Gerald V. Post

Data
NManagement

«}f
. =

¥

SQL Server 2005/2008
Visual Studio 2005/2008

Designing & Building Business Applications

Fourth Edition

Database
Management
Systems

Designing and Building
Business Applications
With

SQL Server 2005/2008
Visual Studio 2005/2008

Gerald V. Post

University of the Pacific

Version 4.0.3

Database Management Systems
Designing and Building Business Applications
With SQL Server 2005/2008 and Visual Studio 2005/2008

Copyright © 2007,2008 by Gerald V. Post

All rights reserved. No part of this publication may be reproduced or distributed
in any form or stored in any database or retrieval system without the prior written
consent of Gerald V. Post.

Students:

Your honesty is critical to your reputation. No company wants to hire a thief—
particularly for jobs as critical as application development and database adminis-
tration. If someone is willing to steal something as inexpensive as an e-book, how
can that person be trusted with billions of dollars in corporate accounts?

You are not allowed to “share” this book in any form with anyone else. You can-
not give or sell any information from this publication in any form to anyone else.

To purchase this book or other books: http://JerryPost.com/books

If you want a detailed step-by-step discussion of how to create applications with
the 2005 versions, you can buy a print copy of the SQL Server book from Prentice
Hall: Introduction to SQL Server 2005/ Perry and Post

http://JerryPost.com

Brief Contents

1 Introduction

Part One: Systems Design
2 Database Design

3 Data Normalization

ParT Two: QUERIES
4 Data Queries

5 Advanced Queries and Subqueries

ParT THREE: APPLICATIONS

6

7
8
9

Forms and Reports

Database Integrity and Transactions
Applications

Data Warehouses and Data Mining

PART FOUR: DATABASE ADMINISTRATION

10 Database Administration

11 Distributed Databases

12 Physical Data Storage

Contents

Contents v

Introduction, 1
Case: All Powder Board and Ski Shop, 2
Inventory, 2
Bindings and Boots, 3
Sales, 4
Rentals, 5
Lab Exercise, 6
Project Outline, 6
Project Plan, 7
Feasibility, 8
The Database Management System, 9
Exercises, 15
Final Project, 16

Database Design, 17

Database Design, 18

SQL Server Data Types, 18

Case: All Powder Board and Ski Shop, 20
Business Objects: First Guess, 20
Relationships, 21

Lab Exercise, 21
Database Design System, 21
All Powder Design, 23

Exercises, 30

Final Project, 32

Data Normalization, 33

Database Design, 34

Generated Keys: Identities, 34

Case: All Powder Board and Ski Shop, 35
Lab Exercise, 36

All Powder Board and Ski Database
Creation, 36

Relationships, 41
Exercises, 46
Final Project, 47

Database Queries and SQL, 48
Database Queries, 49
Case: All Powder Board and Ski Shop, 49
Lab Exercise, 50
All Powder Board and Ski Data, 50
Computations and Subtotals, 60
Exercises, 65
Final Project, 66

Advanced Queries, 67
Advanced Database Queries, 68
Case: All Powder Board and Ski Shop, 69
Lab Exercise, 69
All Powder Board and Ski Data, 69

SQL Data Definition and Data Manipulation,
78

Exercises, 84
Final Project, 86

Forms and Reports, 87

Forms and Reports, 88

Case: All Powder Board and Ski Shop, 89

Lab Exercise, 90
All Powder Board and Ski Shop Forms, 90
All Powder Basic Reports, 109

Exercises, 116

Final Project, 117

Database Integrity and Transactions,
118

Program Code in SQL Server, 119
Case: All Powder Board and Ski Shop, 120
Lab Exercise, 121
All Powder Board and Ski Data, 121
Database Cursors, Keys, and Locks, 136
Exercises, 146
Final Project, 148

Applications, 149

Applications, 150

Case: All Powder Board and Ski Shop, 150
Lab Exercise, 151

All Powder Board and Skip Shop Application,
151

Exercises, 164
Final Project, 165

Data Warehouses and Data Mining, 166
Data Warehouse, 167
Case: All Powder Board and Ski Shop, 168
Lab Exercise, 168
All Powder Board and Ski Shop, 168
Introductory Data Analysis, 184
Exercises, 196
Final Project, 198

Database Administration, 199
Database Administration Tasks, 200
Case: All Powder Board and Ski Shop, 202
Lab Exercise, 202
All Powder Board and Ski Shop, 202
Security and Privacy, 210
Exercises, 218
Final Project, 220

Distributed Databases, 221

Location, Location, Location, 222

Case: All Powder Board and Ski Shop, 223

Lab Exercise, 223
All Powder Board and Ski Shop, 223
The Internet, 231

Exercises, 239

Final Project, 241

Physical Database Design, 242
Storing Data, 243
Lab Exercise, 243
All Powder Board and Ski Shop, 243
Data Clusters, 246
Exercises, 247
Final Project, 247

Contents

Vi

Chapter

Introduction

Chapter Outline

Case: All Powder Board and Ski Shop, 2
Inventory, 2
Bindings and Boots, 3
Sales, 4
Rentals, 5
Lab Exercise, 6
Project Outline, 6
Project Plan, 7
Feasibility, 8
The Database Management System, 9
Exercises, 15
Final Project, 16

Objectives

+ Identify the main elements of the case.
+ Structure the work needed for the case.
« Create a feasibility analysis of the case.
+ Create a new database.

Chapter 1: Introduction 2

Case: All Powder Board and Ski Shop

The ski industry has been through many changes in the 50 years since Bill Shimek
founded the ski shop that is now run by his grandson. One of the biggest changes
is reflected in the prominence of “Board” in the shop name. Snowboards have
revolutionized the industry in several respects. They revived youth interest in the
sport, brought new designs to equipment and resorts, and increased sales dramati-
cally. On the other hand, the increased changes in ski and snowboard equipment
make it more difficult for shops to stock the hundreds of options and combinations
that enthusiasts might want. Shops have become larger, forcing small firms out of
business. Even large ski shops have had to identify their customers and forecast
customer demands carefully to make sure the high-demand equipment is in stock.
Tracking sales, trends, and buyer needs has become critical to survival.

Another factor in the industry is that the firms increasingly rely on rentals.
Partly because of the rapid changes in the industry, many people prefer to rent
equipment so they can avoid having to buy new boards and skis every year. Con-
sequently, the shop buys several relatively standard boards and skis every year
and rents them out. At the end of the year, the used equipment is sold at a discount
to make room for next year’s models.

Inventory

Monitoring inventory is a first critical step in the process of providing the selec-
tion demanded by customers. Figure 1.1 shows some of the detailed information
needed, as well as the diversity of equipment available. Note that because of the
variety of uses, many different types of snowboards and skis exist. Figure 1.1
also shows the importance of the skill categories. Manufacturers produce special
boards and skis for each of these categories. Of course, it would be impossible
to stock all of the required sizes for rental purposes. Rental boards and skis tend
to be as generic as possible. Even for sales, some sizes of the high-end skis and
boards have to be special ordered.

Within a category, manufacturers tend to sell boards and skis targeted for dif-
ferent levels of skiers—from beginner to intermediate to expert (Type I, Type II,

Figure 1.1

Inventory

Snowboards
Manufacturer Mfg ID Size Description Graphics List Price QOH
Freestyle
Pipe
Standard
Extreme

Skis
Manufacturer Mfg ID Size Description Graphics List Price QOH
Cross country-skate
Cross country-trad.
Telemark
Jumping
Freestyle
Downhill/race

Chapter 1: Introduction 3

and Type III skier). Even within the type classifications, All Powder salespeople
evaluate customers on the basis of their aggressiveness on the slope. Because of
the size of snowboards, along with the youthful image of the sport, manufacturers
place a high value on the graphics (images and colors) displayed on both sides of
the boards. Customers have often been known to choose a board because of the
graphics. Some of this emphasis has filtered over to skis as well.

Listing the sizes of boards and skis is somewhat tricky, and definitely presents
a challenge to keeping adequate inventory. The length of the ski or board is a
critical number, but the customer’s choice is also based on several other ski mea-
surements. Snowboards revolutionized board and ski design by adding a narrower
waist to aid in turning. This concept migrated to most varieties of skis as well, so
customers often want to know the waist width, sideout depth, and effective edge
length of skis. Generally, boards and skis with narrower waists are targeted for
more advanced skiers. Additionally, the construction of the board or ski, in terms
of materials and thickness, significantly affects its flexibility and handling. Cus-
tomers generally want to feel the ski to evaluate and compare its flexibility, but
measures of stance location (for boards) and the rider weight range provide some
prediction of the handling characteristics. Most skis and boards are also designed
for a particular riding weight. With cross-country skis it is particularly important
to get the proper length for the weight of the skier.

Bindings and Boots

Bindings and boots represent another common problem for All Powder and other
ski shops. Each ski and each board can technically be fitted with several types of
bindings. Each binding type generally requires a matching style of boot and some
of the boots can work only with some bindings. For example, snowboards can
use clincher, strap, or plate bindings. Cross-country skis can use pin, strap, or rod
bindings. Most modern skis use the rod binding, but customers sometimes want
boots that fit the older pin bindings. Downbhill, freestyle, and slalom skis use simi-
lar bindings. Because they are the most popular, the store usually stocks several
models—focusing on skill levels.

Figure 1.2

Boot-Binding Compatibility

Manuf. Mfg.ID Board/Ski Binding/Style Color Price Cost

Size QOH
34
35
36

Chapter 1: Introduction 4

Figure 1.2 shows an example of the card system that All Powder uses to help
salespeople select bindings and boots. Currently, the salespeople are supposed to
change the quantity on hand whenever a boot or binding is sold. Of course, the
cards are rarely kept up-to-date and the salespeople often have to go search the
physical inventory to see if a size needed by a customer is in stock. Note that
boots and bindings are specifically matched, and a boot for one purpose can rarely
be used for a different application. For example, it would not be possible to use a
cross-country boot in a downhill binding. The binding is usually listed as a type
(rod, step-in, telemark/cable, etc.). On the other hand, it is possible to mount bind-
ings on different types of skis. For instance, you could mount a telemark binding
to a downhill ski. Some of the combinations should be avoided, but this knowl-
edge will not be needed in the database.

Sales

The sales form shown in Figure 1.3 is fairly standard. All of the hard work in
terms of configuration was done by the salesperson. In some cases, the salesper-
son might ask the customer to initial some items that might present compatibility
issues to make sure the customer is aware of the potential problems. The descrip-
tion generally includes the manufacturer’s name and style. The SKU (stock keep-
ing unit) is a special number created within the store to code each item.

Returns are usually accepted on most items as long as they have not been used
outside (e.g., scratched or worn boots cannot be returned). It is important for sales-
people to identify the type of boarding/skiing and the customer’s skill level. This
information is used to send customers mailings about special sales. The owner
also has started thinking about keeping customer sizes in a database. This infor-
mation would be particularly helpful in clearing out the previous year’s inventory
of special sizes (very small or very large), because it would help pinpoint custom-
ers who could use those special sizes. The catch is that the owner is concerned

Figure 1.3
Sales
Customer Sale Date
First Name Last Name Salesperson
Phone E-Mail Department
Address Shipping Address
City, State ZIP City, State ZIP
Male/Female Ski/Board
Age/Date of Birth Style Skill Level
Item | Description | New/Used | Size | Quantity | Price | Subtotal

tem Total

Tax

Total Due Method of Payment

Chapter 1: Introduction 5

about privacy issues and fears that customers may not want to have their sizes on
file at the store. However, if a customer has already purchased items in a specific
category and size, that data will be available. The difficulty emerges when sales-
people ask customers for their sizes when they are not purchasing these products.
For instance, it may appear rude to ask a customer who came in to buy ski wax for
his or her jacket size.

The store evaluates salespeople on the level of sales they make, so it is im-
portant to track sales by each employee. Of course, the database should contain
additional information about each employee, such as phone number, address, and
his or her primary department assignment. Of course, clerks rarely write down the
department names properly, so it makes sense to have a separate lookup table for
the department names.

Also, note that some of the best customers participate in several styles, even
crossing between using skis and boards. A customer who is an expert at downbhill
skiing might be a beginner with snowboards.

Rentals

The form to handle rentals is similar to the sales form. But notice in Figure 1.4
that columns have been added for return date, condition, and additional charges.
The additional charges are imposed if an item is returned late or if it is returned
damaged. Additionally, customers are required to sign the form to indicate their
agreement with the skill level, rental conditions, and the release printed on the
back of the form. Katy, the current manager, has talked about capturing the signa-
tures digitally and storing them online, but it is not a high priority.

Observe that the current form requires that each rented item be checked off sep-
arately when it is returned. Although the store clerks often complain about having
to mark each row separately, the store managers have determined that about 20

Figure 1.4

Rentals
Customer Rental Date
First Name Last Name Expected Return
Phone E-Mail
Address Shipping Address
City, State ZIP City, State ZIP
Male/Female Ski/Board
Age/Date of Birth Style Skill Level

Item | Description | Size | Fee | Return Date | Condition | Charges

Item Total
Tax
Total Due Added Charges

Method of Payment Signature

Chapter 1: Introduction 6

percent of the time, a customer forgets to return an item and has to bring it back
later.

Renting ski equipment also raises the issue of reservations. On some holidays,
all of the equipment is rented out before 10:00 A.M.. Some long-term custom-
ers have said that they would like to be able to reserve equipment. Currently, the
rental managers will sometimes set aside equipment if a valuable repeat customer
calls in advance. This process works reasonably well, but the managers have talk-
ed about creating a system that is available to everyone. One of the drawbacks is
that they are concerned that the general public might reserve items and then never
show up, leaving equipment idle that could be rented to someone else.

Lab Exercise

&

The first step in any project is to identify some basic elements of the system. What
are the goals? What is the scope? What tools will be needed? What are the ben-
efits? What are the expected costs? How much development time will be needed?
All of these questions are difficult to answer, and rarely do the answers have a
single value. Instead, you need to create a project plan. The plan will include a
feasibility statement that describes the basic costs and potential benefits. As a real-
world project, you would also include a list of developers and a statement of ex-
pected fees, so the owners can evaluate the decision to hire you.

Project Outline

As a first step in developing the project plan, you need to summarize the overall
project. This summary should contain a brief description of the project, its goals,
and initial lists of primary forms and reports. Ultimately, this summary will also
include the scope and anticipated budget for the project.

Activity: Review the Case and Research the Industry

For the purposes of this lab, you will
prepare a project proposal for develop-
ing the sales system needed by the All he T
Powder Board and Ski Shop. The rental snOWboards. on the fnternet.

. If necessary, install and upgrade the
component will be left for another ex- DBMS.
ercise. You should begin by reviewing
the description of the company. You should also use the Internet to check out some

Action
Find information about skis and

Figure 1.5

Project Title: Sales System for Boards and Skis
Customer: All Powder Board and Ski Shop
Primary Contact: Katy

Goals:

Project Description:

Primary Forms:

Primary Reports:

Lead Developer:

Estimated Development Time:

Estimated Development Cost:

Date Prepared:

&)

Chapter 1: Introduction 7

of the manufacturers and some of the competitors. You need to be sure that you
understand the key factors in the industry. Figure 1.5 provides a possible structure
for your summary. You should review the case and enter the basic information
requested.

Project Plan

The project plan consists of a detailed breakdown of the steps needed to create
the final system. A common approach is to follow the steps of the systems devel-
opment life cycle methodology: Initiation, Analysis, Design, Implementation, and
Review. Some organizations have rigid descriptions of each of the steps involved
in this process. Some organizations adopt a more flexible approach. Either way,
this plan should outline the basic steps that need to be completed and an estimated
schedule.

In the initial phase, it is also helpful to identify any potential risks to the project
development. At various stages, ask what might go wrong. If you are aware of
the potential problems, managers can monitor for them and can prepare solutions
more quickly.

Activity: Create the Initial Project Plan

Project plans and schedules are often Action

shown Wlth, Gantt charts to illustrate Fill in the project milestone dates based
how the various steps depend on each on your school calendar.

other. If you have access to software
such as Microsoft Project, it is rela-
tively easy to create the project plan. Figure 1.6 shows the basic steps that the
labs will follow in building the application. Ultimately, you would estimate the
times required for each step. However, until you have read the rest of the book
and worked with the databases, it is difficult to estimate the times needed for each
step. For now, evaluate the steps and try to identify any dependencies between the
tasks. For example, is it possible to create the forms without having the database
tables and relationships? Assuming you have several people to help, reorganize
the tasks so that as many tasks as possible can be done at the same time.

Figure 1.6

1. Define the project and obtain approval.
2. Analyze the user needs and identify all forms and reports.
3. System Design
a. Determine the tables and relationships needed.
b. Create the tables and load basic data.
Create queries needed for forms and reports.
Build forms and reports.
Create transaction elements.
f. Define security and access controls.
4. Additional Features
. Create data warehouse to analyze data as needed.
b. Handle distributed database elements as needed.
5. System Implementation
. Convert and load data.
b. Train users.
. Load testing.
6. System review

©
d.
e.
a
a
@

Chapter 1: Introduction 8

Feasibility

Feasibility studies are notoriously difficult. The concept is certainly simple: iden-
tify the potential costs and potential benefits of a system and compare them. The
problem is that benefits might not be quantifiable, so it is difficult to attach mean-
ingful numbers. Nonetheless, it is useful to at least write down the anticipated
costs and expected benefits. Even if numbers are not available, managers at least
can see a concise statement of the analysis.

Activity: Create the Feasibility Analysis

Figure 1.7 shows the basic elements of Action

a feasibility study. You need to create a | Create the feasibility plan for the project.
spreadsheet with these main categories.

Figure 1.7

Assumptions

Annual discount rate 0.03

Project life/lyears 5

Costs Present Value Subtotal

One time
DBMS software

Hardware

Development

Data entry

Training

Ongoing

Personnel

Upgrades/annual

Supplies

Support

Maintenance

Benefits

Cost Savings

Better inventory control

Fewer clerks

Strategic

Increased sales
Other?

Net Present Value

3

Chapter 1: Introduction 9

Use research to identify approximate costs of the various components. For exam-
ple, assume that the shop will need to purchase a server to host the main database
and two client computers for the sales staff. With SQL Server, several configura-
tions are possible. Examine the software license to determine the number of cop-
ies you will need and the approximate cost. Other numbers, including benefits can
be estimated. Remember that annual costs and benefits should be discounted to
compensate for the time-value of money. Use the present value (PV) function in
Excel. Although the benefits are relatively well defined, they can still be difficult
to estimate. For example, how will the system reduce the need for sales clerks?
How many or how many hours? How much do clerks earn? Likewise, in terms of
inventory control, how much money will be saved by not having to slash prices at
the end of the season to clear the unsold inventory? You need to know or estimate
the number and value of items typically left at the end of the season. In practice,
the managers might have answers to some of these questions, but you will still
have to do additional research. In this example, be sure that you spell out your
assumptions.

'The Database Management System

Activity: Explore the DEMS

SQL Server is one of the easiest large-)
scale DBMSs to install. It can be in- Action

stalled on a server, and accessed via Start SQL Server Management Studio.
client software. Note that if you want | Open the SQL Server Group and log in.
to work on the analysis exercises in | Expand the database assigned to you, or
Chapter 8, you will have to install the | create itif necessary.

Analysis Services. This tool is includ- | Right click on Tables, select New Table.
ed on the same installation disk, but | Enter column names and data types.
you have to go back and specifically | Click the CustomerID row.

select it after you have installed the | Setthe Identity value to Yes

main database. . Click the key icon in the main toolbar.
SQL .Serye.r is small enough to in- | Close the form and name the table
stall on individual computers and run Customer.

as a standalone development database.
Several versions of the DBMS exist, but SQL Server 2000 is probably the most
common at the moment. Microsoft is working on a newer version with substantial
changes, with the codename Yukon. You can probably obtain beta copies of this
software now, but it is too early to cover in this book.

As shown in Figure 1.8, Microsoft provides a considerable amount of online
information for SQL Server. The most cost-effective way to obtain the software
is to get it through the MSDN Academic Alliance program. For a small annual

Figure 1.8

http://msdn.microsoft.com

Microsoft developer’s network
http://www.microsoft.com/sq|l

SQL Server home site
http://www.msdnaa.net

Academic Alliance educational pricing

Chapter 1: Introduction 10

fee, a university can obtain licensed copies for the computer labs and individual
students. As an individual developer, you can join MSDN for an annual fee and
obtain a full developer’s copy of the software. Commercial use licenses are con-
siderably more expensive. The MSDN Web site also enables you to register free
of charge for access to information and help files.

SQL Server installs fairly easily. By default, it uses standard Internet protocols
to connect to other machines. In most cases, you can accept the default installation
values. It is also easy to install on your own computer, so you can run the entire
database and examples from one machine. If you install the main database on a
shared server, you will have to install the client pieces on the individual machines.
You will also have to configure security controls on the database to give desired
people access to the database. Security issues are covered in more detail in Chap-
ter 10.

As shown in the SQL Server Management Studio in Figure 1.9, you can create
multiple databases on one copy of SQL Server. Each database can have separate
security conditions. For the labs in this workbook, you should create the Powder
database. Right-click the Database icon and select the option to create a New Da-
tabase, and fill in the name. You might also want to create a new user (powder)
and give it a SQL Server authentication password. Make this user the database
owner of the new Powder database. Some situations may arise later where you
need this connection.

To get a quick perspective of the various components of the DBMS, you need
to build a simple database. SQL Server has several graphical tools to help you
manage the database. You can also use SQL commands, but those are covered in
a later chapter. Most administrators perform all tasks by writing SQL statements.
However, for one or two simple tables, it is faster to use the graphical tools. Start
the SQL Server Management Studio. Expand the databases section and expand the
main database you have been assigned to use (Powder). As you select the various
icons (tables, indexes, views, and so on), you will see that your schema contains
several system tables. Do not alter or delete any of these tables.

Figure 1.9

% Micrasoft SQL Server Management Studia =1

Fle Edt View TIook Window Communty Help

Stenowey | S G0 G40 B EHEREBES,
[er _‘Summary | = 23
Connect~ | 43 E] e REP-g
& [postl (5QL Server 9.0.2047 - POSTLT|Ra.

=) [Databases U
[System Databases Powder
[Datshase Snapshets POSTLT|Databases|\Powder 8 Item(s)
| || Booksystem
_J CornerMed

i

st |- Slrepart -

L
|1 DMSurvey Mame
||| Petstore
[§)rowds
[Database Diagrams
3 Tables [Synonyms
[Views
@ Synonyms lemg.rammahllwty
[Programmabilty [Service Broker
[Service Broker [storage
3 storage [Security
3 Security
| Reportserver
| ReportServerTempDE
| Tie-Post-Gillng
(3 Security
[Server Ohjects
[Replication
[Management
[Motification Services
[SQL Server Agent (Agent #Ps disabled

[Database Diagrams
[Tables
[views

IEEEE

i
s

< | &

Ready

Chapter 1: Introduction

1"

rosoft SQL Server Management 5t
Eile Edit Wew Project Table Designer

udio

Tools Window Community Help

Dwewouery [y R G b 5 H @ 331_113?)?5"5

L3 Tables

[Views

[Synonyms

[Programmability

= [Databases Lastharne reearchar(S0)
3 System Databases Firsthame nvarchar(S0)
[Database Snapshots Phone rvarchar(50)
| JJ Boaksystem
[Cormertied Address nvarchar(50)
|) DMSurvey City rvarchar(S0)
|l Petatare State nvarchar(50)
= L Ponder) 2IPCods rvarchar(S0)

[Database Diagrams

Column Properties ‘

Object Explorer ~ 8 X | Table - dbo.Table_1*| Summary -
Conrect | &d = |4 T Column Harme Data Type Allow Mulls
=[5 post (S0L Server 9.0.2047 - POSTLT|Jpg| | FF| CustomerTD int

[- Service Broker
23 Storage —
[Security Fulltext Specification o -
| ReportServer
| ReportServerTempDB El Identity Specification Yes
|1 Time-Post-Eiling (Is Identity) Ves
[Fecurity Identity Increment 1
[Server Objects Tdsntity Seed 1
[Replication
[Management
[Mokification Services Mok For Benlication b v
(B SQL Server Agent (Agent ¥Ps disabled (Is Identity)
S >
Ready

Figure 1.10

Relational databases consist of a collection of tables, so the first step is to create
a new table. Figure 1.10 shows the definition of a customer table. As explained
in Chapter 2, each table must have a primary key. In this case, select the Custom-
erID row by clicking the gray box on the left side. Make sure the Identity value in
the lower box is set to Yes. This option will cause values for the CustomerID to
be generated automatically, which ensures that each value is unique. Next, click

Figure 1.11

postit.Powder - SQLQueryl.sql®* | Summary -

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER oON

GO

CREATE TAELE [dbo].[Customer] |
[CustomerID] [int] IDEMTITY(10000,1) WOT NILL,
[LastName] [nvarchar] (50) CCOLLATE 5QL Latinl General CP1 CI A3 MULL,
[FirstName] [nvarchar] (50) COLLATE SQL_Latinl General CP1 _©I AS NULL,
[Fhone] [nwarchar] (50) COLLATE 3QL_Latinl_General CP1_CI_A3 NULL,
[EMail] [nwarchar] (120) COLLATE 5QL_Latinl_ General CP1_CI_AS NULL,
[Address] [nvarchar] (50) COLLATE 30L Latinl General CP1 CI_ A3 HNULL,
[City] [nvarchar] (50) COLLATE 3QL Latinl General CP1_CI_AS NULL,
[State] [nwarchar] (50) COLLATE SQL_Latinl_General CP1_CI_A35 MULL,
[ZIP] [nvarchar] (50) COLLATE S5QL_Latinl_ General CP1_CI_Ai5 NULL,
[Gender] [nvarchar] (50) COLLATE SQL Latinl General CP1 CI A% NULL,
[DateOfBirth] [datetime] NULL,

CONSTRAINT [pk Customer] PRIMARY KEY CLUSTERED

{

2%

[CustomerID] A3C
JWITH (PAD_INDEX = OFF, IGNORE_DUP_EEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

GO
ALTER TABLE [dho].[Customer] WITH CHECK ADD CHECE
([[Gender] ='Unidentified' OR [Gender]='HMale' OR [Gender]='Female'))

Chapter 1: Introduction 12

the key icon in the main toolbar for the -
form. This option places the key icon)) Action
next to the CustomerID row which in- | Right click the table name.
dicates that the CustomerID is the pri- | Select Open Table.

mary key for this table. Enter sample data.

As shown in Figure 1.11, SQL Serv- | Close the table.
er can generate the underlying SQL
command used to create the table. The command is slightly more complex than
necessary because it specifies the character set for each column. You can gener-
ate the SQL script by clicking the Generate Change Script on the main toolbar.
If you have already saved the table, you can right-click the table in the Tables
list and choose the Script Table As/Create To option to generate the script. If you
memorize the syntax of this statement, you could have skipped the design screen
and typed the statement directly. More importantly, you can copy this statement
and put it into a text file that you can execute later if you ever need to re-create
this table.

The next step is to open the table and enter some data for fake customers. Right-
click on the table name and select the option to Open Table. Again, you could use
SQL to insert rows; however, when you first work with SQL Server, it is easiest to
enter the data directly using the table editor. Figure 1.12 shows some sample data
you can use, or make up three rows of data on your own. Click the Apply button
to save the data.

SQL Server provides several tools in the table window to examine the data.
You can sort by columns or even filter the rows to just see customers that meet
some criteria.

In practice, you will rarely enter data directly into tables. Instead, you will build
forms that users can run to enter and edit data. SQL Server does not provide tools
to build forms and reports. Instead, you will need a tool that is designed to create
forms that attach to a database. Several choices exist. This workbook will use Mi-
crosoft Visual Studio .NET with Windows forms.

Visual Studio .NET has a Wizard to help build forms for database applications.
However, it requires several steps to get started. First, make sure you have Visual
Studio installed on the client/development computer. Then, create a new project
based on Windows and choose a programming language of either C# or Visual
Basic. The examples in this book will use Visual Basic. The C# code is similar,
but the syntax is different.

When you start a new project, Visual Studio automatically adds a Form1. You
should change the Text property to Customer, and you might want to rename the
entire form to Customer.vb. You need to add data items onto the form that will con-
nect to the Customer table. To do that, you need to create a Data Source that tells
Visual Studio exactly which tables and columns you want to use. Along the way,

Figure 1.12

~Table - dbo.Customer | Summary

CustomerlD | LastMame FirstMame | Phone EMail Address Ciky State ZIP

0 ‘walk-in AL AL ALLL AL AL ML AL

1 Jones Jack. 111-222-3333 JonesJ202@msn.com 123 Main Sacramento Ch 95835
z Sanchez Paul 111-444-9399 SanchezP&44@msn.com 777 Oak Sacramento CA 95835
3 Garner Chad 213-080-4599 GarnerC73@msn.com 555 Trident Place Chicago L &0R01

you will create a connection string that
tells Visual Studio how to connect to
your database server. Choose Data/Add
New Data Source from the main menu
(or open the Data Sources window and
click the link found there). Click the
button to add a New Connection. If
necessary, change the database type to
Microsoft SQL Server. On the standard
connection form, enter the name of the
database server (which might be your
local workstation). For teaching envi-
ronments, you generally want to choose
SQL Server authentication, then enter
your username and password for the
database. Check the box to save your
password. Pick the database that holds
the Customer table and click the button

Chapter 1: Introduction 13

Action

Start the Visual Studio and select File/
New Project to choose a VB Windows
Application.

Choose Data/Add New Data Source.
Add a New Connection.
Choose Microsoft SQL Server.

Enter the server name, and use your SQL
Server Authentication.

Check the box to save your password.

Pick your database and test the
connection.

Choose the option to include sensitive
data.

Expand the Table list and select the
Customer table with a check mark.

to test the connection. Close the connection form and choose the wizard option to
include sensitive data (username and password) in the connection string. On the
next page, expand the table list and place a checkmark next to the Customer table

to select the entire table.

When you are returned to Visual Studio, open the Data Sources window by
clicking the Tab or choosing it in the Data menu. You might have to click the Re-
fresh button to display your newly-created Data Source. For the Customer form,
you want to see and edit data for one customer at a time. Expand new Data Source

Figure 1.13

2% Powder01-2005 - Microsoft Visual Studio
Fie Edt View Project Buld Debug Data Tools ‘Window Community Help
% 4 T - 2 b Debug - Any CPU - [# loadppt - |5 e B - -
s | 553 51 FES f | oge 2 =T,
Start Page ./ Form1.vb [Design]*| ~ X | Solution Explorer - Solu... ~ & X
.. B & E | FEE &S
a5 ome M=l [Solution ‘Powder1 205" {1 prd
: = (38 Powder01-2005
= o f {0)
M4 ofior | b bl |4 5 Id £2 My Profoet
2 app.config
Customer |D: (] Forml .vb
G First Name:
bl Iy
sate L
Gender
< | =
e ¢ :
C3lsolution Explorer (73 Class View
Properties ~ 1 x
Forml System,Windows,Forms.| ~
= -
) /‘l LS|
ForeColor [l CortralTe &
FormBorderSty Sizable
RightToleft No
derDataset i gl T l
Bl "i 2 Customer i RightTolsftLar False =
Text Customer
lDat... Fmser.., |38 Too.., UseiWaitCurso False
B Behavi
Output 2% chavior
S— AlowDrop False
et iony Mebug AENEENE) Autovalidate EnbleFreventt
The thread '<No Name>' (Oxb74) has exited with code 0 (Dx0). -~ ContextMenus (none)
The prograw '(2696] Powderl-2005.vshost.exs: Manayed' has exived with cods 0 (Dx0). || DoubleBuffere False >
|| Test
< | > The text assaciated with the
=, - tral.
b Error Lst | (=] outpue contrel
Ready

Chapter 1: Introduction 14

and select the Customer table. Click

. Action
the drop-down-list arrow and choose ow th S nd d click
the Details layout. The default Grid VAL e R T
the Refresh button.

layout shows multiple rows of custom-
ers at one time, but there are too many
columns to use the Grid for this table.
Finally, drag the Customer table onto
the main form, and Visual Studio will
automatically create the labels and text
boxes for all of the columns. Figure
1.13 shows that the system also places a navigation bar at the top of the form. You
will use this form to scroll through the list of customers and to insert, delete rows,
and save any changes.

The Wizard automatically connects the form data to the database, using your
Data Source and the connection data you specified. Click the Start Debugging but-
ton to run the form. Figure 1.14 shows the sample form. You can use the naviga-
tion buttons to scroll through the list of customers. Add a new row or change data
if you want to see how the form works. You will have to click the Save button to
write any changes to the database. If you close the form without saving changes,
they will be discarded.

Select the Customer table and click the
drop-down arrow.

Change the layout to Details.
Drag the Customer table onto the form.
Click the Debug button to run the form.

Figure 1.14

B Customer BEE

P 4 |2 of 2004 | b M | > X [
Customer ID: | |
LastName: |Jores |
First N arne: |.Jac:k |
Phare: |111-222:3333 |
Etdail: |JonesJ2U2@m$n.-:c-m |
Addiess 123 Main |
City: | Sacramento |
State: | |
zIP: 95838 |

Chapter 1: Introduction 15

Exercises

Many Charms

Madison and Samantha, friends of yours, have a small business selling charms for
bracelets and necklaces. They buy some of the charms they sell; others they make.
So far, they have run the business as a hobby, selling primarily to friends and rela-
tives. But they have recently established a website to display pictures and prices
of some of the charms. You have agreed to build a database for them to track their
inventory, customers, and sales. Any orders they receive through the website will
be e-mailed, so the website does not have to be connected live to the database.
The database is a relatively traditional sales system, but it is slightly complicated
by the nature of the charms. Charms come in a variety of shapes, sizes, and mate-
rials. For example, customers who want a quarter-moon charm have a choice of 4
mm or 8 mm; and of silver, gold, gold plate, bronze, or painted ceramic. Charms
are also offered in categories such as animals, hearts, birthdays, and so on. Addi-
tionally, the duo offers a variety of chains and pins to hold the charms. Eventually,
they want to track the sales by all of these categories, so they will know which
items are selling the best and which make the most profit. Costs and prices tend to
fluctuate. If they purchase items in large bulk, the per-piece cost is lower, but they
need to know they can sell the entire shipment. If an item sits around too long,
they find that they have to significantly cut the price just to clear out the stock. Of
course, gold items are more expensive, making them more difficult to sell, and
they are reluctant to tie up their money in high-priced merchandise.

1. Research similar sites on the Internet. Describe or sketch the major forms and

reports that the company might use.

2. Create the initial proposal and feasibility study.

Standup Foods

Laura runs a catering company that focuses on Hollywood movie studios. Her
chefs prepare hors d’oeuvres, sandwiches, and other food items that are served to
the cast and crew of various movies and studios. To be fresh, the food is prepared
each day in the main kitchens, and meals are then assembled and displayed on-
site. For some clients, the company vans deliver fresh food every few hours. To
hold costs down, many of Laura’s employees are part time—only a few chefs and
managers are full-time employees. Some of Laura’s clients call at the last min-
ute, so she maintains a large list of potential workers who can perform a variety
of tasks, from driving to food preparation and display, as well as cleanup. The
chefs and managers evaluate workers after each job in terms of timeliness, appear-
ance, friendliness, and the ability to take orders and accomplish tasks. Workers
often perform many tasks at a given event. For instance, a driver might also be a
server. But some tasks require specific certifications. Not all workers are licensed
to drive, and only a few have been trained to perform some tasks such as cutting
meats. Most of the employee ratings are somewhat informal at the moment, but
she would like to computerize them to help her select the best workers for future
jobs. At some point, she would like to offer bonuses or higher pay to workers who
routinely perform well. Another challenge Laura faces is that some clients are fin-
icky about certain types of food. In particular, some movie clients have special
preferences as well as some items that cause allergic reactions. The chefs current-

Chapter 1: Introduction 16

ly keep these two lists in paper folders for some major performers and actors. But

to be safe, Laura wants to computerize the lists and, ultimately, the recipe ingredi-

ents. Then when a chef plans the meals, the computer could check the list of main

guests and their allergies against the recipe list to identify potential problems.

1. Research similar sites on the Internet. Describe or sketch the major forms and
reports that the company might use.

2. Create the initial proposal and feasibility study.

Q@E EnviroSpeed
=

Brennan and Tyler are owner/managers of a consulting firm that specializes in
environmental issues. In particular, the company’s scientists are experts in clean-
ups for chemical spills. For example, if a tanker crashes and spills chemicals on
a highway, the company can quickly evaluate the potential problems and identify
the best method to clean up the spill and prevent problems. The company itself
does not clean up the spill, but it has contacts with several crews around the globe
that it can call if local emergency workers need additional help. The primary focus
of the company is to provide expert knowledge in the time of a crisis. This task re-
quires specialized scientists, good communication systems, and in-depth training
and practice. Brennan wants to improve the existing information system to main-
tain a database of case histories. Then, if a similar problem arises in the future,
the scientists can quickly search the database and identify secondary problems to
examine which solutions and ideas were successful and which ones caused more
problems. Tyler has explained that at a minimum, the database has to hold the
contact information for all of the scientists and emergency crews. It must also
list the specialties, training, and skill levels of each person in a variety of areas.
In terms of actual situations, the database should track the identities and roles of
the various people and the key time frames (when reported, response time, and so
on). Scientists also need the ability to list all of the chemicals involved and details
about the terrain (hills, water, soil composition). More subjective data must also
be captured, including comments by the onsite team and a description of the prob-
lem and secondary factors. All proposed solutions should be entered into the da-
tabase, along with comments regarding their strengths and weaknesses as well as
the final selections and an evaluation of the result. It is important to track potential
solutions that were discarded. Even if they did not apply to the original problem,
they might be useful for a future event with different circumstances.

1. Research similar sites on the Internet. Describe or sketch the major forms and

reports that the company might use.

2. Create the initial proposal and feasibility study.

Final Project

The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, do the following.

1. Research similar sites on the Internet. List the major forms and reports
that the company might use.
2. Create the initial proposal and feasibility study.

Chapter

Database Design

Chapter Outline

Database Design, 18

SQL Server Data Types, 18

Case: All Powder Board and Ski Shop, 20
Business Objects: First Guess, 20
Relationships, 21

Lab Exercise, 21
Database Design System, 21
All Powder Design, 23

Exercises, 30

Final Project, 32

Objectives

+ Design the initial tables for the case.

» Create the design in the database design system.
« Determine the initial relationships for the case.

» Identify the data types needed for the attributes.

17

Chapter 2: Database Design 18

Database Design

You can design a database using paper and pencil. As you gain experience and
become more skilled at the task, using pencil and paper will be relatively easy.
However, when you are learning, using pencil and paper is tedious because you
find that you often need to remove items from potential classes or even alter the
entire diagram. As an alternative, you might consider going directly to the DBMS
and defining the tables or classes off the top of your head. This approach will not
work with SQL Server because SQL Server limits the changes you can make to
tables—particularly after relationships have been built and data has been added.

A few computer-assisted software engineering (CASE) tools remain that can
help you define classes in a graphical environment. They are relatively powerful,
and many have the ability to generate the final tables based on the class diagram.
However, they are also expensive, hard to install, and cumbersome to learn. But if
you work for a company that has invested in these tools, they are an excellent way
to define the database classes. SQL Server does have a designer to build entity-re-
lationship diagrams. This system is useful because you can generate the diagrams
from the list of tables. But it has limited advice and design checking facilities.

There is a better tool to learn database design. The database design system is
an online expert system that enables students to create class diagrams graphically
in a Java-enabled Web browser. The system makes it easy for you to create class-
es (entities) and build associations (relationships). More importantly, it provides
immediate feedback on the design, which is the expert system part. The system
runs on a custom Web server and diagrams are stored in a central database. This
approach means that you can access your diagrams from almost any computer.
Changes you make in class or in your instructor’s office are saved and available
when you return to a lab or your own computer. From an instructional perspec-
tive, the best part is that the system contains some complex rules to provide feed-
back on your diagram. The system recognizes most design errors and points them
out with suggestions to improve the design. Your instructor can obtain the data-
base design system for your class. If it is available, you should use it to get the
benefit of the immediate feedback. If it is not available, you can draw the class
diagrams with paper and pencil or with a graphics package such as Visio or even
PowerPoint.

SQL Server Data Types

As a database designer, your job is to define the database tables that efficiently
store the organization’s data and support the business rules. In this process, you
will define the tables in terms of the data columns (attributes) and the table re-
lationships (associations). You will also need to know what type of data will be
stored in each column. Also, for some columns, you will want to identify specify
constraints (such as salary cannot be negative).

Selecting the proper data type can sometimes be a difficult step. Any DBMS
supports only a limited number of domains and you have to understand the ca-
pabilities and limitations of each type. You must also understand the underlying
business data—both the values collected today and the potential values that may
be collected in the future. For example, workers may only use integer values to
represent a quality rating. But, in the future, it is likely that the company will want
to use fractional values as well. Although database types are becoming more stan-
dardized over time, each DBMS uses its own type names. Even more confusing,

Chapter 2: Database Design 19

the actual values supported can be different even if the data type name is the same.
The numeric data type is variable length in SQL Server, because you can specify
the number of significant digits. A full 38 digits requires 17 bytes of storage.

Figure 2.1 shows the main data types available in SQL Server 2000. The types
you will use most often are nvarchar, datetime, int, float, and money. When you
need to store date or time values, be sure to use the datetime type. It supports date
arithmetic so users can subtract two dates to obtain the number of days between
them. The image type can hold pictures or even spreadsheets or documents. You
can generally use the ANSI SQL keywords as well. Sometimes it is easier to use
those instead of the SQL Server types, but ultimately SQL Server converts them
into native types. For instance, SQL defines the integer data type, which SQL
Server converts to int.

The issue of precision and scale is sometimes confusing in fixed decimal and
currency data types. Precision represents the total number of significant digits
supported in the value—regardless of any decimal points or size of the number.
For example, a number with a precision of 5 digits would include 12345 as well
as 12.345. If the scale is specified, it indicates a fixed number of decimal points
and controls round off to that value. It is particularly useful for handling currency
values.

The other confusing issue in modern databases is the use of Unicode or “na-
tional” character sets. The older varchar data type assigns one character to one
byte and can only handle ASCII codes or essentially English-language characters.
If your database needs to store text in additional languages, it will have to use
Unicode character sets that typically assign two bytes to any character or ideo-
gram. In this case, use the nvarchar data type, but note that it cuts the maximum
length of text in half. varchar can handle strings up to 8,000 bytes. Nvarchar can
also handle 8,000 bytes, but that is only 4,000 Unicode characters.

Figure 2.1
Name Data Bytes
Text (Characters)
Fixed char or nchar 8000 bytes Fixed
Variable varchar 8000 bytes Variable
National/Unicode nvarchar 4000 characters Variable
Memo text or ntext 2 gigabytes Variable
Numeric
Byte (8 bits) tinyint 0 to 255 1
Integer (16 bits) smallint -2M5 to 2M5 -1 2
Long (32 bits) int -2/31 to 231 -1 4
(64 bits) bigint -2"63 to 263 -1 8
Fixed precision decimal(p,s) p: 1...38,s:0...p 5-17
Float real 7 digits 4
Double float 15 digits 4,8
Currency money 38 digits, 4 decimal 8
Yes/No bit 0,1 variable
Date/Time datetime, smalldatetime | 1/1/-4712 to 12/31/9999 711113
Interval (sec.)
Image image 2 gigabytes, 4 gigabytes | Variable
Generated Key identity Long (+/- 2 billion) 4

Chapter 2: Database Design 20

Case: All Powder Board and Ski Shop

With any database project, the first step is to understand the various elements of
the organization and the components that will become part of the database ap-
plication. This knowledge is critical, because the database design must reflect the
business rules. In real life, you can ask workers about the processes and underly-
ing assumptions. With a written case, it can be more challenging to determine all
of the necessary rules. On the other hand, real life is messier and people often give
inconsistent answers. It takes experience to learn to talk with users to identify ex-
actly which components are the most important, and how the pieces relate to each
other. Cases avoid this design complication but generally require you to make
assumptions on your own. Since the goal is to make reasonable assumptions, you
should search the Internet or read a few articles on snow boards and skis before
you tackle the database design.

Business Objects: First Guess

One of the first steps in designing the database is to identify the business objects.
In many ways, this case is a fairly typical business problem, so you would expect
to see many of the traditional business objects, such as Customer, Employee, and
Sale. Because the store also rents equipment, there will be a Rental object similar
to the Sale object. Figure 2.2 shows initial versions of these four classes. These
objects are relatively standard, but some issues arise in this case. Notice that you
must also begin to think about primary keys. In each of these four tables, the pri-
mary key is a new value that will be generated by the DBMS. In SQL Server, you
have to assign this column an int data type, and choose the option to specify it as
an identity column. In terms of the design, it is useful to indicate that this key is
internally generated by the DBMS, so the database design system refers to it as
an AutoNumber data type. In most situations, the actual key values will be hidden
from the users, and they will see only the relevant names.

