month. No one will be happy with linked
tables at that speed, and faster links can be substantially more expensive. With

Figure 11.4

194Chapter 11: Distributed Databases

slower connection speeds, you need to
distribute the data so that most of the
accesses remain within each store. In
this case, you will have two separate
copies of the data tables. Then you
need to synchronize the data so the two
copies of the database exchange up-
dates until they both contain the same
data. How often the databases need to
be synchronized depends on the use of
the data. If sales clerks routinely need
to know the inventory status of items in
the other store, the synchronization will
have to occur several times throughout
the data. However, in most cases, daily
synchronization will be sufficient, and the databases can be exchanged over night
when there is less traffic on the network.

The Access 2007 file format does not support replication, so you first have to
create a new blank MDB file and copy all of the objects from the original AC-
CDB file. To create a replica, you cannot just copy the database file. Instead, you
run the replication program which changes ID values to random numbers and tags
all data with times so Access knows how to merge changes from multiple copies.
For the case of the All Powder database, each store would run split copies of the
database. Each store would contain a back-end database that contains only the
tables. This database is the one that would be replicated and later synchronized.
The front-end database could simply be copied and loaded onto the individual
user machines.

Figure 11.5

Action
Create a new MDB file and import all

objects.
Choose Database Tools/Replication

Options/Create Replica.
Make a change to a customer name in the

master database.
Add a new customer in the replica.
In the master database, choose Database

Tools/Replication Options/Synchronize
Now.

Verify that both databases now contain
the same data.

195Chapter 11: Distributed Databases

To create a replica, open the MDB database and choose Database Tools/Rep-
lication Options/Create Replica on the ribbon menu. The process is almost auto-
matic. Stick with the default choices and make sure you include the backup copy
of the original database. When the wizard finishes, you will have the original mas-
ter copy of the database and a replica. If desired, you can create additional replicas
from the master. Figure 11.5 shows the result of the process. Initially, it appears
that little has changed except for the new icon. However, several changes were
made to the master database internally. Check the file size and you will see that it
has doubled.

AutoNumber keys present one of the more visible issues in replicated databas-
es. When managers are simultaneously adding new customers in different stores,
how does the database ensure that the generated keys are unique? It can no longer
use a simple increment approach. Instead, Access essentially randomly assigns
values for AutoNumber keys. A more sophisticated approach would be to assign
the values with a component added for each copy. Purely random numbers are
not guaranteed to be unique—but with over 2 billion possibilities, the chance of
simultaneously generating exactly the same value is fairly small.

To see how the replicated database works, open the Customer table in the mas-
ter database and change one of the names slightly (for example, Jones2). Close the
database and open the Customer table in the replica. This copy still has the origi-
nal name because the databases have not been synchronized yet. Add a new cus-
tomer in the replica database, and observe the generated AutoNumber key. Again,
this new row exists only within the replica database until it is synchronized to the
master. Figure 11.6 shows a partial version of the two Customer tables and the
changes.

To synchronize the replica to the master database, close the replica and open
the master database. Choose the Tools/Replication/Synchronize Now menu op-
tion. If necessary, browse to find the replica. The process is largely automatic.
Open the Customer table in the master database. The modified name is still intact.
Scroll to the end of the table and notice that the row added to the replica has been

Figure 11.6

Change a name

Master Customer
table

Add a new customer

Replica Customer
table

111-444-9999PaulSanchez2

213-724-6073MarkHunton2003

111-222-3333JackJones21
PhoneFirstNameLastNameCustomerID

111-444-9999PaulSanchez2

213-724-6073MarkHunton2003

111-222-3333JackJones21
PhoneFirstNameLastNameCustomerID

213-724-6073MarkHunton2003

111-444-9999PaulSanchez2

222-333-4444SusanSmith1054243589

111-222-3333JackJones1
PhoneFirstNameLastNameCustomerID

213-724-6073MarkHunton2003

111-444-9999PaulSanchez2

222-333-4444SusanSmith1054243589

111-222-3333JackJones1
PhoneFirstNameLastNameCustomerID

196Chapter 11: Distributed Databases

transferred to the master. Open the Customer table in the replica database. Notice
that the modified name has been updated in the replica. Figure 11.7 shows that all
changes are made in each table.