Notice that several attributes are missing from these initial classes. The main
reason is that it is important to ensure that the columns you include at this stage
are correct. If there is any doubt about a column in a potential class, leave it out

Figure 2.2

Sale
SalelD Customer
SaleDate CustomerlD
CustomerID LastName
EmployeelD FirstName
Phone Rental
Address RentID
City RentDate
Employee State CustomerID
EmployeelD ZIP ExpectedReturn
TaxpayerlD
LastName
FirstName
Address
City
State

ZIP

Chapter 2: Database Design 21

and think about it. A few other classes should be relatively obvious for this case.
In particular, several support tables are used to provide look up data for other
tables. Ultimately, you will have to define all of the objects, identify the columns
for each table, and specify the data type for each column.

Relationships

Classes or entities are related to other classes. For example, notice that the Sale
table contains a CustomerID property. Values in this column match entries in the
Customer table, which is keyed by CustomerID. So, if you found a CustomerID
value of 112 in the Sale table, you could look up the matching customer data by
finding the row in the Customer table that has a primary key value of 112. This as-
sociation also expresses several business rules. In particular, (1) each sale can be
placed by only one customer, (2) a sale must be identified with a customer, (3) any
given customer can participate in many sales, but (4) a customer might not have
bought anything yet.

Relationships are displayed on the diagram by drawing connecting lines be-
tween the two tables involved. The business rules are shown as annotations at
the end of each connection. Each side of the connection displays minimum and
maximum values. Figure 2.3 shows the association between the Sale and Cus-
tomer table. Notice that the annotations match the four business rules described in
the previous paragraph. The 1...1 notation on the Customer side represents rules
1 and 2. At a minimum, each sale requires at least one customer, and, at a maxi-
mum, a sale can have no more than one customer. Likewise, the 0...* annotation
represents rules 3 and 4. A customer can participate in zero to many sales. There
is no maximum (*), so a customer can participate in any number of sales, and the
zero means that a customer might not have bought anything yet. As a database
designer, your job is to identify the entities and relationships needed for this case.

Lab Exercise

Database Design System

The database design system is designed as an instructional tool, so your instruc-
tor should have already registered to obtain an instructor account. The instructor
also chooses and schedules assignments for the class. You will need a class code
to register for a class, so be sure you get the correct admission code from your
instructor. You will also need a set of numbers to create a new student account on

Figure 2.3

Sale Customer
1..1
SalelD CustomerID
SaleDate LastName
CustomerID FirstName
Employee Phone
Address
City
State
ZIP

&

Chapter 2: Database Design 22

the system. Check with your instructor to obtain these numbers. With the two sets
of numbers, and the class admission code, you are ready to create your personal
account.

Activity: Getting Started

Use your browser to navigate to the :
database design website and select the | Action

link as a new student who has two key Browser: http://JerryPost.com/dbdesign
numbers. Figure 2.4 shows the form | New student who has two key numbers.
you need to fill out. First, enter the key
numbers that you have. Next, create a username and password that you will re-
member. You must choose a username that is different from all others. Be sure that
you enter your name, e-mail address, and Student ID number correctly. Your in-
structor will use the name and ID number to correctly identify you so you receive
credit for working on assignments. Note that your ID and password are encrypted
on the Web site database to protect them. However, if your university still uses
your Social Security number as an identifier, you might want to enter only a por-
tion of the number—and then go ask your university to wake up and create a safer
number. Your e-mail address is important so the system can send you the user-
name and password in case you forget what you selected. When you have entered
the data, click the Submit button. If you have an error in the key codes, or if your
username has already been selected by someone else, you will receive a message
and be asked to correct the items. Note that the key codes can only be used once
and can be discarded after the account has been created.

Figure 2.4
2 Create Student Username and Password - Microsoft Internet Explorer ‘ZHE‘E‘
Flle Edit Y¥iew Favorites Tools Help -.','
Al = m) o=
eﬁack - (o lﬂ lg _lﬁ P) search \;t(Favorites @Medla {‘} - =
Address |f§| http:/ ftime-post . comjdbdesign/Mewstudentkeys. asp V| Go Links **
Enter the ke
y If you have purchased or received two key values, use this form to create a Username and
numbers you N\ Fassword. After you have created a Username and Password you wil no longer need the
received NG
Eeyl|sHs | -[ENzE | .[Hxc |
Key2[wsc | -[Meos | .[all |
Create a username
and password Ugername |studenty
E-mail |Jeny@JerryPDst.com
Fus e

Enter your correct | [Ta e
name, e-mail | | sdens ID

address and

StudentID

You must enter all of the requested data, but you can change it later. Your Name and
Student [T are unportant because they are used by your mstructor to postively wentify vou.
The E-mail address is critical s0 we can e-mail your Username and Password if you forget
them.

ﬁj Done ® Internet

Chapter 2: Database Design 23

Once you have successfully created the new account, you must register for the
specific class. As shown in Figure 2.5, you simply choose your university and
your correct class. Enter the admission code provided by the instructor and click
the button to register for the class. If you do not have the proper code and are un-
able to register, you can get the code and return later. From the main page, enter
your username and password to log in. If necessary, once you are logged in, you
can click the link at the bottom of the main design page to register for a class. In
fact, once you get to the design page, if you try to open a problem and the list is
empty, it is most likely because you are not registered for a class.

All Powder Design

Activity: Create Tables and Columns

When you have created an account, .
. . Action

registered for a class, and logged into)

the system, you are ready to begin de- Fllle/Ope.:n, choose All Powder case.

signing the database. Figure 2.6 shows | Right click/Add Table.

the main elements of the system with | Type “Sale” as the new table name.

the beginning of the solution. When | Drag columns from right onto table.

you begin, the various windows will be | Right click name/set data type.

empty. You must first open a problem

using the File/Open menu choice and select the Workbook case. When the prob-

lem loads, the right-hand window will display a list of available columns. Initially,

it will probably not include the key columns. You will add those in a minute.

You create a table (class/entity) by clicking the right mouse button on the main
screen where you want the table located. Then select the Add Table option. Re-
name the table by right-clicking the table heading, typing “Sale” as the new name,
and pressing the Enter key.

Figure 2.5

A Student Register for Class - Microsoft Internet Explorer. |ZHE‘E‘
'l*l

Fle Edt View Favorites Tools Help

~ ; - =
eﬁatk) |ﬂ @ jj - searth \j:_(Favnntes € 2

Address ﬂj http: fijerrypost, com/dbdesigriStudentRegisterClass, aspx vl Go | Links @ -

Register for Class

Select a country or

Students must enroll m the correct class. Your instructor should have

given you an AdmitCode, which enables you to enroll in a particular / state to narrow the
class. If you do not have a code, try enrolling by leaving the code SChOOl hst
blank. If that does not work, ask your mstructor for the proper cod/
Country/State ‘ USA All States Vl
School ‘Universwly of the Pacific Vl \ Select your
— | o 0

Class ‘ Open Database Management Fall 2005 Open - 1 V‘ uanerSlty and CIaSS
T

S~

\ Enter the admit

code

&] Done & Trusted sites

Chapter 2: Database Design 24

Now you get to add columns to the table. All columns are added to a table by
dragging them from the right-hand window and dropping them onto the desired
table. In the case of the Sale table, you will need to generate a new primary key
column (SaleID). To create a generated key column, drag-and-drop the top label
for Generate Key. Then, rename the newly created column. You rename columns
by right-clicking the name either in the table or in the right-hand window. Be care-
ful: Do not give two columns the same name, even if they are in different tables.
You will not be able to tell them apart in the main list of the right-hand win-
dow. Now you can add some of the other columns needed in the Sale table. Look
through the right-hand window to find the SaleDate and SalesTax entries. You can
simplify your search if you sort the list by right-clicking on it and selecting Sort.
Drag the desired column onto the Sale table. Once a column is in the table, you
can change the order by dragging and dropping it higher or lower in the list.

At this point, you should set the data types of the columns in the table. The
default type is Text, so in many cases you will not have to change it. However,
you should choose Date/Time for the SaleDate, and Currency for the SalesTax
column. Right-click on the column name within the table and the current data

Figure 2.6
2 Database Design - Microsoft Internet Fxplorer
File Edit Wiew Fawaorites Tools Help 1','
Q- © N @A G Psowe frroons @ 2- 2 2 L3
Address |@ hitp: fflocalhost /dbdesign, Default, aspx v‘ Gu Links ** @ -

File Format Grade Generate Help € Menu

Hun 7, 2005121723 P = |4|custzip -
Sample Student “[custoender
Hew Solution Z|CustDateOMBirth
Post-3e All Powder “[TaxpayerlD
Enter Title “|CustSkillComments
“feightMin
“hveighthanx
“|BindingStyle
Sale :|BindingDescription
Y Saleld :IEhipAddress
SaleDate :|SaleDate

Class |7 saestax [enipciy

1 | :|shipState
(ent]ty) Jshipzip
A\SalesTax
[QuantitySold
Available | B
COlumnS ExpectedReturn
‘|Payrenthtethod
‘|Rentree
{|ReturnDate
‘|ReturnCondition
‘|RepaitCharges
“fvaistividth
 |EffectiveEdge
“|oustcity
~|:|RentalRate
<« 1 I [»] |i|satein -

Colurn SaleD changed. | ——n | StAtus line

<«—— Corrections

Sample Student

Eesize Logout Personal Data Class Registration

@ Applet DEDesign started @ Trusted sites

Chapter 2: Database Design 25

type is displayed at the bottom of the pop-up menu. Move the cursor to that item
and a complete list of data type choices pops up. Choose the desired data type by
highlighting it and clicking the left button. Be sure to save your work every few
minutes in case you lose the Internet connection or the server times out.

Activity: Create Relationships

Associations or relationships are a key
element of database design. In a rela-
tional database, columnsgin one table Add Customer and Sale tables.

are connected to columns in other ta- | “dd GenerateKey to Customer table.

bles through common data. In the case, | Rename it to CustomerID.

the Sale table needs to connect to a | Dragnew CustomerlD from right side
Customer table. Eventually, both tables into Sale table.

will contain a CustomerID column. | Drag CustomerID from Customer and
First, you have to create the Custom- ,dmp s (,:usmr_nerID in Sale table.
er table, so right-click on the design | Fill outrelationship box.

screen, add a new table, and rename it.
Again, to ensure that each customer is assigned a guaranteed unique identifier, add
a Generate Key column to it. Rename this new column as the CustomerID. It is
critical that you understand that this key value will be generated for each new cus-
tomer added to the table. This value can only be generated in this table. You would
never create another generated key column and call it CustomerID. Notice that
the column is marked with a solid (red) star to indicate that it is a key with values
generated in this table. How do you get CustomerID into the Sale table? Scroll
the right-hand window to the bottom and notice that CustomerID has been added
to the list of available columns. You could also sort the list and find it alphabeti-
cally. You can now drag this new column into the Sale table. Make sure its data
type is Integer32 (Long). Before attempting to build the relationship, add the other
customer properties to the Customer table by dragging them from the right-hand
window. You can use the Shift or Ctrl key to select multiple columns at a time,
but moving them takes a little practice. You can double-click the table heading to
automatically resize the table design box to fit the columns it contains. Set the ap-
propriate data types.

Now that you have both the Sale and Customer tables, and they both have a
CustomerID column, you can build an association or relationship between them.
Figure 2.7 shows how to create this relationship in the design system. Click on the
CustomerID column in the Customer table and drag it to the Sale table. Release
the mouse button to drop the cursor onto the CustomerID column in the Sale table.
The relationship window then asks you to specify the minimum and maximum
values for each side of the relationship. These values specify the business rules,
and are often the most difficult items to identify. In the sale case, the typical as-
sumptions are that exactly one customer can place an order, and a customer can
place from zero to many orders. So, on the Sale side of the window, select the Op-
tional and Many buttons. On the Customer side, choose the One option for both
Min and Max values. Note that if an option was selected by your instructor, the
system will automatically attempt to create the correct relationship for you when
you add the CustomerID column to the Sale table.

Remember that relationships generally involve at least one side in a primary
key. The column names are often the same on each end, but they can be different.
However, the data types do have to match, and the relationship has to be logical.

Action

Chapter 2: Database Design 26

Sale Customer
1.1
Jr SalelD Y CustomerD Drag-and-
SaleDate CustLastMame d 1
SalesTax CustFirstMame <——{ drop column
CustomerlD CustEMail
EETE [+] [Custormer [=]
Cust D Cust IC o 3
= I:” =t I:I =] Select min and
max for both
_| sides of the
—f relationship

) Connect O]
Mir Max Min e

W Optional) One () Optional ® One
) One @ Many ® One 0 Many

»

Enforce Referential Integrity Ok
Cascade deletions Cancel
e

Figure 2.7

5 2

For example, it would never make sense to connect an ItemID to a CustomerID,
because that relationship would imply that a customer can also be an item and
vice versa. Finally, notice that the integrity and cascade boxes are selected as the
default. You should almost always leave these checked. In the database, cascade
on delete means that if you delete a particular customer, all of the orders placed
by that customer will also be deleted. If you do not specify the cascade, then you
could end up with orders that contain a CustomerID, which has no matching cus-
tomer data. After you close the relationship window with the OK button, you
might have to refresh the display screen by right-clicking the design window and
selecting Refresh.

Activity: Evaluate the Design

One of the most powerful aspects of :
the database design system is that it | Action

contains an expert system to help ana- | Choose Grade/Grade and Mark.
lyze your design for errors. You can | Click messages in window.

quickly obtain comments by selecting | Fix errors by removing columns and
the Grade/Grade and Mark option on | adding new tables.

the menu. At this point, you only have
two tables partially created, so the most important comment you should receive is
that overall, you are missing several tables. The system might also point out that
you are missing columns from the Sales table, because you have not yet added the
salesperson (employee) and the shipping information.

To illustrate the power of the system, you will add a new table (Item), and then
build a new relationship that is incorrect. Add a new table for Inventory, and add
the SKU column (a common retail abbreviation for stock-keeping unit) used to
identify individual products. Right-click the SKU column in the Inventory table
and set it as a key. Add the Size and QOH columns to the Inventory table. Set their
data types to Single and Integer16 respectively. Now add the SKU column to the
Sale table as an intentional error. Create a relationship from Inventory to Sale us-
ing the SKU columns.

Choose the Grade/Grade and Mark menu option to save the changes and obtain
comments on the design. Again, the design is not finished, so focus on the other
error messages. In particular, find the message “Does SKU in table Sale really

Chapter 2: Database Design 27

depend on SaleID?” and double click it. Figure 2.8 shows the resulting diagnostic
screen. The SKU column in the Sale table is highlighted as a potential problem.
Indeed, it is an issue, because placing SKU into the Sale table as shown would
mean that for each Sale, only one item (SKU) can be sold. Notice that SKU is not
part of the primary key. You might consider setting the SKU as a key column in
the Sale table to solve the problem. But that would cause even more problems.
For instance, the SaleDate depends only on the SalelD and not on the SKU. If you
leave SaleDate in the table with both SaleID and SKU set as keys, you would be
declaring that items within a single sale can be sold on different dates.

If you set SKU as a key and resubmit the problem for grading, it will return
several messages. One of them will be the question “Does SaleDate in table Sales
really depend on SKU?” Notice that sometimes a table has many errors, so you
must carefully review the entire table to make sure you fix the primary problems
first. The Grade menu also contains an option to generate a separate HTML file
that lists all errors by table. This listing is easier to print.

Primary keys are one of the most difficult things for students to understand
when they first start designing databases. In particular, generated keys are tricky.
In terms of the database design system, primary keys are critical because they
are used to identify the tables. If you make major mistakes in the primary keys,
the system will give confusing feedback because it cannot correctly identify your

Figure 2.8

2 Database Design - Micrasoft Internet Explorer |Z||E|E|
File Edit ¥iew Favortes Tools Help 1’,’
. —~ y - N T
eﬁack A > | |ﬂ @ _l‘ /.’Search 9.{ Favorites {‘} - da = _J ﬁ ﬁ
Address |g‘| httptjflacalhost/dbdesiaryDefault. aspy v| G lnks ? @ -
-~
File Format Grade Generate Help
Jun 7, 2005 2:27:46 PM | |4 |ManufzIP =
Student, Sample IModeln
Workbook 2 ‘Modelvear
Past-3e AllP Add SKU |Paymentethod
Enter Title JQoH
to the Sale |uantityalg
table _| |RentDate
Customer |RentFee
Sale 11 e customeriD ||RentalRate
CusiFirstiame |RepairCharges
Jr SalelD CustLastame |RetumCondition
SaleDate CustPhone [RetumDate
SalesTax 0. Custemall —{ [pku
CustomerlD Custcity |zaleDats
Sk CustState [FaleiD
CustZIP |saleprice
CustGendear |SalesTax -
Connect the CusiDateOEith [Shipaddress
|shipcity
Inventory table to —— |shipstats
the Sale table Errors are [hinziP
highlighted |eKilLevel =
- N Istyle
Click or double-click the StyleDescription
1 1 [TaxpayerlD
dlagnostlc message || vaistoicn
| feveightax ||
1 [»] | veighthdin hd
Graded 3tables. Score: 46.7
Overall, table Sale is missing colurmns. ¥ =
Does Salell in table Sale depend on sometng else consider SalelD, SKLL? E
For each value of SalelD in table Sale, can there be more than one 5KIJ? I~
4] i |] v
£ I
@ Applet DEDesign started @ Trusted sites

Chapter 2: Database Design 28

tables. For this reason, it is always best to begin with one or two tables, test them,
and then slowly add more tables and relationships.

You still need to fix the problem with the Inventory and Sale table association.
In a broad sense, it seems that there should be some type of connection between
Inventory item and Sale to indicate which items were purchased by the customer.
But placing the SKU attribute into the Sale entity appears to be a bad idea. The
reason is straightforward. If there is an association between Inventory and Sale,
it must be many-to-many. That is, a Sale can include many items (SKUs), and an
Inventory item (SKU) can be sold many times. Relational databases do not handle
many-to-many relationships directly. Instead, you must create an intermediary or
junction table.

Figure 2.9 shows the creation of the intermediary table. It contains the key
columns from both the Inventory (SKU) and Sale (SalelD) tables. Both columns
are keyed in the new Saleltem table. Examining the keys within the Saleltem ta-
bles reveals that each sale can contain many items, and each item can appear on
many sales. This is exactly the many-to-many relationship needed. The additional
columns of QuantitySold and SalePrice indicate the number of items being pur-
chased and any discounts applied—for an individual item on a specific sale. The
dashed many-to-many line is never created, it is simply used here to show the goal
of the two relationships.

The new Saleltem table corresponds to the repeating lines of items that you
would see listed on a paper sale form. Examining the two new relationships re-
veals how the table works. Reading from the Sale to the Saleltem table, each sale
can contain from one to many items, and in reverse, each Saleltem line (SaleID
and SKU) refers to exactly one sale. Essentially the same association exists from
Inventory to Saleltem. However, since items might not have been sold, each item
can appear on zero to many sales lines, and a given sales line refers to exactly
one item. All many-to-many relationships must be split and joined with a junction
table that contains the keys from both of the original tables.

Activity: Fix Inventory Design

Return to the database design system and delete the association between Inven-
tory and Sale. Then remove the SKU column from the Sale table. Now you can
create the Saleltem table. Simply drag the two keys (SalelD and SKU) into the
table from the right-hand window—do not attempt to re-create them with a gen-
erate key. Double-click to the left of both names to add the simple key icon (un-

Figure 2.9

Inventory i ~| sale
1.1 oo
SKU - — SalelD
Size SaleDate
QOH CustomerlD
EmployeelD

Saleltem

0..*| SalelD
L1 SKU
QuantitySold|
SalePrice

Chapter 2: Database Design 29

filled blue star). Build the two new re- .

. S . Action
lationships in the Figure 2.9 example
and add QuantitySold and SalePrice to Creprip ithe Salllizm bl
the Saleltem table. Make sure the Sa- | Create the temModel table.
lePrice data type is Currency and that | Include the proper columns.
the data size does not exceed 38, the | Set the keys.
maximum number of digits allowed in | Set the data types.
an Oracle number. Grade/Grade and Mark.

If you grade this version, you will
see that the detail issues have been corrected. However, some design issues still
exist in terms of handling inventory. The inventory for a ski shop is somewhat
more complicated than for a typical retail store. In particular, snowboards and skis
are sold in varying lengths to match the individual customer. Figure 2.10 shows
the two concepts. A manufacturer produces a model line that exhibits certain char-
acteristics such as width, flexibility, and side cut. For a model type, several differ-
ent lengths are available. From the perspective of the All Powder store, the data-
base has to keep information on each model, but the actual inventory must refer to
a specific item or length within the model type. Each item will receive a different
SKU. For example, SKU 1173 might refer to a Rossignol Radical ski that is 196
cm in length, while SKU 1174 references a Rossignol Radical ski of 180 cm.

The catch is that it would waste considerable space to repeat all of the model
data for every possible size of ski or board. Consequently, it is important to create
two entities to handle the details: ItemModel and Inventory. Figure 2.11 shows
the basic tables and the resulting relationships. Observe that each model results
in many inventory items (multiple sizes of boards or skis), but each item can be
only one model type. At this point, you should be able to add more attributes and
more tables to the design, but the completion of the design will be left to the next
chapter.

Figure 2.10

ltem: 196 cm Item: 180 cm

\: _ /
Model information

il refers to the overall
| type of board or ski

e
1 %11 %l'—
Inventory information
refers to an individual
ski or board; defined by
its length

Model: Rossignol Radical

Chapter 2: Database Design 30

Sale Customer
11 3¢ 520D 11 9 CustomerD
SaleDate CustFirstiame
SalesTax CustLastMame
CustornerlD 0. CustPhone
CustEMail
Custtddress
temModel CustCity
5" ModellD 1... CustState
Cualar Saleltem EUSEIP ;
Cost 1.7 ustGender
Graphics Inventory n.* g g;ﬁm CustDateOfBirth
modelyaar :
Syl . j’f? Skl 1.1 Quantl‘gﬂSold
_ 0. WModellD SalePrice
SkillLevel Siza
Q0H
Figure 2.11
Exercises

Crystal Tigers

R Crystal Tigers is a service club with about 150 members. The club primarily spon-
sors events such as community pancake breakfasts, local concerts, and sporting
competitions. The club successfully uses the events to raise money for various
charitable organizations. The club needs a database to help track the roles of the
various members, both in terms of positions within the organization and their
work at the events. The following form represents the basic data that needs to be
collected.

Last Name, First Name
Phone, Cell Phone Lee=ea-
Adderss

City, State, ZIPCode

Member Activitie for Event

Event title

Start Date End Date
Charity

Charity contact
rPhore [TTT=="
Amountraised bo_____

Date Hours Activity | Comment

[y —
[
[—

1. Analyze the form and create the main classes and associations needed to
maintain the data for this organization.

Chapter 2: Database Design 31

Capitol Artists

= Capitol Artists is a partnership among several commercial artists that work on
freelance and contract jobs for various clients. Some jobs are contracted at a fixed
price, but complex jobs require billing clients for the number of hours involved in
the project. To help the artists track the time spent on each project, the firm wants
you to build an easy-to-use database. On a given day, the artist should be able to
select the time slot, then choose a category and a job. All jobs are given internal
numbers, and each job has only one client. But, it is helpful to list the client infor-
mation on the form once the job has been selected. The artist then enters a short
task description, the billing rate, and any out-of-pocket expenses. The billing rate
is somewhat flexible and depends on the client, the job, the task, and the artist. For
example, the company can charge higher rates for an artist’s creative work time,
but lower rates for copying papers. The following form contains the basic infor-
mation desired.

Employee
Last name, First name
Date

Time Category | Client Job# | Task | Description | Hours | Rate | Expenses

8:00 AM | Meeting Name 1173
+

Phone

8:30 AM
9:00 AM
9:30 AM

1. Analyze the form and create the main classes and associations needed to
maintain the data for this organization.

Offshore Speed

The Offshore Speed company sells parts and components for high-performance
boats. Some of the customers modify the boats for racing, others simply want
faster boats for informal races. The engine parts tend to be highly specialized and
new variations are released each year by manufacturers. Compatibility of parts is
always a major issue, but most are tested by the manufacturers with data available
from their websites. Customers tend to order parts through the store, but some-
times they will buy off-the-shelf components. The store also keeps many spare
parts in stock because customers tend to break them often and the profit margins
are good. The store also has arrangements with other firms that can help custom-
ers redesign and upgrade interiors and cabins, for example, provide new uphol-
stery for seats and complete systems for beds and sinks for cabins. Lately, the
store has been successful in selling and installing high-end GPS and communica-
tion systems. The form below is used to place custom orders for the clients. Dis-
counts are given to customers based on several subjective factors that will not be
entered into the database.

Chapter 2: Database Design 32

Customer Employee

Last name, First name

Phone, E-mail Sale date

Address Estiamted receive date
City, State, ZIP

Boat: Brand, year, # engines, length
Engine 1: Brand, year, out drive, year
Engine 2: Brand, year, out drive, year

Manuf. | Mfg Part No. | Category | Description | Quantity | List Price | Extended

-
-
-
-
[R ——
-

Subtotal
Tax
Discount
Total Due

1. Analyze the form and create the main classes and associations needed to
maintain the data for this organization.

Final Project

The main textbook has an online appendix with several longer case studies. You

should be able to work on one of these cases throughout the term. If you or your

instructor picks one, perform the following task.

1. Analyze the forms and create the main classes and associations needed to
maintain the data for this organization.

Chapter

Data Normalization

Chapter Outline

Database Design, 34

Generated Keys: Identities, 34

Case: All Powder Board and Ski Shop, 35

Lab Exercise, 36
All Powder Board and Ski Database Creation, 36
Relationships, 41

Exercises, 46

Final Project, 47

Objectives

* Understand how to use generated AutoNumber keys.
+ Create tables and specify data types.

« Create relationships and specify cascades.

« Establish column constraints and default values.

» Create lookup lists for columns.

« Estimate the data volume for the database.

33

Chapter 3: Data Normalization 34

Database Design

The main objective of database design is to define the tables, relationships, and
constraints that describe the underlying business rules and efficiently store the
data. The normalization rules are critical to properly identifying the columns that
belong in each table. The first step is to make sure the keys are correct. A key
uniquely identifies the rows in the table. If multiple columns are part of the key,
it indicates a many-to-many relationship between the key columns. Note that if
a base table contains a generated key column, it is the only column that may be
keyed.

If you are uncertain about which columns should be keyed, write them down
separately and evaluate the business rules between the two objects. Figure 3.1
shows a typical situation with orders and customers. First ask yourself: For a giv-
en order, can there ever be more than one customer? If the answer is “yes” based
on the business rules, then you would mark the CustomerID column as key. How-
ever, most businesses have a rule that each order is placed by only one customer,
so CustomerID should not be keyed. Second, reverse the question and ask your-
self: For a given customer, can there be more than one order? Obviously, most
businesses want customers to place repeat orders, so the answer is “yes.” So you
mark the OrderID as key. Since only OrderID is keyed, both columns belong in
the CustomerOrder table.

Once the keys are correct, you need to check each nonkey column to ensure
that it follows the three main normalization rules. First, each column must contain
atomic or nonrepeating data. For example, a single phone number, but not multi-
ple values of phone numbers. Second and third, each nonkey column must depend
on the whole key and nothing but the key. You need to examine each potential
table, determine that the keys are correct, then check each column to ensure that
it depends on the whole key and nothing but the key. If there is a problem, you
need to split the table. Remember that any time you make a change to the keys in
a table, you have to reevaluate all of the columns in that table.

Generated Keys: Identities

Key columns play a critical role in a relational database. The key values are used
as a proxy for the rest of the data. For instance, once you know the CustomerID,
the database can quickly retrieve the rest of the customer data. That is why you
only need to place the CustomerID column in the CustomerOrder table. However,
the database requires key values to be unique. Guaranteeing that key values are
never repeated can be a challenging business problem. In some cases, businesses
have separate methods to create key values. For instance, the marketing depart-
ment might have a process to assign identifier numbers to customers and products.
But the process must ensure that these values are never duplicated. In many situ-

Figure 3.1

OrderlID CustomerlD

CustomerOrder(OrderID, CustomerlD, ...)

Chapter 3: Data Normalization 35

ations, it is easier to have the database generate the key values automatically. In
particular, orders often require keys that are generated quickly and accurately.

SQL Server has a sequence process to generate new key values. You assign an
int type to the primary key in a table where you want the key value created. This
data type does not actually create the number. To create numbers, you also declare
the column to be an identity. The sequence generator is relatively flexible and you
can specify a starting value and an increment. This system generates an identity
value whenever a new row is inserted into the table. The process is relatively au-
tomatic, but it is slightly tricky to obtain the generated value if you need to use
it in a second table. This step is covered in a later lab. However, sequences really
should be set up when you define the table so that you remember to do it. One of
the activities in this lab will show you how to set up an automatically generated
key value; you can copy the process for your other projects.

For now, you must carefully identify the key columns that might need generat-
ed values. For instance, the CustomerID column in the Customer table, or the Or-
derID in the Order table might be assigned a generated value. But the CustomerID
column in the Order table would never be a generated key. It would be given the
same numeric data type, although the actual key generation can take place only
in the original (Customer) table. Make sure you understand the difference. The
CustomerID is the only column that is a primary key in the Customer table, and
it is the source table for customers. Consequently, it is acceptable to generate key
values for CustomerID in the Customer table. On the other hand, the CustomerID
is a placeholder in the Order table—it represents the customer placing the order.
The customer is not created in the Order table, so the CustomerID value cannot be
generated in the Order table. The CustomerID must already exist in the Customer
table before it can be assigned to a row in the Order table.

Case: All Powder Board and Ski Shop

When you first approach a database design problem, you will often experience
one of two perspectives: the project seems immensely complicated, or the project
seems too easy. Usually, both perspectives are wrong. Even a difficult project can
be handled if you divide it into small enough pieces, and few projects are as easy
as they first appear. The main issue is to correctly identify the business rules. And
there always seem to be complications with some of the rules. For the All Powder
case, consider the issue of customer skill level. Whether a customer is renting or
buying a board or skis, the salespeople need to match the person to the proper
board or ski based on the customer’s skill level. In terms of business decisions,
managers need to identify the types of customers to plan for the models and in-
ventory decisions for next season.

As shown in Figure 3.2, consider what happens if you try to place the Style
(downhill, half pipe, and so on) and SkillLevel directly into the Customer table.
The problem is that the business rules state that each customer can have one skill
level in many styles, and each style can apply to more than one customer. For
example, customer Jones could be an expert downhill skier, but only a beginner
in half-pipe snowboard. However, customer Sanchez is an expert at half pipe, but
has never tried any type of skiing. If you place Style and SkillLevel in the Cus-
tomer table, you might try keying only CustomerID. But that action would state

Chapter 3: Data Normalization 36

that each customer participates in only one style, with one skill level. On the other
hand, if you key just the Style column, you would be indicating that each style can
be performed by only one person. The only solution is to key both the Custom-
erID and the Style columns. Then, each customer can participate in many styles
(with one skill rating per customer per style), and each style can apply to many
people (with possibly different skill ratings). But you cannot leave the Style and
SkillLevel columns in the main Customer table along with columns such as Last-
Name. It is clear that a customer’s last name does not change for each different
style. A customer’s last name depends only on the CustomerID, so you need to
split the tables.

Figure 3.3 shows the resulting design. The Customer table is keyed only by
CustomerID and contains attributes that describe each customer. The Style and
SkillLevel tables are used as lookup tables to ensure that clerks select from the
defined list of choices. Without them, the database would quickly become a mess
because everyone would use different spellings and abbreviations for the entries.
The CustomerSkill table contains the CustomerID and Style as key columns to
support the business rules.

Lab Exercise

2 4

All Powder Board and Ski Database Creation

You should use the database design system to refine your table definitions. The
system is designed to check the main design rules and ensure that your tables
meet the requirements of good database design. However, if you make different
assumptions about the underlying business rules, you can create slightly different
tables than those recommended by the

design system.

o If necessary, create a new database.
Act 1oity: Create Tables Create Customer table with enterprise
Once you have determined the over- manager.
all database design, you have to select | Enter column names.
between the two methods for creating | Select data types.
tables in SQL Server. The enterprise | Assign the primary key.
manager console contains a visual edi- | Exit and save the table.
tor that makes it easy to enter column

Action

Figure 3.2

Consider what happens if you (incorrectly) try to place Style and SkillLevel in
the Customer table:

CustomerlD, LastName, ... Style, SkillLevel
CustomerlID, LastName, ... Style, SkillLevel

Business rule: Each customer can have one skill in many styles.
Business rule: Each style can apply to more than one customer.
Need a table with both attributes as keys.

CustomerlD, LastName, ... Style, SkillLevel

But you cannot include LastName, FirstName and so on, because then you
would have to reenter that data for each customer skill.

Chapter 3: Data Normalization 37
Customer Style
CustomerlD Style
LastName StyleDescription
FirstName CustomerSkill
Phone
Address CustomerlD
City Style
State SkillLevel
21P SkillLevel
SkillLevel
SkillDescription

Figure 3.3

names and select the data types. However, ultimately, the editor converts your
choices into an SQL statement that actually creates the table. For some things, the
designer is easy to use, but ultimately, you will want to learn the SQL syntax. For
now, begin with the designer. Later, you can generate the SQL script for the table.
This way, if you ever need to re-create the tables, you simply have to execute the
text file as a set of SQL statements.

Figure 3.4 shows the basic elements of the table design screen. Note that if
you still have the Customer table created in Chapter 1, you can either edit that
table or simply drop it and start over. As you enter the column (field) names, you
select the data type from a drop-down list. For text data you should generally use
nvarchar instead of the older varchar. You never know when someone will want
to store names or other data using a different language alphabet. Some data types
have size limits. For example, you should specify the maximum number of char-
acters expected in a text column. SQL Server will efficiently store the data even if
it takes less than the specified number of characters, but it will not allow anyone
to enter a value with more than the number entered. SQL Server will allow up to
4,000 characters for the nvarchar data type, but try to be somewhat conservative

Figure 3.4

‘il SQL Server Enterprise Manager

File Window Help

Colurnn Name

Data Type

=4 s Server Group
=3y tocal) (windows NT)
=+ Datsbases

Stored Pro
Users
Roles
Rules

[Defauts
% User Define
7, User Defin
% pubs
-1 tempdb
[Data Transformatio
[Management
[Rreplication
[Securiey
-2 Support Services

Table list

(L] Meta Data Service:
- (2) POSTWWEB.ESBLLICP.ELY

27| Customer o

LastMame

FirstMarme
Phone.
EMal
Address
City

State

il

Gender
DateOfBirth

[TITTITIT LI

Columns

Description

Iderkity
Idertity Seed
Iderkity Increment

Formula

int
nwarchar
rwarchar
nwarchar 20
nwarchar 200
nwarchar s0
nwarchar s0
nwarchar s
nwarchar 15
nwarchar 0
datstime]

Yes

Data size

Chapter 3: Data Normalization 38

o

because those values might be used to set default format widths. For most col-
umns, you want to make sure that the Allow Nulls column remains checked.

Primary keys are straightforward in SQL Server. Simply select the fields that
will be keyed and then click the key icon in the toolbar. When you need multiple
columns as part of the key, you can select the multiple items by dragging the
mouse over all of them before releasing the button, or by holding down the Ctrl
or Shift key while clicking each column. The Customer table has only one key
column (CustomerID).

In SQL Server, generated keys are specified with the Identity keyword. In the
Customer table, you want the database to generate a new key value each time a
customer row is added. Click the CustomerID field and examine the properties.
When you set the Identity property to Yes, the DBMS will automatically generate
new values. You can also specify a starting seed and an increment.

Although they are not needed in the Customer table, be careful when selecting
among the many numeric data types. Remember that integers do not have frac-
tional values. In the All Power case, most skis and boards are measured in centi-
meters, so the numbers are not overly large. However, some manufacturers might
choose to use fractional lengths, so the single-precision floating point is appropri-
ate. This step is sometimes difficult for beginners to catch. If you forget to choose
the single- or double-precision subtype, you will not be able to enter fractionall
values (with decimal points). If you ever encounter that problem, simply return to
the Design view and set the proper data type.

When you close the table remember to give it an appropriate name (Customer).

Activity: Create Constraints and Default Values

In many cases, you will want the database to enforce the business rules. Plac-
ing the rules in the database means that

they will be enforced in all situations, | Action
without relying on other programs. nght-cllpk Gender and select Check
Figure 3.5 shows the statements for | Constraint

Select the Check tab.

setting a condition to ensure that cost

values are always positive. Pay particu- | Enter check condition:

lar attention to the commas—there are
no commas within a column definition,
only at the end of each column. The
condition must be entered in paren-
theses and must represent a valid SQL

Upper(Gender) IN (‘FEMALE’,
‘MALE’, ‘UNIDENTIFIED’).

Enter unique name: CK_Customer
Gender.

Close the form and save the changes.

Test the constraint with sample data.

WHERE statement. Almost any SQL
condition can be used and they will be
explained in detail in Chapter 4.

As a more complex example, you might want to return to the Customer table and
add a constraint that limits the values that can be entered for Gender. The easiest
approach would be to drop the existing table (DROP TABLE Customer;) and cre-|
ate it again; adding a new CHECK constraint. However, you could also use the
ALTER TABLE command. In either case, you want people to enter data from a
fixed list of items (female, male, and unidentified). You could probably get by
without the “unidentified” option by using null values for that purpose, but it is
a litter easier for users if you specify it as a possibility. The condition that en-
forces this constraint is UPPER(Gender) IN (‘FEMALE’, ‘MALE’, ‘UNIDENTIH
FIED’). The UPPER function converts whatever text is entered into all uppercase

Chapter 3: Data Normalization 39

‘Im &0I Sarver Fntarnrica Manaoar e B @

CHECK constraint type

QL Serve Properties

Tl "
| Tebles | Relationships | Indexes/Keys Check Constaints |

Table name: Customer

Selerted constraint: |CK_Customer_Gender |

Hewr Delete

Constraint name: | CK_Customer_Gender <

pper b ="U
i
Gender
DateCfBirth
Right-click T |
: "
:

Description
Fault

Unique name

1

[LTI e

Figure 3.5

characters because the comparison is case sensitive. The three acceptable items
are entered in the list with single quotes around each word or phrase and separated
by commas.

Notice that it is straightforward to specify default values. These are values that
you want entered whenever the user does not provide a value for the specified
column. The user can override the default value and enter something else, but it is
often convenient to display a commonly used value to save time for users enter-
ing data. For example, a SaleDate can be set to the SYSDATE function so that the
current date is automatically entered. For example, to specify a default value of 1
for Cost, simply add the line; DEFAULT 1 (with no commas or equal sign).

Activity: Create Tables with SQL

It is relatively easy to create tables in SQL Server with the design screen in the
enterprise manager. However, right
click the table name, choose All Tasks,
and Generate SQL Script. You will see
that the table is actually being created Uype e CIEANE WIS comiiiss
in SQL. The design screen simply takes | Save the file as ProductCategory.sql
your choices and converts them into | Startthe SQL Query Analyzer program
the proper SQL syntax. Eventually, you | Select the Powder database

will find several advantages to simply | Log in as the All Powder developer
creating the tables in SQL yourself. For | Open the ProductCategory file

starters, all you need is a simple system | Click the Execute Query button to run it.
to execute SQL commands instead of
the visually oriented design screen. You can quickly build and execute SQL com-
mands and send them across the Internet when you are thousands of miles away
from the main database machine. Also, some options are easier to control by en-
tering them directly into the SQL—instead of trying to figure out how to get the
designer to understand what you want. But probably the most important reason

Action
Start the Windows Wordpad program

Chapter 3: Data Normalization 40

CREATE TABLE Customer
(
CustomerID int IDENTITY(1,1) NOT NULL,
LastName nvarchar(25),
FirstName nvarchar(25),
Phone nvarchar (25),
Email nvarchar (120),
Address nvarchar (50),
City nvarchar (50),
State nvarchar (25),
ZIP nvarchar (15),
Gender nvarchar (15),
DateOfBirth datetime,
CONSTRAINT pk_Customer PRIMARY KEY (CustomerID),
CONSTRAINT ck Customer Gender
CHECK (Upper(Gender) IN
('FEMALE’, ' MALE’, "UNIDENTIFIED"))
)
Figure 3.6

for using plain SQL is that you can create and store the statements in a simple
text file. Whenever you need to rebuild the tables, you simply execute the file and
all of the tables will be created. Figure 3.6 shows the SQL statement that creates
the Customer table with the primary key and gender constraints. Notice that the
syntax for the columns is straightforward. Simply list the column name followed
by its data type. The columns are separated by commas. If the column names are
reserved words or contain special characters you must put square brackets around
the name.

The primary key constraint is straightforward. It is identified with the CON-
STRAINT keyword followed by the name of the constraint (pk_Customer) and the
type of constraint (PRIMARY KEY). The key columns are then listed in parenthe-
ses. If there are multiple columns, they are separated with commas. The check
constraint on the gender column is similar. Some people prefer to write it directly
beneath the Gender column, but it is equally easy to read if all check constraints
are listed at the end of the definition. Again, it is straightforward: begin with the
CONSTRAINT keyword and its unique name. Add the CHECK keyword and fol-
low it by the condition to be evaluated. Check constraints are used to specify one
type of business rules and to ensure that the database retains consistent data.

Figure 3.7
CREATE TABLE ProductCategory
(
Category nvarchar(50),
CategoryDescription nvarchar(250),

CONSTRAINT pk_ProductCategory PRIMARY KEY (Category)

5 2

Chapter 3: Data Normalization 41

For practice, you should create the ProductCategory table shown in Figure 3.7
using the SQL statements. The most powerful aspect of using SQL is that you can
have a file of commands that you can execute on a different machine to create the
tables. To illustrate the process, start a text editor (Wordpad) and type in the com-
mands to create the ProductCategory table. You do not have to worry about tab
spacing, but the alignment does make the command easier to read in the file. You
do have to be extremely careful about commas and parentheses. Save the file as
“ProductCategory.sql.”

If you have a large file to create many tables, it is easiest to use the command-
line program isql to execute the file. Using line commands also enables you to
script the database build process within a batch file. However, for shorter queries
with one or two tables, it is straightforward to run the query within the query ana-
lyzer. You will use the query analyzer often, so you might want to place a shortcut
icon to it on your desktop. Start the SQL Query Analyzer. Choose the Powder
database and log in if requested. Retrieve the query by opening the file. Click the
Execute Query arrow to run the command. The command will execute in a couple
of seconds and it will tell you that the table has been created. However, if you
receive any error messages, return to the text file and make sure the commas and
parentheses are correct.

If you want to remove the table, simply type DROP TABLE ProductCategory;
at the prompt and the table will be removed. Close the query analyzer when you
are finished.

Relationships

Activity: Define Relationships

SQL Server has a graphical tool to
create and display table relation-
ships. However, relationships can also .
be formed within the SQL CREATE Be sure the Department column is keyed.
TABLE command. Figure 3.8 shows | Create the Employee table.
a typical relationship between the De- | Set EmployeelD as a primary key
partment and Employee tables. Em- constraint.)
ployees are assigned to a department, Cregfe anew diagram and add both
but the department comes from a list in tables.
the Department table. In this example, Dlr)ag ﬂllf Delﬁrtrglenltacolilmn frtogi e
the Department column in the Employ- D U R

. . . Verify the columns match.
ee table is a foreign key because it re-
fers to a primary key in a second table. (Cliels {0 Tpaals brc:
The Department table is the reference
table because it supplies the data to the Employee table.

You can use the SQL Server visual designer to create the relationship. First, in
the Enterprise Manager, create the Department table and then the Employee table.
Next, create a new diagram and add the new Department and Employee tables.
Drag the Department column from the Department table and drop the cursor on
the Department column in the Employee table. As shown in Figure 3.9, a relation-
ship box will pop up.

Be sure that you check the Cascade Delete option. With this option enabled, if
anyone deletes a department from the Department table, the DBMS will automati-
cally remove all employees in that department. Why? To ensure consistency of

Action
Create the Department table.

Chapter 3: Data Normalization 42

Department i Employee
Department EmployeelD
Description TaxpayerlD
LastName
FirstName
T Address
Phone
| Reference Table City E:l
State Horeign Key
1. ZIP -—
Department

Figure 3.8

the data. If the department no longer exists, then you cannot say that employees
belong to that department. Cascade deletions save you an enormous amount of
grief in the long run because they keep the data accurate. However, deleting one
row of data in a high-level table could result in the deletion of huge chunks of the
database. Later, you will learn how to assign security permissions to the tables so
that only a few people will be allowed to delete departments.

You can also create foreign key relationships within SQL. If you generate the
SQL script for the Employee table, you can see the syntax. Foreign key rela-
tionships are the main reason that it is often easier to create tables within a text
file first and then execute the text file. Note that the tables must be created in a
specific order. In this example, the Department table has to be defined before the
Employee table. You could go back in the designer and alter a table to set a new
relationship, but it is much safer to define everything at one time. With a text file,

Figure 3.9

‘it SQL Server Enterprise Manager Create both tables
Fle Window Help
HES B0 %0 2703500
‘fn Console Root\Microsoft SQL Servers\SQL Server Groupl{local) (Windows NT)\Databases\Powder\Diagrams
[Consale Root Diagrams 0 Items
C()lumn n the “n New Diagram in "Powder’ on ‘(locall’ A==
T) -
Department table Reference table
py
[l s
-1 Morthwind Department * Employee *
=1l Powder 2 | Department
) 7 |Department _®|EmployesID
8 O Tospoyes
Tables | casthiame
; 3 : —) T |Firsthiame
Create Relationship [5) [(P
o e . 2’:”9
F._Employee_Department — St:te
Primary key table Foreign key table e
Department Employes __|pepartment | |
Department | Department ~ S~
_ 5
a E Column in the
@
@ . Employee table
a)
3| ¥ Check existing data on creation T
o Ej‘;_;l. |¥ Enfarce relatianship for replication
I Enforce relationship For INSERTs and UPDATES
N |¥ Cascade Update Related Figlds
Cascade 1S 1 cosasbta Rebtadecrds
important
ok | caowel | hep |
(] —

Chapter 3: Data Normalization 43

you save the entire database structure and re-create it almost instantly. Figure 3.10
shows the SQL to create the Department and Employee tables. The foreign key
constraint is straightforward, but you have to enter the keywords in the specified
order. You begin with the CONSTRAINT keyword followed by the name of the
constraint as usual. The FOREIGN KEY phrase specifies the type of constraint,
and it is followed by the name of the column (or columns) in the Employee table
that is affected by the constraint. The keyword REFERENCES is followed by the
name of the reference table (Department), and the column referred to is listed in
parentheses. Note the use of the ON DELETE CASCADE command to set the
Cascade option. One table can have several relationships with other tables. You
simply list each one as a new foreign key constraint.

Figure 3.10 also shows how to specify a default value for the Department col-
umn. In this case, employees will be assigned to the Sales department if no other
value is entered. Of course, you should make sure that the Sales department is
listed in the Department table.

At this point, you should create all of the All Powder tables in SQL Server. You
can use the table designer to help you get started, but you should ultimately gener-
ate the SQL scripts and review them. Then, if anything goes wrong or you need to
make substantial changes to the design, you can drop all of the existing tables and
start over. Make any necessary changes to the text file, then return to SQL Plus
and execute the file to rebuild all of the tables.

You can create a SQL Server diagram to work directly with the graphical rep-
resentation of the tables. Figure 3.11 shows that you can modify tables and create
relationships directly. Changes made to the diagram are transferred to the under-
lying table definitions. However, when you are finished, you should return to the

Figure 3.10

CREATE TABLE Department

(
Department nvarchar(50),
Description nvarchar(150),

CONSTRAINT pk_Department PRIMARY KEY (Department)

)

Go

CREATE TABLE Employee

(
EmployeelD int,
TaxpayerlD nvarchar(50),

LastName nvarchar(25),
FirstName nvarchar(25),
Address nvarchar(50),
Phone nvarchar(25),
City nvarchar(50),
State nvarchar(15),
ZIP nvarchar(15),
Department nvarchar(50)

DEFAULT ‘Sales’,
CONSTRAINT pk_Employee PRIMARY KEY (EmployeelD),
CONSTRAINT fk_DepartmentEmployee FOREIGN KEY (Department)
REFERENCES Department(Department)
ON DELETE CASCADE

Chapter 3: Data Normalization 44

Diagram ‘AllPowder” in Powder’ on *(local)”

Figure 3.11

table list and generate the SQL definitions to a text file so that you can quickly
recreate the tables later.

You can create a relationship diagram from scratch by starting a new diagram
and adding each table individually. Alternatively, if you already have the tables
defined, you can create a new diagram and then drag-and-drop all of the tables
onto the diagram. The system will automatically arrange the tables and show the
relationships.

Activity: Estimate the Database Size

At some point, you need to estimate the
size of the database project. Of course,
any estimate at this early stage will be | Create a spreadsheet.

very rough. Your goal is not to be per- | Enter table names as rows.

fect, but to be able to categorize the Add columns for: Bytes, Rows, Totals.
overall project size. The information | Calculate the bytes per table row.

will help you identify the basic cat- | Estimate the number of rows.

egory of database server and perhaps | Compute the table and overall totals.
narrow your choice of tools. In particu-
lar, it will help you determine how much disk space you need to purchase, and
whether you will need more servers and faster processors.

To estimate the database size, you begin by estimating the size of each data
table. You must already know which columns belong to each table. Figure 3.12
shows the process for the Customer table. Some of the column size estimates are
straightforward. Look back to Chapter 2 for a reminder that a long integer uses 4
bytes of storage in Access. The text columns are a little trickier. For instance, al-
though the database will allow up to 50 characters of text for the last name, almost
no names will actually be that long. Instead, you need to estimate the average
length of customer last names. You could use existing data, or perhaps a sample

Action

Chapter 3: Data Normalization 45

CustomerID NUMBER(12) 8
LastName NVARCHAR(50) 30
FirstName NVARCHAR(50) 20
Phone NVARCHAR(50) 24
Email NVARCHAR(150) 100
Address NVARCHAR(50) 50
State NVARCHAR(50) 4
ZIP NVARCHAR(15) 20
Gender NVARCHAR(15) 20
DateOfBirth Date 7
Average bytes per customer 283

Customers per week (winter) *200

Weeks (winter) *25

Bytes added per year 1,415,000

Figure 3.12

from a phone book. Perhaps an average last name is 15 characters long. But the
DBMS stores text in Unicode format, which requires 2 physical bytes of storage
for each character, so the average storage space needed for a last name is 30 bytes.
Use a similar process to estimate the number of bytes needed to store an average
row of customer data.

Next, you need to estimate how many new customers will arrive each year. In
a real case, you could look at past records or talk with the expert users. Here, as-
sume it is about 200 per week, but there are only 25 weeks of the ski season; so
there are about 5,000 new customers a year. Multiplying the estimated number
of customers by the size of an average row yields the initial data size of the Cus-
tomer table to be about 1 million bytes.

You need to follow a similar process for all of the tables in the case. Figure 3.13
lists some of the basic assumptions you can use. You should build a spreadsheet
that lists each table, the average number of bytes per row, the estimated number
of rows, and the total estimated size for the table. There is still some flexibility in
the final number, but your estimate should be around 5 to 6 megabytes. Remem-
ber that this is data for only one year. Also, additional space will be required for
indexes, overhead, queries, forms, and reports. But even if the final number is
closer to 20 megabytes, SQL Server can easily handle this database on a PC-based
server.

Figure 3.13

200 customers per week for 25 weeks
2 skills per customer

2 rentals per customer per year

3 items per rental

20 percent of customers buy items

4 items per sale

100 manufacturers

20 models per manufacturer

5 items (sizes) per model

Chapter 3: Data Normalization 46

Exercises

5

Many Charms

Samantha and Madison want you to build the database for their charms sales.
They emphasized that the system has to be easy to use. They also pointed out
that a key element of their business is tracking all of the products and the various
suppliers, then monitoring the costs so they can set their prices accurately. They
are also concerned about monitoring how quickly their charms sell. They figure
they will need to start with at least 200 basic charms, but most charms come in
two sizes, along with the different metals and finishes. When asked, the women
indicate they are uncertain how many customers they will have but would like to
get at least 50 sales a week. Although some of the sales might be small, they hope
to build a solid list of clients who return for new purchases on a monthly basis.
To encourage return customers, they are thinking about offering some type of fre-
quent-buyer program, where customers receive discounts or maybe a free charm,
after purchasing a specified number of charms.

1. Define the final tables needed for this case.

2. Create the database.

3. Estimate the size of the database for one year of operation.

Standup Foods

Laura’s business has been established for several years. Many of her clients are
old customers, and she has a couple of thousand in her files—although some have
gone out of business. Her business has grown considerably based on referrals
from existing clients. She gets so many good comments and referrals, she is think-
ing that she needs to track which customers pass her name on to others so she can
call them or send thank-you gifts. But, her more immediate concern is tracking
employees. Over the course of a year, she has a relatively high turnover in some
positions. Other employees have been with her for years. In total, she probably
deals with 400 to 500 employees a year. Employees are rated after each job, and
typically employees work 15 to 20 jobs a year for her. On average, employees
tend to have three tasks per event. For instance, a driver will also be a server, and
possibly also a busboy or dishwasher. They are evaluated on 10 items for each
task they perform, as well as given an overall rating. Client food preferences are
somewhat more complex, so Laura wants the capability to add free-form com-
ments to cover extreme cases. For common elements, such as allergies to nuts, she
wants to keep itemized lists—both for desired items and forbidden items. Some
clients are easy going, but this is Hollywood, so many have long lists of items—
often ranging to 50 or even up to 100 items.

1. Define the final tables needed for this case.

2. Create the database.

3. Estimate the size of the database for one year of operation.

Chapter 3: Data Normalization 47

&3 EnviroSpeed

k_) For good or bad, Tyler and Brennan have been busy. Their firm has been averag-
ing four to five cleanups a week. Although there are not many permanent em-
ployees (fewer than 100), they have close associations with about 200 experts in
various areas. All of these people need access to the environmental documents and
other information. Additionally, about 400 crews around the world are called in to
work on various problems. The crews consist of 10 to 20 people. Initially, experts
contribute the most information. Sometimes an expert will contribute hundreds of
pages of documents and comments. Once an incident is opened, most of the new
data and the searches come from the emergency crews. Time schedules, environ-
mental factors, and comments can arrive quickly from all of the crew members.
Some of the notes are on paper and saved until the emergency is over, when clerks
enter the basic data to the database. A typical incident can generate dozens of pag-
es of notes and schedules from each crew member. Although there are hundreds
of possible chemicals, the firm has found that only about 50 major chemicals are
typically involved in critical incidents. One important aspect of this case is the
need for experts and crew members to search through documentation based on
key words. For example, crews will need to search for certain chemicals, possibly
in combination with other chemicals, and often include the type of problem, such
as water or road spill. Brennan estimates a typical document needs to include at
least 20 keywords to identify the exact purpose of the document.
1. Define the final tables needed for this case.

2. Create the database.

3. Estimate the size of the database for one year of operation.

Final Project

The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following instructions.

1. Finalize your database design.

2. Create the tables in the DBMS.

3. Estimate the amount of data that might be generated for one year.

Chapter

Database Queries and SQL

Chapter Outline

Database Queries, 49
Case: All Powder Board and Ski Shop, 49
Lab Exercise, 50
All Powder Board and Ski Data, 50
Computations and Subtotals, 60
Exercises, 65
Final Project, 66

Objectives

» Create or import sample data into a database.

» Create basic queries to answer common business questions.
* Use joins to create multitable queries.

» Use queries to perform simple calculations.

* Answer business questions involving totals and subtotals.

48

Chapter 4: Database Queries and SQL 49

Database Queries

Relational databases are designed to efficiently store data. Efficiency results in
splitting the data into many tables, interconnected by the data. Consequently, you
need a good query system to retrieve data. SQL is a powerful standard designed
to perform several tasks in retrieving and manipulating data in relational database
systems. Most modern systems implement some version of SQL. The catch is that
the standard continues to evolve, and it takes time for the DBMS vendors to catch
up. Also, vendors tend to include proprietary extensions to provide additional fea-
tures. At one time, SQL Server includes a visually oriented QBE system, but you
really need to learn and understand the straight-text SQL. The logic of SQL is the
same as for QBE, but it can be cumbersome because you have to type more text.
Also, the JOIN statements are a little more confusing in SQL.

SQL Server has three methods to enter SQL commands: (1) the query analyz-
er, (2) create a new view, and (3) command-line isql. In general, you will find
the QBE editor for views to be the easiest to use. However, if you want to run a
chain of SQL commands, you will generally need to save them as a text file and
run them with the isql command. The query analyzer is useful when you need to
improve the performance of long-running queries. Note that when you want to
execute several SQL commands within one file, you often separate them with the
GO command.

There is one other important issue you need to know about SQL Server. You
often need to issue a commit command to ensure that your changes are written
to the database. It is part of the transaction processing system that is explained in
more detail in Chapter 7.

This chapter focuses on the data retrieval aspects of queries. SQL can also be
used for data definition (e.g., CREATE TABLE), and for data manipulation (e.g.,
UPDATE and DELETE). These features and more complex queries are covered in
Chapter 5. Once you learn the foundations of queries presented in this chapter, the
other topics are easier to understand.

In any database, when you are writing queries, it helps to have a copy of the
class (relationship) diagram handy. One of the more difficult aspects to creating a
query is to find which tables hold the data you need. This problem is one of the
reasons it is so important to label your tables and columns carefully when you
create the database. Managers need to be able to identify the tables and columns
that match the business questions. With dozens or even hundreds of tables with
confusing or abbreviated names, it can be difficult to find the correct data.

Case: All Powder Board and Ski Shop

Before you can build queries, you need data in the tables. Even with a small num-
ber of tables, it is time-consuming to create reasonable data. You have to match the
foreign keys across the relationships. For instance, it is straightforward to create
basic customer data, although it would take a while to type in data for a thousand
customers. Then, when you want sales data, you have to select CustomerID values
from the existing list. You also have to create ski and board models, generate data
for items with appropriate attributes, and then choose the proper ID values for the
sales and rentals. In a typical business project, you can test the database with a
few dozen examples, and then wait for the business to generate real data to ana-
lyze. In a class setting, it is better to use sample data. For that reason, sample data
is available for the tables in the All Powder case. The one catch is that your tables

Chapter 4: Database Queries and SQL 50

might not contain exactly the same columns. So you might have to edit the data
slightly in Excel before you import it into your database. This data was randomly
generated with specially built generators. The business interpretations might not
be useful, but the dataset is consistent.

Lab Exercise

2 4

Figure 4.1

All Powder Board and Ski Data

At this point, the main tables of your database should be similar to those in Figure
4.1, although several supporting tables have been removed from the figure. The
Manufacturer, Customer, Sale, and Saleltem tables are common to most business
databases. The Rental and Rentltem tables simply mirror the sale aspects. The
Inventory and ItemModel tables arose because of the characteristics of the board
and ski products.

To save time and effort, sample data files are provided on the main textbook
CD for each of these tables, plus the common supporting tables. The files for each
of these tables are stored in the standard comma-separated values (CSV) format.
You could import these tables manually. Rather than force you to enter all of the
commands by hand, you can run a batch file that will create the tables and load the
data into the tables. You need to run a batch file from command line that handles
these tasks.

Activity: Import Data Action

To begin, you should copy all of the | CoPY files from BuildAllPowder.

files in the BuildAllPowder folder (in- | Drop or rename conflicting tables.
cluding the subfolder) to a folder on the | Switch to command mode.

computer running SQL Server. In par- Run the batch file BuildAlIPowderSQL
ticular, the batch files run the isql and server username password.

bep utilities. To simplify the process, | Check the tables.

| :ciicm ItemModel
T Sale Inventory 1.1 e ModelD
Sale T KU o*
QuantitySold ManufacturerlD
r SalelD 1] Category
SaleDate SalePrice Calor . 1I\l'lanufa[:lunar
o CustomerlD 0" Cost * m:z:zﬁ‘g?gz’m
EmpioyeelD Modervear Manufddress
ShipAddress Graphics ManuCity
ShipCity Rentitem Iternmaterial Manufstate
ShipState 1.7 o RentiD ListPrice Manup
ShinZIP < Stle
SalesTax 12 7y 8KU BEHLeveI mam‘i:f”‘e
Pavmeantiathad RentFee Weighthiax CEI”“ 3l
ReturnDate WaigHthfin ategary
ReturnCandition Waistiidth
RepairCharges EffectiveEdge
Employee Customer g:ﬂ;gRSa?;E
-t e EmployaeiD -1 Je CustomeriD 1.1 Rental
TaxpayerD CustLasthame 1
EmplLastiarme CustFirstiame * ggzi:ljjale
EmpFirstdame CustPhone o.* CustomarD
Empaddress CustEMall ExpectedReturn
EmpPhone CustAdiress Paymentitethod
EmpCity CustCity
EmpState CustState
EmpZIP CustZIP
Depariment CustGender
CustDateOfBirth

Chapter 4: Database Queries and SQL 51

the best approach is to start with a clean schema. Notably, you should delete any
tables that might conflict with the new tables. The easiest way to delete the tables
is to run the included SQL script file DropAllPowderTablesSQL.sql. Your other
option is to check the names in that file and see if any conflict with tables that you
already have, then rename your tables.

The rest of the installation is relatively automatic. You need to switch to com-
mand mode, using Start/All Programs/Accessories/Command Prompt. Change to
the directory holding the data files. Run the batch file BuildAllPowderSQL and
specify the server, username, and password: BuildAllPowderSQL server user-
name password.

After a minute or two, the tables should be created, the data copied, and the
tables analyzed to improve performance. You should not receive any error mes-
sages. If you do see errors, they are probably due to an incorrect server name or
password.. As you can see in Figure 4.2, after the SQL script has completed with
no errors, the tables that were created will be displayed in the enterprise manager
console.

You should also consider creating the relationship diagram for the project. Us-
ing the SQL Server Enterprise Manager, open the database and add a new dia-
gram. Pick all of the new tables that were created, and the wizard will build the
initial diagram.

If you ever need to transfer files and the database structure to a different com-
puter, this approach is a useful solution. As long as you can export the data as a
CSV file, you can use a similar set of scripts to transfer the data. At some point

Figure 4.2
‘ Microsoft SQL Server Management Studio
File Edit Wiew Project Tools Window Community Help
Dlnewouery | [y | BA FR 55 |0y |5 W @ | B & B B8 5 o
i j orer ~Summary - X
comect~ | 41 = (4 T mE2T
=] LB postlk (SQL Server 9.0,2047 - POSTLT|, A
= [Databases D
[System Databases Tables
|4 Database snapshats POSTLT|Databases\Powder| Tables 17 Itemis)
|| pMsurvey Narme Schema Created
I.J PetStore [System Tables
© L Powder = Bindingstyle o 12f25/2006
[Database Diagrams =] Customer dbo 12/26/2006
==
5 custamerskil dbo 12/28/2006
[Swstem Tables
- =l Departmert dbo 12026/2006
= dbo BindingStyle 2
= dhe.Customer Employes dbo 12126/2006
= dbo.customerskil = Inventory dbo 12/26/2006
=1 dbo.Department I Itemiadel dbo 122612006
=1 dho.Emplavee 3 Marufacturer dbo 1226/2006
= dba.Inventory 1 PaymentMethod dba 12}2612006
= dbo.ItemMadel W 3 productCateqory dbo 12f26/2006
= dbo.Manufacturer Sl Rrental dbo 12262006
= dbo.PaymentMethod ZI RentItem dbo 1242612006
= dbo.ProductCategary =l sale dba 12{26/2006
= dbo.Rental = saleltem dbo 122672006
= dbo.Rentltem =1 skisaardstyle dbo 12}26/2006
5 dbo.5ale T skillevel dbo 12j26/2006
= dbo.Saleltem
= dbo.skiBoardstyle
= dbo.SkillLevel
[Views b < >
< | =
Reeady

[6Y

Chapter 4: Database Queries and SQL 52

you should examine the batch files to see how the transfer is accomplished. But it
is best to wait until after the next couple of labs.

Activity: Create Basic Queries

Creating a query requires that you
translate a business question into a
format the query system can process.
Sometimes this step is straightforward;
at other times it is difficult. It helps if

you format your query in terms of the WeightMax, Color, and Graphics.

four main questions: (1) What do you Enter conditions: Category="Board’
want to see? (2) What do you know AND ListPrice<300 AND

or what are the constraints? (3) What WeightMax>150.
tables hold the data? (4) How are the | Check the SQL text.
tables connected?

SQL Server provides two primary
methods to create a query. Figure 4.3 shows the SQL Query editor that opens by
default and uses straight SQL. Experienced users will probably prefer this tool.
Figure 4.4 shows that within the Enterprise Manager, you can create a View to
help you create a query using a point-and-click interface. This approach will often
be preferred by beginners because it builds the SQL command as you select items
on the screen. Although it is relatively easy to use, you ultimately must learn the
SQL syntax.

To avoid doing all of the labs twice, this chapter will focus on the QBE ap-
proach used in the Enterprise Manager View. Notice that the tool also shows the
SQL syntax as the query is created, so it is a good way to learn SQL.

Begin with a straightforward query: Display the snowboards with a list price
under $300 for riders over 150 pounds. The potential buyer wants to know what
color and graphics are available for boards that meet those conditions. The most
difficult step in this query is to identify the table and columns that match the con-
ditions. For example, snowboards are identified by the Category column in the

Action
Start a new View.

Right-click and Add the ItemModel
table.

Select columns: Category, ListPrice,

Run the query.

Figure 4.3

Default
database

Cbject Explorer

Cornect ~ | &)

= [6§ post (5QL Server o.

Right-click/
| New Query

= et
= Categor
[dbo RentItem
2 dbosale / |
L
< If >
Results =73

A Connected. postt(305PT) POSTLTWPost(52) | Powder 0000:00 | Orows

Ready Ln1 ol chi s

Chapter 4: Database Queries and SQL

53

<

SELECT CustometID, LastMame, FirstMame

FROM

Column Alias Table OQutput | Sort Type Sort Order | Filter o, e
CustamerID Custamer
LastMame Customer Ascending 1
FirstMame Custamer
=]
:
= J
O
= s

[

Custamer

(ORDER. BY LastMame
SQL text

Figure 4.4

ItemModel table. If you examine the data, you will see a “Board” entry for each
item that is a snowboard. The list price, maximum weight, color, and graphics col-
umns are also in the ItemModel table.

Figure 4.5 shows the basic query and the results. To create the view, first right-
click the table area and choose the option to Add Table. Select the ItemModel
table and close the selection box. Next, choose the columns that you want to dis-
play in the query. For this example, pick: Category, ListPrice, WeightMax, Color,
and Graphics. The column data will be displayed in the order they are selected.

Figure 4.5
Question Display snowboards with a list price under $300 and max weight over
150 pounds.
SQL SELECT Category, ListPrice, WeightMax, Color, Graphics
FROM ItemModel
WHERE Category=N‘Board’
AND ListPrice < 300
AND WeightMax > 150;
CATEGORY LISTPRICE WEIGHTMAX COLOR GRAPHICS
Board 292 188 Orange Fade
Board 263 181 Magenta Geometric
Board 262 179 Purple Space
Board 290 194 Blue Abstract
Board 294 158 Red Sunrise
Board 270 191 Yellow Landscape
Board 255 239 Red Gothic
Board 256 171 Magenta Sunrise
Board 283 226 Blue Gothic
Board 277 163 White Gothic
Board 259 223 Magenta Linear

Chapter 4: Database Queries and SQL 54

You can edit the SQL text if you want to quickly change the order. The next step
is to enter the selection criteria. In the row for Category, enter Board. Notice that
the tool will automatically change the text to =N’Board’ which is SQL Server’s
method of converting the national (Unicode) character set. Then add the condi-
tions for the ListPrice and WeightMax. Notice that all three conditions are entered
in the same column, which means that all three are connected with AND clauses.
That is, a row will match and be displayed only if it meets all three conditions.

Activity: Create and Test Multiple Boolean Conditions

Interpreting business questions can
sometimes be difficult because of the
ambiguity of natural languages. It is | Startanew query.

one of the reasons SQL remains so im- | Add the ItemModel table.

portant. SQL requires you to specify | SELECT Category, Color, ItemMaterial,
exactly what you want to see and to Style, ListPrice. _

write the conditions mathematically. Of | Enter conditions: Category="Ski’
course, these conditions can become ﬁgﬁll\s/fzi]tleer;a{:%% n?ngsite’

relatively long when the business ques- ALY -

S . Run the query to ensure it works.

tion is complex. Consider a customer o

who wants skis for jumping. She wants Add the conditions for Color="Yellow’

Action

. . 1 1 < .
them made from composite materials, Tantdtll;lstPrlce 300
and the main color can be red or yel- est the query.
low. She does not want to spend more Add the conditions for Color="Red” and
' ListPrice<400.

than $300, but if they are red, she is
willing to pay up to $400.

Begin with a new query, and again
recognize that all of the attributes are

Add the correct parentheses.
Run the query and test it.

Figure 4.6
Query Designer. 3
E
:
* (Al Columns) T
ModelD
v
[cost
[|modefvear . oo
arshis Three main conditions
- [lrematersl 7 7]
Ele &
2 el <0] >
E Column Alias Table Output | Sart Type ot Order Filter s

objectefl Category Temadel =Nk

Canned} Color Ttemiiodel

Elr} TeemMaterial Tremiiodel
= atyle TtemModel
ListPrice TtemModel

= NComposite'

= Nlump

IREEEE

<
SELECT Category, Color, ItemMaterial, Style, ListPrice

FROM Itemiadel

WHERE {Category = N'SK') AND (TtemMaterisl = NCamposite’) AND (Style = NJump')

|

Cancel

T
3 dbo.Department: Category Color ltemMaterial Stle ListPrice ~
3 dboEmployee - Ski Magenia Composte ump 37200
3 dbo Invertory
® I dboTremModel
a
a
a

1
2 B Twauoise Composite Jump 248.00
e Manufacturer 3 sk Fied Conposts Jump 234,00
dho Paymentiethod 4 sk Magenta Composite Jump 425,00
dbo Froductategory 5 sk Red Composte Jump 137.00
dbo.Rental B Ski Red Composte Jump 223.00
dbo.Rertitem B

dbo.sale
dbo.Saleltem ®

Ski Oiange Cowposte Jump 395.00

Ski Blue Compesite Jump 22300
A I . 1 v

<
| |@ Quew executed.. posth (305P1) | POSTLTAPost (52) Powder 00:0%:00 | 20 rows

~
v

Ready In1 Col1 chi s

Chapter 4: Database Queries and SQL 55

Question List jumping skis, made from composite materials.
And Yellow And ListPrice < 300
SQL SELECT Category, Color, ltemMaterial, Style, ListPrice

FROM itemModel
WHERE Category=N’Ski’ AND ItemMaterial=N’Composite’ AND

Style=N'Jump’

AND Color="Yellow’ AND ListPrice<300;
CATEGORY COLOR ITEMMATERIAL STYLE LISTPRICE
Ski Yellow Composite Jump $70.00

Figure 4.7

in the ItemModel table. Looking through the data, the first three conditions are
straightforward: the Category is Ski, the [temMaterial is Composite, and the Style
is Jump. The colors appear to be straightforward, except that the choice is con-
nected with Or. Whenever a query contains both And and Or conditions, you must
be careful, so start with basic conditions and check the results as you go. Figure
4.6 shows the initial query with the three main conditions that must always hold
(ski, jump, and composite).

Now you can think about how to add the other two aspects of the question.
Yellow skis are required to cost less than $300, so what happens if you add both
conditions to the query? Figure 4.7 shows the query and the results. Since all of
the conditions are on the same Criteria row, all five must be true at the same time.
So, the query returns only yellow skis.

To see the red skis, you have to add the option of Red as a color, but you also
have to establish the higher acceptable price for red skis. The QBE solution is
a little tricky. You can add the Red color and its price limit in a second column.

Figure 4.8

Query Designer 3
~
B o !
* (All Columns) -
5 [|ManufacturerID =
St o eI
El v|color ¥ -l
— 8
How >
! Colurn Alias | Table Qutput | Sort Type SorkOrder | Filter o, anf = o
Objdl p Category TtemModel =HNsk' =Hsk' - X
Cor} Color ItemModel = Vellow' ="Red" a
B IremMaterial IremModel =NComposite' =N Composite' 1
Style TtemMadel = W ump' = HJump’
ListPrice ItemMode! <300 <400 v
<) >
SELECT ~ Category, Color, TtemMaterial, Style, ListPrice
FROM ItemModel
WHERE ~ (Category = N'SK) AND (Style = h'lump) AND (TeemMaterial = N'Composite’s a
[AND {Color = 'Vellow') AND {ListPrice < 300)
=
(Categary = N'Sk") AND (Style = M Iump') AND (ItemMaterial = M Composite)
[AND {Color = Red’) AND (ListPrice < 400)
™
2
T u=r)
3 dbo.Department Category | Color ItemMaterial | Stle ListPrice
gj“jﬂmﬂ‘wﬁ I ek Fied Composte Jump 294.00
o Invertory " i
B3 dbo temMod! 2 Ski Red Composte Jump 137.00
3 dbo.Manufacturer 3 Sk Fled Composite Jump 223.00
21 dbo.PaymentMethod 4 Ski Yellow Composts Jump 70.00
[dbo.ProductCategary
3 dbo.rertal
3 dbo.Rentltem
=1 ho.Sale
[dbo.Saleltem
5 dbe B2
< N |3 | @ 0uew evecured 5. posth[305P1) | POSTLTAPost(52) Powder | D0:00:00 4 rows
Ready In1 ol 1 chi NS

;2

Chapter 4: Database Queries and SQL 56

Remember that each additional condition column is connected with an OR state-
ment. Figure 4.8 shows the catch that you have to duplicate all of the other AND
conditions as well. Notice that the generated SQL text includes the duplicated
conditions. If you were writing the query in straight SQL (without the QBE grid),
you could use parentheses for the two color conditions and then write the base
conditions only once.

Anytime you encounter a query that contains both And and Or connectors, you
will have to use parentheses to specify how the conditions are grouped. Remem-
ber from algebra that conditions inside the innermost parentheses are evaluated
first. The key in this example is to group the color yellow with its price condition
and group the color red with its price condition. However, using the QBE grid, the
system will rewrite your query and add the duplicate columns.

The final query shows that four skis match the conditions. Check them care-
fully to ensure that all conditions are met. Even if al of the skis in the result are
acceptable, how do you know if the query found all of the matches? This question
highlights one of the difficulties of any query language. The only way you know
if the query is right is if you carefully build it step-by-step and test the individual
steps. In this example, the first query was straightforward and ignored color and
price constraints. It returned 20 matches, so the four matches returned by the final
query seems like a reasonable number. In this case, the two sets are small enough
that you can check the results by hand.

Activity: Use Multiple Tables in a Query

Relational databases require the ta-
bles to be carefully designed so that
the DBMS can efficiently store large
amounts of data. This process entails | Use only the Sale table.

placing data into multiple tables. Con- | Set SalelD, SaleDate, CustomerID, and
sequently, a key feature of SQL is its | PaymentMethod.

ability to join the tables to make it easy Set the SaleDate between 1/5/2004 AND
to retrieve data from many tables with HUBATLL

one query. SQL Server 2000 supports | SetPaymentMethod to Cash.

the SQL standard for joining tables. As | Run the query to test it.

it is the easiest to understand, it will be
used here. The older SQL Server syntax is shown at the end of this section be-
cause you will still see many queries that use it.

To understand the join process, create a new query using just the Sale table.
The objective is to find all of the sales in May that were made with a cash pay-
ment. Figure 4.9 shows the initial query. Note the use of the Between clause to
specify the month of May. The date format should follow the style specified in
your Windows system. Windows enables you to change the default date style us-
ing the Regional settings in the Control Panel. SQL Server adopts this format as
the default style.

Observe that the query returns the CustomerID. But no one is going to memo-
rize CustomerID numbers. Instead, you need to look up the matching customer
names. If you look at the relationship diagram (part of it is shown in Figure 4.1),
you find that the CustomerID and matching names are stored in the Customer
table. Now you could take each of the ID values returned by the Sale query and
create a new query on the Customer table and manually enter the values to find

Action
Start with a blank query.

Chapter 4: Database Queries and SQL 57

Question List customers (ID) with sales in May who paid with Cash.
SQL COLUMN PaymentMethod Format A15
SELECT SalelD, SaleDate, CustomerID, PaymentMethod
FROM Sale

WHERE SaleDate Between ‘01-May-2004’ AND ‘31-May-2004’
AND PaymentMethod="Cash’;

SALEID SALEDATE CUSTOMERID PAYMENTMETHOD

1495 13-MAY-04 645 Cash
1304 07-MAY-04 1309 Cash
1356 02-MAY-04 314 Cash
1376 10-MAY-04 69 Cash
Figure 4.9
the names. However, the table JOIN At
. . ction
command is much easier and more
Add the Customer table.

powerful to use. .. .
In the SQL query, add the Customer | Check the join condition:
table. Because the foreign key relation- | ON Sale.CustomerID = Customer.

ships were established when the tables |~ CustomerID. .
were created, the designer automati- Add Customer LastName and FirstName

to the SELECT statement.

cally shows the connection between i
Run the query to test it.

the two tables. If this connection was
incorrect or unnecessary for the query,
you could delete it and create a different one by dragging a column from one table
and dropping on the desired matching column in the second table.

Check the FROM statement in the SQL syntax to see the effect of adding the
table. Notice the INNER JOIN line that adds the Customer table and specifies how
it is connected to the Sale table: INNER JOIN Customer ON Sale.CustomerID =
Customer.CustomerID. The command must use the table prefix on the Custom-
erID column in the SELECT statement: Sale.CustomerID..

Figure 4.10

Query Designer.

=P Customer [}

* (All Colurnns) =
CustomerD

Additional columns

b
LI S

Join conditions

Obe Column Aliss | Table
cond| Seleln Sale
B SaleDate Sale

Output | Sort Type | Sort Order

CustamerID Sale
PaymentMethod sale
LastName Customer

HBEEEEE

Firsthame Customer

[E3

<
SELECT Sale SalelD, Sale SaleDate, Sale, CustomerID, Sale.PaymentHetl
FROM Sale INNER JOIN

Customer ON Sale. CustomerID = Customer. CuskomerID
WHERE (3ale SaleDate BETWEEN '05/01/2006' AND '05/31/2008") AND (Sale PaymentMethod = N'Cash’)

= dbo.Department SalelD SaleDate CustomedD PaymentMethod LastName Firsthame
dboEmployee S a0 ameosr.. 13 Cash Prat Adien
dhodmentory 2 5 20060502 314 Cash Fich Manuel
dbo. ManuFacturer 3 1376 2006-05-10 63 Cash Faorbes Horace
dbo.PaymentHethod 4 U 060513 65 Cash Blexander Marvin
dbo.ProductCategory
dbo.Renal
dbo.Rertltem
dbo.Sale

dbo, SaleItem

3 dbx

[

Tistomer Lastflame, Customer.Firstame

[£3

(@ Ouery erecuted 5. | posth (ROSPT] POSTLTWPost(52) Powdsr | 000B00 4 roms

"
v

Ready Ln1 Col 1 chi INS

Chapter 4: Database Queries and SQL 58

Which customers bought Atomic skis in January or February? |

What do you want to see? Customer names, SaleDate ~.

What do you know? Manufacturer name, SaleDate
range, Category is Ski

What tables are involved? Customer ... Sale ... ltemModel,
How are they joined? Manufacturer

—
SELECT LastName, FirstName, SaleDate
FROM Customer, ..., Sale, ..., ltemModel, Manufacturer
INNER JOIN ...
WHERE Manufacturer.Name="Atomic”
AND Sale.SaleDate BETWEEN 1/1/2006 And 2/29/2006
AND ItemModel.Category="Ski”

Figure 4.11

Figure 4.10 shows the basic query design. Once the tables are joined correctly,
you can add any column to the other clauses. In this case, place the Customer
LastName and FirstName columns in the SELECT clause. Run the query to see
that the DBMS automatically looks up the names that match the ID values. If you
want to double-check the lookup, you can add the CustomerID column from the
Customer table and see that it matches the CustomerID values from the Sale table.
Just be sure to specify the table name (Customer.CustomerID).

To see the power of the SQL joins, consider a slightly more challenging busi-
ness question: Which customers bought Atomic skis in January or February? Note
that Atomic is the name of a ski manufacturer. Before leaping into the SQL, it is

Figure 4.12

Query Designer

* (Al Columns) P * (All Calumns)

ManufacturerlD [Modelm
[| niame: -7 @Q‘x’ | IManufacturerto

[] quantityonHand

E Saleltem !

|£

A El
Colurn Alias Table Qutput Sort Type Sort Order Filker [T o]
» LastName Customer
Firsthlame Customer
Cakegory ItemModel =N'ski' A
Mame: Manufacturer = M'Atomic'
SaleDate Sale BETWEEN '1/...
1= M

< |

SELECT Customer,LastMame, Customer,Firsthame, ItemModel, Category, Manuf acturer Name, Sale, SaleDate
FROM Manufacturer INNER JOIM
TremMods! OM Manufacturer ManufacturerID = ItemModel.Manuf acturerID INMER JOIN

|

Inwventory ON TtemModel. ModelID = Inventory, ModelID INMER JOTN
Saleltem ON Inventory,SKU = Saleltem,SKU INKER 1OIN
Sale ON Saleltem.SalelD = Sale.SalelD IMNER JOIN
Customer ON Sale. CustomerID = Customer CustomerID
WHERE (TremModel Category = N'SK) AND (Manufacturer . Mame = W'Atomic') AND (Sale, SaleDate BETWEEN '1/1/2006" AND '2[28{2006")

Chapter 4: Database Queries and SQL 59
best to think about the query and look at the relationship screen for a minute. As
shown in Figure 4.11, begin with what you want to see: the names of the custom-
ers. These are in the Customer table. Now, what facts do you know? In this case,
you are given the name of the manufacturer, the ItemModel.Category, and the
range for the SaleDate. You should also begin writing down the tables you need to
provide these facts: Customer, Sale, [temModel, and Manufacturer so far. When
you examine the relationships for the database, you will see that these four tables
are not enough—they do not connect together. You will also need the Saleltem
and Inventory tables.

Figure 4.12 shows the final query in Design view. Notice the large number
of tables involved. But, you need to verify that each connection is correct for the
specific problem. Once the tables have been selected and joined, you can quickly
place the columns you need on the query grid, and then enter the desired con-
ditions. Running the query reveals the two people who meet the desired condi-
tions. The join statements are the key to creating this query. Begin with one table,
then add each new table after an INNER JOIN command. If you write the SQL
by hand, be sure to specify the table links using a collection of ON conditions.
Once the tables and links have been defined, you can use columns from any of the
tables. Just remember that if a column by the same name exists in more than one
table, you refer to that column with its full Table.Column name.

Older SQL Server queries are based on the older SQL syntax. Join conditions
represent one of the greatest differences in this syntax. To see the difference, the
Sale/Customer query will be rebuilt. Figure 4.13 shows the difference. Begin the
query with the SELECT, FROM, and WHERE clauses. Enter the columns to be
displayed, then the date condition in the WHERE clause. List the Sale and Cus-
tomer tables in the FROM clause separated by a comma. Finally, add the join con-
dition (Sale.CustomerID = Customer.CustomerID) to the WHERE clause. There
are no INNER JOIN or ON statements. When you run the query, you should re-
ceive the same results as earlier. Notice that because of the way the tables were

Figure 4.13

postlt.Powder—SQLQueryS.sqI"‘] Summary - X
SELECT LastName, FirstWName, ItemModel.Category, Name, Salelate f
o FROM Manufacturer, ItemModel, Inventory, 3aleltem, Sale, Customer
LISt tables WH, Hanufacturer.ManufacturerIDl = ItemModel.ManufacturerID
separated by LND TtemModel.ModelID = Inventory.ModelID
LND Inventory.3KU = Zaleltem.3EU
commas ¥
LMD Saleltem.3alelIl = Jale.3alelDd
AND Sale.CustowerID = Customer.CustomerID
I [ItemModel . Category = N'3ki')
IND (WName = W'Atomic')
AND (Sale.SaleDate EETWEEN '1/1/2006' and 'Z/28/72008')
Place join
condition in .
the WHERE »
clause H Fesults | 3 Messages

1

i Ski
2 Patterson

Ski

Francis
Gene

Firsttame = Category = Mame
Atomic 2006-01-23 00:00:00.000
Atomic 2006-02-15 00:00:00.000

SaleD ate

Chapter 4: Database Queries and SQL 60

created, SQL Server insists that you include the owner name as well as the table
name. For example, powder.Manufacturer. In fact, you can go to one more level
and specify the name of the database as well. For instance, the full name of the
SaleDate column is: Powder.powder.Sale.SaleDate.

Computations and Subtotals

Activity: Compute Values with Queries

In general, it does not make sense to
store some columns in the database. c) _—
I icul he DBM _ reate a new query using only the
n particular, the S query sys ItemModel table.

tem has the ability to perform com-

mon calculations. Figure 4.14 shows | I the SELECT row, add a new pseudo
how the query svstem can casily cal- column to compute ListPrice-Cost As
ow query sy y Profit.

culape the profit margin for each item. | A 44 the ORDER BY line to sort 5
In this case, the table holds the item’s Category and List Price descending.
list price and the acquisition cost.
The profit is simply the difference
between the list price and the cost. In
the SELECT clause you enter the calculation and give it a name using the AS key-
word: ListPrice-Cost AS Profit. Notice that the query is sorted by Category and
ListPrice. Simply add an ORDER BY clause at the end of the command with the
columns you want sorted. The DESC option specifies a descending order.
Calculations written in this form are always performed on data on the same
row. It does not calculate across rows. You can use the standard mathematical

Figure 4.14

Action

Run the query.

By

|Calculated columns |

LT3

|

a8) 3
Column Alias Table Oukglit | Sart [ype Sort Order Filter O
» Ipefniods! & Ascghding 1
Itemiadel S
LiskPrice Itemiadel Desgending z
ListPrice - Cost Profit
= b
£ 3
SELECT Category, IkemMaterial, ListPrice, ListPrice - Cost AS Profit
JFroM Irembodel 4
ORDER BY Category, ListPrice DESC
LiztPrice § Prafit
g4a.00 | 227.15
B47.00 | 22645
E46.00 § 22610

E44.00 § 22540
Fiberglass E42.00 § 22470
Board ‘wiood 642.00 | 224.70
Board Composite E33.00 § 221.559
Board ‘wiood 633.00 § 221.55

Domed Cibcral £30 .00 O4E

Oom . @ A W R —
m
o
@
=N

Figure 4.15

Chapter 4: Database Queries and SQL

Lower

Len
Substring
LTrim, RTrim
Upper

GetDate
DateAdd

DateDiff

Convert

Day, Month, Year,
DatePart

Abs
Cos
Floor
Round

To lowercase

Length/number of characters

Get substring

Remove leading and trailing spaces
To uppercase

Current date

Add days, months, years to a date
Subtract two dates

Highly detailed formatting

Parts of a date

Absolute value

Cosine, all common trig functions
Integer, drop decimal values
Round-off

61

operators (add, subtract, divide, and multiply). You can also use several standard

functions built into Access. Figure 4.15 shows some of the commonly used func-
tions. Most are straightforward, but the date functions require a little explanation
and practice. The Convert function enables you to specify detailed formats for

date and numeric columns.

To illustrate the power of some of the date functions, create a new query us-
ing the Sale table and display the SalelD and SaleDate columns. Now, as shown

in Figure 4.16, add a new column LEFT(CONVERT(nvarchar, SaleDate, 120),

Figure 4.16

Query Designer; [

* (Al Columns)
v | Salel
SaIsDate

CustomerID
gEmp\uyeeID

Column

[

» : SalelD

SaleDate

LEFT {COMVERT {nvarchar, SaleDate, 120, 7)

<

SELECT SalelD, SaleDate, LEFT{CONWER T{nvarchar, SaleDate, 120), 7) 45 SaleMonth

FROM Sale

X
2,
hd
5 v
Alias Table Cuktput Sork Type Sort ¢
Sale
Sale LS
SaleMonth
= v
| - 3
SalelD | SaleDate SaleMaonth
1 20060317 00:00:00.000 | 200603)
2 1003 2006-06-25 00:00:00.000 § 200606
3 1004 2006-08-30 00:00:00.000 § 200606
4 1005 2006-04-26 00:00:00.000 § 200604
5 1006 2006-01-31 00:00:00.000 § 2006-01
[1007 2006-02-19 00:00:00.000 § 200602
7 1008 2006-04-12 00:00:00.000 § 200604
3 1003 2006-03-09 00:00:00.000 § 200603
a tmin ANC (2 A7 Af-Anenn o) 2000 o

Chapter 4: Database Queries and SQL 62

7) AS SaleMonth. The value of 120
specifies the date format. Several
standard formats are available and | CTeateanew query.

each has a given style number The | Useonly the Sale table.

SQL Server Books Online provides | SELECT SalelD and SaleDate.

a list of the various options. The Left | Add 30 days to the SaleDate to get
command is used to throw away the LateDate.

day and leave the year and month. Use DateAdd to add one month to the
You can also use the Year and Month SIS D (66 Dl onith,
functions, but those return numeric | Run the query.

values instead of characters.

SQL automatically performs data arithmetic with days. Adding or subtracting a
number from a date results in a new date that is different by the specified number
of days. Figure 4.17 shows how easy it is to add 30 days to a SaleDate to produce
a common billing late date. Notice that the date arithmetic is correct in that it au-
tomatically handles months, years, and even leap years. If you want to add or sub-
tract in increments other than days, you need to use SQL Server’s DateAdd func-
tion. To subtract dates in terms of months, use the DateDiff function. Both the day
and month arithmetic can use fractional values. For example, you could add 1.5
months to a date. You will often see fractional values if you subtract a date from
today’s date, which is given by GetDate. Since GetDate also includes the time of
day, you will get noninteger results. If you only want the integer portion, you can
use the Floor or Round functions. The Floor function truncates fractional values
by throwing away all digits to the right of the decimal point. The Round funtion
performs standard rounding to the specified decimal place.