What about concurrency? With replicated databases, it is possible for two peo-
ple in different locations to modify the same piece of data at essentially the same
time. For instance, both could be changing an address for the first customer. Try
it by modifying the address for the first customer in the master database and then
making a different change for the same address in the replica. Then reopen the
master database and synchronize it with the replica. You will receive a message
that a conflict exists and an option to resolve the conflict.

Figure 11.8 shows the analysis by the Resolve Conflicts wizard. It indicates that
the same row was changed by two different operations and shows the two values
that were entered for the Address. In this case, the values on the left were entered
into the master database. By clicking the button beneath the desired set of values,

Figure 11.7

Both databases pick
up all of the changes

Figure 11.8

Two changes made
before synchronization

Choose which
version to accept

213-724-6073MarkHunton2003

111-444-9999PaulSanchez2

222-333-4444SusanSmith1054243589

111-222-3333JackJones21
PhoneFirstNameLastNameCustomerID

213-724-6073MarkHunton2003

111-444-9999PaulSanchez2

222-333-4444SusanSmith1054243589

111-222-3333JackJones21
PhoneFirstNameLastNameCustomerID

197Chapter 11: Distributed Databases

you can indicate which data should be kept and which discarded. You can also
postpone the decision, while you talk with others to find out which change should
be kept. With replicated databases, this manual process cannot be avoided. There
is no good way for the computer to decide which change to accept when two
changes occur at the same time. You could make an argument that the most recent
change should be kept, but that decision might not be the best in every case.

The Internet

Activity: Web Pages with Access
Web-based applications are becoming the preferred method of building systems—
particularly when users need distributed access. With relatively simple browsers,
users can access the data and the applications from anyplace that has an Internet
connection. With the increasing availability and features of wireless devices such
as cell phones, managers will want even more access to data remotely. Unfortu-
nately, the technologies and infrastructure are still immature, and Web-enabled
applications can require intricate coding and time-consuming debugging.

With Access 2007, Microsoft has discontinued the tool to create and modify
Web data access pages. Pages can still be imported from earlier versions and data
can be entered using Internet Explorer. However, there is no way to create or mod-
ify Web pages within Access 2007. On the other hand, this tool was not particu-
larly useful and seldom used.

To create data-enabled Web pages, you need a more powerful tool. Microsoft
Visual Studio is one method that uses ASP .NET to create dynamic Web pages. It
contains wizards to build data-bound forms relatively easily and quickly. It does
require a certain level of programming skills to create complex pages, but simple
forms can be built with minimal programming. There is even a free version avail-
able to create Web sites. However, it is much better to use SQL Server instead of
Access with the current version of these tools. SQL Server Express is a free ver-
sion that can be used on Web sites.
Activity: Transferring Data with XML
One issue you will face with distrib-
uted databases is the need to transfer
data among differing database systems.
For example, a supplier might send
you product information electronically.
Since the supplier does not know what
type of database system you have or
how your database is organized, it can
be difficult to provide the data in a format that your system can read. The process
is complicated when suppliers have thousands of customers just like your shop.
Suppliers have no desire to create thousands of different electronic files. Instead,
they should be able to send one file in a standard format, and your system should
be able to identify the necessary data, select it, and import it into your database.
This dream is not quite reality, but XML (eXtensible Markup Language) was cre-
ated to make it easier to exchange data among disparate systems. If you need to
transfer data to someone outside the company, you can use File/Export and select
XML as the file type. An XML file is a text file that contains tags that describe
the data. You should select the option to create a schema file (xsd) that defines the
structure of the data file.

Action
Highlight the Employee table name.
Right-click and choose Export/XML.
Save the file and close the database.
Open the file in Explorer.

198Chapter 11: Distributed Databases

Importing data is generally not much more difficult, but your original source
file might not have all of the data that you need. You might have to edit the file
to add or modify some of the data. For example, a vendor might send you a file
that lists some new skis and snowboards. This data can be imported into the Item-
Model table, but this table has a column for ManufacturerID. You will have to
add that column to the XML file because your vendor is not going to know what
number you use. Alternatively, if you are careful, you can import the data with
a blank ManufacturerID and use SQL to update those new rows. You have to be
careful with this method, because you need a way to identify which rows should
be updated.