Action

Figure 4.17
Query Designer E|
A~
| SaleDate + 30 days |
4
am >
Calumn Alias Output | Sork Type Sork Crder ~
» SalelD yd Sal M
Salebate ¥ d SaleDate + 1 month
SaleDate + 30 LateDate v
DATEADD{Month, 1, SaleDate)
= v/
d | £
SELECT SalelD, SaleDate, SaleDate + 30 AS LateDate, DATEADD{Month, 1, §aleDate) AS LateMont!
FROM Sale
LateDate Latshdonth
20060317 00:00:00.000 2006-04-16 00:00:00.000 2006-04-17 00:00:00.000 Zancel
2006-08-26 00:00:00.000 2006-07-25 00:00:00.000 2006-07-25 00:00: 00, 000 se—_—

200€-06-30 00:00:00.000 200€-07-30 00:00:00.000 200-07-30 00:00:00.000
2006-04-26 00:00:00.000 2006-05-26 00:00:00.000 2006-05-26 00:00:00.000
2006-01-31 00:00:00.000 2006-03-02 00:00:00,000 2006-02-28 00:00:00.000
2006-02-19 00:00:00.000 2006-03-21 00:00:00.000 2006-03-19 00:00:00.000
2006-04-12 00:00:00.000 2006-05-12 00:00:00.000 200€-05-12 00:00:00.000
200€-03-09 00:00:00.000 200€-04-08 00:00:00.000 200-04-03 00:00:00.000
La im0 900 0% 07 OMOMANONN_SO0C 04 OC ON-0MLA0 000 S00E 04 07 000000 000

o~ @ W R —

Chapter 4: Database Queries and SQL

Activity: Calculate Totals and Subtotals

63

Business managers often need to

compute totals across rows of data. | Action
SQL provides several aggregation | Createanew query.
functions to perform these tasks. The | Add the Sale table.

most commonly used functions are
Sum, Average, and Count. Of the

SELECT ShipState and SalesTax
WHERE ShipState = ‘CA’.

three, the Count function can be the
most confusing. Just remember that
it simply counts the number of rows,
while Sum adds up the numbers with-
in a row. The challenge is to identify
when you need to use Count instead
of Sum.

The Sum function is straightforward. For example, how much sales tax does
the company owe to the state of California? Begin by creating a new query based
on the Sale table, because it has the ShipState and SalesTax columns. As a crite-
rion for ShipState, enter the CA abbreviation for California. Ignoring totals for the
moment, run the query, and you should see two columns: each row will have CA
in the state, and a value for the SalesTax. To compute the total, return to SQL. Re-
move the SaleState from the SELECT statement and add the Sum function around
the SalesTax: Sum(SalesTax) AS SumOfSalesTax. Figure 4.18 shows the total
you should receive when you run the query. Why was it important to run the query
first without the total? Because the total shows you only one number. How do you
know the number is correct? You should always run a straight retrieval to ensure
that the correct rows are being selected before you perform calculations on them.
Of course, most aggregation queries will also use multiple tables—which makes it
even more important that you check the detail rows first.

To understand some of the power of SQL, what if you want to see the total tax
owed to each state? Of course, it would be possible to edit the CA condition and

Run the query.

Verify the correct states are displayed.
Uncheck ShipState as output.

Set Sum option for SalesTax.

Run the query.

Figure 4.18

Query Designer

E3

| i |

CustomerlD
DEmplnyeaID
DShipAddrsss

ShipCity

| Sum function |

)
Sork Type | SoPNQrder Group By Filter L)
| Sul W

DPaymentMethUd

4

Column Alias Table Qutput

» SalesTax SumOfSalesTax Sale
Shipstate Sale O

= “

< 3

SELECT SUM{SalesTax) AS SumOFsalesTax
FROM Sale
WHERE (ShipState = 'Ca"

Chapter 4: Database Queries and SQL

Question Compute the sales tax total for each state.
SQL COLUMN ShipState Format A10

SELECT ShipState, Sum(SalesTax) AS SumOfSalesTax
FROM Sale
GROUP BY ShipState’

SHIPSTATE SUMOFSALESTAX

AK 0

AL 784.77

AR 313.25

AZ 510.93

CA 5332.11

CO 347.48

CT 254.38

DC 285.95

DE 0

FL 1404.34

GA 470.61

HI 175.49

IA 164.01

ID 330.12

IL 1200.57

IN 952.35

KS 302.96

(other states not shown)

Figure 4.19

replace it with each state, but there
is an easier way. As shown in Figure
4.19, start a new query the same way
as the last one. Use the Sale table and
select the ShipState and SalesTax col-
umns, but do not specify any limiting
conditions. Click the Group By but-
ton and use the Sum function to to-
tal the SalesTax column and be sure
to set the alias name. Set the Group

64

Action
Create a new query.
Use the Sale table.

Select columns: ShipState and
Sum(SalesTax) AS SumOfSalesTax.

Add a row at the bottom: GROUP BY
ShipState.

Run the query.

By option for the SaleSate, which adds a GROUP BY clause at the end of the
command. Tell it to compute the totals for each state with GROUP BY ShipState.
When you run the query, you will get a list of all of the states with sales followed
by the total sales tax collected for that state. Of course, you could compute the
average or count the number of items in a group just as easily. In fact, you can
compute multiple functions at the same time, just by including multiple copies of
the desired column and selecting a different aggregation function.

For practice, you should compute the total value of sales to customers in Colo-
rado (the state code is CO). Create a new query and add the Sale and Saleltem

Figure 4.20

Question Compute the total value of all sales to Colorado.

SQL SELECT Sum(QuantitySold*SalePrice) As SaleTotal
FROM Sale
INNER JOIN Saleltem ON Sale.SaleID = Saleltem.SaleID
WHERE Sale.ShipState="CO’;

SALETOTAL

4964

Chapter 4: Database Queries and SQL 65

CREATE VIEW ColoradoSales AS

SELECT Sum(QuantitySold*SalePrice) AS SaleTotal

FROM Sale INNER JOIN Saleltem ON Sale.SalelD = Saleltem.SalelD
WHERE ShipState="CO’

Figure 4.21

tables. Use the ShipState column from the Sale table. To compute the total value
of the actual sale is slightly trickier. You need to multiply the QuantitySold by the
SalePrice from the Saleltem table then compute its sum. To be safe, first do the
multiplication and check your progress. Create the formula on the SELECT row
with the command: QuantitySold * SalePrice AS SaleTotal. To select the state,
enter ‘CO’ as the criteria in the WHERE clause. Run the query and check the
results to see if they make sense. You might want to list the QuantitySold and
SalePrice separately, and then use a calculator or spreadsheet to verify some of
the calculations. Returning to the SQL, you need to compute the total. As shown
in Figure 4.20, simply add the Sum function and place the parentheses around the
multiplied values.

There is one more trick you need to learn before finishing this lab. You need to
be able to save a query so that you can use it in other queries or reports. In SQL
Server, a saved query is called a View. You can save it directly from the View
designer, or Figure 4.21 shows you the CREATE VIEW command you can use
in Query Analyzer. You now have a view called ColoradoSales that performs the
SELECT statement. To test it, clear the SQL window and create the simple query:
SELECT * FROM ColoradoSales. Run this query and it will execute the stored
query to compute and display the total sales in Colorado. You could use the enter-
prise manager to delete this new view, or simply issue the SQL Drop command:
Drop View ColoradoSales.

Exercises

T

&‘\4(\\;/' Crystal Tigers

[

Enter sample data for the Crystal Tigers service club database. You can make up
data, but remember that it has to be consistent. You might want to share data with
other students so that everyone has a larger database to work with. Then create
queries to provide the following business information.

1. List all of the members who have been president of the organization.

List the charities for which the club has raised more than $1,000.

Pick an event and list all of the members who worked at that event.

Count the number of events and the amount of money raised for each charity.
List the total number of service hours provided in the latest year.

List the number of service hours provided by each member.

A e B

List the members who have held the most number of officer positions.

Chapter 4: Database Queries and SQL 66

Capitol Artists

Enter sample data for the Capitol Artists business. You can create random data,

but remember that it has to be consistent. You might want to share data with other

students so that everyone has a larger database to work with. Then create queries

to provide the following business information.

1. Pick a date and an employee and list all of the tasks by that person on that
date.

List all of the tasks performed for a specific job (e.g., Job #1173).

List all of the client jobs that had active tasks on a specific date.
Count the number of meetings held regarding one client (pick any client).
List the employees who have attended the most number of meetings.

Pick a job and compute the amount of money billed (hours * rate).

Ao

List the clients in order of the ones that have provided the greatest revenue
(billing + expenses).

% Offshore Speed

Enter sample data for the Offshore Speed company. You can create random data,
but remember that it has to be consistent. You might want to share data with other
students so that everyone has a larger database to work with. Then create queries
to provide the following business information. If you have not created data that
matches these questions, either add more data, or change the query to match your
data. For instance, if you do not have any sales of propellers, pick a category of
item that you have sold several times.

1. Pick a month and list all of the customers who purchased propellers

(Category).

List all of the parts sold on a particular day.

What is the most expensive steering wheel we have sold?

List the manufacturers sorted by the number of parts we sell from each one.
List the employees to identify the best salespeople in terms of value.

List the brands of boat for which we sell the most oil pumps (Description).

Ao

For a given order, compute the total value of the order and the sales tax,
assuming a 6 percent tax rate.

Final Project

The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following tasks.

1. Create a few rows of sample data for all of the tables.

2. Identify at least five business questions that a manager would commonly
ask and provide the queries to answer those questions. At least two of the
questions should involve subtotals or averages.

3. Exchange three business questions with other students in your class and write
the queries for the questions you receive.

Chapter

Advanced Queries

Chapter Outline

Advanced Database Queries, 68
Case: All Powder Board and Ski Shop, 69
Lab Exercise, 69
All Powder Board and Ski Data, 69
SQL Data Definition and Data Manipulation, 78
Exercises, 84
Final Project, 86

Objectives

» Create more complex SELECT queries using subqueries.
* Understand the role of INNER and LEFT joins.

« Create theta joins using inequalities to match categories.
» Use a UNION statement to merge rows of data.

* Use DDL to CREATE and DROP tables.

* Use DML to INSERT, UPDATE, and DELETE data.

67

Chapter 5: Advanced Queries 68

Advanced Database Queries

SQL is a powerful language. For many queries, you will not need the full power of
SQL, but some seemingly innocent business questions can be tricky to answer. In
these cases, you need some additional capabilities. Some of these capabilities can
be challenging to understand, but if you follow the examples carefully, you should
be able to use the ideas to create similar queries in the future.

Subqueries are one of the more interesting features of SQL. A subquery is a
query that calls a second query to obtain additional data. Instead of looking up
a second set of numbers yourself, you can add a second query to do the work
automatically.

Joins offer other powerful options. Joins are commonly used as a lookup link
between tables, making it easy for you to build a query that uses data from mul-
tiple tables. However, joins have several options to help you answer even more
complex questions. It is especially important that you understand the difference
between inner and outer joins.

One of the strengths of SQL is that it operates on sets of data. Instead of think-
ing in terms of individual rows, you can concentrate on collections of rows that
meet specified conditions. SQL offers some interesting set-operation commands
that provide detailed control over rows of data. For example, the UNION state-
ment combines rows of data from multiple SELECT statements.

Advanced queries generally rely exclusively on text-based SQL. Even if you
have a visual QBE system available, it is much safer to use straight text to create
difficult queries. One of the most dangerous aspects of any query is that the sys-
tem will almost always return some type of data. You need to make sure the sys-
tem is returning the correct data by ensuring that the query is actually asking for
exactly what you think it is asking. Most of the data definition statements (such as
CREATE TABLE, INSERT, DELETE, and UPDATE) will often be stored in text
files that can be run as separate batches later to accomplish some larger task. Just
remember to test all of them first.

Figure 5.1
\ . Saleftem temiodel
— SalelD
g >y 11 2 ModeiD
Sale 0.*
QuantitySold ManufacturerlD
+ SalelD 1...1] ; Catego
aleld SalePrice ool qany Manufacturer
. olor 1.1
o CustomerlD 0. Cost * m::ﬂmgumrzm
= EmployesiD Modeffear Manuiddress
ShipAdcress Braphics ManuiCity
ShipCity lternMaterial
i ManufState
ShipState istPrice ManuiZIP
ShipzIP Style By
ManuiFhone
SalesTax SkillLevel ManuiEMail
Paymentiethod Sgﬂ}r:[?ate Weightiax Catenory
WeightMin
REiuannd\tmn Viraistadidth
RepairCharges EffectiveEdge
- BindingStyl
Employee Customer RI:mI:IgRa?eE
-1 e EmployeeiD U1 e CustomenD 1.1 Rental
TaxpayerlD CustLastMama 1.1
RentiD
EmpLastMame CustFirstame * RentDate
EmpFirstMame CustPhone 0." CustormeriD
ErnpAddress CustEmail ExpectedReturn
EmpPhane CustAddress Payrmenthethod
EmpCity CustCity
EmpState CustState
EmpZIP CustZIP
Departrment CustGender
CustDate OfBitth

Chapter 5: Advanced Queries 69

Case: All Powder Board and Ski Shop

As the queries become more complex, it is better to work from a common set of
data. Figure 5.1 shows the primary tables for the All Powder Board and Ski Shop.
Your tables and sample data should be very close to these tables. Note that several
supporting tables are not displayed in this diagram, but you will also need those in
your database. As explained in Chapter 4, you can import the sample data to these
tables. If you add more data, your query results may be slightly different from
the ones shown in this chapter. While the query is more important than the actual
results, the results are useful to help you decide if you have constructed the query
properly.

One of the greatest challenges with any database query is that most queries
return values, but they might not be answers to the question you thought you were
asking. You must learn to carefully build the queries and test each intermediate
step so that you can be sure the final result is an accurate answer to the question
being asked.

Lab Exercise

All Powder Board and Ski Data

Subqueries are used to create a second (or more) query to look up additional data
that can be used in the primary query. The value is often used within a WHERE
clause to make comparisons in more depth. For example, Katy, the manager,
wants to identify the best customers of the shop. In particular, she would like to
know which customers have placed the most sales. You could just give her the
complete list of customers and the sales made by each. However, eventually this
list would be too long. Instead, she wants a list that displays the customers whose

Figure 5.2

postit.Powder - SQLQuerVS.sqI"‘] Summary
SELECT Customer.CustomerID, LastName, FirstName,
Sum QuantitydoldF3alePrice) As SalesValue
FROM Customer
INMEE JOIN Sale ON Customer.CustomerID=3ale.CustomerID
INMEE JOIN Saleltem ON Jale.Salell=Saleltem.3alelD
GROUP BY Custowmer.CustomerIl, LastName, FirstlName

<
[Results |_'j Messages

Customer D | LastMame | FistMame @ SalesValue

Sharp Leland a7.00
43 Hughes Jody 996,00

7 Rice Charlatte 94.00

. Pl by Jabala S500
3 13 Bell Leslie 1110.00
4 21 Jantzen “william 477.00
[} 22 Feynold: Connie E92.00
4 32 Hanszen Adam 245.00
7 33 Richmond — Hershel 32300
g 40 Genty Arturo 1690.00
9 41 Lekman Llewelyn 1174.00
1

1

- o
.
%]

2 4

Chapter 5: Advanced Queries 70

total purchases are larger than the average number of purchases per customer. Al-
though the business question is reasonable, this question is slightly tricky because
you have to build the query in pieces.

Activity: Create a Subquery

The first step in the query is to rec-

ognize that you need to compute to-

tal sales by customer. The phrase “by

customer” is an indication that you Tables: Customer, Sale, Saleltem.

need to compute subtotals using the | Columns: CustomerID, LastName, .

GROUP BY clause. Note that the ex- FirstName, Sum(QuantitySold*SalePrice)
. . AS SalesValue

amples in this chapter use the Query

Analyzer instead of the View design- Siomp I8y (o Gl ulminns,

er. Figure 5.2 shows the initial query | Runthe quety.

that computes these subtotals. Of | Saveasaview CustomerSales.

course, it lists the sales for every cus- | Create new query.

tomer, and Katy only wants the sales | Table: CustomerSales query.

of greater than average amount. But | SELECT Avg(SalesValue) ...

this query is an important step and | Run the query.

needs to be saved as CustomerSales.

The next step is to use this first query to compute the average amount of sales
for customers. This computation is straightforward. You simply build a new query
using CustomerSales as the only table, and calculate the average of the sales col-
umn. Figure 5.3 shows the basic query and the result based on the current data.
Notice that the SQL is straightforward. In this case, the SQL is critical for the next
step. It is not necessary to save this query, but you might want to leave the SQL
window open for the final step.

The last step is to create a new query that answers the overall question to de-
termine which customers spend more than average. The new query will also be
based on the CustomerSales query created in the first step, so just add that query.
This time, select the LastName, FirstName, and SalesValue columns. If you ran
the query at this point, you would get the same results as in the first query. Instead,
you want to add a criterion to only display the customers with a SalesValue greater
than the average. The simple approach is to enter the value 942.11 as a condition
in the query. Although this approach works this time, it does not work very well
over time. It would require the owner to run the average query first, then copy the
value into the Design view of the main query. It makes more sense to automate the
entire process. So instead of entering the actual number as the condition, you need
to enter the subquery calculation. You can write the complete SQL statement, but
it must be contained within parentheses. Figure 5.4 shows the final query that you
can give to Katy. Notice that it is sorted in descending order by SalesValue so
the customers with the largest total purchases are listed at the top. Also, always

Action
Create a new query.

Figure 5.3

Question Compute average total purchases for customers.
SQL SELECT Avg(SalesValue) As AvgOfSalesValue
FROM CustomerSales;

AVGOFSALESVALUE

942.1141

Chapter 5: Advanced Queries

Question List customers who purchased more than the average customer.
SQL SELECT LastName, FirstName, SalesValue
FROM CustomerSales
WHERE SalesValue >
(SELECT Avg(SalesValue) FROM CustomerSales)

ORDER BY SalesValue DESC;
LASTNAME FIRSTNAME SALESVALUE
Lyons Chester $3,569.00
Hines Arlene $2,815.00
Dixon Carol $2,789.00
Gillespie Audrey $2,703.00
O’ Connor Carlos $2,674.00
Ford Manuel $2,661.00
Nash Joseph $2,600.00
Rush Bonita $2,485.00
Warden Jewell $2,406.00
Turner Guy $2,358.00
Harvey Simon $2,314.00
Peck Burt $2,260.00
Crowe Chelsea $2,254.00
McCartney JoAnne $2,237.00
Crowe Vicky $2,165.00
Ford Katy $2,098.00
Cardwell Christina $2,092.00
(only the top 17 are shown)

Figure 5.4

remember to put the subquery inside
parentheses—otherwise the query will
not run at all. If you want to save some
typing and reduce errors, you should
create the subquery first in a separate
query to test it. When it is correct, you
can copy the SQL statement and paste
it into the WHERE clause for the final
query. Again, remember to add the pa-
rentheses around the subquery.

Activity: Build Outer Joins

Joining tables is one of the more com-
plex issues in SQL. Up to this point,
the joins have been simple equality
joins designed to show how a column
in one table links to data stored in a
related table. It is important that you
understand the effect of this join. Jim,
the sales manager, and David, the rent-
al manager, want to know if custom-
ers who rent equipment also purchase
items for sale. As with many questions,
there are several different ways to build

7

Action
Create a new query.
Table: CustomerSales query.

Columns: LastName, FirstName,
SalesValue.

Criteria for SalesValue

>(SELECT Avg(SalesValue) FROM
CustomerSales).

Action
Create a new query.
Tables: Rental and Sale.

Columns: RentDate, SaleDate, and
CustomerID from both tables.

Join the tables on CustomerID.
Run the query.

Add a join between the tables on Rental.

CustomerID=Sale.CustomerID
Run the query.

this query. Figure 5.5 shows the effect of an inner join. Build a new query and add
the Rental and Sale tables. Join these tables through CustomerID by dragging and
dropping the CustomerID from one table onto the column in the other table. When
you display both CustomerID values in the query and run it, you can see that they
are the same. The effect of this join is that the results show the customers (ID

Chapter 5: Advanced Queries

72

Question List rental customers who also purchased items, at any time.
SQL SELECT RentDate, Rental.CustomerID, Sale.CustomerID, SaleDate
FROM Rental
INNER JOIN Sale ON Rental.CustomerID = Sale.CustomerID;
RENTDATE CUSTOMERID CUSTOMERID SALEDATE
2006-03-28 1535 1535 2006-01-25
2006-12-02 1455 1455 2006-09-17
2006-11-12 1642 1642 2006-12-25
2006-11-04 1186 1186 2006-04-30
2006-11-19 51 51 2006-10-28
2006-11-01 1602 1602 2006-11-01
2006-03-11 1452 1452 2006-08-30
2006-11-06 1455 1455 2006-09-17
2006-11-27 1645 1645 2006-03-12
2006-01-03 1992 1992 2006-06-28
2006-12-11 1861 1861 2006-06-19
504 rows
Figure 5.5

only) who participated in a sale and a
rental—at anytime.

If you want to know which custom-
ers made a purchase on the same day
as the rental, you could add a condition
that RentDate equals SaleDate. Or you
could add a second join that connects
RentDate and SaleDate. Figure 5.6
shows the query with the second join
condition. Notice the use of the AND
in the join statement. This query dem-
onstrates the effect of the inner join. In
many respects, it is equivalent to a WHERE clause. The inner join restricts the
rows that you will see by forcing values to be equal.

On the other hand, perhaps Jim would like to see a list of all of the customers
who participated in sales, and then check to see which of those have rented items.
You need to build a new query. This time include the Customer table so their
names can be displayed. Then add the Sale and Rental tables. Delete the join from|
Customer to Rental. That join would force all of the CustomerIDs to be equal,
which is not what Jim wants. Then connect Rental to Sale by CustomerID, but
this time, double-click the resulting line to modify the join properties. Figure 5.7
shows the basic query. Select the option to display all of the values from the Sale
table and only the matching values from the Rental table. As shown in the SQL,
this option sets up a LEFT JOIN, which displays all values in the Sale table (the
left table in the SQL query list), even if the customer never rented items. If youl
have problems running the query, you might have to remove the Customer table
from the query. Sometimes SQL Server cannot figure out how to establish left
joins when more than two tables are in the query. In these cases, you build the left
join with only two tables, save the query, then create a second query based on the
saved query and any other tables needed.

Figure 5.7 also shows some of the results from running the query. Notice that
several of the rows show missing values for the Rental.CustomerID. These are
the customers who purchased items but have never participated in a rental. If you

Action
Create a new query.
FROM (Customer INNER JOIN Sale

ON Customer.CustomerID=Sale.
CustomerID)

LEFT JOIN Rental ON Sale.CustomerID
= Rental.CustomerID.

Columns: LastName, FirstName, and
CustomerID from Sale and Rental.

Run the query.

Chapter 5: Advanced Queries 73

Question List all customers who rented and did or did not make a purchase.
SQL SELECT LastName, FirstName, Sale.CustomerlD, Rental. CustomerlD
FROM (Customer INNER JOIN Sale ON Customer.CustomerID=Sale.
CustomerID)
LEFT JOIN Rental ON Sale.CustomerlD=Rental.CustomerID

ORDER BY LastName, FirstName;

LASTNAME FIRSTNAME CUSTOMERID CUSTOMERID

Abel Marshall 1406 1406

Abel Marshall 1406 1406

Abel Melinda 1467 1467

Abrams Marc 603

Adkins April 413 413

Adkins Manuel 1499 1499

Aldrich Jewell 142 142

Aldrich Jewell 142 142

Aldrich Jewell 142 142

Aldrich Jewell 142 142

Alexander Marvin 645 645

Allen Laura 1085

Allen Orson 1928 1928

Allen Orson 1928 1928

Baez Agnes 302

Bailey Takao 879 879

Baker Hazel 1664 1664

Figure 5.6

want to see only this list of people, you can add the condition that Rental.Custom-
erID Is Null. Observe that the full list from the main query might not include all of
the customers. To review your knowledge of joins, you should be able to identify
the customers that might not be in this list. Looking at the design, notice that there
is still an inner join between the Customer and Sale tables. Consequently, custom-
ers who have not participated in sales at all will not be displayed in this list. If
you truly wanted a list of all customers, you would have to use a left join from
the Customer to the Sale table. However, you will probably have to do one of the
joins at a time, save the query, and then do the second join.

Figure 5.7
postit.Powder - SOQLQuery3.sql* | Summary -
SELECT RentDate, ERental.CustomerID, Sale.CustowmerID, Salelate
FROM Eental
INMNEER JOIN Sale
ON [(Rental.CustomerID=3ale.CustowerID
LMD Rental.RentDate=3ale.3alelbate)
€ >
T Results _'_1 Meszages
RentD ate CuztomerlD | CustormerlD | SaleD ate
1 2006-01-07 00:00:00.000 1291 1291 2006-01-07 00:00:00.000
2006-11-03 D0:00:00.000 330 930 2006-11-03 00:00:00.000

3 20061110 00:00:00.000 1623 1623 2006-11-10 00:00:00.000

Chapter 5: Advanced Queries 74

Question List customers who bought items but never rented.
SQL SELECT LastName, FirstName, Customer.CustomerID
FROM Customer
INNER JOIN Sale ON Customer.CustomerID = Sale.CustomerID
WHERE Customer.CustomerID NOT IN
(SELECT CustomerlD FROM Rental)

ORDER BY LastName, FirstName;

LASTNAME FIRSTNAME CUSTOMERID

Abrams Marc 603

Allen Laura 1085

Baez Agnes 302

Baldwin Orville 403

Bell Leslie 19

Brown Tony 832

Brown Tony 832

Buchanon Orson 66

Cardwell Christina 1377

Cardwll Christina 1377

Carrow Keith 1403

Carter Ruth 757

188 rows

Figure 5.8

Recall the question of listing the
customers who have purchased items
but have not rented anything. With the (Clr=1ia 8 0607 Uy
left join, it is straightforward to get this | 1ables: Customer and Sale.
list by adding the Is Null condition. But | Columns: LastName, FirstName, and
you must be very careful when creat- CsiipmzniiDl
ing this query. If you forget to specify WHERE CustomerID Not In (SELECT
the left join and stick with the standard ClstiontalDIA O Gar)
inner join, the query will indicate that Run the query.
no customers match that condition. The
reason is because an inner join automatically leaves out the customers you are
searching for. This question can also be answered with a subquery. Figure 5.8
shows the subquery approach. Start a new query and add the Customer and Sale
tables. Sort the columns by LastName and FirstName. Then add the condition
CustomerID Not In (SELECT CustomerID FROM Rental). As always, remember
to put the subquery in parentheses. This query will retrieve all Customers who
have participated in sales but have not rented any items. You should compare the
results from this version to the left join version to ensure that both queries return
the same results. Most systems support either method to answer the question, but
there can sometimes be performance differences between the two approaches.

Action

Activity: Create Complex Joins

Jim, the sales manager, is concerned about excess inventory. He wants to be able
to monitor the status of quantity on hand (QOH) for all inventory items. He is
particularly concerned about identifying which models are selling quickly ver-
sus models that have large numbers of items sitting around. Remember that mod-
els are product lines from the manufacturers, while individual items are specific
sizes within a model group. He wants the totals for the model. To see if there is
a problem, construct a new query that totals the quantity on hand and sorts it in

Chapter 5: Advanced Queries 75

Question Compute quantity on hand by ModellD.
SQL SELECT ModellD, Sum(QuantityOnHand) As QOH
FROM Inventory
GROUP BY ModellD
ORDER BY Sum(QuantityOnHand) DESC;
MODELID QOH
QDV-720 70
YCG-584 70
YXY-385 70
LDK-181 60
YKU-321 60
MHQ-568 60
NTE-526 50
QDG-75 50
NCS-293 40
CCs-411 35
Figure 5.9

descending order by ModellD. Figure .
5.9 shows the total quantity on hand for o
the various models. Save the query as | Create anew query.
ModelsOnHand. Table: Inventory.

But Jim does not want to wade | Columns: ModelID and
through the entire query every day. i Q ety Ol sl
Instead, he is proposing a categorical | Sortby the Sum descending.
system, where items with more than a | Run the query.
certain QOH will be called slow sell- | Save it as ModelsOnHand.
ers, and items with minimal QOH will | Create a new table: SalesCategory.
be hot sellers. He also wants a few cat- | Columns: CategoryID, CategoryName,
egories in between. While you have LowLimit, HighLimit.
the tools to build this query, there is | Enter data from Figure 5.10.
one catch: he wants the ability to fine-
tune the numbers on the ranges for each category. The solution is to create a new
table that defines the category and the upper and lower limits for each category:
SalesCategory(CategorylID, CategoryName, LowLimit, HighLimit). If the QOH
for a model is greater than or equal to the LowLimit and less than the HighLimit,

Figure 5.10

Question Data for the new SalesCategory table.

SQL INSERT INTO SalesCategory VALUES (1, ‘Hot', 0, 6);
INSERT INTO SalesCategory VALUES (2, ‘Good’, 6, 10);
INSERT INTO SalesCategory VALUES (3, ‘OK’, 10, 20);
INSERT INTO SalesCategory VALUES (4, ‘Weak’, 20, 40);
INSERT INTO SalesCategory VALUES (5, ‘Slow’, 40, 1000);

SELECT * FROM SalesCategory;
CATEGORYID CATEGORYNAME LOWLIMIT HIGHLIMIT

Slow 40 1000

Chapter 5: Advanced Queries

Question Models categorized based on quantity on hand.

SQL

SELECT ModellD, QOH, SalesCategory.CategoryID, CategoryName
FROM ModelsOnHand INNER JOIN SalesCategory
ON (ModelsOnHand.SumOfQuantityOnHand >= SalesCategory.

LowLimit)
AND (ModelsOnHand.SumOfQuantityOnHand < SalesCategory.
HighLimit);
MODELID QOH CATEGORYID CATEGORYNAME
ENW-975 2 1 Hot
XUW-452 2 1 Hot
WER-904 2 1 Hot
PKT-115 2 1 Hot
KSB-825 2 1 Hot
EZX-852 2 1 Hot
IQE-600 2 1 Hot
LNH-128 2 1 Hot
RFL-870 2 1 Hot
SXT-833 2 1 Hot
BWE-236 3 1 Hot
CFO-752 3 1 Hot
ERK-571 3 1 Hot
HVD-690 3 1 Hot

(many rows not show:

S]

)

Figure 5.11

76

it falls into the specified category. The CategorylD ensures a unique key and could

be used to sort the rows if necessary. Figure 5.10 shows the initial categories.

Using the categories in a query requires slightly tricky join conditions. You
need to use inequality (theta) joins. Begin with a new query based on the Mod-
elsOnHand query and the SalesCategory table. Display the ModellD and QOH
along with the CategoryName. Note the SQL JOIN statement carefully, and be
sure to match the Figure 5.11 inequality join statement. Figure 5.11 also shows the

Figure 5.12

pnsHLPuwder—SQLQuerySJqFﬂ Surmnmaty

SELECT SalesCategory.CategorvID, Categorylame,
Count (ModelID) As CountModels

FROM ModelsOnHand

INMEE JOIN ZalesCategory

O [(ModelsOnHand. QOH >= SalesCategory.LowLimit)

AN (ModelsCOnHand. QOH < 3J3algsCategory.HighLimit)

GROUP EY SalesCategory.CategyryID, CategorylNatne

%
Find the number
T Results \;'j Meszages / of modelsineach |
CategolD | Categorpblame | Counttdodels sales category [

1 ?H o 179

5 hﬁ Good -

3 3 i]4 29

4 4 ieak i3]

5 5 Slow 9

5 2

Chapter 5: Advanced Queries 77

sample result from the query. Save the
query as ModelSales so Jim can per-
form some additional analysis on the

Action
Create a new query.

data. Columns: ModellD, QOH, CategoryID,
Jim might create a new, simpler | G,
query that counts the number of models Tagt;llzszcﬁzdelsOnHand and
that fall within each of the categories. Add ﬁsl . gor;;..t .
Figure 5.12 shows the basic query. It is © ihequaiity Jon.
Run the query.

built using the results of the previous
query. This query hides the complicat-
ed details and Jim needs to see only the simple data results. The final aggregation
query uses the CategorylD to sort the results logically; otherwise, they would be
sorted alphabetically by the category name. Fortunately, most of the models ap-
pear to be in the categories indicating that they sell relatively quickly. However,
the category definitions might not be accurate, but Jim can quickly alter the range
numbers and rerun the query to see the results.

Activity: Combine Data Rows with UNION

You need to understand the role of the]
UNION command. It is designed to S

combine rows from multiple queries. | Createanew query.

Read that sentence carefully. It says | Columns: CustomerID, LastName,
combine rows not columns. If you have it iNain, gl SllEDEls,

two queries that retrieve similar col- | 1ables: Customer and Sale.

umns of data, the UNION statement | SetJanuary sale date in WHERE.

will combine the results into one set of | Copy the entire statement.

data. To illustrate the process, consider | Add the word Union.

a request that Katy made to see a single | Paste the SELECT statement and change
hst Of customers Who purchased items the date condition and name to March.
in January or in March. You could | Run the query.

build this query using simple WHERE
conditions, but if you want to list people twice if they bought items both in Janu-
ary and in March, the UNION query is easier.

As shown in Figure 5.13, create a new query using the Customer and Sale ta-
bles. Display the CustomerID, LastName, and FirstName columns. If you are us-
ing the view designer instead of the Query Analyzer, add the SaleDate column,
but uncheck the box to display the date. Add the condition to select sales only in
January. If you run the query at this point, you will see a list of customers who
bought items in January. To get the March customers, copy the entire statement
without the semicolon. Add the word “UNION” after the existing query, then be-
low that, paste a copy of the query. Now modify the dates in this copy to indicate
March instead of January. Finally, in the first (January) SELECT statement, add
a computed column to display “Jan” As SaleMonth. Do the same thing for the
second SELECT statement, but display “Mar” for March. This column will iden-
tify each row to indicate the month for the sale. Run the query, and you will see a
combination of rows from both queries. If you want to sort the data by Customer
or by date, first you will have to save the query, then you can build a second query
based on the first and sort the columns as needed.

Chapter 5: Advanced Queries 78

postit.Powder - SQLQuer\rS.sql"‘] Summary
SELECT Customer.CustomerID, LastName, FirstName, 'Jan' ALs S3aleMonth
FRON Customer
INHEE JOIMN Jale ON Customer.CustomerlD=Sale.CustomerID
WHERE 3alelate Between '01-Jan-zZ006' ALWND '3l1-Jan-z2006'
TN IO
SELECT Customer.CustomerID, LastMName, FirstWNamwe, 'Mar' is SaleMonth
FRON Customer
INMEER JOIMN Sale ON Customer.CustomerID=3ale.CustomerID
WHERE Salelate between '01-Mar-zZ006' AND '31-Mar-z00g6!

<
[Results | 3 Messages

CustomerlD | LastMame | FirstMame | Salebonth

: Bell Leslie Mar p
T o 1o List customers who bought

Fabes Horace Jam items in January or in
Sheltan Kelly Mar March.

Garrizon Hershel tar
McDougsl - Andrew - Mar Note: it could be cone with
Hopine 1 Anna | Jan simple conditions, but it is
good practice for UNIOON.

0'Connor Carlos ar

Moore Jack Jan

Mahoney Framcis Jan

R amirez Chelzea Jan

172 an? P aa= Anman hdar

Figure 5.13

SQL Data Definition and Data Manipulation

Activity: Create Tubles

Although it is possible to create and .
delete tables in SQL Server using the SO

enterprise manager, you will often have | Createanew query.

to create a table using the data defini- | Enter the CREATE TABLE command.
tion language (DDL) CREATE TABLE | Run the query.

command. For example, after working
with the database for a while, you realize that it would be useful to have a separate
table that lists salespeople and other contacts at the manufacturers. Each person
has a direct phone number and an e-mail address. To practice building tables, Fig-
ure 5.14 shows the CREATE TABLE command for the new Contacts table. Essen-
tially, you list each desired column along with its data type. Note that by default
SQL Server does not allow columns to contain null values. To enable a column to
be empty, you need to add the “null” keyword to the column.

Enter the SQL code in the Query Analyzer. Run the query and you should re-
ceive the “Table created” message. If not, check your typing carefully. You should
create the primary key constraint to indicate the ContactID is the sole primary key
column. For other tables, if you need multiple columns, simply create a comma-
separated list. The foreign key constraint is similar, but you must also specify the
table and column that is referenced by the foreign key. Be sure to specify the ON
DELETE CASCADE option for the foreign key. If rows are deleted in the master
table (Manufacturer), then any contacts in this table associated with that manufac-
turer will also be deleted automatically.

Chapter 5: Advanced Queries 79

CREATE TABLE Contacts

(
ContactID int,
ManufacturerlD ing,
LastName nvarchar(25),
FirstName nvarchar(25),
Phone nvarchar (15),
Email nvarchar (120),

CONSTRAINT pk_Contacts PRIMARY KEY (ContactID),
CONSTRAINT fk_ContactsManufacturer FOREIGN KEY (ManufacturerID)
REFERENCES Manufacturer(ManufacturerlD)
ON DELETE CASCADE

Dk

Figure 5.14

Generally, with SQL Server it is easier to create tables with SQL. It is par-
ticularly useful to create a text file that contains several CREATE statements that
will generate the database automatically. First, you want to test each statement
individually and make sure it contains the correct statement. Then cut and paste
the command into a separate text file. This file can be given to others to create the
database on a different system. The CREATE TABLE command is also useful for
creating temporary tables. Figure 5.15 shows the table that you need to create.

The SQL ALTER TABLE command can also be used to add new columns to
an existing table. However, you rarely need this command if you work from a

Figure 5.15

CREATE TABLE MyTemp
(
ID int,
LName nvarchar(25),
FName nvarchar(25),
CONSTRAINT pk_MyTemp PRIMARY KEY (ID)

good design. You can also use the Enterprise Manager console to add columns to a
table—and it will show you the full syntax of the SQL command. For example, to
add a TempCost column to the ItemModel table, the command would be ALTER
TABLE ItemModel ADD (TempCost money).

@ Activity: Insert, Update, and Delete Data

SQL also provides data manipulation
language (DML) commands to insert,
update, and delete rows of data. Con-
sider the INSERT command first. The | TYPe the INSERT command: INSERT
. . INTO Customer (CustomerlID,
simple version of the command shown LastName, FirstName, City, Gender)
in Figure 5.16 inserts a single row into VALUES (4000, ‘Jones’, ‘Jack’,
one table. Notice that you specify the ‘Nowhere’, ‘Male’);
table columns in the first list and the | Run the query.
corresponding values in the second
list. By listing the column names, you
choose to enter the data in any order and to skip columns. Of course, you will

Action
Create a new query.

Chapter 5: Advanced Queries 80

INSERT INTO Customer (CustomerlD, LastName, FirstName, City, Gender)
VALUES (4000,’Jones’, ‘Jack’, ‘Nowhere’, ‘Male’);

Figure 5.16

rarely enter data this way, but occasion-
ally it comes in handy. More impor-
tantly, the SQL statement can be gen-

erated using programming code with INTO Customer (CustomerID,

complex routines to extract data from LastName, FirstName, City, Gender)
one source, clean it up and transfer it to VALUES (4000, ‘Jones’, Jack’,

the desired table. Notice that you must ‘Nowhere’, ‘Male’);
include the CustomerID column at this | Run the query.

point. Chapter 7 will explain how to
create an identity number so this value can be generated automatically.

A second version of the INSERT command is more useful because of its power.
You use it to transfer large blocks of data from one table into a second table. Note
that the second table must already exist. The example in Figure 5.17 copies some
data from the Customer table and transfers it to the temporary MyTemp table you
created in the previous section. Again, you list the columns for the new table that
will hold the data, then write a SELECT statement that retrieves matching data for
those columns. Be sure to issue a COMMIT command after any INSERT com-
mand to ensure changes are saved to the table.

You should keep in mind that the SELECT statement can be as complex as you
wish. It can include calculations, multiple tables, complex WHERE conditions,
and subqueries. For complex queries, you should first build the SELECT state-
ment on its own and test it to ensure that it retrieves exactly the data you want.
Then switch to the SQL view and add the INSERT INTO line at the top. The abil-
ity to perform calculations has another benefit. You can add a constant to the SE-
LECT statement that will be inserted as data into the second table. For example,
you might write SELECT ID, Name, ‘West’ to insert a region name into a new
table. The INSERT INTO command is useful when you need to expand a database
or add new tables. You can quickly copy selected rows and columns of data into a
new table.

The UPDATE command is used to change individual values for specified rows.
It is a powerful command that affects many rows. You must always be cautious
when using this command because it can quickly change thousands of rows of
data. To illustrate the power of the command, consider that the manufacturers
have announced that costs will increase by 4 percent for the 2005 snowboards.
The ItemModel table contains an estimate of the Cost for each model, so you need
to increase this number by 4 percent, but only for the boards.

To be safe, begin by creating a query that displays the Cost data for the 2004
boards. You should run the query to ensure that it returns exactly the data that
you want to update. Next, as shown in Figure 5.18, edit the query so that it uses

Figure 5.17

Action
Create a new query.
Type the INSERT command: INSERT

INSERT INTO MyTemp (ID, LName, FName)
SELECT CustomerlID, LastName, FirstName
FROM Customer
WHERE City="Sacramento’;

Chapter 5: Advanced Queries 81

Question Increase the cost of snow boards by four percent for 2004.

SQL SELECT Category, ModelYear, Round(Cost*1.04,2)
FROM ltemModel
WHERE Category="Board’ AND ModelYear=2006

-- run the top query first, then edit it to make the actual changes
UPDATE ItemModel

SET Cost = Round(Cost*1.04,2)

WHERE Category="Board’ AND ModelYear=2006;

88 rows updated.

Figure 5.18

the UPDATE command instead of SE- -
LECT. The Round function is used | Action

to ensure that the final Cost value is | Createanew query.

rounded off to cents instead of ex- [Columns: Category, ModelYear, and
tended fractions. Be sure you run the Rounc(Cost*1.04,2).

SELECT query first to ensure the cor- | Table: ItemModel.

rect rows are selected by the WHERE | Criteria: Category="Board” And
clause. Then edit the query by adding ModelYear=2006.

the UPDATE statement. In practice, do | Run the query.

not try to run both queries at the same | Change the first two lines to:

time. They are shown here only so you | UPDATE ItemModel

can compare the two. After you run an | SET Cost = Round(Cost*1.04,2).
UPDATE query, you should issue a | Run the query.

COMMIT command to make sure the
changes are recorded to the table.

Notice that the SQL statement is straightforward. It is also easy to change mul-
tiple columns at one time. Just separate the column assignments with commas.
For example: SET Cost = Round(Cost * 1.04,2), ModelYear = 2005.

The DELETE command is similar to the INSERT and UPDATE commands,
but it is more dangerous. It is designed to delete many rows of data at a time. Keep
in mind that because of the relationships, when you delete a row from one table,
it can trigger cascade deletes on additional tables. For the most part, these deletes
are permanent. If you are not careful, you could wipe out a large chunk of your
data with one DELETE command. To minimize the impact of these problems,
you should always make backup copies of your database—particularly before

Figure 5.19

Question Delete sample row from the MyTemp table.
SQL -- SELECT *
DELETE

FROM MyTemp
WHERE ID > 100;

Commit;
ID LNAME FNAME
1184 Cherry Louis

1 row deleted.

Commit;

Chapter 5: Advanced Queries 82

DROP TABLE MyTemp;

Figure 5.20

5 4

you attempt major delete operations.
You might want to use the Enterprise
Manager/Management/Backup option

to copy the data before making major
deletions. Test the query.

To be particularly safe, this example Change the SELECT row to DELETE.
is just going to delete data from the | Runthe query.
temporary table that was created in the | Runacommit; command.
previous section. Create a new query
using the MyTemp table. As shown in Figure 5.19, to see the rows you are going
to delete, display the ID, LName, and FName columns and set a condition to show
only rows with an ID > 100. Run the query to verify that it returns only one row.
Now, edit the query and replace the entire SELECT row with the DELETE com-
mand. Run the query.

In practice, it is best to stick with simple WHERE clauses when possible. How-
ever, it can be complex and can include subqueries. Particularly in the complex
cases, you should first build a SELECT statement using the same WHERE clause
to ensure that you are deleting exactly the rows you want to delete. Then convert
the query into a Delete Query, or delete the SELECT statement and replace it with
the DELETE command.

The DROP TABLE command is even more dangerous. It removes the entire
table and all of its data. Generally, you should only use it for temporary tables. As
shown in Figure 5.20, the syntax is straightforward, just make sure you enter the
correct table name. Again, it would be wise to make a backup copy of your data-
base before removing tables.

The main aspect to remember about these commands is that they operate on
sets of rows that you control with the WHERE clause. The WHERE clause can
be complex and include subqueries with detailed SELECT commands. All of the
power of the SELECT command is available to you to control inserting, updating,
and deleting rows of data.

Action

Create a new query: SELECT * FROM
MyTemp WHERE ID > 100;

Activity: Create Parameter Queries

Parameter queries are useful when
you need to create a complex query
that a manager runs on a regular basis | Create anew query.

but needs to change some of the con- | Columns: Category, Sum(RentFee).
straints. For instance, you often use | Tables: Rental, Rentltem, Inventory, and
parameters to set starting and ending ItemModel.

dates so the manager can easily select | GROUP BY Category.

a range of data without having to know | Test the query.

anything about building queries. The
example in Figure 5.21 shows a query that displays the total rental income by Cat-
egory for a specified range of dates. This query has fixed dates for the first quarter.
The objective is to replace those fixed dates with parameters that can be entered
quickly by the manager—preferably without having to see or edit the query.