Figure 11.9 shows that you can open
XML files using the Internet Explorer
browser. This approach highlights the
individual data records and makes it
easy to see the structure of the data.
You can expand or contract individual
segments to focus on individual areas.
This example has three new items, with
basic data about the products. Notice
the tags used to indicate the purpose of
the data items. These tags could have
any names, but choosing names that are understandable to humans makes the file
easier to read and to edit. This file was generated by an Access export, so it uses
the existing column names.

Figure 11.9

Action
Open the ModelSample.xml file with

Wordpad and verify that the fields
match your column names.

Edit the file if needed and save it.
In the database, choose External Data/

XML
Select the file and append the data to

your ItemModel table.

199Chapter 11: Distributed Databases

Figure 11.10 shows a portion of the same XML file as it would appear in a text
editor. Notice the tags are there to help you, but the text editor lacks the formatting
and highlighting of Internet Explorer. Nonetheless, the text-based data is easy to
edit, and you could quickly change the ManufacturerID data. However, be careful
if you have to add new tags. It is easy to add the tags into an XML file, but most
files are also transferred with a schema file that lists the tags that can be included
in the XML file. If you add sections or tags to an XML file, you will also have to
modify the accompanying XSD file.

Once the file is acceptable, you can import the data into Access. Use the File/
Get External Data/Import menu option. Figure 11.11 shows that you are given the
option to append the data directly to the end of an existing table. If the data and
tags in the XML file match the table definition, you can use this option. It will
still work if columns are in a different order. On the other hand, if the XML file is
missing key columns, or needs additional cleanup, it would be wiser to import the

<ItemModel>
<ModelID>BQQ-333</ModelID>
<ManufacturerID>23</ManufacturerID>
<Category>Board</Category>
<Color>Black</Color>
<Cost>137.50</Cost>
<ModelYear>2005</ModelYear>
<ItemMaterial>Composite</ItemMaterial>
<ListPrice>224.99</ListPrice>
<Style>Downhill</Style>
<SkillLevel>6</SkillLevel>
<WaistWidth>159</WaistWidth>
<EffectiveEdge>1021</EffectiveEdge>
<BindingStyle>Strap</BindingStyle>
<RentalRate>20</RentalRate>
</ItemModel>

Figure 11.10

Figure 11.11

200Chapter 11: Distributed Databases

file into a new table. Then use SQL to extract and clean up the data and transfer it
to the desired database table. If you look closely at the data being imported, you
will see that there are many opportunities for problems. For instance, what hap-
pens if the manufacturer does not use exactly the same style and binding descrip-
tions that are in the main database? The inconsistent rows will not be appended
because they would violate the integrity constraints. When there are many rows of
data, and many of these situations, you will need to import the data into a separate
table and clean it up first. Many times you can write a sequence of SQL statements
to do the cleanup, making the process easier next month when you receive a new
file from the same vendor. For these reasons, even XML cannot solve all of the
data transfer issues.

Exercises

Crystal Tigers
Most of the information for the Crystal Tigers club can be maintained on one
computer run by the club secretary. However, the secretary sometimes needs as-
sistance entering all of the data during special events. Although he brings the da-
tabase on his laptop, it would probably be easier if two or three people brought
laptops and handled specific tasks. At the end of the day, the data could be syn-
chronized and available for analysis. It would at least speed up the data entry and
give more people access to the critical information needed during the day.
1. Replicate the database and test it on three separate computers, then

synchronize the changes a few times to see if this approach will work for the
club.

2. The club has talked about making some data available to members over
the Internet. Although many of the members do not have Microsoft Office
installed, the club would prefer to provide read-only access. Set up a page
that generates activity lists for an upcoming event so members can check the
schedule.

3. One of the charitable organizations the club works with is impressed with the
database and would like some of the data. Create a query and export an XML
file that lists the members and the hours worked for a particular event.

Capitol Artists
Because the system for Capitol Artists collects data from many employees at the
same time, the main database needs to run on a central server. All of the comput-
ers are connected by a high-speed LAN, and based on the company growth rates,
you need to plan ahead for possibly moving to a larger back-end DBMS. It makes
sense to split the database and link the forms to the data tables. The company is
unlikely to open a second office; however, many of the employees have suggested
that they would be more productive if they worked from home. The managers
have suggested testing this idea by using the database work-tracking system. A
few employees would install the database on their home systems. As they com-
pleted client tasks, they would fill out the work table as usual. This data could then
be synchronized with the company database at the end of the day. After a month,
the managers could see if the employee productivity declined or improved.

201Chapter 11: Distributed Databases

1. To handle the internal LAN, split the database. Install the back-end database
on one machine, and install at least two copies of the front-end database on
other machines. Get someone to help you test the system for performance.

2. Create a replica of the database that could be checked out by telecommuting
employees. Test the work-progress forms and synchronization.

3. One of the owners travels often and wants to check on daily progress reports
over the Internet using her laptop. Create a Web page that displays the work
done for the current day and lists the hours and expense of the employees for
each project.

Offshore Speed
The Offshore Speed company has some aspects in common with All Powder. In
particular, the store needs several computers running the application to handle
sales, orders, and management reports. For some reason, the company owner is
leery about splitting the database. To satisfy him, you should test the application
both ways, so you will need two or three people to assist you in loading and run-
ning the forms at exactly the same time. Because of the huge number of parts, the
company is particularly interested in obtaining XML product files from vendors.
With 20 primary vendors and changes every month, you need to find a way to au-
tomate the imports of this data.
1. Install the single copy of the database on one computer. Get two or three

other students to simultaneously open the application across the network
and enter some basic sales data. Time the process. Split the database, putting
copies of the forms on each computer. Repeat the test and see if there is a
difference in performance. Make a recommendation to the owner.

2. Create at least three different XML files that might arrive from vendors with
product details. These files should not contain VendorID and other specific
information that exists only in your database. Create a system that will
automate these imports whenever a file arrives.

3. One of the managers wants to bring a copy of the database home to look
through reports and the PivotTables at night. Create a replica and set up a
synchronization process that is easy for the manager to use at the end of the
day, so that his laptop will have up-to-date data.

202Chapter 11: Distributed Databases

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following tasks.
1. Split the database into a back-end and front-end database. Test the

applications.
2. Create a replica, test all of the forms and reports on both copies. Test the

synchronization.
3. Export at least one table into an XML file that could be sent to an outside

firm such as a customer or supplier.
4. Create a basic Web page to enable workers to enter data using a browser.
5. Create a more complex Web page to handle a main form/subform situation

such as Sales. Be sure to create drop down lists for foreign key columns.
Hint: you will have to first create a query for the data displayed in the drop-
down list because a Web page combo box can use at most two columns.

Objectives

Understand limitations on Microsoft Access storage methods.•	
Identify	files	used	by	Microsoft	Access.•	

Chapter Outline

Physical Database Design
12Chapter

Storing Data, 203
Case: All Powder Board and Ski Shop, 203
Lab Exercise, 203
Exercises, 207
Final Project, 208

204Chapter 12: Physical Database Design

Storing Data
Microsoft Access is designed to handle small databases with a limited number of
users. It is also designed to be easy to use with easy-to-create forms and reports.
Consequently, you have almost no control over how the data is stored in data files.
As a result, there is not much to cover in this chapter of the workbook. If you need
more control over the data storage, you should look at the bigger systems such as
SQL Server, Oracle, or DB2.

On the other hand, you will probably face some issues involving the files used
by Microsoft Access, so you need to understand the role of the various files and
the underlying data engine. So, this chapter looks at some of the technical issues
in how Microsoft Access interacts with the operating system.

Access is effective and inexpensive for small to mid-size applications. For
several years, Access was an inexpensive way to create database applications.
Switching to high-powered systems carried a high price tag. Today, you can im-
plement powerful tools inexpensively with the free copies of database systems
(SQL Server Express and Oracle XE) plus the open source tools such as MySQL
and PostgreSQL. Because of its flexibility and ease of use, Access is also a useful
tool for prototyping systems. You can quickly build a small application in a day
or two and users can play with it to identify problems and additional needs. Once
you and the users are comfortable with the design, you can transfer to one of the
bigger systems.

Case: All Powder Board and Ski Shop
Microsoft Access can be used effectively within one store. Even then, you will
have to split the database into a back-end server and front-end forms so everyone
uses a single copy of the database. As long as you use a fast network and rela-
tively fast disk drives, Access should be able to handle a typical small store. But,
if All Powder managers want to expand to additional stores or set up Web sites
that will get thousands of hits an hour, the Access database system will probably
not keep up. Keep in mind that Access also does not support transaction logs, so if
something goes wrong, you are likely to lose some transactions.