Action

Chapter 5: Advanced Queries 83

Question Show rental totals by category for a specified time period.
SQL SELECT Category, Sum(RentFee) AS SumOfRentFee
FROM Rental

INNER JOIN Rentltem ON Rental.RentID=Rentltem.RentID

INNER JOIN Inventory ON Rentltem.SKU=Inventory.SKU

INNER JOIN ItemModel ON Inventory.ModellD=ItemModel.ModellD
WHERE RentDate Between ’01-Jan-2006’ And '31-Mar-2006’

GROUP BY Category;
CATEGORY SUMOFRENTFEE
Board 18660
Boots 14370
Electronic 1350
Poles 790
Rack 420
Ski 37900

Figure 5.21

In SQL Server, parameterized que-
ries are straightforward, once you un-
derstand that they are created as stored (Clreziia 2 10557 QST
procedures. Stored procedures can hold | Create the stored procedure.
complex code, and are explained in | Execute the new procedure.
more detail in Chapter 7. Fortunately, | Change the dates to Oct-Dec.
parameterized queries are easy enough | Run the query.
to explain here.

Essentially, you just create a procedure, give it a name, and specify the pa-
rameters and the associated data types. Figure 5.22 shows that next you add the
SELECT statement and insert the parameters. The commands are also stored as a
text file on the student CD so you can cut and paste them to save some typing. The
heart of the procedure is the query that you already created. The only difference is
that the two dates are specified as parameters. The procedure only has to be cre-
ated one time.

Once the procedure is defined, the manager only needs to issue one command
to enter new dates and obtain the total rental fees by category. Figure 5.23 shows
the command. Notice that you can specify the parameter values by giving them
a name when you execute the procedure. Although this approach requires more

Action

Figure 5.22

CREATE PROCEDURE GetCategoryFees
@StartDate datetime,
@EndDate datetime
AS
SELECT Category, Sum(RentFee) AS SumOfRentFee
FROM Rental INNER JOIN Rentltem
ON Rental.RentID=Rentltem.RentID
INNER JOIN Inventory
ON Rentltem.SKU=Inventory.SKU
INNER JOIN ItemModel
ON Inventory.ModellD=ltemModel.ModellD
WHERE RentDate Between @StartDate And @EndDate
GROUP BY Category
GO

Chapter 5: Advanced Queries 84

postit.Powder - 5QLQuery3.sqI“] Summary -
——EZECUTE GetCategoryFees 'Ol-Jan-2006', '31-Mar-zZ006';
EXECUTE GetCategoryFees BStartDate='0Ol-Jan-200&', EEndDate='31-Mar-z006':

<
[Results ‘ L3 Messages

Category SumDfRentFee
 Electionic | 136000
CBoad 1888000

Rack 420.00

Boots 14370.00

Poles 780.00

Ski 37300.00

oo e W —

Figure 5.23

typing, it ensures that the values are assigned to the correct parameters. Passing
parameters based on position is easier to type, but can lead to errors.

You can build complex queries and insert parameters to request specific data
from the person running the query. Although it requires several steps, query pa-
rameters are a useful method to quickly build queries that users can control with-
out having to alter the query.

Exercises

Many Charms

You will need to create some additional sample data for each table. Madison and
Samantha know that they will want certain information on a weekly basis, but
they will not be able to build complex queries to retrieve the data. You will have
to build a few queries for them that they can run when they want to see the results
or need to change prices. Some of the queries should be parameter queries so they
can easily select the values they need to control the results. Note: You will have to
modify the queries slightly to match the data that you have entered.

1. Which of the customers who ordered bracelets have not ordered necklaces?

2. Which customers bought more gold charms than silver ones?
3. Which categories generated the most profit over a parameterized time period?
4

Are expensive charms more profitable than mid-priced or low-priced
charms? Hint: Create categories based on the prices.

5. Create a parameterized query to enable Samantha to increase prices of a
certain category of charms by a given percentage.

6. Create a new table with SQL and copy into it all of the customers who have
not purchased items within the last three months.

7. Delete customers from the new table in the prior exercise who have spent
more than $100 in the past year.

Chapter 5: Advanced Queries 85

Standup Foods

% You will need to create some additional sample data for each table. Laura knows
she will want certain information on a weekly basis, but she will not be able to
build complex queries to retrieve the data. You will have to build a few queries for
her that can be run to display results or change prices. Some of the queries should
be parameter queries so Laura can easily select the values she needs to control the
results. Note: you will have to modify the queries slightly to match the data that
you have entered.

1. Identify the employees who have below average overall job evaluations.

“2.
ﬁy";

2. Identify the main menu items that have not been served to a particular
director or other celebrity (pick one from your list who wants something
different).

Which customers have not yet referred her business to other clients?

4. Create a category table to segment the employee ratings (excellent, good,
average, weak). Use the table to identify the employees with excellent
evaluations as both server and dishwasher.

5. Create a temporary table and copy into it information about employees who
have worked as drivers but have not driven within the last month.

6. Delete from the temporary table in the previous question the drivers whose
average evaluations are less than 6 (on the 10-point scale).

7. Write a parameterized query that enables Laura to increase the base wage
rate of employees by specifying a category, a minimum overall average
evaluation, and the percentage increase.

@E EnviroSpeed
S

You will need to create some additional sample data for each table. Brennan and
Tyler know that they will want certain information on a weekly basis, but they
will not be able to build complex queries to retrieve the data. You will have to
build a few queries for them that they can run when they want to see the results
or need to change prices. Some of the queries should be parameter queries so they
can easily select the values they need to control the results. Note: You will have to
modify the queries slightly to match the data that you have entered.

1. List the experts who have worked with two or more crews in the same

month.

2. Which experts have not contributed any documents within the last three
months?

List the crews that are more than 25 percent larger than the average crew.

4. Create a table to categorize the expensiveness of cleanups. For example,
spills that cost more than $1 million to clean up are expensive; splits that cost
$500,000 to $1 million are merely costly; and so on. Create a query to apply
these categories to the actual spills.

5. Write a query that retrieves documents based on a list of keywords entered by
a user. The keywords might appear anywhere in the document, and the final
query should sort the list based on the number of matches.

Chapter 5: Advanced Queries 86

6. Write a parameterized query to update a severity value for an incident by
allowing the user to enter a chemical name and a point-wise increase in
severity.

7. Write a query to copy the data on experts to a new table who have
participated in a total of at least three incidents in the last year.

Final Project

The main textbook has an online appendix with several longer case studies. You

should be able to work on one of these cases throughout the term. If you or your

instructor picks one, perform the following tasks. You will have to create sample

data for each of the tables.

1. Identify and create at least two parameter queries that would be useful to
managers. Share the business question (not the query) with other students and
solve their queries.

2. Identify a business question to list items greater (or less) than average. Write
the query to return the results.

3. Create a temporary table and write a query to copy some rows of data from
one table into the new table.

4. Write a delete query to remove a few rows of data from the temporary table.

Write an update query using parameters to change the value of one of the
numeric columns in a table based on a percentage and conditions entered by
the user.

Chapter

Forms and Reports

Chapter Outline

Forms and Reports, 88
Case: All Powder Board and Ski Shop, 89
Lab Exercise, 90
All Powder Board and Ski Shop Forms, 90
All Powder Basic Reports, 109
Exercises, 116
Final Project, 117

Objectives

» Create forms that make it easy for users to enter data.
» Create three types of forms (main, grid, subform) to understand the purpose of each.
» Create reports to display and summarize data.

87

Chapter 6: Forms and Reports 88

Forms and Reports

The main purpose of the DBMS is to store data efficiently and provide queries to
retrieve data to answer business questions. But from the perspective of businesses,
the true value of the DBMS lies in the applications that can be built on top of
the database. SQL Server does not have a forms-builder tool. Instead, you create
forms and applications using Visual Studio (VS). Visual Studio is a development
environment that supports several programming languages. The framework con-
tains tools that make it relatively easy to connect to databases and build forms.
You can also create forms within Visual Studio, or you can use the report server.

Forms are used to make it easier for users to enter data. You would never want
users to enter data directly into the tables. For example, look again at the Sale
table. It contains mostly ID numbers, and you cannot expect workers to memorize
thousands of ID numbers. Instead, you build forms to match the processes and
styles of the business. Likewise, you rarely ask managers to build queries them-
selves. Instead, you create reports that display details and subtotals within a layout
that is easy to read. You can even include charts to make it easy to compare values
or examine trends over time.

A powerful capability of Visual Studio is the ability to create standalone ex-
ecutable programs. Many commercial applications are built with these tools. This
power comes at a price—the system contains thousands of options and takes a
while to learn. On the other hand, you can start with the simple wizards and let
them do most of the work until you learn to use the detailed language and frame-
work features. One of the first questions you will have to answer to use the system
is whether you want the forms to run as a Windows application or an Internet ap-
plication that requires a Web server. The Web versions of forms are more difficult
to create, and the options are different from those in Windows forms. You will
also have to choose a language—the most common choices are Visual Basic and
C#. Fortunately, the underlying programming model is the same for all languag-
es—the main differences are in syntax, so it is relatively easy to convert from one
language to another. The examples in this chapter are created in Windows using
Visual Basic.

Figure 6.1

Ski Board Style

Style Style Description Category

Customer

LastName [] [Grid |
T1
FrstName [|
Prone []
addess []
) Sale
oy []

Customer Salesperson

Main ItemID| Description | Price | Quantity | Value

Main and
Sub-form

Chapter 6: Forms and Reports 89

If you are running Windows Vista or Server 2008, you need to follow a couple
of additional steps when installing forms and reports. Several of the security pro-
visions introduced with those operating systems cause problems. First, use Visual
Studio 2008 instead of 2005. You can use VS 2005 for some things but it must
be started with run as administrator. Second, you can build reports with Visual
Studio, but to deploy them you need to install and run the SQL Server Report-
ing Services. This option is available even with the Express version. Again, use
the 2008 version with Vista and Server 2008. Also, you will have to add report-
ing services administrator roles to your login account. To add these roles, start
Internet Explorer using run as administrator. Connect to your reporting services,
probably using http://localhost/reports. If asked, login as the administrator. Click
the Properties tab, then New Role Assignment. Enter your login name and give
yourself the Content Manager role. Click OK to return to the main screen. Click
the Site Settings link on the top-right, then the Security link on the left. Again,
click the New Role Assignment, enter your login name, and give yourself the Sys-
tem Administrator role. Click OK and exit. You will now be able to connect to the
Reporting Services using your personal account.

Case: All Powder Board and Ski Shop

The primary application at All Powder Board and Ski Shop is the need to track
sales and rentals. Of course, these applications also require you to build forms
and reports for inventory items and customers as well. Eventually, you will have
forms that store data into each of the tables in the relationship diagram. However,
before you leap to the forms wizard, make sure you understand the three major
form types shown in Figure 6.1: main form, grid form, and main with subform. A
main form shows one row of data at a time, such as a form to edit basic informa-
tion about one customer. A gird form appears similar to the Table view in that it

Figure 6.2

der06 (Running) - Microso al Studio m]

Fle Edt Wew Project Guld Debug Took Window Communty Help

A-d-Edd | %GB R AN [loacppt SR e PEN R
P @@ o3 % e B e & S| |2 N " e
Customervb [Design] 8| Record navigation B x

) s Form 5

RN E
EFENEIFA=]
T o {0 [P M4 X I Backcolr] contral A
8 Customer [WEEAN socorondinee [trore)
Cwomeri: [| | ————1 Backaroundlinagelayoul Tic
HLRR N cf2oos | b b I X I Cursar Defaul:
Last Name:
5 Font Mierosoft Sans Serf, 8.2
L Custner D ForeCobr [
e e) P L Fomdrstye Szstle
RightToLeft Mo
EMa 1 (s e RightToleftiayout False
Text Customer
Ak L b 1 Phane: 111-2223333
tess ane UseWaitCursar False
Ciy EMail Jones|202@msn.com b5 Behavior
™ Autovalidate EnablePreventFocusCha
2r] Ciy (none)
False:
o sts Text box | e a
ZIP: 95838 —
oot Wommatndgsaree] Gendr A —
Date Of Bitth: Sunday . Febuary 12,1384 v
7l customertindinghavigator Z;liu\ulmn Explorer | % Properties

e value Type

& Autos | Lacals | gl watch 1 (gl Stack | [Breakpoints | £ Command Window | Immediats Window | 5] Output

Ready

Chapter 6: Forms and Reports

shows several rows at one time. Main and subforms combine the two: the main
form shows one row of data from one table, and the grid subform shows match-
ing rows from a related table. The classic business example is the Sale form and
Saleltem grid, where the main form shows data from one sale, and the grid shows
the repeating items purchased and stored in the Saleltem table. At this point, your
responsibility is to examine the business operations and determine the best type of

form to handle each operation.

Lab Exercise

&

All Powder Board and Ski Shop Forms

Many of the forms in an application are straightforward main forms. Users want

to see data for one row—such as one
customer or one employee. You gener-
ally create main forms when you need
more control over the layout. Fortu-
nately, the Visual Studio wizards make
it relatively easy to create main forms.

Activity: Create Basic Main Forms

Figure 6.2 shows a simple version of
the form to edit customer data. In its
simplest layout, the main form contains
labels and text boxes for each column
in the table. You can enter any text into
the label to help tell the user what data
is to be entered into each text box. The
data on the form is bound to the data-
base table. Changes made to the data

Figure 6.3

Action

Start Visual Studio and create a new
Windows-based Project using Visual
Basic.

Right-click the Form1.vb entry and
rename it to Customer.vb.

Create a new Data Source.
If necessary, add a new data connection.
Save your login credentials.

Pick the Customer table and click the
Finish button.

In Data Sources, change the Customer
table type to Details.

Drag the Customer table onto the form.
Save everything.
Run the form to test it.

Data Source Configuration Wizard

b Choose Your Database Objects
18 _ =)

‘which database objects do you want in your dataset?

= D-ﬁ Tables
13 eindingstyle (dbo)
[#]1 3 customer (dbo)
(153 customerskil {dbo)
[173 Depattment (dbo)

Select table

(13 Employee {dba)
[trwertary (dho)
[temModel (dbo)
123 Manufacturer fdba)
[PaymentMethod {dbo)
[[1E ProductCategory {dbo)
[[1E3 ProductCatery (dba)
13 rental {dba)
DataSet narne:
|CustomerDataSet Enter name

Chapter 6: Forms and Reports 91

99 Powder06 - Microsoft Visual Studio

T—— Details/Main form | 7%=

solution Explorer [Class View

Figure 6.4

in the text boxes are automatically written to the database table. However, these
changes are written only at certain times—such as when the user moves to a new
row. The importance of the main form is that you have considerable control over
the layout and presentation of the items. You can change the image of the form
by setting the properties for the form or the controls to control descriptors such as
size, position, and color. You can add new controls to display images or include
buttons to delete or find records.

Begin by creating a new project. Select the Windows and Visual Basic options.
The system will automatically create a blank form (Forml). Rename the form
by right-clicking on its name in the Solution Explorer and choosing the Rename
option. Enter Customer.vb to help you remember the purpose of the form. You
should also click on the form in the design window so you can change its proper-
ties. Find the Text property in the Properties window and change it from Form 1
to Customer. You should drag the bottom-right corner to enlarge the form so you
have room to work.

In Visual Studio 2005, forms are connected to the database through a Data
Source. The Data Source is a Microsoft object that contains SQL statements to
retrieve and edit data. Any time you want a form to retrieve data, you need to cre-
ate a new Data Source that specifies the exact table and columns you need. One of
the most important elements of a Data Source is the Data Connection. The Data
Connection is usually stored as a string that specifies exactly how the form will
connect to your database. Typically, you will need to create one database connec-
tion for a project. This connection string is automatically saved with the project,
and you can reuse it for all of your forms.

If necessary, open the Data Sources Window (Data/Show Data Sources). Click
the link to Add New Data Source. The simplest approach is to connect directly to
the database, so pick that option. Visual Studio supports more complex projects
with a Web Service as the data source, or you can create a custom program object
to write your own code to retrieve and manipulate data. Pick the database option.

Chapter 6: Forms and Reports 92

You will probably have to create a new database connection, so click the New
Connection button. If necessary, click the Change button to select Microsoft SQL
Server as the type of database (instead of Access). At this point, you will see a ver-
sion of the familiar login form. Enter or choose the name of your database server.
You can use Windows Authentication or SQL Server Authentication. Typically,
learning environments use SQL Server Authentication, but corporate applications
might rely on Windows Authentication to handle all logins. For the SQL Server
Authentication, enter your user name and password. Check the box to save your
password. Select the database you have been assigned to use, and click the Test
Connection button to verify that all data is entered correctly. This approach is the
simplest for building sample forms and reports. However, your login information
will be stored in the application. Any user that runs your application later will use
these login credentials. For final projects, you might create a special SQL Server
login for the application, or rely on Windows Authentication to provide separate
access permissions to each user.

After closing the New Connection wizard, the login information is saved with-
in the project. The Data Source Configuration Wizard asks if you want to save the
password information in the connection string. For learning and development, it
is much simpler to save this information in the connection string so you are not
required to log in every time you test a form. You can display the full Connection
String if you want to see what it looks like. This string is stored in the project’s
app.config file, which you can edit later if need to remove or change the password.

Finally, as shown in Figure 6.3, you can choose the Customer table as the
source of the data for the form. In future forms, you will save time by selecting
the existing data connection and jump right to choosing the table. Be sure to enter

Figure 6.5
2% Powder06 - Microsoft Visual Studio
Ele Edt vew Project Buld Debug Data Format Tools Window Community Help
H-iE-Eda 3 9 S 2L b Debug - fny CPU - % loadopt - @m
T TR TEER
3 Damasoures ~ B X Customer.vb [Design]*| StartPage © + x| Solution Explorer - Solution ... v B X
T : BlaRlEEA
£ || & o CustomerDataset £l Customer, [Solution ‘Powderts' (1 project)
o = 5] Customer w I = (3 Powder6
s CustomerID BRI LAUAN NG (=) My Project
2 LastName =3 app.config
H Framiane Gworerls [] =] customeraid
2 ' EMail
Bt L]
State (i .
e Properties
Gender
T patscitith e T
Date 0f Bith: | Tuesday , December 26,2005 % 9 schtion Exclorer [B Cass View
Properties ~ 1 x
Toolb)
001D0X Customer System.Windows.Forms.F ~
=N E
CustomerDatasat 5] 11, CustomerTableAdapter ’-l A=
B Accessibility ~
\CustomerBindinghlavigator AccessibleDescri
AcressbleName

Output

Showi eutput from:

5 Error List | =] Output

=

AccessibleRole Defaule

B appearance
BarkColor [contral
Backgroundimaz] (nane)
Backgroundimag Tie
Comens Dafak

Accessibility

K3

Ready

15,18

£ 408 %375

a useful name, such as CustomerData-
Set. When you have multiple sources
of data on a form, you will need to be
able to identify which one you need, so
pick a descriptive name.

The CustomerDataSet with the Cus-
tomer table is now displayed in the
Data Sources window. Click the plus
sign in front of the Customer table to
see the list of columns in the table. No-
tice that the DateOfBirth column will
automatically use the calendar date

Chapter 6: Forms and Reports

93

Action
Delete the text box for Gender.

Drag a combo box from the ToolBox.

Expand the Property window.
Name it GenderComobBox.

Open the Items property and enter
Female, Male, and Unidentified.

Expand the DataBindings section.

For SelectedItem and
SelectedValue properties select
CustomerBindingSource — Gender.

Run the form and test the combo box.

picker object. The others are set as sim-
ple text boxes. You can select any col-
umn and override the type of data control by selecting one from the drop-down-
list. For these columns, stick with the default choices. Before creating the form,
you need to do one more step: As shown in Figure 6.4, you have to tell Visual
Studio that you want to use a main (details) form instead of a grid form. Select the
Customer table in the list and open the drop-down-list. Pick the Details control
instead of the grid.

To create the Customer form, click the Customer table icon and drag-and-drop
it onto the body of the form. Visual Studio will automatically add the data objects
and controls to the form. Figure 6.5 shows the resulting design view of the form.
You can drag the labels and text boxes as a group and resize the form if you need
to create a better-balanced display.

The wizard will build the basic form and place you in Design view. The layout
usually needs considerable work. Before you make too many changes, you should
think about all of the forms you will need and develop a common design. You
have total control over the form, including colors, font sizes, and layout. A profes-

Figure 6.6

Customer I:IEI

E [|1 efzond | b bl |40 K =

~——
Customer 1D: | [T "
Navigation
Lazt Mame: “walk-in !

First M arne:

Phone:

Ebd il

Address:

State:

ZIF:

Gender:

I
I
I
I
City: |
I
I
I

Diate OF Birth: | Tuesday . December 26, 2006 v

Chapter 6: Forms and Reports 94

sional application will have a standard design so that all of the forms look alike
and behave the same way.

The form is ready to run. Click the Start Debugging button (or F5) and the ap-
plication will compile and run the form as a standalone application. Figure 6.6
shows the form in operation. Notice the navigation bar contains buttons to make it
easy to scroll through records. It also includes buttons to insert or delete rows and
save changes. These items were added automatically when you dragged the Cus-
tomer table onto the form. Close the Customer form to stop the debugger.

The wizard manages to display all of the data and provides the navigation but-
tons to move between rows. However, you will want to modify the design of the
form. Sometimes you simply need to change the layout, formatting, and colors.
Other times you want to add buttons to open additional forms or reports or to
add or delete data rows. As shown in Figure 6.5 you can use properties to set the
details of the form and its controls. Click a control to select it and you can change
its display properties. The property box shows you which properties can be set
for each item and helps you select the appropriate values. The toolbox contains
additional controls that you can place on the form. For example, you should add a
label control and enter a title for each form.

The controls on the form are straightforward—the text boxes are used to dis-
play and edit the data. However, the process that Visual Studio uses to handle the
data is somewhat complex. The main thing to understand is that data from the
database is copied into an in-memory dataset. As shown in Figure 6.7, this Data-
Set contains tables (and relationships) similar to those in the DBMS. But, the data
is held in RAM as a copy. A Table Adapter handles the transfer of data between
the DBMS and the dataset. It contains SQL commands that can retrieve (SE-
LECT), delete, or update the data. Be grateful, the wizard wrote all of those com-
mands for you. You can right-click the CustomerTableAdapter on the form and

Figure 6.7

Form
LastName
DataSet /,y
Customer ——]
\ .
/Order ~.| ™ | FirstName

Database \ OrderID
™~ TableAdapter
“ (Customer) \
pter OrderDate
Fill/Load
Update

Update

Chapter 6: Forms and Reports 95

choose the Edit Queries option to see

the SQL statements. One consequence REiEm ek "
of the DataSet approach is that your Aﬁg ni new blank form with Add/New

application stores the data temporarily
in memory. When users insert data or
make changes, these changes are ap-
plied to the in-memory copy. The data
is only written back to the database
when the user clicks the Save button on the form. This step is slightly different
from earlier database applications, so you might have to explain it to users. On the
other hand, most users are familiar with this approach based on the way that word
processors and spreadsheets handle data.

To see the cool standalone projects that are created, save and rebuild the project.
Then, through Windows/My Computer, navigate to the project folder and open the
bin directory. You can run the project executable (.exe) file directly and use the
forms as a Windows application. Visual Studio also contains extensive debugging
features. Back in the editor, you can place a breakpoint on one of the lines—try
one in the initialization or update routines. Then run the project in debug mode.
When the breakpoint is hit, execution stops and you can single-step through the
code, look at variable values, and even test new lines of code.

One more option should be added to the form. Notice the gender text box. Re-
member that users should only be able to enter one of three values (Male, Female,
or Unidentified). But, looking at the form, how does the user know those are the
only three legitimate values? To improve usability and reduce errors, you need to
make that control a combo box so users can simply pick from the list.

Name it Menu.vb.
Add a button to open the Customer form.
Test it and save it.

Figure 6.8
7. Powder06 - Microsoft Visual Studio o (=1 3]
Fle Edt View Project Buld Debug Data Tools Window Community Help
A-d-Ed @ %G 9o -5 b oDpebug - Any CPU ~ | [loadppt -
Bz & gl ek g |22 81| | o 3 SIE ==
5; | bata Saurces v B X startpage Customer.vh [Design]® | « x| |Solution Explorer - Solution P... v 1 X
gl odat e e — HEIEE &
g =l [o7] CustomerDataset ﬁ Customer =] @ [Solution Powder06 (1 project)
5| i Customer : & 3 Powder0s
o CustomerID PH 4o o] > bjd X 4 My Project
5 Lasthame i app.corfig
H Frttame Cosorentds | B Custorerb
] e
aty
e Phone:
e v Data Binding
H Dateofirth Address

ar]
Combo o N—
_—— — E
Box Dats Df Bith: | Tuesday , December 26,2006 .
{Applicationettin
=N
(Advanced)
SelectedItem CustomerBindingsc
o customerpataset B Indi 5] CustomerTabloAdants Jectodalu indi
Tag (none)
" — Text (none)
Custorer =
i3 String Collection Edilor PIx Datasowrce (one)
Cutput 5| DisplayMember (none) L
S i s g o v el bt (s s (e & Ttoms (Collection)
Show outpout fromg,_Debng Femals —__—ﬂH
) Male ™
L1 st Unidentfisd Valuetember
— B Design
lt ems {Mame) GenderComhoRe ¥
Items
The items in the comba box.
B Lt [T o

Ready

Chapter 6: Forms and Reports 96

The first step is to simply delete the existing text box. For more complex cases,
you might want to just drag it out of the way temporarily and delete it after you
have built and tested the combo box. Second, drag a combo box from the ToolBox
onto the form. If you had planned ahead, you could have converted the Gender
column to a Combo Box before you dragged it onto the form, but you still have to
perform the next steps.

As shown in Figure 6.8, the details are handled in the Property window for the
new combo box. First, set the Name property to GenderComboBox so you can
identify it later. Since you have a fixed list of values, you will type them in. In
more complex cases, you will want to pull the list from a database table, and you
can use the smart tag arrow for the Combo Box. Click the Items property and then
the ellipses (...) button to open the Items window. Type in the three choices—one
on each line—and close the window. This list will be displayed to the users, but at
the moment, it is not connected to the dataset.

The big step in any database form is to ensure that the control is bound to the
proper column in the dataset. Expand the Data Bindings property by clicking the
small plus sign (+) in the property window. Since there is only one column (Gen-
der), you want to set both the Selectedltem and SelectedValue to the same Gen-
der column. Click the drop-down arrow for SelectedItem and expand the Cus-
tomerBindingSource, which is basically the DataSource. Select the Gender col-
umn as the binding source. Select the same column for the SelectedValue entry.
Save everything, compile and test the form. See how much easier it is for the user.
Whenever possible, you should use Combo boxes or lists to make it easy for users
to enter the proper values.

Before finishing, you need to do one more important step. Try using the form
and pressing the Tab key, or hit the Enter key in each control. Most likely, the cur-
sor jumps all over the form page. It should follow a nice predictably logical pat-
tern. You control this flow by assigning a sequence value to each control’s Tab In-
dex property. Use View/Tab Order and click each control in the proper sequence.
Select View/Tab Order to accept the new values. You will have to renumber most
of the controls. This step is easy to forget but critical to users. Add it to your
checklist of things that must be done before a form is finished.

Before creating new forms, you need to build a menu form. When you run an
application, one form is displayed at startup. Currently, you have only the one
Customer form, so it is displayed. You will want to test new forms that you create,
and ultimately, users will need a method to access those forms. The most common
approach is to create a startup menu form. This form is explored in more detail in
Chapter 8, which explores applications. However, creating a simple menu form
now will make it easier to test all of the forms that you build.

Right-click the project name in the Solution Explorer and choose Add/New
Item. Pick the Windows form type and change the name to Menu.vb. Drag a but-
ton from the Toolbox onto the form. Name it CustomerButton and set its text
property to Customer. Double-click the new button on the design screen to open
its code window. Enter the code to create a Customer form and display it:

Dim CustomerForm As Customer = New Customer ()

CustomerForm.Show ()

Save everything. You need to set this form as the one to be opened when the ap-
plication starts. Right-click the project name in the Solution Explorer and choose
Properties to open the property-edit window. Change the entry for Startup form

[5)

Chapter 6: Forms and Reports 97

from Customer to Menu. Click the Save button and close the property-edit win-
dow. Run the form to ensure the Menu form starts. Click the Customer button to
open the Customer form.

Activity: Create Grid Forms

Grid forms are another simple type
of form. They are used when a table
has a limited number of columns and
rows. The columns should all fit on one

Action
Add a new form (SkiBoardStyle).
Add a new Data Source using the

screen—users find it difficult to edit SleoardS.tyle table.
. . Drag the SkiBoardStyle table onto the
data if they have to scroll horizontally. form.

The number of rows should be limited
because the grid form has few methods for searching, and users should not be
forced to scroll through thousands of rows to change one piece of data. Figure 6.9
shows an initial grid form for the SkiBoardStyle table. Notice that the data in this
table is generally used only to provide consistent values to other tables. This form
will generally be used only by an administrator once in a while to modify or add a
style. The data all fit on one screen, making it easy to find the items to be altered,
and to compare the various entries across the rows. In practice, you will use grid
forms for similar tasks aimed at administration. Think hard before you use one of
these forms for general users. Although you have some control over the form de-
sign, your options are limited, so users need to know what they are doing.

Creating a basic grid form follows the same basic steps as creating a main
form, with one minor change. Begin by adding a new form. Right-click the proj-
ect name, and choose Add/New Item. Be sure Windows form is selected and set
the name to SkiBoardStyle.vb.

If necessary, open the Data Sources window. Click the Add New Data Source
button. Pick the Database option. Stick with the existing connection string that
you created when you built the Customer Data Source. Expand the Tables list and
select the SkiBoardStyle table. Be sure to set the name to something that describes

Figure 6.9

£ Ski Board Style E

AT ofo | b bl X [

Style StyleDescription Cateqgary
3 B ack-Country Back country an... | Ski
Crosz-Country-Sk... | Crozs-country sk | Ski

Crozz-Country-Tr... | Traditional cross-.. | Ski
Dawribill Basic downhill an... | Ski
Estreme Board Crazy boards Board
Freestyle "Show; jumps; sh... | Ski
Half-Fipe Turnz and jumps Board
Jump Ski jumps fram str.. | Ski
Ride Basic board Board

Chapter 6: Forms and Reports 98

the new data set, such as SkiBoard-
StyleDataSet. Click the Finish button
to save the new design. Note: If you Open the Menu fom_l'

make a mistake creating a DataSet, | /Add a button for Ski Board Style.
you can edit it later. It is also possible | Add the code to show the new form.
to delete a DataSet and try again, but | Test the Ski Board Style form.

it is a little tricky. You delete a Da-
taSet by finding it in the Solution Explorer (such as SkiBoardStyleDataSet.xsd).
Right-click the entry and choose the Delete option. Back in the Data Sources win-
dow, click the Refresh button to see the updated list.

Some developers prefer to include all tables within a single DataSet. This ap-
proach has the benefit of building all relationships within the DataSet. It might
simplify development if you simply add all tables to the single DataSet and then
choose the tables you need for each form. However, it also means that your ap-
plication has to build the entire DataSet in memory for each form, even when only
a single table is needed.

Once a table is defined in the Data Source, it is almost ready to be dragged onto
the form. However, any time you build a form, you should check two things: (1)
The type of form that you want (grid or details), and (2) The control type of each
of the columns. Click the drop-down box for the SkiBoardStyle table and you
will see that the DataGridView is selected by default. Because you want this form
to use the grid, leave it as it stands. On the other hand, all of the columns will be
created as text boxes, and it would be better to handle the Category column as
a Combo Box. Open the drop-down-list for the Category column and select the
Combo Box option. You can now drag the entire SkiBoardStyle table onto the
form.

Although you are not finished, you might want to test the form. Open the Menu
form and add a button. Set the button’s Name and Text properties to Ski Board
Style and SkiBoardStyleButton. Double-click the button and add the code to cre-
ate and display the form:

Dim SkiBoardStyleForm As SkiBoardStyle = New

SkiBoardStyle ()

SkiBoardStyleForm. Show ()

Action

Run the application and test the button and the new Ski Board Style Form.
Notice that the Category column remains as a Text Box, even though you wanted
a Combo Box. The data grid wizard is not yet smart enough to build the Combo
Box for you. Close the running forms to stop debugging. Figure 6.10 shows the
design-view of the new form along with the Data Sources window. You can resize
the form and the DataGridView object to ensure that all three columns are dis-
played and multiple rows will be visible.

You will almost always want to customize the grid for the form. For example,
you can set the widths of the various columns, change colors, or even lock certain
columns so they cannot be edited. More importantly, you can set columns to use
Combo Boxes to ensure data is entered consistently.

The Combo Box for the Category column will retrieve data that is already
stored in a different table (ProductCategory). Recall that there is a foreign key
relationship between the Category column in the SkiBoardStyle table and the Pro-
ductCategory table. When you build a form on a table that contains a foreign key
relationship, you should almost always build a Combo Box to make it easier to

Chapter 6: Forms and Reports 99

select the data. The Combo Box displays the potential data items by retrieving the
list from the base table—ProductCategory in this case. When the user selects an
entry, the matching value (or key) is transferred into the target table (SkiBoard-
Style). Combo Boxes can handle two columns: One that is displayed to the user
(typically descriptions), and one that is transferred to the target table (typically the
key column). If you want to display a more complex row to the user that contains
multiple columns (such as a customer’s first name and last name), you first have to
build and save a view that concatenates the desired columns. You would then add
this view to the DataSet instead of the raw table.

To display any data on a form, you must include the data table (or view) in the
DataSet. Open the Data Sources window and select the SkiBoardStyle DataSet.
Click the button (or right-click) Configure DataSet with Wizard. Open the Tables
list and check the box to add the ProductCategory table. This step adds the Pro-
ductCategory table to the SkiBoardStyle DataSet. If you look at the design view
of the DataSet, you will see that it also adds a TableAdapter with a Fill command.
However, adding a table to a DataSet does not make it immediately available to
your form. You have to define an instance of the TableAdapter on the form itself.

For some reason, there is no easy method to add a single TableAdapter to the
design view of the form. You could drag the entire ProductCategory table onto the
form and then delete everything except the new TableAdapter, but that seems like
overkill. Instead, it is relatively easy to add one to the code by hand. Use View/
Code to switch to the code view of the form. On the line above the definition of
the subroutine to load data (Private Sub SkiBoardStyle Load) add a line to instan-
tiate the ProductCategoryTableAdapter:

Dim ProductCategoryTableAdapter As

Powder06.SkiBoardStyleDataSetTableAdapters.

Figure 6.10

90 Powder06 - Microsoft Visual Studio
Ele Edt View Project Buld Debug Data Tools ‘Window Community Help
R =A™ - NI EETG NN RO R = T - Ay cPU - % ladppt BRI
Bl & ol | T b | o) | eoe 2 H]| 2y L] =
= & X | start pags . skiboardstyle.vb [Design] | + || Solion Explorer - Solution ... w 1 X
— B EE&H
ataset [ski Board Style - [B]x] 7] derDe' (1 project)
r = 06

P4 4 |0 af {0k | b b4 K

taset =] My Project
=1 SkBoardstyle (v (% app.config
Style [V
StyleDescription | \ Style StyleDescription | Category

7 Category *

(5] SkiBoardstyle.vb
|&] skiBoardstyleDataset xsd

3] Solution Explorer [Class Viers

I~
s

oul
Show output from: - Debug =Bl = |l

% Error List [EI Output ‘
Ready Lni Coll chi N5

Chapter 6: Forms and Reports 100

ProductCategoryTableAdapter

= New Powder06.SkiBoardStyleBataSetTableAdapters.

ProductCategoryTableAdapter ()

Yes, it is a little long, but as you type the elements after the word “As,” the
editor will display choices in a popup box, so you do not have to type every char-
acter. While you are in the code window, you should also add the command to tell
the form to go to the database and get all of the rows in the ProductCategory table
and put them into the DataSet. Inside the Load subroutine, right after the existing
TableAdapter.Fill command, add the line:

Me.ProductCategoryTableAdapter .Fill (

Me.SkiBoardStyleDataSet.ProductCategory)

You can close the Code window and return to the Design view. The next step
is to convert the Category Text Box into a Combo Box and tell it to use the data
from the new ProductCategory table. Click the DataViewGrid to select it. Click
the smart tag (small arrow at the top-right corner of the grid object) to bring up the
list of DataGridView tasks. In Figure 6.11, notice the checkbox options to control
edit, insert, and delete. If you just need a grid to display data, or you want to pre-
vent users from deleting items, you can quickly set these options. The Combo Box
takes a few more steps.

Select the Edit Columns option to open the column-edit window. Select the
Category column in the list of columns to display its properties. The first property
to set is the ColumnType. Change it to a Combo Box (DataGridViewComoboBo-
xColumn). Now you just have to tell it where to find the data rows. In the Data
section, click the arrow in the DataSource property. Expand the Other Data Sourc-
es entry, and then the SkiBoardStyle List Instances item. Pick the SkiBoardStyle-

Figure 6.11

@3 Powder06 - Microsoft Visual Studio

Fie Edt Vew Project Buld Debug Data Format Tools Window Community Help

- o e | %G9 LB b oDebyg + Ay cPU - | [lbadppt .| =
Bl s al T a2 5l | ot A LR ==

Start Page SkiBoardstyle.vb [Design] | « X | Solution Explorer - Solation ... w B X

N R RO e 7] | [E B &

£8 Ski Board Style M [=1E3 ution Powderls' {1 project)

i d o of o} | b bl | X [Smart tag Powdero6

.] My Project

y4l Ao
3 DataGridview Tasks (=] Customer.vb

Category || CustomerDataset.xsd

Choose Data Source | SKBGardStyleBNdNgS 0w | =] peny, +h

Edit Columns. 5] skiBoardstyle.vb
|| SKBoardstyleDataset xsd

StyleDescriplion

add Column. ..
Enable Adding
Enable Editing

Edt C 1 Enable Deleting
1 olumns T tion Escplorer |25 Class Vi
ies ~ I x

Dock in parent container

s=oinog e [¥oqiooL ¢ 910/ s e

addd Query.. wdsStyleDataGridview Syste -

Edit Columns

E Accessibility ~
Selected Columns: Bound Calurn Properties '“‘“355‘:9”3“’"
=] Accessiblename |
i + ENE hccessbieRole Defauk
[abi| StyleDescription v i U
MaxInputLength 32767 A El Appearance
o] skiBosrds Categery Readonly False D ells
Resizable True BackgroundCoior [l Appworkspa
Sarthlode Automatic Borderstyle Fixedsingle
< E Data | 2| CelBorderstyle Single
Output DataPropertyhiame Style b | -3 X ColumnHeadersE Raised
ey e B Design e DataGridviewCells ®
(Name) Dat aGridvienTextBoxColy =
ColumnType DatadridvienTextBoxColu v
(Name)
Indicates the name used in code to identy the
e ix|=

Ready

Chapter 6: Forms and Reports 101
DataSet, remembering that you added the ProductCategory table to that DataSet
instead of creating a separate one. Set the DisplayMember property to the Catego-
ry column in the ProductCategory table. Do the same thing for the ValueMember
column. Technically, the ProductCategory table has a CategoryDescription col-
umn and you could use this for the DisplayMember column. However, the catego-
ry names (Ski, Board, and so on) are straightforward and easier to read. That’s it.
You now have a Combo Box that will let users pick values from the list of entries
in the ProductCategory table. Save everything and run the form to test it.

Activity: Create Main Forms and Subforms

Now that you understand the main forms and grid forms, it is time to combine
them into a main form and subform. Remember where this process began: with
business forms—particularly the Sale form. A typical business sale form has data
for the sale including the SaleID and SaleDate. It also has a section of repeating
data to hold the specific items being purchased by the customer. Keep in mind
that each form can be associated directly with only one table. In this case, the Sale
form will be based on the Sale table,
and the subform will be based on the
Saleltem table.

It is easiest to start with the data on
the main form, so begin by creating
a new form called Sale.vb. The next
step is to add a new DataSet. You
definitely want to include the Sale
table. However, you need to include

Action
Create a new form called Sale.vb.

Create a new DataSource using the Sale
and Saleltem tables.

Set the form type to Details for the Sale
table.

Set the column type to ComboBox
for EmployeelD, CustomerID, and
PaymentMethod.

the relationship to the Saleltem table,
so you must also include the Saleltem
table. Be sure to give it a distinctive
name: SaleFormDataSet. Since the
Sale table represents the main form,

Figure 6.12

Drag the Sale table onto the form.

Resize and rearrange the controls to create
space at the bottom of the form.

Add a button to the Menu form to open the
Sale form.

Sale Date:

] Tusscy _ Daoente
G

shodddess | | Sho et

[
Stip City: [| shpzP: |

uuuuuu

Chapter 6: Forms and Reports 102

use the drop-down-list to change it to
Details instead of grid. Look through
the columns in the Sale table and
change the foreign keys into Combo
Boxes: CustomerID, EmployeelD,)
and PaymentMethod. Drag the Sale Tesl,lt the form to enlsure the glrld v(;ilues
table from the DataSource onto the change as new sales are selected.
main form. You will have to resize

and rearrange the columns to move them to the top of the form, leaving space at
the bottom for the grid you will add in a minute. Add a button to the Menu form
with the code to open the new Sale form. Test the form. You should save your
work at this point, in case you make a mistake later and want to return to this
point. Notice that the Combo Boxes do not work yet—you will need to add the
DataSets and TableAdapters for each of them, but you can do that after you add
the grid subform. Figure 6.12 shows the basic elements of the initial design.

The next step is to add the Saleltem as the subform grid. It is similar to creat-
ing a tabular grid form, but there is one tricky part to the step. Look closely at
the entries in the Data Sources window. You will see that the Saleltem table is
entered twice: Once by itself and once beneath the Sale table entry. To enforce the
relationship between the two tables, you must use the Saleltem table that is listed
beneath (or inside) the Sale table. Drag that entry onto the lower-part of the Sale
form. You will probably have to resize the grid and the overall form to improve
the layout. You can run the form again to test it. Scroll through a few sales and
the entries in the subform should change to match the SaleID in the main form. If
they do not change, it means you dragged the wrong Saleltem table onto the form.
Delete the grid and look more closely at the Data Sources window. Figure 6.13

Action

Find the Saleltem table in the Data Sources
window that is within the Sale table.

Drag it onto the Sale form.

Figure 6.13

P4 4 |5 of500 | b Bl |2k X |

Sale 10: 1006 Sale Date: | Tuesday |, January % |
Customer: |49'I - | Emplopee: |'ID - |
ShipAddress: G467 Rosevile Road | Ship State:

Ship Ciy: |Cicero | shpzIP: |g0B50

Payment kethod: |Check - | Sales Tax: 738500

SalelD Sk [QuanhitySold SalePrice

3 200129 1 442.0000

1008 200024 1 257.0000
1008 \ 300180 356.0000
*

SalelD values
match main form

Chapter 6: Forms and Reports 103

shows the correct version of the sub-
form where the SalelD values match . o
those in the main form. Edit the grid’s columns. ‘

Now that you know the subform is Remove the SaleID from the grid.
properly linked, there is no point in | Open the DataSet Designer for the
displaying the SaleID column repeat- Selglizm Gl)
edly in the subform. Also, you need Add a new column in the Saleltem table

-) . named Value.
a column that multiplies price times i
quantity to show the value of each Set the DataType to System.Decimal.
line. Both of these tasks are handled | Sctthe Express*lon W
by editing the columns for the grid. QAL HalEs,
Use the smart tag, or right-click
the grid, to edit the columns. The SaleID column is the easiest to handle. Select
SalelD in the column list and click the Remove button.

The best way to compute price times quantity is to handle it in the DataSet, so
that the value is updated automatically when entries change. Go back to the Data
Source window and right-click the Saleltem table (VS 2008: right-click the Da-
taSet at the bottom of the Sale form). Choose the option to Edit DataSet with De-
signer. As shown in Figure 6.14 you will see the Sale and Saleltem tables and the
relationship that connects them. Right-click the Saleltem table and choose Add/
Column. Change the name of the new column to Value. Use the Properties win-
dow to change the Data Type to System.Decimal. This column is not bound to the
database, so you need to define the calculation to compute the value. For the Ex-
pression property, enter the computation: QuantitySold*SalePrice. Double-check

Action

@9 Powder06 - Microsoft Visual Studio |'L”'E|E|
fle Edt Wiew FProject Buld Debug Data Tools Window Community Help
- - G E | % G 2 21| b Debug - By CPU + [# loadspt SR
Data Sources ~ 3 X | GaleFormDataSetassd| Start Page | Sale.vb [Design]* « X | Solution Explorer - Solution 'Powder08! (1 p... » & X
i1 g5 G B EIEE
= 27| CustomerDataset 15 B saleltem B3] [Selution PowderDs (1 project)
[Customer ? Saleld ? SalklD = (3 Powderos
= [57] SalsFormDataset N ? 4 My Froject
=[] sale = i app.config
o e e e
3] SaleDate ploy b] CustomerDataget xsd
2] CustomerID ShipAddress Al =] Menu.vb
i3] Employesin ShipCity =] sale.vb
[Shipaddress ShipState il GetData € 2] SaleFormDataset xsd
sbe] ShipCity ShipZIF =] skiBoardstyle.vb
sbe] ShipState SalesTax 2] skiBoardstyleDataget . xsd
label ShipZIP FaymentMethod
L0l SalesTax &)
s Paymentflethd %y Fil GetData () Add
= Saleltem = 1) solution Explorer [Class view
153 SalelD column < 2
kg SKU Froperties -1 x
2] QuisriftySold value Column -
(g SalePrice
La] value s =
[salettem Autolncrement: False ~
(=] SkioardstyleDataset -
Autolncrsmentseed 0
[] ProductCategory
3 Skisosrdstyle Autolncremertstep 1
Caption value
Set Data DataType, System.Decimal
TTmeMods UnspecifiedLocal
Type and Defaultvalue <DEMul>
o Expression QuantitySold*SalePrice
. = Expression Mertendth 4
— e = Nullvalus (Throw sxception)
- z =
G0t [Sser... [S8Too.. Feadanly True
|| output Source
Show output from: Debug RS R NE =N Unique False
B Misc
‘ Hame value —
b
Name
Indicates the name used to look up this column in the
ﬂErmr Lt | =1 output Calumns collection of a DataTable.
Ready tn1 col1 ch1 IS

Chapter 6: Forms and Reports 104

to ensure that the ReadOnly property .
. . Action
is set to True so no one tries to change

the value directly. Save and close the L8311 {112 rals Eollrmmms,
designer page. Add the Value column as Read Only

You now have to add the new col- | Edit the DefaultCellStyle for the SalePrice
umn to the subform grid. Note that and Value columns.)
if you had added the column to the | Setthe Format to Numeric.

DataSet before dragging it onto the | Setthe Alignment to Middle-Right.

form, it would automatically be in- | Save everything and test the form.
cluded. You could delete the grid and
recreate it, but you should learn how to edit the grid. Edit the columns for the
grid and select the SalePrice entry in the column list. Click the Add button to add
a new column to the grid. Select the new Value entry in the DataSource list and
check the Read Only option. Click the Add button to add the column. You can set
the DefaultCellStyle property for the SalePrice and Value columns to improve the
display of the data. For example, set the Format to a Numeric data type with 2
decimal places. You should also set the alignment to Middle-Right.

Figure 6.15 shows the running version of the Sale form. Try changing the Quan-
titySold or SalePrice and watch as the Value entry is updated. Remember that the
Value column is only available in the DataSet and that the items you changed will
not be updated unless you click the Save button on the navigation tool bar.

The form looks much better and is beginning to provide useful information.
However, something important is missing. It should automatically total the Value
column so clerks can provide subtotals to the customers. Unfortunately, there is
no automatic mechanism to compute subtotals. However, you can use the form’s
event code to compute the totals whenever the data is changed.

Figure 6.15

Pl 4 1 of500 | b Bl |2k K =l

Sale D Sale Date: | Friday . March » |
Customer: |1SDD L' | Emplowee: |2 L% |
ShipAddess: |5616 Smallouse Road | Ship State:
Ship Ciy: |Phenis City | shpziP: |38867
Payment kethod: |Eash v| Sales Tax: 57 6200
[uantityS old SalePrice Walue

3 1 32.00 3200

EO0046 15.00 15.00

1
800115 1 425.00 42500
200128 1 362,00 352,00

Chapter 6: Forms and Reports 105

Public Sub ComputeSaleTotal()
Dim sum As Decimal
Dim dgvr As Windows.Forms.DataGridViewRow
For Each dgvr In Me.SaleltemDataGridView.Rows
sum += dgvr.Cells(“Value”).Value
Next dgvr
Me.SubtotalLabel. Text = sum.ToString(“$ #,##0.00”)
End Sub

Figure 6.16

Begin by placing a Label on the
form to hold the computed subto- .
tal. First add a Label and change the e lLabsl belony (1o @i,

Text property to Subtotal. Add a sec- | Change the Text to Subtotal.

ond label that falls beneath the Value | Place a Label beneath the Value column.

column. Set the Text property to 0.00 Name it SubtotalLabel and set its value to

and the Name to SubtotalLabel. This DL

label is the one that will hold the | Create the code subroutine to compute the

computed values. You can now write ozl

the code that will calculate the subto- | Create the two events that need to call the
ComputeSaleTotal routine.

tal on demand.

Use View/Code to switch to the
code editor. Just above the existing End Class line, add the code shown in Figure
6.16. If you want to handle taxes, you should also add a TotalLabel to the form
and include a row immediately before the End Sub that adds the computed sum to
the taxes:

Totallabel.Text = sum

+ Decimal.Parse (Me.SalesTaxTextBox.Text)

You could also write a function to compute the value of the sales tax automati-
cally, but this computation is relatively complex in most states.

The ComputeSaleTotal routine performs the calculation, but you still must de-
cide when it should be called. If you call it too often, it will slow down the user
interface. If you do not call it often enough, the user will see incorrect or missing
totals. As shown in Figure 6.17, two event triggers can cover the cases efficiently:
(1) When a new sale is selected, and (2) When the user finishes editing a cell in
the grid. The easy way to create the subroutine structures is to use the Combo
Boxes at the top of the code editor. Pick the object in the left box (SaleltemDa-

Action

Figure 6.17

Private Sub SaleltemDataGridView_CellEndEdit(
ByVal sender As Object,
ByVal e As System.Windows.Forms.DataGridViewCellEventArgs)
Handles SaleltemDataGridView.CellEndEdit
ComputeSaleTotal()
End Sub

Private Sub SaleBindingSource_PositionChanged(
ByVal sender As Object,
ByVal e As System.EventArgs)
Handles SaleBindingSource.PositionChanged
ComputeSaleTotal()
End Sub

Chapter 6: Forms and Reports 106

taGridView in the first case) and the)
event in the right box (CellEndEdit). Action _ .

On picking the event, the editor will Test thehform ar}dtr}clecog;gze that it does not
generate the Sub and End Sub lines. REWE EERE il Ui9 Sald,

You simply add the ComputeSaleTo- Double—c?ck th? Save icon. he ch
tal() call in the middle. Add two lines of code to save the changes

from the grid.
Test the form.
Save everything.

If you decide to add a text box
to display the total that includes the
subtotal and the tax value, you might
need to add another event trigger. If
you do not compute the taxes automatically, you should add an event trigger to the
TextChanged event of the tax box that also calls the ComputeSaleTotal function.
For now, you can ignore sales taxes.

You are not quite finished. Test the form and see if you can find the problem.
When you make a change to the subform, click the Save button. You will see that
only changes made to the main form are saved. You need to add two lines of code
to ensure that changes made in the grid are also written to the database. Close the
running forms if needed and switch to Design view for the form.

Double-click the Save button icon (small disk) on the navigation tool bar to
open the code editor for the button. Figure 6.18 shows the existing three lines of
code handled by the Save button, along with the two new lines that you need to
add. The wizard built the first three lines when you initially added the Sale table to
the form. They save the changes made to the Sale table. The last two lines mimic
the others. First you end the edits on the Saleltem binding source. Second you call
the Saleltem TableAdapter to update the Saleltem table.

At this point, everything should work. You should be able to change data and
enter new rows. Scroll through the sales and you will see that the totals are up-
dated automatically. Figure 6.19 shows the working version of the form.

Before you start thinking that you are finished, go ahead and try to create a new
sale and enter new data. It will work, but what do you enter for a CustomerID,
PaymentMethod, and EmployeelD? In practice, each of these should have a com-
bo box or lookup list. You also might think about using a combo box for SKU,
but those could probably be read from the item tag. You also might want to leave
EmployeelD as a text box for security purposes—so that employees memorize
their own ID numbers.

Adding a Combo Box for CustomerID, EmployeelD, or Payment Method is
straightforward. For customers, the Combo Box gets its list from the Customer
table in the database, so you have to create a new Data Source to retrieve that
information. One important catch with combo boxes is that they can handle only
two “columns:” (1) A value column which is usually the key column, and (2) A

Figure 6.18

Private Sub SaleBindingNavigatorSaveltem_Click_1(...)
Me.Validate()
Me.SaleBindingSource.EndEdit()
Me.SaleTableAdapter.Update(Me.SaleFormDataSet.Sale)

Me.SaleltemBindingSource.EndEdit()
Me.SaleltemTableAdapter.Update(Me.SaleFormDataSet.Saleltem)
End Sub

Chapter 6: Forms and Reports 107

; {1 = |

Sale ID: 002 Sale Date: Friday . March
Customer: 1900 w Emplapes:
Ship Address: 5516 Smalhouse Road Ship State:

Ship City: ShipzIP: 35867

Payment Method: Sales Tax 57.6800

SalePrice Value
3200 3200
15.00 1500
42500 42500
35200 352.00

QuantitySald

BO0046
400115

1
1
1
a007126 1

Subtatal $ 524.00

Figure 6.19

display column. The trick is that you
generally create a view so that the

Action

display column can contain several
actual database columns. In the case
of the customer, you want to include

Run the query to create the CustomerList
view.

Add a Data Source that retrieves the rows
from the view.

the LastName, FirstName, and Phone
number so clerks can readily identify
the customer. It is easiest to create the
View on the database.

Figure 6.20 shows the query that
you run on the database to create the
view. You can run this query from
the Server Explorer in Visual Studio.
Create a new Data Source that re-
trieves the rows from this new view.
One useful trick: After the wizard
creates the Data Source, edit it in the designer and modify the SELECT state-
ment to include ORDER BY CustomerName so that the display list is sorted. SQL
Server does not allow you to save ORDER BY clauses in server-based views.

Binding a Combo Box is slightly tricky, and it is safest to remove the exist-
ing binding first. Select the CustomerComboBox on the form design. Expand the
DataBindings list in the Properties window. For the Text property, click the drop-
down-list arrow and select None to remove the existing setting. To fill the Combo
Box with data, use the drop-down-list arrow for the DataSource property to ex-

Figure 6.20

In Customer Combo Box, Data Bindings,
remove the binding for Text.

For DataSource, select the
CustomerListDataSet/CustomerList.

Set DisplayMember to CustomerName.
Set ValueMember to CustomerID.

Set SelectedValue to SaleBindingSource/
CustomerID.

Test the form.

CREATE VIEW CustomerList AS

SELECT CustomerID, LastName + N’, * + FirstName
+ N’ (“ + Phone + N’)’ AS CustomerName

FROM Customer

Chapter 6: Forms and Reports

-1
CustomerIDComboBox System Windows.Forms, ComboBox -
=l
Visible True)
= Data
(ApplicationSettings) .
IE] (DataBindings) Bind to Form
(Advanced) /
Selectedltem {none’ V'a
Selectedvalue SaleBindingSource - CustomerID
T oy |_— DataSet
Text {none) /
DatasSource CustomerListBindingSource
DisplayMember CustomerName \
Tkems (Collection) N
I ———] Display column
YalueMember CustomerID W
B Design \
(Mame) CustomerIDComboBox \
GenersteMember True Key Column
Locked False:
Modifiers Friend b
(DataBindings)
The data hindings For the contral.

Figure 6.21

108

pand Other Data Sources, then Project Data Sources,then CustomerListDataSet,
and select the CustomerList view. Choose CustomerName as the DisplayMember
and CustomerID as the ValueMember. Now you have to rebind the Combo Box to
the underlying Sale table. For the SelectedValue property, select the SaleBinding-
Source-CustomerID. Figure 6.21 shows the DataBinding properties for the Cus-
tomer Combo Box.

Save everything and test the form. If the Combo Box does not display the names
correctly, remove all of the data binding properties and try again—being careful to
enter them in the order described here. You can follow a similar process to set the
Combo Boxes for Employee and Payment Method, but the Payment Method has a

single column so it does not need a view. Figure 6.22 shows the final form.

Figure 6.22

of 500 [b Ml 4R X [

Sale ID: Sale Date: Friday . March »
Customer. |Baldwin. Fernanda (21« Emplayes: Mivahira, Hideharu 555 «
Ship Address: 5516 Smallhouse Road Ship State:
Ship City: ShpzIP: [36867
Payment Method, Sales Tax h7.6800
QuantitySold SalePrice Walue

3 1 32.00 3200

EN004E 1 15.00 15.00

800115 1 425.00 425.00

800126 1 352.00 35200

Subtotal

$824.00

5 3

Chapter 6: Forms and Reports 109

All Powder Basic Reports

At the moment, Microsoft Visual Studio has two tools to create reports: Crystal
Reports and the SQL Server Reporting Services. Crystal Reports is older and li-
censed from another company—which helps explain why Microsoft released the
Reporting Services in 2004. Because the Microsoft tool is the most likely one to
survive, it will be used in this chapter. The underlying concepts of any reporting
tool are similar, so you can apply most of the same concepts if you do not have
access to the SQL Server Reporting Services. The Reporting Services package is
usually installed when you install SQL Server. However, you might not have set
it for automatic start. If you want to avoid warning messages, you should check
your system services now. For testing purposes, it is convenient to run the Report-
ing Services on your development computer—although you will eventually trans-
fer them to a shared database server. Assuming you have Administrative tools ac-
tive on your computer, use Start/Administrative Tools/Services to open the service
manager. Look for the SQL Server Reporting Services and see if its status is set to
“Started.” If not, select the service row and click the Start button. One other useful
trick to know is that the Microsoft Reporting Service will import reports from a
Microsoft Access database.

One other installation trick is that the Reporting Services editors work with Vi-
sual Studio. However, the standard Visual Studio installation does not include the
reporting tools. Instead, you need to install the Client tools from the SQL Server
database installation disk. Even if you installed the full SQL Server DBMS on
your workstation, you should reinsert the SQL Server installation disk and install
the Client tools. You can verify the installation from within Visual Studio. Use
File/New Project and verify that the Business Intelligence Projects are available.

Activity: Create Reports with Subtotals

Most managers want reports so they -
can evaluate the progress of the | Action

business. Today, much of the busi- | AddaBIReport Server Project.
ness data could be displayed within | Create a shared data source.
forms—if the managers have suffi- | Add anew report.

cient access to the online system and | Build a query using Customer, Sale,
if they are comfortable with reading Saleltem.

the data on the screen instead of pa- | Select Tabular report.

per. However, reports are also useful
when managers need to see lists of items with subtotals. Remember that queries
can print detailed data rows or summary totals, but not both at the same time. And
query results are difficult to format. Instead, you want to use the report writer to
format the results, draw lines, and compute subtotals.

The first issue in building a report is to identify the level of detail that will be
needed. The report writer can always compute subtotals across groups, but you
need to ensure that your query retrieves the level of detail desired by the manag-
ers. As an example, consider a basic sales report by customer. Managers want to
list each customer, followed by the sales placed by that customer. If they also want
to include the individual items purchased on each sale, that level of detail is differ-
ent than if they simply want to see the total value of the sale. For now, assume that
they want to see the detailed item list.

Visual Studio treats Reporting Services as a new project. However, solutions
in Visual Studio can have multiple projects. Your current solution has one project

Chapter 6: Forms and Reports 110

that consists of the forms you have built. You can add a new reporting project to
this solution, or create a separate solution. To make it easier to integrate the re-
ports with the forms, you should add the reporting project to your current solution.

Begin by adding a reporting project to your current solution with File/Add/
Project, then pick Business Intelligence and Report server Project. Give it a rec-
ognizable name such as PowederO6Reports. Do not use the report wizard. It only
builds limited types of reports. Instead, it is easier to build a report from scratch
where you have more control. Figure 6.23 shows the basic layout of the report you
need to build. The page header and footer are optional, but you will probably want
to print page numbers in the page footer. The grouping is the important part to un-
derstand. Each group represents a repeating section of data. For example, there are
many customers, each customer can participate in many sales, and each sale can
consist of many detail items. SQL Server provides three ways to display repeating
groups of data: List, Table, or Matrix. The list is the most general approach and
gives you complete control over layout. A table has a fixed number of columns
and displays data in a grid. A matrix can have a variable number of columns and
rows—it is used to handle cross-tabular designs. For this example, you will use
list groups: (1) Customer, (2) Sale, and (3) Item detail.

Since you are going to create several reports, you should create a shared data
source. A data source is essentially a connection string that tells the report service
how to find the database. Right-click the Shared Data Sources folder in the Solu-
tion Explorer, and choose the option to Add New Data Source. The connection
design screen is similar to the other ones in Visual Studio. Give it a name such as
AllPowerDataSource. Click the Edit button to create the connection string. Enter
the server name, login account information, and the name of the database (Pow-
der). By sharing the data source, you only have to create it once for the entire
project.

Now, add a new report to the project. The report wizard simplifies some of the
details, but it is not much harder to build a report from scratch. For now, use the
wizard. Right-click the Reports folder and choose Add New Report to start the
wizard. Select the shared data source you created. The first step is to create a que-
ry to retrieve the data needed by the report. Report queries need to retrieve rows
of data that match the desired detail level of the report. In this report, you need the

Figure 6.23

| Page header I/ Customer Group Customer heade

Sale Group Sale header
| Body Iltem Detail

Sale footer

Customer footer

il

Page footer \

Chapter 6: Forms and Reports 1M1

Customer, Sale, and Saleltem tables because you want the Saleltem detail. Click
the Query Builder button to open the query designer screen. In 2005, click the
strange Generic Query button to switch to the more familiar designer. Right-click
or click the Add Table button and select the three tables. Because you want to
control the column order and the sorting, click columns individually instead of se-
lecting the All Columns (*) option. As shown in Figure 6.24, select basic columns
from the Customer table (CustomerID, LastName, FirstName, Phone, and Email).
From the Sale table, select (SalelD, SaleDate, ShipCity, ShipState, and Payment-
Method). From the Saleltem table, you need (SKU, QuantitySold, and SalePrice).

You also need to add a Value column that multiplies price by quantity
for each row of data. In the last row of the Column section of the grid, enter
QuantitySold*SalePrice and set the alias to Value. You should sort the data by
CustomerID, SaleDate, and SKU. Run the query to test it and ensure that you
typed the calculation correctly for the Value column.

The Report wizard enables you to build two basic types of reports: Tabular
and Matrix. The Matrix report is generally used when you need to compare two
columns against each other (such as Employee sales over Year). Select the Tabular
type for this report. Setting the report structure is the trickiest part of the wizard.
You want each customer displayed on a separate page, so add the CustomerID
to the Page level break. The trick is that you must use the CustomerID by itself.
Similarly, you want to show sales separately, so move the SalelD into the Group
break by itself. If you add multiple columns to the Group (or Page) break, the
report will create multiple nested levels of breaks. On the other hand, you have to
add all of the Saleltem columns to the Details level. Figure 6.25 shows the layout

Figure 6.24

I.'="Query Builder,

2 = &m0 =3
~
= Sale o Saetem
| |Phone | ShipCity - # (all Columns)
[vEMail [v]Shipstate
[Ishipzip 4}
[|5alesTax ntitySold
[v]Paymentmethod - [v]5alePrice
v
<8\l >
Column Allas Tatle Output | Sort Type Sort Ordst Fitsr or... or... ~
SalsDate Sale Ascending H
ShipCity Sale
shipstate Sale
PaymentHethod Sale
KU Saleltsm Ascending 3
QuantitySold Saleltem
SalePrice Saleltem
> Salsltsm.Quan... | ¥alus
= L
v
<) >
SELECT Customer,CustomerID, Customer.LastMame, Customer FirstName, Customer.Phone, Customer EMail, Sale SalelD, Sale.SaleDate, Sale.ShipCity,
Sals. ShipState, Sale.PaymentMethod, Saleltem, 5K, Saleltem.QuantitySold, Saleltem SalePrice,
SalsItem. QuantitySold * Saleltem SalsPrice AS Value
FROM Customer INNER JOIN
Sale ON Customer, CustomerID = Sale. CustomerID INNER JOT
SalsItem ON Sale. 5alelD = Saleltem, SalelD
ORDER BY Customer, CustomerID, Sale.SaleDate, Saleltem, SKU
CustomerID LastName Firsthame Fhone EMal SalelD Salsbats ShipCit 4
3 7 Rice Charlatte 312-608-6819 RiceCES@msn.com 1166 2/19/2006 1220, NorthF
18 Embry Jahala 213126-6193 Embrydi74@ms... 1050 4/18/2006 12:0... Missaul
< | I
1 of 1507 | b bl Cell is Read Only.
ok | [cancel | [help

Chapter 6: Forms and Reports 112

& Report Wizard

Design the Table
Choose haow to group the data in the table. USe the ID
columns only

Available Fields: Displayed fields:

Page> Customer D

Firsthame

Phone <
EMail
SaleDate X
ShipCiky KRXK

ShipState AR
SaleID
PaymentMethod [(e / + e

KK KRR KRN
UK HRH KU

HHMRR
K RRE
K KRR KRR

Details SkU
QuantitySald

SalePrice
Walue

[< Back ” [ext = H Einish =]][Cancel]

Figure 6.25

that you need for this report. The next
step enables you to choose some op-
tions on how the report will be used.
To demonstrate some of the capabili- Put only CustomerID at the page level.
ties of the Reporting Services, select Place only SalelD at the Group level.

the Stepped option, include subtotals, | Place all Saleltem data at the Details level.
and enable drilldown. You can also | Choose Stepped layout, include subtotals
select a color style template. Ulti- and enable drilldown.

mately’ you should plck one style and Set the name to Customer Sales.

use it for all reports. You will prob-
ably have to build several reports with each style to see the differences and find
one you like. Alternatively, pick the blank style and add your own custom touches
later.

Figure 6.26 shows a preview of one page of the report. This particular cus-
tomer was chosen because there are multiple sales. The Drilldown/Rollup feature
is one of the more interesting aspects of the Reporting Services. Instead of trying
to squeeze all of the detail for every sale onto one report, the report displays sum-
mary totals for each Sale. The user can then click the drilldown icon (+) to see
the item data for a particular Sale. This feature is particularly useful when you
create a report with multiple nested group levels. But, if the users do not want this
feature, you could have chosen to disable it when you created the report—and all
detail rows would be displayed automatically.

One of the most glaring problems with this report is that it displays only the
CustomerID and SalelD. Most organizations will want to see the other data re-
lated to customers and sales. It is relatively easy to add those items now that the
structure has been built by the wizard. Click the Layout or Design tab to switch
to design view. Note that the Data tab/window opens the query editor so you can
modify the underlying query if you forgot to include a column or two. You could
add text boxes manually to the report and assign the Value property to lookup the
columns that you want to see. However, there is an easier method. First, make

Action
Design the grouping structure.

Chapter 6: Forms and Reports 13

2 Powder06 - Microsoft Visual Studio
Fle Edt Wiew Project Buld Debug Tools Window Community Help
[RS RAT= A = N E=REEN W any CPU [loadopt
[l oy B J UALES=SZ=_ U2 =l
[l Customer Sales.rdl [Design] | Start Page - X
?2-7 U Date | Lavout ([Freview
]
g"J“Hﬂ‘izl of 436 b M |« ,J‘QLJJ_IH|1DD/
]
%
Al sale Quantity | SalePrice| Value Data for one
2 Sold
B customer
g B
g lUUIIS 1 308,0000 3080000 = J Pawderd6Repo
s 600016 1 32,0000 32,0000 = Ljih ed Dat;
g 800419 1 166.0000 16,0000 < AP e
] BB
9 \ 1153.0000 1153.0000 -
&]
i One sale sduten Exlorer Bt v
Properties > 1 X
1 er Sales.rd| -
Drilldown/
=l
Rollup H Location
File Marn Customer Sal dl
Output ~ 1 x
Show output from: Build RGNS N =
Busld complece —- O errors, O warmings
File Name
specifies the name of the file,
[Error List | (=] Output
Ready

some space on the report by dragging]
the left edge of the CustomerID box Ac.tlon]

to the right. The ID numbers take up | Click the Design/Layout tab.

minimal space, so free up the left side | Open the DataSet window.

and center of the report. Adjust the CustomerID TextBox.

Now you can add more fields to | Drag LastName, FirstName, Phone, and
the report. Open the DataSet tab that EMail columns next to the CustomerID.
is usually on the left side of the Vi- | Preview the Report.
sual Studio window (or use View/Da-
taSets on the main menu). If necessary, use the Window Position button to remove
the Auto Hide option so that the window stays open. Expand the AllPowderData-
Source that you created to see the list of columns. Drag the LastName column and
carefully drop it onto the report at the left edge aligned with the CustomerID field.
Follow the same process to drop the FirstName column between the LastName
and the CustomerID. Resize the new text boxes and set their properties to match
those used for the CustomerID box. Add the Phone and EMail columns just below
the LastName and FirstName text boxes. Preview the report and scroll through a
few pages to ensure that the new values change as you change customers. Figure
6.27 shows the current layout of the report. Notice that ListBox1 defines the Page
level grouping. You must ensure that the new text boxes you added fall complete-
ly within ListBox1, and do not fall on the Sale-level grouping area.

It is a little trickier to add columns at the Group-level break. Currently SalelD
is the only data displayed at the Group level, but the wizard also placed the detail
headings at that level. You need to add more space to the layout. The Group and
Details are managed by a matrix-type layout. You add space by inserting rows at
the desired level. Figure 6.28 shows the basic process. First, select the SalelD text

Chapter 6: Forms and Reports 114

@2 Powder06 - Microsoft Visual Studio

Fle Edt Wew Project Buld Dsbug Foemat Report Iools Window Community Help

SR RN N- R WEF RGN S Sl 5L b Debug ~ Any CPU - | [loadppt MR Be Pt i R
solid - ipt ~ SlateGray = [v _ Tahoma ~1pt - B I UA LS RN R e ST e i | oge =
Datasets v & X Customer Sales.rdl [Design] | Start Page ~ | |Solution Explarer - Solution Fowde.., v & X
i3 () Dats [Lovout | (2 Preview (=YEe]
= [Repart Datasets (5] Customer.vb -
i o Tz R
=-[E AlPowderD ataSource |£0] CustomerDataSet xsd
= ([#8aay 5] CustomerListDataSet. xsd
5] EmployeeListDataSet. xsd
Customer Sales 2] et
. N . . . N |5 PaymentMethodDat sSet. xsd
-|| =First(Fields!Las| =First(Fields!| - |=Fields!CustomerIC =] Sele.vb
=First{FieldsIPt . =First(FieldsIEMail Value) A 53] SaleFormDatsset s
i 9 Sale ID Quantity| Sale Price Value § =] SkEoxdtyien
1 |50] SkiBoardstyleDataget xsd
=Fields!SalelD _ =SumiFields!C|=Sum (Fields!s|=Sum (Fields!v = (5] PanderDEReparts
aymertiethod | |[- =Fields!SKU.val =Fields!Ouantit =Fields!SalePric =Fields!value.y & [Shared Data Sources
o o AlPowderDataSource.rds
i [Reports
- 5 Customer Sales.rdl —
2 o
Selution Explorer | Class Vien
- ListBox1 Properties ~Ex
List1 List -
: defines the =
3 '/il =]
Page level R ——— -
. Dataflementoutput Auto
DatalnstanceEleme Ourput
DatalnstanceName
] | DataSetName AllPowderDataSo
0. |Fms.. &1 |Fo. Filters 4
o5 T8 x| Gruen list1_CustomerID
o NoRows
show autput from; Buid =3 |lAa | = 5 Design
Build complete -- O errors, 0 warnings Mame List1

El International

&3

Name
The niame of the report item.
5 Error List | =] Output

Ttem(s) Saved

Figure 6.27

box because it is at the Group level.)
Be sure to pick the Text Box that [Action

displays the value, not the label that | Click the SaleID TextBox.

says “SalelD.” The grid icons will | Right-click the icon to the left of the

be displayed on the left side. Right- SaleID TextBox.

click the icon to the left of the Text | Choose Insert Row Above.

Box and choose the option to Insert | Drag SaleDate, PaymentMethod, ShipCity,
Row (Inside Group) Above. Now you anq ShipState onto the new row.

have space to add the rest of the Sale | Preview the Report.

data. In VS 2005, drag SaleDate into
the first cell. with VS 2008, click the item list box inside the desired cell. Put
PaymentMethod, ShipCity, and ShipState into the other cells. Preview the report
and you will see the new data. You can return to Layout view and resize the grid’s
columns to minimize the text wrapping within the new cells. Just keep in mind
that if users are going to print the report, you should keep the total width under 6.5
inches (8.5 inch paper with 1 inch margins).

You are almost finished, but a professional job requires that you pay attention
to details. One big detail is the data formats. Notice that the prices and sums use
four decimal places by default; and the date includes time, making it too big to
fit the field. Fortunately, formats are easy to fix—select each Text Box and set its
Format property. For the case of the prices, set the Format value to 0.00. For the
sum of the Value column, you might want to include the comma separator, so set
the Format to #,##0.00. You can choose various date formats, but the medium
date (such as 01-Mar-2007) is easily recognizable by almost any user in any na-
tion. Select the SaleDate text box and set its format to dd-MMM-yyyy. Note that

Chapter 6: Forms and Reports 115

2% Powder06 - Microsoft Visual Studio EEx
Fie Edit Wew Project Buld Debug Format Report Took Window Community Help
-G H e % G- - 5| b Debug - Any CPU - [loadppt - S s B .
Salid - lpt - SlateGray - [- . Tahoma - 1ot v1 UAJZS ol W N N o ST s 1 | it | oge
Datasets v & X | Customer Sales.rdl [Design]*| Start Page ~ X | Solution Explorer - Solution Powds... v § X
i 113 Data [Lavet | [Preview B2 iR
=] Customer.vb ~
[0 e s ' s ! |50 CustomerDataset xsd
([#eeay 501 CustomerListDataget xsd
|50 EmployeelistDataget, xsd
Customer Sales 5 e
N | N N |50 PaymentMethodDataset, xsd
-|| |=First(Fields!Las| =First(Fieldsl!| =Fields!C [el
=First{FieldsIPt =Firs(FieldslEMail Valuel 831 saleFormbatast.xsd
. [z=] skiBoardstyle.vh

|51 SkiBoardstyleDataset xsd
B (5] PowderDeReports
& [Shared Data Sources
< AlPowderDataSource.rds
= [Reports
[Customer Sales.rdl L
v

Fislds!SkU.val =Fields!Quantit =Fields!SalsPric =Fieldsivalusy |

" C3l5olution Explarer [Class Yiew
Click SalelD Text BoX et S

SalelD Textbox -

. 1. i Generdl ~
Drag columns Right-click: Insert T
VerticalAlign Top
Row Above visbilly
< | & . Bl Data L
iGlD.. |[Fas.. 381, [FEo. ||| ||« | o
Il
Shaw output From: Buld - LRLA D = 6 UserSart
Value =FieldsiSaleID.¥al

YalueLoclD ~

value

The expression whase value is displayed in
the text b
g Errer List | =] Output e text box.

Ready

Figure 6.28

the month specifier (MMM) is case-
sensitive and must be capitalized or
it will display the month number in-
stead of the abbreviation.

You need to make one more im-
portant change. When you allow the
wizard to compute the sums, it au-
tomatically calculates and displays
the total for every numeric column
of data. In the Sale case, it makes no
sense to total the SalePrice column. Select the Text Box that displays the sum of
the SalePrice. Press the Delete key to remove the entire Text Box. Unfortunately,
in VS 2005 this action also removes the background color. Select a cell next to the
one you are in. Find the Background property and copy it. Return to the original
cell and paste the copied color into the Background property. You might also con-
sider removing the total for the QuantitySold column, but some users might want
to see the total number of items purchased for each sale, so leave it in unless the
users ask you to remove it. Figure 6.29 shows the final version of the report.

You can customize the report or even build one from scratch. The key to reports
is that you need a ListBox whenever you want to display repeating rows of data.
In the Customer Sales report, one large ListBox contains all of the controls; ex-
cept for the report title. Tables are often used to show Groups and Details. Tables
provide the support for Drilldown and Rollup interaction. If you do not like the
layout of a report produced by the wizard, you can customize it by adding or
removing ListBoxes and Tables. You should experiment with the report layout.
Remember that the List boxes are flexible. You can draw them almost anywhere

Action

Format price items to 0.00 or ###0.00 for
larger numbers.

Format the date to dd-MMM-yyyy

Remove the Value property for Sum of
SalePrice text box.

Preview the report.
Save everything.

Chapter 6: Forms and Reports

116

2% Powder06 - Microsoft Visual Studio

File Edt Wiew Project Buld Debug Format Report Tools Window Community Help
- EEHE@ | %396 - 52| b Debug - Any CPU - [loadppt TP =R
Elog B I U A o Gl Ll & LT e s | B S| EE o | ot :
| Customer Sales.rdl [Design]*| Start Page | ~ X | Solution Explorer - Solution Powde... » & X
& 1 pata | §] Layour ([Preview @
& | (2] Customer.vb a8
H e 4z oism e W+ 0@ S E Q| w0 Find | tiex: £ Customarstaset xsd 5
i « |80l CustomerListDataSet. xsd
0B Forbes Horace 69 |20 EmployeelistDataset xsd
|| 2137579262 ForbesHE10@msn.com - [Z] Menuavt
E - |20] PaymentMethodDataset xsd
S + |20 SaleFormDataset xsd
o = (5] PanderDEReparts
3 100115 1 308.00 308.00 & [Shared Data Sources
g ey
g s00016 1 2200 200 "« AlPowderDataSourcerds
il B [Reports
] 200419 1 166,00 166,00 i B Customer Sales.dl L
& Selution Explorer | Class View
Froperties i x
Ourpur ~ 1 x
Show autput from: Buid ETEENE =
Build complete —- 0 errors, 0 warnings
B Error List | =] Cutput |
Ttem(s) Saved

Figure 6.29

on the page. For example, you could draw two different list boxes side-by-side.
Use one to show Sales for a customer. Use the other to show rentals. You will get
two parallel lists. If you encounter problems building a report, try creating it in
Microsoft Access first, and then importing it to SQL Server.

Exercises

([
BISA ;
- ((‘L(\\v/ Crystal Tigers

The Crystal Tigers club is mostly interested in tracking members and events. The
officers who will use the system do not know much about computers, but they
can enter data into forms. They are also interested in a few key reports. For in-
stance, they want to be able to get totals for the number of hours members devoted
to charity events. They also want monthly summaries of the amount of money
raised. The vice president also wants to be able to print a simple listing of the of-
ficers, their phone numbers and e-mail addresses. Sometimes, she also wants a
similar list for members who have participated in the initial steps of an event. She
wants to be able to carry the list with her when the event starts so she knows who

to contact if problems arise.

1. Create the basic forms needed to enter data into the database.

2. Build a form similar to the one defined in Chapter 2.

3. Create the main reports needed by the organization.

Chapter 6: Forms and Reports 117

Capitol Artists

Job tracking is the most important aspect of the application needed by Capitol Art-
ists. In particular, the employees need to be able to quickly select a job and enter
" the time and expenses for the task performed. This data is then used to create a
monthly billing report for the client. Consequently, you need to focus on creating
the forms to capture this data. You need to make sure they are fast and easy to use.
The managers also want weekly reports showing the hours and money generated
by each employee so they can use the data in personnel evaluations.
1. Create the basic forms needed to enter data into the database.

2. Build a form similar to the one defined in Chapter 2.

3. Create the main reports needed by the managers.

& Offshore Speed

Special orders have always been a complex problem for the Offshore Speed man-
agers. Customers come to the shop because it is one of the few that can obtain the
custom parts they want. But the company has always had problems training em-
ployees to collect all of the order data and, keep track of getting the orders placed
and delivered in a timely manner. Some of these orders include contracts with
other local firms to perform customization and finish work on the boats. Although
these firms do excellent work, most are terrible at keeping records. Consequently,
the managers want to use the system to generate reports on individual boats for
each contract shop that can be used to remind the other owners of the details. The
company also needs reports on the inventory status of the specialized parts. They
are having trouble keeping some items in stock, and other items seem to sit on the
shelves forever; but they have no good way of keeping track at the moment.

1. Create the basic forms needed to enter data into the database.

2. Build a form similar to the one defined in Chapter 2.

3. Create the main reports needed by the managers.

Final Project

The main textbook has an online appendix with several longer case studies. You

should be able to work on one of these cases throughout the term. If you or your

instructor picks one, perform the following tasks.

1. Create the main forms needed for the database, including forms that will be
used by administrators.

2. Build the forms similar to the ones used to define the project. That is, build
database forms that match the existing user forms.

3. Create the main reports needed. Think about the analysis that managers will
want to do and provide reports that help them. Consider adding charts to
compare data.

Chapter

Database Integrity and
Transactions

Chapter Outline

Program Code in SQL Server, 119
Case: All Powder Board and Ski Shop, 120
Lab Exercise, 121
All Powder Board and Ski Data, 121
Database Cursors, Keys, and Locks, 136
Exercises, 146
Final Project, 148

Objectives

» Define customized functions.

* Improve forms by responding to form events.

« Execute customized SQL statements from code.

» Define transactions.

» Create new rows and use the generated key value.

» Write cursor-based programs that compare data across rows.

» Set up and handle optimistic and pessimistic locking conditions.

118

Chapter 7: Database Integrity and Transactions 119

Program Code in SQL Server

SQL Server supports code directly within the SQL as database triggers that are
fired when some database event arises. For example, when a row of data is in-
serted into a table, code can be executed to validate the data. In addition, if you
build forms in Visual Studio, you can write code behind the form that responds to
events that arise within the form itself. For example, you commonly have to write
code that executes when someone clicks a button on a form.

When building applications, one of the first questions you have to answer is
whether you should write code as a database trigger or a form trigger. Unfortu-
nately, there is no good single answer. As with all programming, you have to eval-
uate the competing benefits and costs and make the decision based on the situa-
tion. Sometimes there are overarching concerns. For instance, if you are concerned
about database portability, because the organization is thinking about switching to
a different backend DBMS, you would try to write most of the code within Visual
Studio. On the other hand, if you know you will stick with SQL Server and you
want to make it as easy as possible to create and modify forms, you will want to
write most of the code as procedures within SQL Server.

Writing triggers within the DBMS has the advantage of centralizing most of the
functions. You can write them once and they can be used by multiple developers.
However, complex applications built within the DBMS can be difficult to debug,
and place heavy loads on the database servers. Remember that code executed in
Visual Studio forms runs on the client computers and the database server is pri-
marily responsible for storing and retrieving data. When you build thousands of
lines of code within the DBMS, this code runs on the server itself—placing ad-
ditional demands on the server.

More complications arise when your database has hundreds or thousands of
these triggers. A simple change to one table could cascade to dozens or hundreds
of additional updates propagated through the trigger code. This cascade of events
can be difficult to trace and understand—yparticularly when the code sections have
been written by dozens of different programmers. On the other hand, database
triggers are an important tool to provide additional security and ensure that certain
tasks are performed correctly. The code is created in one location and it cannot be
circumvented. Once the events and code are defined, it does not matter what users
and application developers create—the trigger updates are processed behind the
scenes without additional intervention.

Visual Studio uses form triggers to provide customized responses to user
events. You can create simple or detailed code when a user presses a key, clicks a
form button, or changes a piece of data. Dozens of events can accommodate your
customized code, but generally you need to write only a couple of lines of code
for one or two primary events. The other event triggers are available in case you
need them for a special feature.

SQL Server stores code in procedures. A procedure contains a declaration sec-
tion and a body. The declaration section lists the variables used within the proce-
dure. With SQL Server, you write the code using Transact-SQL. With SQL Server
2005, it is also possible to write modules in Visual Basic or C# and compile them
so they can be called as functions within a SQL query. This technique is useful for
functions that are mathematically or processing-intensive, but is not covered in
this chapter.

Chapter 7: Database Integrity and Transactions 120

To understand how the code and event models work, this chapter begins with
some easy examples. Pay close attention to the code and where it is located. For
example, code written as a database trigger can be accessed throughout the ap-
plication, but code written within a form is generally only called in response to
events on that form.

Case: All Powder Board and Ski Shop

Figure 7.1 shows the Sale form developed in the last chapter. Notice that it has
a box to enter the sales tax. If you look at the underlying Sale table, you will see
that it contains a column to hold the sales tax amount for each sale. You could ar-
gue that the sales tax does not have to be stored, since it can always be computed
from the other sales data. But what happens if the tax rate changes? Or, what if the
round-off computation is modified? Then the company’s sales tax records will no
longer exactly match the data filed with the state and local governments. It is safer
to store the actual tax amount collected to ensure consistency. However, now you
need a method to compute the sales tax on each sale; you certainly cannot expect
clerks to compute the amount, or even look it up correctly in a table. Instead, you
need to write a function that will compute the sales tax correctly and transfer it to
the form and the database. Sales taxes can be highly complex. Some items might
be taxable, while others are not. Since each state and local district is different (and
there are several thousand tax districts in the United States alone), this presenta-
tion is simplified and assumes a single tax rate that is applied to all sales and to
rental items.

The first question you must answer when creating custom code is to determine
where it belongs. In this example, you might consider putting it on the Sale form,
but since the code will also be useful for rentals, it makes more sense to generalize
it and place it either in the database itself so that it is available to any form, que-

Figure 7.1

P4 4 1 of 500 | b Bl | F XK
Sale ID: 0024 Sale Date: Friday , Mach

Cuztorner: | Baldwin, Fermando [217 s Employes: tipahira, Hideharu 555
ShipAddress: | 5516 Smalhouse Road | Ship State: Sales
Ship City: ShpZIP: |36867 tax
Payment kethod: Sales Tax h7.E8
Quartitys old SaleFrice Value

» 1 32.00 32.00

EO004E 1 15.00 15.00

20015 1 428,00 425.00

20026 1 352,00 352.00

Subtotal $824.00

Chapter 7: Database Integrity and Transactions 121

ry, or report within the application. Placing the code in the DBMS also makes it
easier to find later. It is also possible to write the tax computation within a global
function within Visual Basic. This function would be accessible from all forms
within the application, but not from queries.

Lab Exercise

&

All Powder Board and Ski Data

In many cases, it is best to place functions and procedures inside of SQL. From
this location, they are accessible by any query or form within the application. SQL
Server stores user-defined functions directly in the database. You create them us-
ing SQL commands, but can find them using the Management Studio.

Activity: Create Sales Tax Function

Figure 7.2 shows the Transact-SQL
code used to create a simple function
to compute taxes. Note that you should
include the Go command after most
Transact-SQL Create statements to tell
the system to store the new function.
This command is particularly important when you write a batch file that includes
several commands.

The tax calculation function is deliberately simple to highlight the process in-
stead of the accounting rules. Be sure to use a variable for the tax rate, since it
makes the code easier to understand, which reduces errors when someone tries to
modify it later. Also, make sure you use the Round function to truncate the tax due
at two decimal places. Run the commands to create the function. You can now use
this function in queries and forms just as you would use any other function. A cool
feature in SQL Server is that you can call a function without needing a FROM
statement. However, you generally have to specify the full name of the function,

Action

Use SQL Server Management Studio to
create the ComputeSalesTax function.

Test the function with an SQL statement.

Figure 7.2

B Microsoft SQL Server Management Studio

Fle Edt View Query Project Tools Window Communty Help

Sty [BREE D S BEHBE S

A2) Pawder RN L AR N = M| TRERE 2
Object Explorer » B X postitPowder - SQLQueryl.sql* | Summary - X
Conrect - | &3 E] CREATE FUMCTION ComputeSalesTax (EAmount As money) RETURNE money =

a5
BEGIN
DECLARE BtaxRate real

= [postl (SQL Server 9.0.2047 - POSTLTLIPG,
= [Databases

(23 System Databases

[Database Snapshots SET @taxRace = 0.07
| Bocksystem return [Round(@taxRate”Bimount,2])

_J Cormerted END
e v Function definition |
The Go is /
required d @
to separate L 3
commands it meceereratiy

T Repartoerver
|J ReportServerTemplE:
| Time-Past-Biling
[Security
[Server Obiects
[Replication
(L3 Management
[Notification Services
[5QU Server Agent (Agent XPs disabled

< | @ Query executed successhily. postt[R0GP1) POSTLTWPost (51) Powder 000000 Orows

Ready Lng Col 1 cht NS

Chapter 7: Database Integrity and Transactions 122

P Microsoft SOL Server Management Studio

Fie Edt Wiew Query Project Tooks Window Community Help

o - ¥ Eeate v m IBE o2 AL | 17y R | ES[EE|EY | = 2 e
Ohject Explorer = B X postitPowder - SQLQueryl.sql* | Summary > X
Connect ~ gg ﬂ SELECT o.ComputesalesTax (100] As Tax f
= [Powder g| / T
[Database Diagrams
[Tables
v Database
3 Symonyms :
2 (3 Programmatity name Function name
(# [l Stored Procedures
= 3 Functions

[Table-valued Functions
= (0 Seslar-valued Functiens g
1= U2 dbo.ComputeSalesTax
= [Parameters v
@Amaurt (mane: || ¢
[Aggregate Functions —
[System Functions [E Resuts \ [Messages
[Database Triggers Tan

[Assemblies 1 F) 1

[Types i

+ ules .