Lab Exercise
Activity: Data Storage and Partitions
Internally, Microsoft Access uses
B+trees to store indexes, so it is rela-
tively efficient at handling typical
queries and joins. The only control
you have over the storage is to add or
remove indexes. By default, Access
creates indexes for all columns in the
primary key. There is no provision
for hashed or direct access to rows of
data. Access does not directly support
clusters or partitions. Remember that
all data within a database is stored in a
single file.

Action
Create a new blank database.
Create a copy of the ItemModel table.
Load it with all data before 2006.
In the ItemModel table in the main

database, remove the data before 2006.
Use a linked table in the main database to

connect to the older data.
Create a UNION query that retrieves all

rows of data for the ItemModel table.

205Chapter 12: Physical Database Design

On the other hand, you could use a tricky method to create your own partitions.
It is relatively easy to create linked tables. Recall that a linked table stores the
data in a separate database file, but through a link, the table can be accessed just
like any other table in the original file. The partition trick is to create a new data-
base and store its accdb file on a different disk drive. Transfer the older data to a
table in this new database. In the original database, create a link to the new table.
Finally, build a UNION query to retrieve all of the rows from both tables. Figure
12.1 shows the link and the UNION query. The older data could even be stored
on a different computer attached to the network. This process is somewhat cum-
bersome. Your forms will have to write new data to just the table in the main da-
tabase. Your reports will use the UNION query to retrieve and analyze data from
both the old and new data. You have to split and copy the data by hand, and within
your application forms and reports, you have to choose which table or query to
use. However, in exchange for this additional work, you end up with a system
that enables you to move large amounts of old data to a different computer or disk
drive. The smaller tables of new data improve overall application performance.
Consequently, this trick is useful when the database has been running for a long
time and you no longer need immediate access to the older data.
Activity: Identifying Access Files
By default, Microsoft Access stores
everything in a single accdb file. This
approach makes it easy to transfer the
application to another computer. How-
ever, if you have worked through the
labs in this book, you have probably
noticed that Access uses several other
files as well. The purpose of this sec-

Figure 12.1

Linked table to
older data

UNION query

Action
Use “My Computer” to locate the folder

with the MDB file.
Open the database file.
Identify the LACCDB file.

206Chapter 12: Physical Database Design

tion is to summarize the main operating system files created and used by Access.
You need to know the various types because you will have to set operating system
access permissions or transfer the correct file to other computers and users. Figure
12.2 lists the various file types based on the suffix.

All data and forms are stored within the accdb file that is created when you
create a new database. However, Access automatically uses a second file when ac-
cessing the accdb file. Open an Access database and use your computer browser to
find the folder that holds that file. You will see a second file that has an laccdb suf-
fix. This file holds the locking information that Access uses to track which tables
are opened by each user. When you share an Access data file on a network folder,
you have to remember to give write access to the folder itself so the data engine
can create the lock file if it does not already exist. When everyone closes the Ac-
cess database file, the lock file is automatically deleted. This lock file is a main
reason why you cannot open an Access database that is stored on a CD-ROM
drive.

An ACCDE file is similar to an ACCDB file but it removes the VBA source
code and disables the edit commands so users cannot alter the forms and reports.
It is a convenient way to distribute an application and prevent casual users from
altering the design and application itself. You create it with the menu command:
Database Tools/ Make ACCDE File. Be careful to keep the original file around.
You need the original to make changes, because even you will not be able to alter
the designs or code in the ACCDE file.

If you use the older MDB file format for user-level security, Microsoft Access
stores security information in a separate MDW workgroup file. When you create
users and groups, Access needs someplace to store the username and password
login information. The original MDB file would not be a secure place to store this
information. Consequently, Access creates the MDW file, which is a specialized
database that is encrypted automatically to protect its data. By default, Access
uses the System.MDW file. When you run the User Security Wizard, you will
create a new MDW file to hold the login information. To deploy the database, you
will need to install the MDW file along with the MDE (or MDB) file.