B2 oo \ Correct result: 7

[Service Broker

i storoe percent of 100

[0 Security

) ReportSarver
ReportserverTempDE

@ [Time-Post-Biling
3 Security

<]

Ready Ln2 Cal 1 Chi1 NS

|

E
[

v
. @ Query executed successhily. posth (R0 SPT] POSTLTMWPost51) Powder 000000 1 rows

|~

Figure 7.3

0O

which includes the name of the database. In this case, you use dbo.ComputeSal-
esTax because dbo is the shortcut for database owner. Figure 7.3 shows the com-
mand and the correct result. You should be able to find the function in the object
browser—that will give you the full name of the function if you have any ques-
tions. The function was tested directly using a fixed input value. Once you know
the function works, you can use it in more complex queries and apply the function
to data selected from tables.

Activity: Create Login Form and Connection Strings

The next step is to use the formula to i
automatically compute the sales tax on Liien)
the Sale form. This process is a little | /dd a login form.
more complicated since the form is in Edit the connection string in the app.
Visual Basic which is outside of SQL | gonfigfile toremove the values for
Server. Two basic methods can be used ata Sotree, LSer 1, i tassword.
L .| Add code to the Menu form to open the

to access the function in the database: Login form.
.(1) compute the sales tax due for each Add code to the Login button to modify
item on the sale and then add the val- the connection string and test the login.
ues, or (2) issue a separate function call
to the database to compute the tax due. In some states, where some items are
taxable and some are not, it might be best to use the first method. Basically, you
would change the adapter for the subform so that it uses a query to return all of the
columns from the Saleltem table along with a new column the computes the tax
due for each item. You could then use a subtotal to compute the total tax due. The
drawback to this approach is that you have to set the query and the data adapter
properties carefully so that the dataset is updateable. You might even have to
write a new update statement for the data adapter so that it does not try to update
the sales tax column.

The second method of issuing a new query to the database is a little easier and
illustrates some techniques that are useful in other applications. The main step

Chapter 7: Database Integrity and Transactions 123

Login |Z| |E| El

All Powder Database Login

I zemame | |

Pazzword | |

Server | |

0-0-0

Figure 7.4

will be to create a Visual Basic class that calls the SQL Server function to com-
pute the taxes. This step causes a complication that needs to be addressed first,
To access a database in .NET, you need to define a connection string that holds
the username, password, and server name. In fact, you have probably already en-
countered problems with this requirement. By default, Visual Studio creates and
stores this connection string in the app.config file. The good part is that the string]
is stored in only one location. The drawback is that every user will access the da-|
tabase using the same stored username and password. You can reduce this prob-
lem if you can use Windows authentication for your application, but you often|
need more flexibility.

You need a method for users to log in and enter their own username, password,
and server. Then, enter these values into the global connection string that youl
can use throughout the application. Visual Studio 2005 makes it relatively easy)
to change the configuration settings, so all you really have to do is create a login
form; and transfer the data to the connection string.

It is relatively easy to create a simple login form. As shown in Figure 7.4, just
create a small windows form with three text boxes and a button. Be sure to in-
clude a label to display error messages and make sure you accurately name each
text box (for example, UsernameTextBox). When users click the Login button,
you want to make a quick test to see if the data entered is valid. If not, display an|
error message. Once a valid login has been achieved, you can close the form.

Now you need to put the Login form in your application someplace so that
users are asked to login before using the other forms. Because most of the forms
rely on the database, it makes sense to attach the form to the main menu form,

Figure 7.5

Private Sub Menu_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load

Dim frmLogin As New Login
frmLogin.ShowDialog()
End Sub

Chapter 7: Database Integrity and Transactions 124

Private Sub btnLogin_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnLogin.Click

‘ Set the global connection string stored in the Settings.

‘ This code assumes you have modified the string so that it reads:

‘ connectionString="Data Source=;Initial Catalog=Powder;

‘ Persist Security Info=True;User ID=;Password="

Dim sCn As String = My.Settings.AllPowderConnectionString.Replace _
(“User ID=", “User ID=" & UsernameTextBox.Text)

sCn = sCn.Replace(“Password=", “Password=" & PasswordTextBox.Text)

My.Settings.ltem(“AllPowderConnectionString”) _

= sCn.Replace(“Data Source=", “Data Source=" & ServerTextBox.Text)

‘ Test the login with a simple query

Try
Dim cnn As New SqlClient.SglConnection _

(My.Settings.ltem(“AllPowderConnectionString”))

cnn.Open()
cnn.Close()
! Messagelabel.Text = “Successful login.”
Me.Close()

Catch ex As Exception
Messagelabel.Text = “Invalid login. Please try again.”
‘ Note, add a counter and allow no more than three tries

End Try

End Sub

Figure 7.6

Open the Menu form and switch to code view. Select the Menu Events in the ob-
ject drop-down-list, and choose the Load event from the event list. Enter the two
lines of code shown in Figure 7.5 to popup the Login form. Using the ShowDialog
command will force users to deal with the login before proceeding.

The next step is to write the code for the login button that builds the connection
string and tests the login data. Figure 7.6 shows the code for the button. You must
first open the app.config file and edit the connection string that was built when
you created the first Data Source. An easy approach is to simply delete the name
of the Data Source, the Username, and the Password. Leave the tags with their
equals signs (Data Source=). The code uses a simple string search and replace to
add the three elements back into the connection string using the values entered by
the user. Note the use of the My.Settings object to retrieve the data stored in the
app.config file.

Once the new string is created, and saved in the in-memory Settings object, the
code calls attempts to open a connection to the database. If the connection fails, it
displays an error message, and leaves the form displayed on the screen. Eventu-
ally, you will want to add more security options to the code, such as limiting the
number of login attempts, recording login attempts to a security database, and
closing the entire application on failure. You should save all of the new code and
the forms and test the application. The login form should pop up when the appli-
cation starts, and you should test correct data and incorrect data to ensure that the
login works properly.

Activity: Add Tax Computation to the Sale Form

Finally, you are ready to compute the sales taxes from the Sale form. With the
global connection string built, this process is relatively easy. You could perform
the calculations inside the Sale form code, but it is better to put this code into its

Chapter 7: Database Integrity and Transactions 125

own class to make it easier to find later
and to be reusable across the applica-
tion. Begin by creating a new Taxes.
vb class. Right-click the project name/
Add/New Item, choose Class and name
it Taxes.vb. Create a function that will
compute the taxes. The code in Figure
7.7 uses the SQL connection string. It
creates a SQL SELECT statement to Add the code to compute the sales tax.
use the new tax function in the data- | Run the form to test the computation.
base. It then opens the connection and

executes the command. The simple data reader retrieves the resulting value and
returns it to the caller. Eventually, you should write a better error-handling rou-
tine. A user seeing that message would know that the tax value is wrong but would
have no idea what to do next.

The logic of the code is straightforward: (1) Create a connection to the data-
base. (2) Create a command to issue a SQL SELECT statement. (3) Add the total
amount as a parameter in the query. (4) Open the connection and issue the com-
mand. (5) Retrieve the result using a data reader. (6) Close the reader and the con-
nection. (7) Return the tax value to the caller.

Notice the use of the parameter (@Amount) in this example. In theory, you
could have used string concatenation commands to build the SELECT statement
without using parameters. However, for security reasons, you should always use
formal parameters when creating queries with SQL Server. The reason is because
SQL can be tricked with a SQL injection attack. A user could possibly enter a ma-
licious command that would convert your simple SELECT command into some-
thing far more dangerous. You can find details on Microsoft’s Web site, but the

Figure 7.7

Action
Add a new Taxes.vb class.

Add the parameterized code to compute
the taxes.

Edit the Sale form and switch to code.

Select the editSalesTax box and Enter
event.

Public Class Taxes
Public Shared Function ComputeSalesTax(ByVal Amount As Decimal) As Decimal

Try

Dim cnn As New __
SqlClient.SqglConnection(My.Settings.AllPowderConnectionString)

Dim cmd As New SqIClient.SgqlCommand
cmd.Connection = cnn
cmd.CommandText = “SELECT dbo.ComputeSalesTax(@Amount) AS Tax”
cmd.Parameters.Add(New SqlClient.SqlParameter(“@Amount”, Amount))
Dim rdr As SqlClient.SqlDataReader
cnn.Open()
rdr = cmd.ExecuteReader(CommandBehavior.SingleRow)
rdr.Read()
Dim tax As Decimal = rdr.GetDecimal(0)
rdr.Close()
cnn.Close()
Return tax

Catch ex As Exception
System.Windows.Forms.MessageBox.Show(“Error computing taxes.”)
Return 0.0

End Try

End Function
End Class

Chapter 7: Database Integrity and Transactions 126

Private Sub SalesTaxTextBox_Enter(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles SalesTaxTextBox.Enter
Dim tax As Decimal = Taxes.ComputeSalesTax(Me.SubtotalLabel. Text)
SalesTaxTextBox.Text = Format(tax, “0.00”)
Me.TotalLabel.Text = Format(CType(SubtotalLabel.Text, Decimal) _
+ tax, “0.00”)
End Sub

Figure 7.8

problem applies to any DBMS. The key is to use parameters any time you need to
place data into a SQL command.

The challenge at this step is to identify when you want to compute the tax.
Why does that matter? The problem is that there are times you do not want to
compute the tax. For example, if a sale has been completed and a manager is sim-
ply reviewing the form, you should not recompute the tax because the rate might
have changed. So you only want to compute it for a new sale. Realistically, it only
needs to be computed when all of the sale items have been selected. However, the
form has no good way to know when the sale is completed. Probably the easiest
solution is to compute the sales tax due when the user clicks on the SalesTax box
in the Sale form. For new orders, a simple click generates the correct value and
the order total. You need to add a label (SaleTotalLabel) to display the order total.

You need to attach code to the form even when users enter into the tax box
on the form. Open the Sale form and switch to code (View/Code). Choose the
SalesTaxTextBox object in the drop-down-list and the Enter event in the other
drop-down-list box. Using C# you should select the SalesTaxTextBox in Design
view. Look at the properties window and click the Events button. Double-click the
Enter event to create the desired function.Figure 7.8 shows the code that you need
to execute for this event. Note that the code has been formatted to fit into the box.
You need to type only the three lines of code.

Figure 7.9

T ofs00 | b bl | X (=

Sale I1D: 1002 Sale Date: Friday . March *
Customer: | Baldwin, Femando [217 s Employee: Mipahira, Hideharu 555
Ship Addiess:. | 5516 Smalhouse Road | Ship State:

Ship Ciy: ShipZIP: 36867

QuantitySold SalePrice Walue

1 3z2.00 32.00
E00046 1 15.00 15.00
800115 1 425.00 425.00
800126 1 352.00 352.00

Subtotal $824.00

Total 881.68

Chapter 7: Database Integrity and Transactions 127

5 Powder07 (Debugging) - Microsoft Visual Studio

Ele Edit Yiew pProject Buld Debug ook Window Commumty Help
=" - B =N (%_loarfpot - | R R B -
by @@ 9 E(E r Debug/Start
~Sale.vb | sale.vb [Design] b / 3¢ || Praperties B
 [F(General) v [@eciarat De ug Step Into 5
For Each dgwr In Ne.Salel idvieu. R = QL =
sum += dgwr.Cells("Value") .Value =
Hext dgvr
Me.Subtotallabel.Text = sum.ToString("§ #,##0.00")
! TotallLabel.Text = sum + Deciwal.Parse (Me.SalesTaxTextBox.Text)
F End Sub
Cl' k = Sub SaleltemDataGridView CellEndEdit (ByVal sender s Object, ByVal e As S5y
1C tO Set nputeSaleTotal ()
= Suh SaleBindingSource PositionChanged (ByWal sender As Object, ByVal e &3 S
nputeSaleTotal ()
\ End Zub
Private Sub SalesTaxTextBox_Enter (ByVal sender is Object, ByVal = ks System.Eventh
= Dim tax As Decimal = Taxes.ComputeSalesTax (Me.3ubtotallabel.Text) T
galesTaxTextBox. Text = Format (tax, "0.00")
Me.SaleTotallabel.Text = Format (CType (SubtotalLabel.Text, Decimal] + tax, "0.0
End Sub
End Class
v
< 3 CRl5olution Explorer | “Properties
Autos
Mame “alue Type ~ ~
@ Me {Powder06, Sale} Powdert
[# 3 Me Subtotallabel {3yskem. Windows Forms, Label} System. b
57 Me Sublotall abel, Text g 2, - String
R SalesTaxTestsox {Text ="57.68 rem. See form and
757l SalesTaxTextBox. Text 57 68" &, = String . B
B @e {System EventArast System.E Var]ab]e Va]ues
@ serder {System,windaws Forms, TextBox} Chbiject v
e mn nerimal
& Autos |] Locals | Elwatch 1 (el Stack [T Breakpoints |] Command window |] immediate window |=] Output
Ready Ln 58 Col 100 ch 1o NS
Figure 7.10

;2

To test the code, run the form and create a new sale. Select an employee as
the salesperson and choose the customer from the list. Check to ensure that the
total also updates correctly—it should be the sum of the subtotal and the newly
generated sales tax value. Think about the steps you performed to create this trig-
ger, and consider why it is so important to use the global ComputeSalesTax func-
tion. If you had buried this calculation on the form, the next developer that had
to change it could search for days trying to find the calculation. Of course, good
documentation is also important. Figure 7.9 shows the Sale form that has been
modified to place the payment data at the bottom of the form.

In real life, program code rarely runs correctly the first time. To find mistakes,
you need to use the debugger. Open the Sale form and switch to code view. Click
the gray column to the left of the line of code. Select Debug/Start from the main
menu to start the application menu and open the Sale form. Click on the SalesTax
box to trigger the code. The debugger will stop on the marked line. As shown
in Figure 7.10, you can see the values stored on the form and any variables you
might have created. You can single step through the code and evaluate the vari-
ables to see exactly how your code runs. Choose the Stop button on the toolbar to
close the debugging session.

Activity: Update Inventory with Data Triggers

Maintaining quantity on hand statistics for inventory is one of the trickiest ele-
ments in programming business forms. Reexamine the Inventory table and notice
that it contains the column QuantityOnHand. This value represents the current
number in stock for a specific item. The value of the column is that clerks can
quickly check the column to see if certain sizes are available. Also, managers can
get a quick look at the list of items that might be under- or overstocked. Tech-
nically, this value would not have to be stored in the database—if you have a

Chapter 7: Database Integrity and Transactions 128

complete list of all purchases, sales,

and adjustments, you could use a query Insert into the Sale table with

nsert a new row into the Sale table wi
to compute the total number currently | = 'q_1 iy £ 3000, CustomerID of 582,
in stock. However, with thousands of and EmployeelD of 5.

items and sales, this query might tak_e Create the INSERT trigger for the
too long to run. Yet, if you store this Saleltem table.

data separatqu, you need a mechanism | [pert a new row into the Saleltem table
to update this value on the fly. When- (3000, 500000, 1, 100).

ever an item is sold, the corresponding | Check the value of QuantityOnHand in
quantity should be subtracted from the the Inventory table for SKU=500000
quantity on hand. With Visual Basic, and ensure it was decreased from 10 to
you could handle this subtraction with 9.

form events. However, it is better to

use SQL Server and compute the subtraction using triggers on the data tables.
These data triggers are simply code that is executed whenever a specified event
occurs. The three events are DELETE, INSERT, and UPDATE. The main advan-
tage to using SQL Server trigger code instead of Visual Basic form code is that
with forms, someone might circumvent your code by writing new queries directly
to the database.

The first step is to examine the tables and understand how they are related. You
need to change the Inventory table whenever changes occur to the Saleltem table.
The Saleltem table specifies the SKU value that matches exactly one row in the
Inventory table. Also, when testing, remember that you need a matching entry in
the Sale table to provide the SalelD key. You should look at some sample data
in the three tables so you can enter consistent values to test. In this case, a new
SalelD of 3000 to CustomerID 582 by EmployeelD 5 should work. SKU values of
500000 and 500010 both have an initial QOH of 10 units.

The next step is to think about the events that can occur and determine what
they mean and how they will affect the QOH. It is easier to understand the process
by considering one event at a time. Think about the first step in a sale. A row is
entered into the Sale table: INSERT INTO Sale (SalelD, CustomerID, Employ-
eelD) VALUES (3000, 582, 5). You could enter the data for SaleDate and so on,
but since this data is temporary, these three items are sufficient. Now, the next
logical step that occurs in a sale is that the SKU for the item being purchased is
entered into the Saleltem table: INSERT INTO Saleltem (SaleID, SKU, Quan-
titySold, SalePrice) VALUES (3000, 500000, 1, 100). At this point, the Quanti-

Figure 7.11

Action

IF EXISTS (SELECT name FROM sysobjects
WHERE name="NewSaleQOH’ AND type="TR’)
DROP TRIGGER NewSaleQOH

GO

CREATE TRIGGER NewSaleQOH

ON Saleltem

FOR INSERT

AS
UPDATE Inventory
SET QuantityOnHand = QuantityOnHand - inserted.QuantitySold
FROM Inventory INNER JOIN inserted
ON Inventory.SKU = inserted.SKU

GO

Chapter 7: Database Integrity and Transactions 129

tySold of one unit means that the sys-
tem should subtract that value from the
quantity on hand. To accomplish this
task automatically, you need to estab-
lish an insert trigger on the Saleltem i
table. Figure 7.11 shows the SQL used alel 109 IDEIL SIS irlgn)
to create this trigger. First, the code | Insertthe Saleltem row again.
checks and deletes any existing trigger | Check the quantity on hand.
with that name to make it easier to fix | Delete the Saleltem row.

a trigger. Second, the trigger is given | Check the quantity on hand.
a unique name. The next lines specifiy
that the trigger should be fired when a row is inserted into the Saleltem table. The
main body of the trigger is the UPDATE statement that subtracts the quantity sold
from the quantity on hand. The UPDATE statement should look familiar, with a
small twist. The twist is that it refers to the values being inserted into the Saleltem
table using a reference to the inserted table. In triggers, SQL Server creates an
inserted table to hold copies of the values that are being added. It also created a
deleted table to hold values that are deleted—such as those being replaced with
the UPDATE statement. The main UDPATE statement simply tells the database
to subtract the new quantity sold from the existing quantity on hand for the SKU
value just entered into the Saleltem table. When you have successfully created
the trigger, issue the INSERT statement to add the row to the Saleltem table. Now
verify that the QOH was modified with the query: SELECT SKU, QuantityOn-
Hand FROM Saleltem WHERE SKU=500000.

You could continue to issue INSERT commands for different quantities, and
the quantity on hand will decrease. Everything seems to be fine. However, what
happens if there is a data entry error? Try deleting the row you inserted: DELETE
FROM Saleltem WHERE SaleID=3000 And SKU=500000. Check the QOH in
the Inventory table and you will see that it does not change. Why is that bad? Be-
cause the delete statement implies that the item was not actually sold, and since
you have already subtracted the quantity, you need to add that value back to the
QOH. In other words, you need another database trigger—one that fires when a
row is deleted in the Saleltem table. Figure 7.12 shows the statement to create the
trigger. This code is similar to the insert version. The only differences are that the
quantity sold is added back to the quantity on hand, and the syntax uses a reference
to the deleted. The deleted tables holds data the old version of data that is being

Figure 7.12

Action

Delete the Saleltem row (SaleID=3000
And SKU=500000).

Check the quantity on hand.

IF EXISTS (SELECT name FROM sysobjects
WHERE name='DelSaleQOH’ AND type="TR’)
DROP TRIGGER DelSaleQOH

GO

CREATE TRIGGER DelSaleQOH

ON Saleltem

FOR DELETE

AS
UPDATE Inventory
SET QuantityOnHand = QuantityOnHand + deleted.QuantitySold
FROM Inventory INNER JOIN deleted
ON Inventory.SKU = deleted.SKU

GO

Chapter 7: Database Integrity and Transactions 130

deleted or replaced. In this case, there
are no new or inserted values because)
the Delete command does not create | “dd the UPD ATE trigger.
anything. To test the new trigger, in- | Check the quantity on hand.

sert the Saleltem row again and check Issue an update to change the

the quantity on hand. Now, delete the QuantitySold in the Saleltem table.
Saleltem row and check the quantity on | Check the quantity on hand.

hand again. It should be restored to its
value before the latest INSERT command.

The two triggers you created are powerful tools. Once they have been defined,
you never need to think about them. Anytime a process inserts or deletes a row,
they are activated and inventory is changed immediately. You could test these ac-
tions using the Sale form, and you should see the same results. However, there is
still something missing. One of the trickiest aspects to event programming is that
you need to think hard about possible actions by users, and the consequences. In
the inventory situation, what happens if a clerk goes back and changes a value?
Originally, an SKU and quantity were entered, then the clerk sees an error or a
customer changes his mind. Try it first with a change in quantity. Check the cur-
rent value for QOH then insert the row to sell one unit. Check the QOH again
to see that it was reduced by one, say from nine to eight units. Now, consider
what if the customer actually purchased two units. Issue the statement to change
the QuantitySold to two units: UPDATE Saleltem SET QuantitySold=2 WHERE
SaleID=3000 And SKU=500000. Check the QOH and you will see that it still
shows only one item was removed from inventory (eight units remaining instead
of seven).

You need to add an UPDATE trigger to the Saleltem table to handle this prob-
lem. Figure 7.13 shows the code to create the trigger. Again, it uses a familiar
UPDATE statement. However, check the use of the references to the deleted and
inserted tables carefully. They contain the heart of the logic. The deleted values
are the data that was stored in the Saleltem table before the update was initiated.
The inserted values are the data in the row after it has been changed. In this case,
the QuantitySold changed from one (deleted) to two (inserted). For the specified
product SKU, this query adds the old value back and subtracts out the new value
instead. Remember that a change in quantity means that the original subtraction

Action

Figure 7.13

IF EXISTS (SELECT name FROM sysobjects
WHERE name="ChangeSaleQOH’ AND type="TR’)
DROP TRIGGER ChangeSaleQOH

GO

CREATE TRIGGER ChangeSaleQOH

ON Saleltem

FOR UPDATE

AS
UPDATE Inventory
SET QuantityOnHand = QuantityOnHand - inserted.QuantitySold + deleted.QuantitySold
FROM Inventory INNER JOIN inserted
ON Inventory.SKU = inserted.SKU
INNER JOIN deleted
ON Inventory.SKU = deleted.SKU

GO

Chapter 7: Database Integrity and Transactions 131

was incorrect, so it is restored while .
. . Action

the new value is subtracted. Again,)

you should test this trigger by check- Create the full U? [DLEINE (vt

ing the current QOH value, issuing an | Check the quantity on hand.

Update statement to the Saleltem table | Change the QuantitySold and SKU (to

to change the quantity sold value, and 500010) in the ‘Saleltem oW

then examine the new QOH to see that | Check the quantity on hand for SKU

. 500000 and 500010.

it holds the proper total.

If you look closely at the Update
trigger code and think about the problem for a minute, you will see that one ad-
ditional situation has to be handled. What happens if a clerk changes the SKU? In
this case, you need to add the QuantitySold back to the original SKU item, then
subtract the QuantitySold from the new SKU item. Of course, the QuantitySold
might have been changed at the same time, so you need to be careful about which
one you add and subtract.

Figure 7.14 shows a revised version of the update trigger. At this point, it is
useful to point out the value of the existence query at the start of these statements.
Since the trigger already exists, you cannot simply issue another CREATE state-
ment with the same trigger name. This code checks to see if the trigger already
exists and deletes it.

Notice the use of the IF statement to divide the trigger so that it handles the two
cases separately. This code executes the appropriate set of commands depending
on which column is being updated. The columns are identified by powers of two

Figure 7.14

IF EXISTS (SELECT name FROM sysobjects
WHERE name="ChangeSaleQOH’ AND type="TR’)
DROP TRIGGER ChangeSaleQOH
GO
CREATE TRIGGER ChangeSaleQOH
ON Saleltem
FOR UPDATE
AS
IF (COLUMNS_UPDATED() & 4) >0 /* 3rd column QuantitySold is changed */
BEGIN
UPDATE Inventory
SET QuantityOnHand = QuantityOnHand - inserted.QuantitySold + deleted.QuantitySold
FROM Inventory INNER JOIN inserted
ON Inventory.SKU = inserted.SKU
INNER JOIN deleted
ON Inventory.SKU = deleted.SKU
END
IF (COLUMNS_UPDATED() & 2) > 0 /* 2nd column SKU is changed */
BEGIN
UPDATE Inventory /* restore QOH for original SKU */
SET QuantityOnHand = QuantityOnHand + deleted.QuantitySold
FROM Inventory INNER JOIN deleted
ON Inventory.SKU = deleted.SKU
UPDATE Inventory /* subtract for QOH for new SKU */
SET QuantityOnHand = QuantityOnHand - inserted.QuantitySold
FROM Inventory INNER JOIN inserted
ON Inventory.SKU = inserted.SKU
END
GO

Chapter 7: Database Integrity and Transactions 132

(for example, 1, 2, 4, 8 for columns 1, 2, 3, 4). If you need the ninth or greater
column, you need to use a different method that you can find the SQL Server
documentation. Notice that when the SKU is changed, the code has to issue two
separate UPDATE commands: one to restore the QOH for the old SKU, and one
to subtract to get the QOH for the new SKU. Finally, notice that the use of the
COLUMNS_UPDATED command makes the entire trigger more efficient. If nei-
ther of these columns is being changed, the trigger falls through and does nothing.
When possible, you should use similar conditions on most update triggers so they
are only fired when absolutely necessary.

These three triggers should now handle all of the sales situations that affect the
inventory quantity on hand. You should reset the QOH value and test all of the
changes. In particular, in the Saleltem row change both the QuantitySold and the
SKU.

Of course, if you have created purchase order and purchase item tables, you
would have to add similar triggers to the purchase item table. The only difference
is that a purchase adds quantity to the QOH instead of subtracting it, so you have
to reverse the signs in the code.

Activity: Define Transactions

Transactions consist of multiple chang- :
es that must succeed or fail together. | Action

One of SQL Server’s strengths is its | Create the Rental form.

support to ensure that transactions are | Create the RentalDiscount table.
completed correctly. In particular, all | Create the Rental Discount form.
changes are written to journal logs. If | Add the text boxes and button.

the system crashes in the middle of a | Save the form.

transaction, the system can still recover | Add a button to the Rental form that
the transactions that were interrupted opens the Discount form.

or roll them back to the point where the

Figure 7.15
Customer
1..1
i CustomerlD
1.7 LastName
RentlD FirstName
SKU Phone
RentFee EMail
ReturnDate Address
ReturnCondition City
RepairCharges State
ZIP
Gender
Rental DateOfBirth
1.1

RentID

RentDate 0..* RentalDiscount

CustomerlD 0..*

ExpectedReturn RgntID

PaymentMethod DiscountDate

DiscountAmount
Reason

Chapter 7: Database Integrity and Transactions 133

() Rental E]@

G4 4 of 2000 [b bl | K (=

Rent Date: | Friday . Febran 17, 2006 \'|

Rent ID:
Customer 1D: Expected Return: tond
Guthmiler, Azao (213-741-4453) v B.utton to open
discount form
Subtotdl $180.00 e
Charges $16.00
Total Due $196.00 Papment Method: |Cash - |
RentFes ReturnD ate ReturnCondition RepaiCharges
3 £0.0000 2/18/2008 Good 0.0000
800375 £0.0000 2/18/2008 Some damage 16.0000
800816 E0.0000 2/19/2006 Good 0.0000

Figure 7.16

changes began. The other important aspect ot transactions 1s the ability to prevent
or handle collisions of two processes altering the same data at the same time.
Katy, the manager at All Powder, has noticed that many customers do not like
being charged for damages caused to the rental equipment. Some of them believe
that the equipment is simply wearing out and failing. She also notices that there
can be several complaints about a specific rental—particularly when it involves
multiple items. David, the rental manager, agrees, but still wants to be able to
track the cumulative charges. He has suggested that any reduction in the damage
charge be recorded as a discount to that customer. That way, he can track the to-
tal damages, as well as which customers might receive the most discounts. Katy
also likes the discount idea, because she wants to implement a discount program
for employees who rent equipment. Since multiple discounts can be applied to a

Figure 7.17

RentID and Amount
are determined by
the Rental form

[® RentalDiscount

Rental Discount

Rent D
Date .
127772004 Record Discount
Amount 16.00
Reason 0l equipment N Date defaults to

today

This is an unbound form built
as a blank Window form

Chapter 7: Database Integrity and Transactions 134

Private Sub DiscountButton_Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles DiscountButton.Click
Dim frmRentalDiscount As New RentalDiscount()
frmRentalDiscount.Show()
frmRentalDiscount.RentIDTextBox.Text _
= Me.RentIDTextBox.Text
frmRentalDiscount. AmountTextBox.Text _
= Me.ChargesLabel.Text
End Sub

Figure 7.18

single rental, a new table is needed. Figure 7.15 shows the table keyed by both
RentID and DiscountDate.

You can build a form to handle data entry for the employee discounts, but do
not do that now. It is a little more complicated to correctly handle the customer
discounts for disagreements over the damage charges. You need a transaction that
decreases the repair charges and adds a row to the RentalDiscount table for the
same amount. To begin, you need to create a Rental form similar to the Sale form.
Figure 7.16 shows a standard Rental form. Notice that it needs subtotals for the
rental amount and for the charges. Any repair charges would be entered when the
items are returned. Eventually, you also need to add a standard command button
to open the form to give the discounts, but it is easier to create the form first and
then return to add the button on the Rental form.

Figure 7.17 shows the RentalDiscount form. It is built from Design view and
not tied to the database. Add the text boxes by hand. Set the default value on the
date field to Today, so the current date and time are entered by default.

The next step is to place a button on the Rental form that will open this Dis-
count form and transfer two values automatically: RentID and Amount. Figure
7.18 shows the code used on the Rental form button click event. The values are
transferred to publicly shared variables, which will be loaded when the Discount
form opens.

Figure 7.19 shows the code for the two trigger events in the discount form. The
form trigger is fired when the form first opens, so it retrieves the values stored in
the two global variables and places them onto the form as the default values. The
second code is triggered when the button is clicked to save the changes. First, it
zeros any charges for that rent, and second, it adds a row to the new discount table
to record the rental, the date of this action, the amount of the discount, and the rea-

Figure 7.19

Button: Click
UPDATE Rentltem SET RepairCharges=0
WHERE RentID = @RentID;

INSERT INTO RentalDiscount(RentID, DiscountDate, DiscountAmount,
Reason)
VALUES (@RentID, @DiscountDate, @DiscountAmount, @Reason);

MessagelLabel. Text = “Changes recorded”

Chapter 7: Database Integrity and Transactions 135

son for the discount. In terms of business policy, the first step might be overkill.
It is possible that the rental manager would want to give only a partial discount to
the customer. If so, he can first run this routine, then return to the Rental form and
enter the remaining value of any charges. If this activity is common, you should
change this form and code so that only the partial amount is subtracted from the
charges.

Figure 7.20 shows the detailed code and one more important addition to the
button code that handles the discount. What happens if something goes wrong
between the two DML commands? The Try/Catch code traps all errors and rolls
back any changes made. Without this code, it is possible for the UPDATE com-
mand to change the value to zero and then the INSERT command could fail and it
would never record the reason for the change. With the exception handling and the
transaction code, both changes will commit or fail together.

Figure 7.20

Private Sub RecordButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles RecordButton.Click
Dim cnn As New SqlClient.SqglConnection(My.Settings.AllPowderConnectionString)
Dim cmd As New SqlClient.SqlCommand
Dim trn As SqlClient.SqglTransaction
Dim sSQL As String
cnn.Open()
trn = cnn.BeginTransaction()
Try
cmd.Connection = cnn
cmd.Transaction = trn
sSQL = “UPDATE Rentltem Set RepairCharges=0"
sSQL &= “ WHERE RentID=@RentID”
cmd.CommandText = sSQL
cmd.Parameters.Add(New SqlClient.SqlParameter(“@RentID”, _
Me.RentIDTextBox.Text))
cmd.ExecuteNonQuery()
sSQL = “INSERT INTO RentalDiscount(RentID, DiscountDate,
DiscountAmount, Reason)”
sSQL &= “ VALUES(@RentID2, @DiscountDate, @DiscountAmount, @Reason)”
cmd.CommandText = sSQL
cmd.Parameters.Add(New SqlClient.SqlParameter(*@Rent|D2”, _
CType(Me.RentlDTextBox.Text, Integer)))
cmd.Parameters.Add(New SqlClient.SqglParameter(“@DiscountDate”, _
CType(Me.DateTimeTextBox. Text,Date)))
cmd.Parameters.Add(New SqlClient.SqlParameter(“@DiscountAmount”, _
CType(Me.AmountTextBox.Text, Decimal)))
cmd.Parameters.Add(New SqlClient.SqlParameter(“@Reason”, _
Me.ReasonTextBox.Text))
cmd.ExecuteNonQuery()
cmd.Transaction.Commit()
MessagelLabel.Text = “Changes recorded.”
Catch ex As Exception
cmd.Transaction.Rollback()
MessagelLabel.Text = “Error saving changes.”
Finally
cnn.Close()
End Try
End Sub

Chapter 7: Database Integrity and Transactions 136

There is one more complication with
the Rental form. If you test the Dis-
count form, you should see the prob-
lem. Even when the Discount form

Action
Edit the Rental Discount form.
Add the specified code to the Click

successfully saves the changes, the new Az\éerﬁ' fresh b d code to th
values are not displayed on the main i REILSE IR 26 GE3 510 Has
Rental form.

Rental form. The reason is because the
Rental form works with a partial copy
of the data that is held in a dataset in
memory. The Discount form wrote the changes directly to the database. For the
form to pick up the changes, you have to do one of two things: (1) have your code
also update the in-memory dataset, or (2) have the Rental form re-query the data-
base to get the current values. It is easier and somewhat safer to re-query the data-
base. The only twist is that it is safer to ask the user to do the refresh manually. If
your code does it automatically, it might throw away changes that the user wants
to save. So, add a button to the Rental form and add two lines of code:
Me.RentItemTableAdapter.Fill (Me.RentalDataSet.RentItem)
ComputeRentalTotal ()

Test the forms.

Note that the Fill command was written by the wizard and it will discard any
changes that were not saved earlier with the Save button.

Finally, note that it is also possible to write the transaction update code inside
of SQL Server as a stored procedure. The Visual Basic code is then simplified be-
cause it simply calls that procedure and passes in the RentID, Date, Amount, and
Reason as parameters. The transaction processing is handled at the database level.
An example of this type of code is presented in the following sections.

Database Cursors, Keys, and Locks
@ Activity: Read Rows of Data

Direct SQL commands are useful for
DML issues where you need to change
or delete rows of data. When you need
program code to examine several rows
of data, database cursors are the an-
swer. Consider the business question of
sales by week. Katy wants to know if
weekly sales increase more in the first
part of the year or in the last part. In
particular, she wants to know the aver-
age percent increase in weekly sales for the first weeks (1 to 15) compared to the
last 15 weeks (38 to 52). Remember that SQL can perform calculations on data
within the same row. SQL can also compute subtotals for groups of data. Howev-
er, it is difficult to get SQL to compare data by subtracting values across two rows.
Instead, it is easier to write a query that does the main computations, and then use
cursor code to do the comparisons.

Begin by creating a query that computes total sales by week. Figure 7.21 shows
the query. Note that you need to format the SaleDate using the DatePart function
with a format of “ww” to get the number of the week. Make sure you compute the
Sum of the price times quantity and that the total is computed for each week with

Action
Create a new query.
Tables: Sale and Saleltem.

Create column DatePart(“ww”, SaleDate)
As SaleWeek

Create column QuantitySold*SalePrice
AS Value.

Sum the Value column by week.

Chapter 7: Database Integrity and Transactions 137

CREATE VIEW WeeklySales AS

SELECT DatePart(“ww”, SaleDate) AS SaleWeek, Sum(QuantitySold*SalePrice) As Value
FROM Sale INNER JOIN Saleltem

ON Sale.SalelD=Saleltem.SalelD

WHERE SaleDate Is Not Null

GROUP BY DatePart(“ww”, SaleDate)

go

Figure 7.21

the GROUP BY clause. A couple of entries have missing dates, so they can be re-
moved from this query. Use the CREATE VIEW line at the top to save the query,
but make sure you test the query before you add this line.

The next step is to compute the percentage change between the rows. The code
for this step will be created within the AvgPercentWeeklyChange function stored
as a Transact-SQL function in the database. Eventually, you can add a button and
result box to a form to display the computation, but it is better to place the code in
the database to make it easier to access from any form, query, or report.

Figure 7.22

IF EXISTS (SELECT name FROM sysobjects
WHERE name = ‘AvgPercentWeeklyChange’ AND type = ‘FN’)
DROP FUNCTION AvgPercentWeeklyChange

GO
CREATE Function AvgPercentWeeklyChange () Define the SELECT statement
RETURNS float for the cursor to trace through
AS

BEGIN /
DECLARE c1 CURSOR FORWARD_ONLY READ_ONLY FOR
SELECT SaleWeek, Value FROM WeeklySales ORDER BY SaleWeek
DECLARE @Avg1 float
DECLARE @N int
DECLARE @PriorValue money ;
DECLARE @cWeek int, @cValue money Create variable to hold the
SET @Avg1 = 0 value from the previous row
SET@N =0
SET @PriorValue = -1.00
OPEN c1
FElL(-:rg '\I@E(:(v-\ll—eZFIiO([\@Ac(\:;alu e Skip t_he first yveek because
WHILE @@FETCH_STATUS =0 there is no prior value
BEGIN
IF @PriorValue > 0
BEGIN
SET @Avg1 = @Avg1 + (@cValue - @PriorValue)/@PriorValue
SET@N=@N + 1
END
SET @PriorValue = @cValue Compute the percent change
FETCH NEXT FROM c1 and keep a runing total
INTO @cWeek, @cValue
END
CLOSE c1
DEALLOCATE c1
RETURN (@Avg1/@N)
END
go

\

|

/

Save the current row value
and move to the next row

/

£ 4

Chapter 7: Database Integrity and Transactions 138

The next step is to write the code that

. Action
computes the average percent increase.
For each pair of rows, the code needs C;eatej[.the AvgPercentWeeklyChange
’ unction.

to subtract the two values and divide by
the value in the prior row to yield a per-
centage change. This percentage needs
to be summed and eventually divided
by the number of calculations to obtain the average percent increase. Figure 7.22
shows the main code. The SQL statement is opened as a cursor, which retrieves
one row of data at a time using the loop. The Avgl variable keeps the running total
of the percentage increase, while N counts the number of operations. The role of
the PriorValue variable is the most important. At the end of the loop, it is assigned
the value obtained from the current row. When the next row is retrieved, the pro-
gram can now compare the current (new) value to the old (PriorValue) value. This
trick is useful for many cursor-based programs, so you should study the code until
you understand it. Use a basic SELECT statement to test the function in the pack-
age. Depending on the actual values in your database, the result should be about
16 percent. Note that this routine does not quite provide the detail Katy wants, but
it is straightforward to restrict the query using starting and ending week param-
eters and call the function twice.

Use SQL to call the function: SELECT
AvgPercentWeeklyChange.

Activity: Generate and Use Keys

SQL Server uses an Identity to generate | Action
unique key values. For the most part, | Create the new Testldentity table.
you have to specify the Identity prop- | Insert a row and display the generated
erty for a table at the time you create key value.
the table. You have the ability to speci- | Insert a row with an existing key value
fy a starting value and an increment for | by temporarily turning off the identity.
each identity. As shown in Figure 7.23, | Insert a row without a key value and
most people stick with the default val- | display the generated value.
ues of 1 and 1.
Once you have assigned the Identity property to a table, the DBMS will auto-
matically generate new values for you. For many operations, such as when clerks
enter data into a form to create a new customer, this process is invisible and pain-
less. However, sometimes you will need to know what value was just created. For
instance, you might use Transact-SQL code to create a new customer, then en-
ter the newly-generated ID into a Sale table. Technically, Transact-SQL has three
methods to return a newly-generated ID value. Note that in all three cases, the
value is not generated until after the row is actually inserted into the table. The
three methods are: (1) SCOPE_IDENTITY, (2) @@IDENTITY, and (3) IDENT _
CURRENT. Many books and online articles recommend the second method (@@

Figure 7.23

CREATE TABLE Testldentity
(

CID int Identity(1,1),
LastName nvarchar(50) null,
FirstName nvarchar(50) null,

CONSTRAINT pk_Testldentity PRIMARY KEY (CID)

Chapter 7: Database Integrity and Transactions 139

INSERT INTO Testldentity (LastName, FirstName)
VALUES (‘Jones’, ‘Joe’);
SELECT SCOPE_IDENTITY();

Figure 7.24

IDENTITY), but you should avoid this approach. As shown in Figure 7.24, the
proper method is to use the SCOPE IDENTITY. In this example, it should return
the value of 1 as the first key. The difference between the three approaches is tech-
nical, but you should understand the main problem with @@IDENTITY so that
you learn to avoid using it. The problem is that @@IDENTITY returns the last
generated key value—regardless of the table or scope. It can cause serious prob-
lems when the database has several triggers that insert rows into multiple tables.

Figure 7.25

SET IDENTITY_INSERT Testldentity ON;

INSERT INTO Testldentity (CID, LastName, FirstName)
VALUES (10, ‘Brown’, ‘Bobbie’);

SELECT SCOPE_IDENTITY();

SET IDENTITY_INSERT Testldentity OFF;

For example, you could add a trigger to

the first table (TestIdentity) that causes | Action

a row to be inserted into a second table | Create the SQL NewSale Procedure.

(say Customer). The @@IDENTITY | Create a new form with no data.

variable will return the Identity value | Add boxes for CustomerID,

for the last table in the chain (Cus- | EmployeelD, SKU, and txtSaleID as

tomer) instead of the one you expected | the generated key.

(Testldentity). The problem is particu- | Create a command button and add the

larly hard to spot when someone else indicated code.

writes the trigger code later and you do | Test the form.

not know about it.
Identities present another problem. You cannot alter a table later and add an

identity value with SQL. However, in an emergency, you can change the table

definition in the Enterprise Manager to add an Identity property to a table. But,

the Enterprise Manager goes through some extreme steps to make this change, so

you want to avoid it. Essentially, it creates an entirely new table, copies the data

from the old table and rebuilds all relationships. Because of this complication, you

should always try hard to add Identity properties when you design the tables. If

you really have to go back and add them later, make sure you do it when no one

else is using the system.

Figure 7.26

Customer ID card is scanned

Create new sale Get SalelD

Scan an item
< Save sale item, update QOH and totals | Save SalelD, SKU, Quantity |

Repeat until done (payment key)

Chapter 7: Database Integrity and Transactions 140

IDs and SKU would be scanned,
but to test code, set default values

TestScan

Customer |0 Ermployee 1D

SkU 500000
Record Sale

Generated Sale 1D 10001

Chatges recaorded.

Figure 7.27

You are likely to face one more problem with Identities. What happens when
you want to add existing data to a table with an Identity property? In most cases,
you would like to keep the original key values in the existing data. Otherwise,
your relationships might not be valid. If you are using SQL INSERT statements,

Figure 7.28

CREATE PROCEDURE NewSale(@CustomerlD int, @EmployeelD int,
@SKU nvarchar(50), @NewSalelD int OUTPUT)
AS
BEGIN
INSERT INTO Sale(CustomerlD, EmployeelD, SaleDate)
VALUES (@CustomerlD, @EmployeelD, GETDATE())

DECLARE @tmpSalelD int
SET @tmpSalelD = (SELECT SCOPE_IDENTITY())

DECLARE @tmpListPrice money

SET @tmpListPrice = (SELECT ListPrice
FROM Inventory INNER JOIN ItemModel
ON Inventory.ModellD=ltemModel.ModellD
AND SKU=@SKU)

INSERT INTO Saleltem(SalelD, SKU, SalePrice, QuantitySold)
VALUES (@tmpSalelD, @SKU, @tmpListPrice, 1);

SET @NewSalelD=@tmpSalelD
END
go
-- Use the following commands to test the function:
DECLARE @NewSalelD int
EXEC NewSale 502, 5, N'500000’, @NewSalelD OUTPUT
SELECT @NewSalelD

Chapter 7: Database Integrity and Transactions 141

you tell the DBMS to keep the original values with the IDENTITY INSERT com-
mand. Of course, existing data presents problems when you are using identities.
You must make sure that your generated Identity values can never duplicate an ex-
isting value. When you know that you will be importing data, make sure that you
specify a starting value substantially higher than any existing key value.

Integrating the key generation with forms is an extension of this process. The
trick is to write a Transact-SQL function to handle the insert and key generation.
Consider a case where you need custom code to generate each sale and enter the
sale items. For example, perhaps you have a bar-code scanner and want to auto-
mate as much of the checkout process as possible.

Figure 7.26 outlines the basic events that will occur. Notice that when the new
Sale is created, the Identity value will be created automatically. The catch is that
you need to get this value so that you can save it in the Saleltem table for each
scanned item.

Now consider the issue of the bar-code scanner. To simulate the data from the
scanner, begin by creating a form in Design view that has text boxes for the three
main keys: CustomerID, EmployeelD, and SKU. Figure 7.27 shows a sample
form with default values that will work. Add a command button and a text box to
display the SalelD that will be generated within the code.