The ADP file is a specialized file that is rarely used. It contains login informa-
tion when you want to connect your Access database to a SQL Server database. It

Figure 12.2

Suffix Old Suffix Purpose
ACCDB MDB Primary	database	file	to	hold	data,	forms,	and	reports.

LACCDB LDB Holds lock data to prevent multi-user collisions.

ACCDE MDE Stripped	down	MDB	file	that	removes	source	code	and	
prevents users from editing forms and reports.

ACCDT Template	file.	Download	the	Access	Extensions	to	create	
template	files	from	your	database.

ACCDR Run-time version that prevents changes to forms and
reports. You can restore it by renaming the extension.

MDW Workgroup	file	that	contains	user	and	group	login	
information. The default is System.MDW.

ADP Project	file	that	contains	code	to	connect	to	a	SQL	Server	
database.

207Chapter 12: Physical Database Design

will be created automatically if you build a client-server system that uses Access
forms as the front end and linked tables into a SQL Server backend.

The LACCDB and MDW files are the trickiest, since you need to remember
to deploy them when the application is installed. Since they are operating system
files, you also have to set operating system (network) security permissions. Both
files require read/write permissions or the database will not start. It is not possible
to move the LACCDB lock file to a different disk drive, so there is minimal op-
portunity for performance gains. You can move the MDW file, but you will not
see any performance gain. Since your startup link needs to point to the MDW file,
moving it also does not increase security.
Activity: Altering Registry Parameters for the Jet Engine
The data, forms, reports, and VBA code
are stored in the MDB file. However,
the actual program code that connects
to the database and handles the queries
and updates is stored in the Access Jet
Engine—which is installed as a sepa-
rate component in the operating system.
The Jet Engine also uses the Microsoft
Data Access Components (MDAC)
to handle data exchanges between cli-
ent programs and the database. Microsoft provides some control over the Jet En-
gine through registry entries. You should avoid changing any registry entries, but
sometimes you can improve performance with a few minor changes.

The registry is a simple hierarchical Windows database that the operating sys-
tem and programs use to store configuration information. Windows contains a
registry editor to help you find and alter these settings. However, you must be ex-
tremely careful about editing registry settings—you could crash the entire system.

Figure 12.3

Action
Start the registry editor with Start/Run/

regedit.
Expand the Local Machine keys to find

the entries for the Jet engine.
Change the Threads value from 3 to 5.
Test some queries and forms to see if

performance changes.

208Chapter 12: Physical Database Design

It is possible to back up portions of the registry, but you must still be careful or
you might not even be able to restart the registry editor.

On Windows XP, or similar versions, use Start/Run/regedit to start the editor.
The main keys affecting the Jet Engine are stored in:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Jet\4.0\Engines\Jet 4.0.
In the registry editor, you expand the node for HKEY_LOCAL_MACHINE.

Under there, you expand SOFTWARE, then Microsoft, and so on until you click
the Jet 4.0 entry. Figure 12.3 shows the parameters for the Jet 4.0 entry. You can
double-click an item displayed in the right-hand window to edit it. The Help sys-
tem in Microsoft Access contains explanations for all of the entries. In general,
you should leave the default settings. Two settings that you might need to change
are the LockDelay and LockRetry. These settings are used to determine how often
and how many times a form should try to access a locked page before returning
an error message. The LockDelay is the number of milliseconds between tries.
You might want to change the MaxBufferSize for really large databases. It is the
number of kilobytes used in the engine’s internal cache. Increasing the size might
help increase throughput in data transfers. The Threads entry controls the number
of background threads available to the engine. If you have dozens of simultaneous
users and a fast processor, you might be able to improve performance by increas-
ing this number.

Note that changes made to registry items are saved as soon as click the OK but-
ton, and there is no undo capability. When you edit the registry, you should write
down the keys that you are changing along with the original and new values. Then
test the system for a few days to see if you should go back to the original values.

As a simple test, you can try changing the Threads entry. The default value is
3, which is sufficient for a single user. For multiple simultaneous users, you might
want to try a larger number such as 5 or perhaps 10. Each thread takes up proces-
sor cache space and time, so be cautious and make small changes. In addition to
looking at whether the change improved performance for Access, you will want to
observe overall system performance and performance of other applications when
several programs are running at the same time. With a relatively fast computer,
you are unlikely to see any major performance changes. You would need a large
database and multiple users to be able to discern performance changes from these
small tweaks. And, if you have a database that large with that many users, you
might as well upgrade to SQL Server.

Exercises

Many Charms
The database for Many Charms is likely to remain relatively small and perfor-
mance should not be a serious issue. Nonetheless, you should look for possible
ways to improve performance by controlling the data storage.
1. Create a list of signs that you would watch to indicate that data storage is

becoming a performance problem.
2. Do some research to identify tools that you could use to transfer the existing

database to a more powerful DBMS.
3. Partition the Production table into two sections based on the ProductionDate.

209Chapter 12: Physical Database Design

Standup Foods
Standup Foods has the potential to grow to a relatively large company over the
next couple of years. It is possible that performance will become an issue with
some of the tables. The client list is particularly interesting, because studios are
continually creating new companies and partnerships. As a result, many of the
older companies in the list no longer exist. On the other hand, the contact list is
important, since it contains data on individual people. Similarly, the Employee list
changes on an almost daily basis. Laura is reluctant to delete the older employees
because many of them come back for special projects every couple of years.
1. Create a list of signs that you would watch to indicate that data storage is

becoming a performance problem.
2. Do some research to identify tools that you could use to transfer the existing

database to a more powerful DBMS.
3. Partition the project table into two sections based on the contract date.

EnviroSpeed
The database for EnviroSpeed could eventually become quite large. Because the
system contains valuable knowledge, the company does not want to delete any-
thing. The company also benefits by keeping all of the data in one large data-
base. Although much of the data becomes dated, employees still want the ability
to search through older cases. However, the older data does not change so it could
be moved to different disk drives.
1. Create a list of signs that you would watch to indicate that data storage is

becoming a performance problem.
2. Do some research to identify tools that you could use to transfer the existing

database to a more powerful DBMS.
3. Partition the Situation and ProposedSolution tables into two segments based

on the date.

Final Project
The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you pick one
or your instructor picks one, perform the following tasks.
1. Create a list of signs that you would watch to indicate that data storage is

becoming a performance problem.
2. Do some research to identify tools that you could use to transfer the existing

database to a more powerful DBMS.
3. Identify the tables that could be improved using partitions or clusters.

Explain your reasoning.

	Database Management Systems
	Gerald V. Post
	Copyright

	Contents
	Brief Contents
	Full Contents

	Chapter 1: Introduction
	Case: All Powder Board and Ski Shop
	Inventory
	Bindings and Boots
	Sales
	Rentals

	Lab Exercise
	Project Outline
	Project Plan
	Feasibility
	The Database Management System

	Exercises
	Final Project

	Chapter 2: Database Design
	Database Design
	Access Data Types
	Case: All Powder Board and Ski Shop
	Business Objects: First Guess
	Relationships

	Lab Exercise
	Database Design System
	All Powder Design

	Exercises
	Final Project

	Chapter 3: Data Normalization
	Database Design
	Generated Keys: AutoNumber
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Database Creation
	Relationships

	Exercises
	Final Project

	Chapter 4: Database Queries and SQL
	Database Queries
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Data
	Computations and Subtotals

	Exercises
	Final Project

	Chapter 5: Advanced Queries
	Advanced Database Queries
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Data
	SQL Data Definition and Data Manipulation

	Exercises
	Final Project

	Chapter 6: Forms and Reports
	Applications
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Shop Forms
	All Powder Basic Reports

	Exercises
	Final Project

	Chapter 7: Database Integrity and Transactions
	Program Code in Microsoft Access
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Data
	Database Cursors, Keys, and Locks

	Exercises
	Final Project

	Chapter 8: Applications
	Applications
	Case: All Powder Board and Ski Shop
	Lab Exercise
	Building the All Powder Application

	Exercises
	Final Project

	Chapter 9: Data Warehouses and Data Mining
	Data Warehouse
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Shop
	Introductory Data Analysis

	Exercises
	Final Project

	Chpater 10: Database Administration
	Database Administration Tasks in Access
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Shop
	Security and Privacy

	Exercises
	Final Project

	Chapter 11: Distributed Databases
	Location, Location, Location
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Shop
	The Internet

	Exercises
	Final Project

	Chapter 12: Physical Database Design
	Storing Data
	Case: All Powder Board and Ski Shop
	Lab Exercise
	Exercises
	Final Project