The main trick in this example is to write the SQL code within a Transact-
SQL procedure. Figure 7.28 shows the code that runs the process. First, the row
is inserted into the Sale table using the current date. This insertion automatically

Figure 7.29

Private Sub RecordSaleButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles RecordSaleButton.Click
Dim cnn As New _
SqlClient.SqlConnection(My.Settings.AllPowderConnectionString)
Dim cmd As New SqlClient.SqlCommand
Try
cnn.Open()
cmd.Connection = cnn
cmd.CommandType = CommandType.StoredProcedure
cmd.CommandText = “NewSale”
cmd.Parameters.Add(New SqlClient.SqlParameter(“@CustomerID”, _
Me.CustomerIDTextBox.Text))
cmd.Parameters.Add(New SqlClient.SqlParameter(“@EmployeelD”, _
Me.EmployeelDTextBox.Text))
cmd.Parameters.Add(New SqlClient.SqlParameter(“@SKU”, _
Me.SKUTextBox.Text))
Dim prmSalelD As New SqlClient.SqglParameter(“@NewSalelD”, 0)
prmSalelD.DbType = DbType.Int32
prmSalelD.Direction = ParameterDirection.Output
prmSalelD.SqlDbType = SqlDbType.Int
cmd.Parameters.Add(prmSalelD)
cmd.ExecuteNonQuery()
Me.GeneratedIDTextBox.Text = prmSalelD.Value
MessagelLabel.Text = “Changes recorded.”
Catch ex As Exception
Messagelabel.Text = “Error saving changes.”
Finally
cnn.Close()
End Try
End Sub

)

Chapter 7: Database Integrity and Transactions 142

generates a new key value. Second, this generated value is retrieved and held in
a temporary variable. Third, the list price of the item being scanned is retrieved
and also placed into a temporary variable. Finally, a row is added to the Saleltem
table using the generated SalelD value to link it to the Sale table and the retrieved
list price so clerks do not have to memorize prices. You should add exception han-
dling to the code in case anything goes wrong.

The last step is to display the newly generated SalelD on the form so you can
see it. You should be able to use a SELECT command to retrieve the inserted Sale
and Saleltem values. You could also use the Sale form and search for the new sale.
Of course, you could modify the code to handle multiple items being scanned,
along with a screen to add the payment data, but they are not needed at this point.

Visual Basic code can call a SQL procedure directly. Figure 7.29 shows that
most of the steps are similar to those used earlier. Make sure you declare the Com-
mandType as a stored procedure. Input parameters can be added directly by speci-
fying the name and the value. The output parameter is used to return the generated
key value. If you need this value in your Visual Basic code, you must declare the
parameter as a separate variable. You can then use its Value property to get the
returned value and use it in other sections or display it on the form.

Activity: Compare Pessimistic and Optimistic Locks

The issue of locking records to prevent
concurrency errors could be applied
to the Rental Discount form. Think | Createablank new form.
about the possible errors if one clerk | Adda textbox for Customer ID.
enters new values for damages while | Add a text box to enter a new ZIP Code.
a second one is offering a discount. | Create a button and add the indicated
However, the differences between code for it.
pessimistic and optimistic locking are | Test the form.
difficult to understand, and it is better | Use the data wizard to create a second
to start with a simple problem that is form that displays CustomerID and ZIP
independent of the other forms. Con- Codoiin e bl 1
sider a program that changes zip codes
for customer data.

Create a new form that is not bound to the database. As shown in Figure 7.30,
add a box to select a customer. You should consider adding an Combo box for

Action

Figure 7.30

LockTest [Z]E]

Record Locking Tests

Mew ZIP Cade 95839

| Change ZIP Code |

Chapter 7: Database Integrity and Transactions 143

CREATE Procedure UpdateZIP(
@CustomerlD int,
@NewZIPCode nvarchar(20),
@ErrorCode int OUTPUT)

AS

BEGIN

UPDATE Customer

SET ZIP = @NewZIPCode

WHERE CustomerlD = @CustomerID

SET @ErrorCode = @@ERROR
END

Figure 7.31

practice, but it is not required since you
will be able to find the ID in a second
form. Add a text box to enter a new zip
code. Create a command button that
will execute the code to change the zip but do not save the changes.

code for the selected customer. . In the test form, enter the same Customer
The .actual cpde to change the zip ID and a different ZIP code, then click
code will be written as a Transact-SQL the Save button.

procedure. As shown in Figure 7.31, | Return to the list form and save the

the procedure uses a straightforward changes.

UPDATE statement. The one catch is | You should receive a concurrency error
that the UPDATE command might fail. message.

If it does, Transact-SQL records an er-
ror value in the @@ERROR variable. You should test this value after every SQL
command, particularly data manipulation commands. In this example, the proce-
dure does not know how to handle an error, so it simply returns the error value to
the calling program. If the value is nonzero, an error has occurred. Test this new
form to ensure it works.

The next step is to write the standard code to call the UpdateZIP procedure from
Visual Basic. Figure 7.32 shows the code. Be sure to include the code to create the
output parameter so the VB code can retrieve any error values. Since it is not clear
what errors might arise, the code simply displays a message to the user. By now,
this code should be familiar. The only tiresome part is creating the parameters, but
you can copy the code that you created earlier and edit it to save time.

You need two processes changing the same data to test the data locks and con-
currency. To be able to see the effects of locks, create a quick and simple form
to view a few of the columns of the Customer table. Use the data grid Wizard to
create a form based on the Customer table showing CustomerID, LastName, First-
Name, ZIP, Phone, and EMail. Choose the tabular layout so you can see several
rows at one time. Figure 7.33 shows the basic form. Keep the form small so you
can display it on the screen along with the TestLock form. Test the form by reset-
ting the zip code for the first customer.

The update code written by the Visual Studio data wizard supports optimistic
locking. These forms will illustrate how the system works. Open both of the new
forms. Begin with the List form, click on the ZIP code for the first customer and
change the last digit. Do not click the Save button yet, so that the changes are only
made to the internal dataset. Switch to the LockTest form, enter the Customer ID

Action

Open both forms so they are both visible
on the screen.

In the list form, change the last ZIP digit

Chapter 7: Database Integrity and Transactions 144

Private Sub btnChangeZIP_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnChangeZIP.Click
Dim cnn As New SqlClient.SglConnection(My.Settings.AllPowderConnectionString)
Dim cmd As New SqlClient.SqlCommand
Try
cnn.Open()
cmd.Connection = cnn
cmd.CommandType = CommandType.StoredProcedure
cmd.CommandText = “UpdateZIP”
cmd.Parameters.Add(New SqlClient.SqlParameter(“@CustomerID”, _
Me.CustomerlDTextBox. Text))
cmd.Parameters.Add(New SqlClient.SglParameter(“@NewZIPCode”, _
Me.NewZIPCodeTextBox.Text))
Dim prmErrorID As New SqlClient.SqglParameter(“@ErrorCode”, 0)
prmErrorID.DbType = DbType.Int32
prmErrorID.SqIDbType = SqlDbType.Int
prmErrorID.Direction = ParameterDirection.Output
cmd.Parameters.Add(prmErroriD)
cmd.ExecuteNonQuery()
If (prmErrorID.Value <> 0) Then
MessagelLabel.Text = “Error in database.”
Else
MessagelLabel.Text = “Changes recorded.”
End If
Catch ex As Exception
Messagelabel.Text = “Error saving changes.”
Finally
cnn.Close()
End Try
End Sub

Figure 7.32

for the same customer you selected in the list form (the ID is probably 1). Enter a
new ZIP in the text box, then click the button to submit the changes. You should
not receive any error messages, and the change will be written to the database.
Now, return to the CustomerList form and click the Save button. This action will
attempt to write internal changes to the database, but it will generate a concur-
rency violation error message. If you look through the code written by the wizard,
you will see that the update command includes a WHERE clause that compares
the value original read from the database. Consequently, the form cannot update a
column where the data has been changed by a different process.

The code written by the wizard does a good job of catching the concurrency
error. However, it does nothing to help resolve the problem. But, finding a general
solution to the problem is difficult. Think from the perspective of the user looking
at a list of customer data. Remember that the list is held in memory until the Up-
date button is clicked, so if there are several users, the chance of a conflict could
be high. On clicking the Update button, you receive a notice that someone else has
modified the data since you first retrieved it. (At a minimum, the error message
has to be rewritten so it clearly explains what happened.) What do you want to do
now? Ultimately, you have only two choices. (1) You could ignore your changes
and reload the dataset to pick up the change made by the other person, or (2) you
could force your new value to overwrite the other change. In general, it would be
nice to see the other change before you make a decision.

Chapter 7: Database Integrity and Transactions 145

CustomerList

CEX

P 4 |2 afzo04 | b bl | 9P K =

CustlD | LastMame = FirstMame | ZIP Phone Ebdail
0 Walk-in

» 1 Jones Jack ! 111-222-3333 Jones) 2020Emsn.com
2 Sanchez | Paul 95838 | 111-444-9939 SanchezPB44Emsn.com
3 Garner Chad BOBOT | 213-080-4539 GarnerC7 3Emsn.com
4 Resves | Gil 35401 | 213-186-6502 ReevesGEI0Emsn. com
g Hicks Evelyn 7Fo03 213-959-5499 HicksE B08{Emsn.com
B Grimes Ermest 5420 | 32-817-7045 GrimesE 460 msn. com
7 Rice Charlotte | 94025 | 312-608-6819 RiceCESE@msn. com
3 M arlow Jemy 45202 | 213-606-0452 M arloww 67 4¢Emsn. com
| Rogers Rabin 38138 | 213-149-9519 FiogersR135@Emsn. com
10 Riggs Harriet 23232 | 213-584-6864 RiggsHE90@&Emen. com
1 Grimes Greg 92077 | 213-288-6416 GrimesG364Emsn. com
10 ' il {a i nul ks i I | =G T[] o Koo d 1 (AR,

Figure 7.33

From a programmer’s perspective,
the simplest solution is to leave the ex-
isting changes in the database and re-
trieve the new values. Then, the user
can decide whether to keep them, or
re-enter new data. All you have to do
is add a requery button on the form and
use the code from the original Load
button. This approach may not be per-

Action

Add a requery button to the CustomerList
form.

Test the button when concurrency
violations arise.

Add the concurrency test to the
procedure code and test it.

fect, because it throws away the user’s change, but for small updates, this concern

is not critical.

Visual Basic datasets have a feature that makes it possible to provide more so-
phisticated concurrency error handling. You can write code that automatically re-
trieves the new values entered into the database and holds them as alternate data in
the dataset. Both the new value and the user’s change can be held simultaneously.
You could then include a button on the form so the user can switch back and forth

Figure 7.34

CREATE Procedure UpdateZIP(
@CustomerlD int,

@OIdZIPCode nvarchar(20),
@ErrorCode int OUTPUT)
AS
BEGIN
UPDATE Customer
SET ZIP = @NewZIPCode

AND ZIP = @OIldZIPCode

SET @ErrorCode = -1
ELSE
SET @ErrorCode = @@ERROR
END

@NewZIPCode nvarchar(20),

WHERE CustomerID = @CustomerID

IF (@@ERROR = 0) AND (@@ROWCOUNT < 1)

Chapter 7: Database Integrity and Transactions 146

between the two values and choose which one to use. This approach is more user
friendly, but the coding is a little tricky. Reading the data and holding both values
in memory is straightforward. You’re your code examines an item in a data row
within a dataset you can use the DataRow Version.Original and DataRow Version.
Current indicators to specify which of the values you want to see. However, when
you retrieve new values, you have to watch out for deleted rows and maintaining
the primary key properties. Also, the code for creating a swap button is beyond the
scope of this book. With some additional experience, you can create a more so-
phisticated error handling code. The goal is to automate as many steps as possible
and make the job of the user easier.

Notice that the original test form with the UPDATE statement does not have
any concurrency control. This code will ignore any other changes and simply
write the new value to the database. Sometimes, this approach is useful, but you
should understand how to add optimistic checking to the code in case you need it
for a more complex project.

Optimistic concurrency is easy to implement in an SQL UPDATE statement.
Simply add one more condition to the WHERE statement: AND ZIP = @oldZIP.
Of course, you need to add the @oldZIP parameter and your form needs to keep
an original value around so that it can be passed to the procedure. Since the zip
code update form does not need to read or keep original values, there is no reason
to implement optimistic concurrency testing. But, if you wanted to do so, you
would have to examine the @@ERROR code and the @@ROWCOUNT vari-
ables after the UPDATE statement to ensure that no error arose and that at least
one row was updated. As shown in Figure 7.34, failure of either of these condi-
tions would generally indicate a concurrency violation, and you could return a
special error code to the calling program.

Exercises

Many Charms

Inventory control is a critical success factor for determining profitability at Many
Charms. Madison and Samantha need to watch the quantity on hand—particularly
for the high-cost items. The suppliers are a complicating factor. Some of them are
known for being inconsistent in delivering items ordered. As a result, Samantha
and Madison have to carefully check every shipment they receive and cross-match
it to the orders. Many times the shipment is missing items, and once in a while,
the companies send items that were not ordered. These items have to be returned,
but the supplier billing is just as bad. Madison has to continually watch the sup-
plier bills to ensure that they are only billed for items they actually ordered and
received. As a result of problems, she also wants to track the unordered items that
were sent back, so if they show up on a bill, she can provide the details of when
the item was returned.

1. Create a form to handle purchase orders to suppliers. Create a second form to
handle received shipments. Be sure that it can handle receipt of partial orders
and track the day that each partial order arrives. It must also handle receipt of
unordered items (which should be stored in a separate table).

2. Add a button to the Received Orders form so that if they receive an
interesting unordered item, it can be added to the orders and inventory and
paid for. Create it as an entirely new order and be sure to handle optimistic
locks and transactions.

)N

Chapter 7: Database Integrity and Transactions 147

Create a form that enables Madison to select a product category and metal,
and then enter a percentage price increase. Write the SQL update code so that
this increase is applied to the list price of the selected categories.

The company often ships orders to three states, each of which charge
different sales tax rates. Write a function that takes the state code and the
amount and returns the tax due.

Create a form and write a program that for a given type of charm and type of
metal, computes the average of (1) the number of days between sales of that
item, and (2) the average number of days between purchase orders for that
item

A /?,5 Standup Foods

¥ While food items and celebrities are important aspects of the business, the day-
to-day operations depend on managing the employees. In particular, Laura wants
to reward the workers who continue to do well. The evaluation and rating system
she has implemented is a major component of this plan. Now she has to set up the
system to make it easy to use so everyone can enter the necessary data. She also
needs a way to analyze the data to help managers select the best employees for the
next job, and to reward people who do well.

1.

Create a form to enter data about an event, with an emphasis on the jobs
performed by the employees and their evaluations. Make sure the form
includes the revenue received from the event, the costs, and the dates
involved. Create a separate form to enter and display data about employee
specializations.

Create a form for Laura that lets her select a job category and then displays
the top-rated employees in that category. (Hint: Create a subform and modify
its source query using code.) Create a text box so Laura can enter an average
rating as a cut-off value. Create a second text box so Laura can enter a
percentage raise increase. Add a button and write the code to give that raise
increase to all of the selected employees.

Sometimes managers need to hire part-time workers on the spot. Create a
simple form that lets managers add basic employee data without allowing
them to see or change data for other employees.

Workers often want to estimate how much money they will make after all
withholdings are deducted. Calculating withholdings is a complex process,
but create a simple version to use as an estimate. The function should have
number of exemptions, wage rate, and hours worked as inputs. It returns an
estimate of the take-home pay. Use sample paychecks or research the Internet
to estimate the tax withholding based on the number of exemptions. Create

a simple form so employees can plug in these three values and receive the
estimate.

Laura needs to provide some documentation to the bankers regarding the
firm’s growth. Create a new table with columns for month, revenue, costs,
and percent change for revenue and cost. Write a query to compute the total
revenue and costs per month and insert those values into the new table. Write
a cursor-based program to compute the percent changes and insert the values
into the appropriate columns.

Chapter 7: Database Integrity and Transactions 148

&3 EnviroSpeed
k} Tracking the knowledge of the workers and experts along with recording the ex-
periences obtained in the many clean-up situations is a primary element of the
company. You need to create forms that make it easy for workers to enter the data
and knowledge gained. However, for the company to stay in business, you also
need to track costs and revenue. Revenue is generally straightforward—the com-
pany bills based on the underlying costs, but payments are generally received over
time. You will need a form to record the receipt of payments by the customers.
1. The company is trying to standardize its fee structure. Write a function
that has inputs for the cost of the crews, the cost of expert time, the cost
of chemicals, transportation costs, equipment, and miscellaneous costs.
Compute a billing fee based on a percentage profit from each of these costs
(crews: 20 percent, experts: 30 percent, chemicals: 15 percent, transportation:
10 percent, equipment: 50 percent, miscellaneous: 15 percent). Also include a
$50,000 fixed cost for overhead.

2. Create a form that enables managers to quickly put together a crew in an
emergency. The form will have selection boxes for specialty and years of
experience (subtract date hired from today). Clicking a button will retrieve a
list of crew members meeting the desired conditions. Double-clicking on a
name should add that person to the crew required for this disaster.

3. In the middle of an incident, crew members still need to record all of the
details so they can be retrieved later. Create a form that enables them to enter
the needed information. Be sure to include a way to quickly add a list of
chemicals encountered in the incident. Mostly they should be able to select
from a known list, but they sometimes encounter new chemicals. Be sure
to control for concurrency, since several people may be entering data at the
same time.

4. Write a program that evaluates payments by each customer. Assuming
payments are due at the end of each month, assess an interest charge of one-
half percent of the outstanding balance. Also, assess a late fee of $200 for
each month that a payment is late. Automatically add these values to the
customer’s balance. Note, You will have to enter several payments and late or
missing payments to test the function.

5. Enter enough sample incident data to cover at least a year. Write a cursor-
based program to calculate and display the percent increase in revenue per
month.

Final Project

The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following tasks.

1. Make the forms easier to use by automating as many tasks as possible.

2. Examine the case for situations where you can use SQL to update records
selected by the users. For example, consider price increases, employee raises,
and automated inventory orders.

3. Look for potential reports that require comparing data over time. Write the
cursor-based code to generate the necessary change data.

Chapter

Applications

Chapter Outline

Applications, 150
Case: All Powder Board and Ski Shop, 150
Lab Exercise, 151
All Powder Board and Skip Shop Application, 151
Exercises, 164
Final Project, 165

Objectives

+ Build applications that connect forms and reports.
* Add toolbars and menus to forms.

» Add Help files to the database application.

» Deploy the application.

149

Chapter 8: Applications 150

Applications

The main purpose of the DBMS is to store data efficiently and provide queries to
retrieve data to answer business questions. But from the perspective of businesses,
the true value of the DBMS lies in the applications that can be built on top of the
database. Chapter 6 showed you how to build forms and reports that make up the
heart of an application. This chapter shows you the additional steps needed to
make the application integrated and easy to use.

A finished application contains all of the forms and reports needed to solve a
particular problem. It also needs finishing touches such as menus and other navi-
gation links between forms. Additionally, you usually have to create Help files to
provide assistance to users when they first learn the system.

Case: All Powder Board and Ski Shop

The primary application at All Powder Board and Ski Shop is the need to track
sales and rentals. Of course, these applications also require you to build forms
and reports for inventory items and customers as well. Eventually, you will have
forms that store data into each of the tables in the relationship diagram. As shown
in Figure 8.1, these forms and reports are integrated into a common style and
structure. A startup form is often used to direct users to the rest of the application.
Buttons are used to link to forms and reports. You can also create custom menus to
highlight the main operations available to users on a particular form. Finally, you
need to build help files to provide additional information or instructions to users.

Figure 8.1

EB| Menu

Customers | Suppliers Close Custom toolbar

EIBX

EZ All Powder Board and Ski Shop

i e

‘ Customer

Hide Fint Optians

Sale

wder Board and Ski Shop

Contents | index | Search |

Introduction to the All
Powder Board and Ski

Customer Sales Totals
- | Startup form |

SkiBoard Style

e Repnﬂ Manager - Windows Internet Explorer

Shop

= @ Customer Options:
Sales Options.

__ All Powder Board and Ski
£ & Shop sells and rents
snowboards and skis for all

levels of riders and skiers.

G_\:: ~ [] Htpsifocabhost ReportsfPagesiRepart. aspttemp v 44| x| |
File Edit Wew Favortes Took Help e = o4 | 3 of 501 | > b ‘ Y H
W % [?RepuvtManager [‘ v B) - - page - (3 Teok -
— SdelD, Sale Date: Fidey . Mach ¥
_ SQL Server Reporting Services Home | My Subscriptions | Site Settings | Hels
== Home > Powder08Reports > Search f"”l:l Customer. | Baldwin, Femando (217 + Employee: | Miyahira, Hideharu 555 v
“! Customer Sales
| | Shipsddess [55165malhouwseRoad | ShipState 4L |
m m [Phen City | shpzip [388E7]
(i New Subscription
iiySold SaleP Vel
44 [2 Jorass b b [Jrmainex Integrated ELEEDE e
> 1 3200
[Sckcafomat wlogor B 3 forms and 500015] ww 10
Forbes Horace 69 reports 800115 1 425.00 425.00
213.757.9252 ForbesHE10@msn com p B00126 1 200 200
T
100115 1 308.00 308.00 Total 000
600016 1 32.00 32.00
800419 166.00 166.00

T S N
T R N

Done

3 Local ntranet 00w -

Chapter 8: Applications 151

Lab Exercise

All Powder Board and Skip Shop Application

Integrating the forms and reports is the first major step in creating the applica-
tion. You need to identify the tasks performed by various user groups. With this
knowledge, you can sets of forms and reports that match the tasks of each group.
While you are integrating the forms and reports, you should also make all of them
consistent. Actually, you should create a design template and standard for an ap-
plication before you begin creating forms and reports. The template contains the
primary elements that you want on every form, such as a menu, logo, title, and
perhaps a Close button. A design standard spells out details such as the fonts, page
sizes, margins, colors, and naming conventions.

It is possible to create a template form for use in Visual Studio. However, you
cannot use the data-form wizard with a custom template. Because experienced
developers rarely use the form wizard, this limitation is rarely an issue. A template
is basically a blank form that contains standard design elements. You simply cre-
ate a new blank form, add the logo, title, menu bar, and any code that will apply to
all forms. Save the form with a name that everyone will recognize. Unfortunately,
you cannot apply a template to an existing form. Instead, you make a copy of the
template form, and then build the form using that base. The goal of a template
form is to make it easier to create a standard look-and-feel for all input forms (and

~ reports). Templates are particularly helpful in a project with multiple developers.

@f Activity: Create a Templaz‘e Form

Applications need a consistent look
and feel. Forms should have common
elements, such as a title, menu, a Close .
button, a message area, and a standard | \ame it TemplateForm. '
location for the data elements. Many | Set the BackColor to Window (white).
applications also include a company | Addalogo file.

logo and possibly text recommended | Add a form title.

by the legal department. All of these el- | Add a Close button.

ements should appear in consistent col- | Add a MessageLabel at the bottom.
ors and locations on the form. When
you built forms in Chapter 6, you probably spent most of your time just getting
the data elements to work the way wanted. Now, you have to pay attention to col-
ors and formats. Actually, you would normally create a standard template before
you build the first forms. You cannot apply templates directly to an existing form.
Instead, you have to create a new form based on the template and add the data ele-
ments to it. But, you had enough things to worry about in Chapter 6, so templates
were deferred.

You create a template file by building a blank form and adding the elements
that are common to all forms. Typically, these elements include a logo, a form ti-
tle, a close button, and a label for messages to be displayed to the users. So, right-
click the project name and add a new blank form. Rename it as TemplateForm to
help you remember its purpose. Find an image logo file and place it on the new
form. Add a label for the title. Set its name to FormLabel and enter Form Name as
the text. Set it to a slightly larger font (such as 10 point and bold). Add a label at
the bottom of the form and set its Name property to MessageLabel. Remove the

Action
Add a new form.

Chapter 8: Applications 152

text, which will make it invisible, but harder to select. Add a button to the form
and set its name to CloseButton. Double-click the button and set the code to close
the form:

Me.Close ()

Save the new template form. If you add complex code to the template form,
you should test it by itself. You can temporarily set TemplateForm as the startup
form in the project’s properties. In general, this form will not be opened directly,
but is used to create new forms. Figure 8.2 shows the basic elements of the new
template form. Of course, you can use a graphics designer to create a more com-
plex form. You can include additional buttons, custom menus, or code that needs
to be present on all forms. Notice that this design leaves a row of space at the top
of the form. Visual Studio tends to put the record-selector menu in that location,
so you can save some time by leaving that space blank.

To use the template form, you must first make a copy of it—to preserve the
original. Right-click the TemplateForm object in the Solution Explorer and choose
Copy. Right-click the project name in the Solution Explorer and choose the Paste
option. A new form, usually named “Copy of TemplateForm” will be created.
Right-click it to rename it as Customer2. Double-click the new form to open. You
will probably see an error page—because renaming a form does not rename the
underlying class. Choose View/Code from the main menu. To remove the duplica-
tion, change the class name from TemplateForm to Customer2:

Public Class Customer2

Save everything and close the new Customer2 form to clear the error page. Re-
open the Customer2 page and you should see a working version of the template.
Now you can build the form just as you would any other data form. You can fol-
low the steps in Chapter 6 by dragging the Customer table from the Data Source
window onto the main form. You could also open the original customer form and

Figure 8.2

Buld Debug Dats Iook ‘Window Community Help

b G2 @ S b pebug ~ Any CPU

X

3 Error it | 5] Output
Ready tn1 =n chi

Chapter 8: Applications 153

copy every object onto the new Cus-
tomer2 form. Just be sure to copy all
of the objects, including the dataset Copy the TemplateForm.)

and table adapter. You will also have to | Paste anew form and name it Customer2.
copy the code for the Save button and | If necessary, create a new Customer
Load event. dataset in the Data Source.

To test the form, open the Main Add the Customer table to the form.
(startup) form and edit the code for the | Change the Menu to open Customer2.
Customer button. Currently, it opens | Test the form.
the Customer.vb form. Double-click
the Customer button to open the code window. Change the two references from
Customer to Customer2. Save everything, rebuild the project and run it in debug
mode. Figure 8.3 shows the new version of the customer form that is opened when
you click the Customer button.

By building all forms from a common template, they will have the same look at
feel. As users work with the application, each form will become familiar and they
know that actions they take on one form will work the same on other forms. The
template makes it easier to maintain visual consistency; you will still have to be
careful to ensure that all forms behave the same way.

One of the drawbacks to this type of template is that it is not dynamic. If you
want to make changes after forms have been built, you will have to go back to
every single form and make the same changes. Otherwise, you would have to
rebuild each form again. It is possible to copy-and-paste elements from one form
onto a new template, but it still takes considerable time and patience. Consequent-
ly, you really want to be sure the template is complete and correct before you use
it to build forms. In a large project, you might spend several weeks working with a
graphics designer to create the template form.

Action

Figure 8.3

Customers E]@

1 ofzond | b M X A

Customer |D: |U

Last Mame: |W’a|k-m

First Mame: |

Phaone:

EMail:

Address:

State:

ZIP:

|
|
|
Clity: |
|
|
|

Gender:

Date O Bith: | Sundsy , December 24,2006 =]

Chapter 8: Applications 154

@op, Activity: Create the Startup Form
-\ Once you have created the forms and

. . Action
reports, you need to combine them into)
an application. A startup or switchboard | #dd an image or logo to the menu form
(try clip art).

form is a key element of an application.
It is a form that contains links to the
other forms and reports. Generally, it
is easy to create—the challenge lies in
determining how to organize all of the
forms and reports. In most cases, users
will only see the application through
your forms. They will almost never
want to open forms directly from the
database. You have to create a struc-
ture, beginning with the switchboard form that guides them through their tasks.
This process will often include links on other forms as well. You will have to test
this sequence with the users to make sure that it matches their job workflow.

Remember that Visual Studio automatically creates a blank form when you
start a new project. You have been using that form as the main menu when you
created your other forms. So, you already have a start at creating the application.
However, as your application grows in size, you will have to spend some time to
think about the overall structure of the menus. You cannot put dozens of button
links on the main menu and expect people to find the right one. Instead, you might
have to add submenus—splitting the buttons across several new menu forms. You
will have to talk with the users to understand how they work and how the links
should be grouped for associated tasks.

Figure 8.4 shows a start of the main menu form. An image or logo is often used
to add some color and personalize the menu. The form includes a link to display
one of the reports. You can use the LinkLabel or a command button. In either case,

Figure 8.4

Arrange the form buttons.
Add a LinkLabel to open a report.

Add the VisitLink subroutine to your
code.

Enter the code to call the VisitLink with
the appropriate URL to open the desired
form.

Compile and test the links.

3 crosoft Visual Studio
Add image |CERTEETEERERTEEEE
Wlth EEWF Y - 5L b Debug - Any CPU - | [# loadppt - | s Bl
. BolE 8 ST o | 53 3] E e B EENETEN
PlCtureBOX Menu.vb [Design] | Start Page | Customer Seles.rdl [Design] | TemplateForm,vh [Desian] ¥ X | Solution Explorer - Soltion Powder... - & X
A B & F| EE&
i (=] Rental.vb A
'Tma\ 0 28] RentalDataset. xsd
A L. i i 2] Rentabiscount.vb
= . i All Powder Board and Ski Shop sdent
By 30l SaleFormDataset.xsd
] skisosrdstyle.vb
- |40 skiBoardStyleDataSet. xsd
18] Taes.vb
(3 MessageQueue % ;E";FS"E&F“;"' n
= .] TestScan.
7 MonthCalendar (o] Custoes Ssles Report 5 3 poudtmnepons
o] Hotfyleon ki Board Stle 4 (= [Shared Data Sources
[13] NumericUpDown +3» AlPowderDataSource.rds
e Add 5w
Eop 2 l‘epOl‘t 2] Customer Sales.rdl —
5 Pogesetupbinbn . . ~
] panel 11nk Wlth J5olution Explorer [T Class view
4] PerformancaCounker (ol . Rar=iies oI 5
L et LinkLabel S ———
3 PritDislog [(Teasfan) =
s> = EEE
L2, PrintPreviewCortrol BackColor L[] window _
2 Prinresientidog 1 Backgroundimage [_] tnone)
Backgroundimagel Tie E
4 Process . Cursor Defaut
(50 ProgressBar ¥ O f d Fork Micrasaft Sans Sert, €
T (e [pen forms an s [Contltes
. FormBorderstyle Sizable
QOutput - x
submenus with buttons e ho
T v L RightTolcftiayout Fakse
Text Menu

Powdar08 -> D:\Bacls TeTFowas r 00T Povasr 08 BIn D ebug' Fowdez 06 axe

succeeded, 0 failed, 0 skipped ==

UseWatCursor_ False
Tent
The kext assaciated with the contral,

S

< |

(o1 st] ouput

|

Ready

Chapter 8: Applications 155

you will have to add a couple of lines of code to activate the report—it cannot be
done by setting a property. The SQL Server reporting service is powerful—all re-
ports are delivered through a Web browser. Actually, users could go directly to the
report server and run all of the reports in the folder you created (Reports08). In the
application, you will want a link to bring up only one form. You accomplish this
task by providing the URL of the specific form.

The first step in displaying a report form is to make sure you know where the
reports are stored. Begin by realizing that they are not stored in your project. The
actual report definition is held on a Web server. So where is this Web server? The
answer is that it depends on how you set up your system. If you just installed the
reports service for your computer, then it uses the localhost Web server. In an
actual project, you would install the reporting service on a specific company Web
server—just be sure to record the name of the server and the name of the default
service. Use http://<server name>/Reports in your Web browser to ensure that the
Reporting Services are running correctly. Right-click the name of your Reports
project in the Visual Studio Solution Explorer window and choose Properties. Set
the TargetReportFolder (such as PowderO8Reports) and the TargetServerURL. If
you are testing everything on a single computer, you can use http://localhost/Re-
portServer. Now you need to deploy your reports to that server, using the Build/
Deploy the reports project.

Once you know where the reports service is running, and the name of the fold-
er, and the name of the report, you can create a URL to open a specific report. For
example: http://localhost/Reports/Pages/Report.aspx?ItemPath=%2fPowderO8R
eports%2fCustomer+Sales. The first part (localhost) is the Web server machine
name. The next (Reports) is the name of the reporting service that you created
when you installed it. The other parts are required and defined by Microsoft, until
you get to the actual report. You specified the folder (/Reports08) when you added
the project to Visual Studio. The last part (CustomerSales) is the name of the re-
port within that folder. You should create this link and test it using your browser.

The last step is to tell Visual Studio to open the URL and display the report in
the default browser. Figure 8.5 shows the code needed to open a URL within Vi-
sual Basic. You have to enter the VisitLink subroutine only one time. It does the

Figure 8.5

Sub VisitLink(ByVal Ink As LinkLabel, ByVal sURL As String)
‘ Change the color of the link text
Ink.LinkVisited = True
‘ Call the Process.Start method to open the default browser
System.Diagnostics.Process.Start(sURL)
End Sub

Private Sub InkCustomerSalesReport_LinkClicked(_
ByVal sender As System.Object, _
ByVal e As System.Windows.Forms.LinkLabelLinkClickedEventArgs) _
Handles InkCustomerSalesReport.LinkClicked
Try
VisitLink(sender, _
“ http://localhost/Reports/Pages/Report.aspx?ltemPath=%2fPowder08Reports%2fCustomer+Sales”)
Catch ex As Exception
MessageBox.Show(“Unable to open the report.”)
End Try
End Sub

Chapter 8: Applications 156

actual work of opening the specified URL. To call this subroutine, double-click
the link on the Design page and Visual Studio will create the LinkClicked sub-
routine structure. Type the word “Try” and when you press then Enter key, Visual
Studio will add the Catch and End Try elements. All you have to do is enter the
VisitLink(sender, http...) line, and type in an error message. Save and compile the
project and test everything.

The report approach shown here opens a separate Web browser and delivers the
report to the user as if the person had browsed to the server. This approach gives
the user complete access to all of the Web Reporting Services. And users could
bookmark the site and return to the report without needing to run your applica-
tion. If you want to reduce these options, you can embed a Web browser control
into a new blank form in your project and set its URL to the same Report. Visual
Studio also provides a ReportViewer object that you can place on your form. In
both cases, the report is displayed as a form within your application—which pro-
vides a more integrated appearance, and reduces the user-control over the report.
If you need to ship the application as a standalone system, it is better to use these
methods. Otherwise, users have more control if you simply link them to the online
Reporting Services.

Activity: Build Menus and Toolbars

Startup switchboard forms and com-
mand button links help users navigate
from one form to another, but in com- Drag a Menu Strip onto the menu form.
plex applications, users might need | Add top-level links for at least
additional support. Menus and tool- Customers, Close, and Help.

bars are another method of displaying Under Customers, add the Customer and
available actions to the users. Menus SlE 0T, e the, tWO reports.

are usually displayed at the top of the | Rename each menu item.

application to provide quick links to Double-click the Customer and Sale
common activities that are needed in ?ggllless il i G 1 Gipa (e
any form. For instance, you can include)

a lg,rint button for all re}:]ports, SO users Add the COd_e to open the two re?ports.
always know they can click one button B, CTTpIE, (e 56 G M,

to print whatever report they are view-
ing. You can also create secondary toolbars that are customized for each form. The
Visual Studio toolbox includes the MainMenu, Toolbar, and ContextMenu objects
to help you create menus. The hardest part is determining what items should be
on the menu and how they should be organized. Again, you have to work hard to
match the user tasks.

Figure 8.6 shows the main steps to create a menu for the main form. Drag a
Menu Strip from the Toolbox onto the form, and you will see a set of boxes at the
top of the page. Simply type your menu choices into the boxes. You can expand
both horizontally and vertically. You can right-click an item to add a separator. In
the example, the customer-oriented reports are separated from the forms.

Once you have created the menu items, you have to write the code that is ex-
ecuted when an item is clicked. You will have to double-click each item in design
view and enter the appropriate code. In most cases, you will already have similar
code—because you already wrote it for each button or link. For example, double-
click the entry for the Customer form and copy the code from behind the Cus-
tomer button. Follow the same process for each entry and you will have a func-

Action

Chapter 8:

Applications

157

2% Powder0B - Microsoft Visual Studio

Fle Edt Vew Project Buld Debug Data Fomst Took Window Community Help

ARERN=A" - A RN R & -5 b pebug - Any CPU - | loabpt - QS Bl
AR T g 3 2y .
Toolbax -1 x Start Page Menu.vb [Design]*| Customer Sales.rdl [Design] | Menu vb* » X Solution Explorer - Salution 'Powder... » B X
e - £ P X
& FlouLayoutPansl SR REERS
5] FolderEromwseDislog [=1E3] (5] Solution Powder0s (2 projects) ~
Fp custeres | suplers_cioze v e e
GroupBo: Customer £ 3pp config
HelpProvider S der Board and Ski Shop Bl Customer.vb
0¥ Hscrolar + . EE] Customer2. b
{[Customer Sales Tatals 23] CustomerDataset xsd
3 Imagelist [costomer ssos Ttk
5 Imagels i 2] viewCode EE] Customertitab
A Label @l setimage.. 20 CustomerListbataset.xsd
(20] EmployeeListDataset.xsd
3
[Enabled it =] Lockrest.vb
Ski Board Style Checked % Login.vb
] Menuvb
® 7| showshertzui
- westadtontoc iy S
2 MenuStrip — Convert To » =] @
B 2
7 MarthCalendar een i (it
- 2 Edk DropDawnltems...
= Notifyleon Customer List Properties -3 x
£2] MumericUpDown elect C CustomerSalesTotalsToolStripMenulter ~
[£] OperFileDizlog b
£ PageSetupbislog SIS Eal Copr &]
L Panel 5 leDescription
23 PerformanceCounter B entrint o e AccessibleNeme
8] PictureBox AccessbleRole Defaut
v
‘jao b r Document Outing El Appearance
k., |G, |32 Too..,
A P R proparties BackColor] control
Gt LEx aacxmunjxmage |_T| tnone)
S Backgroundimagela Tie
Shew cutput from: Debug AETEENET= e e
The thresd Oxl7cé has sxited with cods 0 (0x0) Al Credstats Unchecked
The thread Oxf7c has exited with code 0 {0x0} Displastle Insgefndiext
The program ' [4508] Powderns.vshost.exs: Managed' has exited with code 0 (0x0) 5
|| Accessibility
< >
ShError List |] Qutput
Roady 1io,5 i o0 <22

Figure 8.6

tioning menu. The one catch is that you have to be careful with the reports. The
VisitLink changes the display of the specified link. From the menu, you cannot
call VisitLink(sender, ...). Instead, you could pass the name of the actual link—if
it is on the same form. Otherwise, instead of calling VisitLink, just open the report
URL directly with the System.Diagnostics.Process.Start(SURL) procedure. To
close a form, use the simple line: Me.Close. Figure 8.7 shows the sample menu.

Figure 8.7

Custommers | Suppliers Clase Help

i_uskomer

| e wder Boagd and Ski Shop

Customer Sales Totals

.

Ski Board Style

ol System.Diagnostics.Process.Start(sURL) |

Test Scan

| Me.Close() |

Customer Sales Report

Chapter 8: Applications 158

Activity: Write Help Files

A finished application also needs cus- :
tomized Help files. Users should be | Action

able to press the F1 key or select the | Create at least three HTML help files for
Help menu option and receive addi- | the All Powder forms using an HTML

tional information to help them per- caltioe @ otigadl i
form a task or understand the data that | Ifnecessary, download and install the
. HTML Help workshop.
needs to be entered. Detailed Help ..
systems can become complex, with Create a new project in the workshop.
; Add the HTML files.

large applications requiring hundreds _
of pages of Help text and instructions. | Edit the HTML files to add keywords.
On large projects, companies often hire | Create the mapping file with a text editor
a special team just to create and edit | andadditto the project.

the Help files. For these situations, you | Set project options to build the TOC and
will want to purchase a dedicated Help mde)f s

System editor. However, Microsoft has | Compile and test the help file.

a free Help Compiler system that can
be used to create Help files. You can write the Help text without this system, but
you need it to compile the files into a Help package. Search the MSDN site for
the htmlhelp.exe file. Figure 8.8 shows the basic steps involved in creating a help
system. First you write individual help pages as HTML text files. These pages
can have links to each other and to external websites. One of the pages should be
the startup page, and each page should contain a list of keywords. You also create
a mapping file that assigns a number to each page. The Help Compiler converts
all of the pages into a single chm file. Finally, in each Access form, you set the
properties to the name of this compiled form, and the number of the topic associ-
ated with that page or even a particular control. When the user presses the F1 key,
the system looks up the page that matches the number and displays it in the Help
viewer. Users can also search by table of contents or by keywords.

Figure 8.9 shows that you can create Help pages using a simple text editor, or
you can use most HTML editors. You should create a style sheet to ensure con-
sistency across all of the files. More importantly, use the H1, H2, and H3 heading
tags to define the major topics covered in each page. These headings can be used
by the Help compiler to generate the table of contents. The keywords are entered
in the special <OBJECT> tag. This tag can be created using the Microsoft HTML

Figure 8.8

compile

Help File

AllPowder.chm

A

1 Topic A Topic Topic
2 Topic B
Form 3 Topic C HTML HTML
4 Topic D Topic Topic
5 Topic E
Properties: / 6 Topic F
— Help File: AllPowder.chm

Help Context ID: 1

Chapter 8: Applications 159

<Object type="application/x-oleobject”

classid="clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e”>
<PARAM name="Keyword” value="Contents”>
<PARAM name="Keyword” value="Introduction”>
<PARAM name="Keyword” value="Start">
<PARAM name="Keyword” value="Management”>

</OBJECT>

<HTML><HEAD>

<TITLE>AIl Powder Board and Ski Shop</TITLE>

<LINK rel="stylesheet” type="text/css” href="Styles.css”>

</HEAD><BODY>

<H1>Introduction to the All Powder Board and Ski Shop</H1>

<TABLE><TR>

<TD></TD>

<TD>AIll Powder Board and Ski Shop sells and rents snowboards and skis for

all levels of riders and skiers.</TD>

</TR></TABLE>

<H2>The Board and Ski Shop</H2>

Customers

Sales

</BODY></HTML>

Figure 8.9

Help editor, or you can copy, paste, and

Action

edit the keyword information. At this
point, you should create two or three
HTML files and test the pages and the
links to make sure they work together.
Once you have created the individu-
al HTML pages, you should create the
mapping file that assigns a number to
each topic. In HTML, you refer to each
topic by the name of the file, but Ac-
cess references topics by a number. As
shown in the sample in Figure 8.10,
you can assign almost any number (it
uses a long integer), but it helps if you

Add a HelpProvider object to the main
form.

Set its HelpNamespace property to
AllPowder.chm.

Select the Form object, set the
HelpNavigator property to
TableOfContents

For the Customer button, set the
HelpKeyword to Customer and
HelpNavigator to KeywordIndex.

Write the code for the Help menu item.
Compile and test everything.

group the numbers by topic to make them easier for you to find later. This data is
stored as a simple text file. It is typically named “topics.h,” but that is not a strict
requirement. Be careful with the entries in the topics.h file: You must separate the
names from the numbers with at least two spaces and you cannot use tabs. You
might be able to skip the topics file for SQL Server, but if you include it, the re-
sulting help file can be used by other applications.

Once the pages have been created, you compile the files into a single chm file
that is distributed with the executable file. The Help compiler does most of the

Figure 8.10

#define AllPowder 100
#define Customers
#define Sales 20000

10000

Chapter 8: Applications 160

0S| 60| @@
Project } Eonlents] Index } E? All Powder Board and Ski Shop. ‘LHEMZ‘
@ [OPTIONS] o] B
o Indes=Yes Hide Pint Oplions
| |Auto TOC=3
o |Corostzmi=t e Dortent | incen | Gearh | Introduction to the All
Compiled fle=AllPowder.chm = L) Intraduction to the Al Powder Board ar| i
75| |Conterts fie-toc e 2] The Board and Sk Shep Powder Board and Ski
Default Windows=Main = @ Customer Dptions Shop
E Default tapic=tIFawder himl Gales Optirs
Display compils progress=No)
@ [P soarch=res o e A Povder Board and Ski
Indes: file=Indes. ik r g Shop sells and rents
B | | Language=0x409 Englih (Lnited States) h snowboards and skis for all
Tile=Al Powdsr Board and Ski Shop levels of riders and skiers.
[WINDOWS] !
Main = "4l Powder Board and ki Shop” The Board and Ski Shop
[FILES] o Customers
» Sales
Sales.biml
[ALIAS]
100=AIFowder himl
AlIPowder=AIPawder himl < 2
Customers=Customers hirml
Sales=S ales. himl a
D:\Biooks|DBWorkboks|SQL Server YBFiles| AP owdsr Help AP owder. hop

Figure 8.11

work, you simply add the files to the system and set a few options. Begin by start-
ing the HTML Help Workshop and creating a new project file. Use the Menu but-
ton to add the html topic files to the project. Use the API menu button to add the
topics.h header file to the project under the Map option. Use the Options menu
button to set the title and default file for the project. Use the Files tab to tell it to
automatically create the contents file and include the keywords from the HTML
files to build the index. You might have to click the tabs for Contents and Index
to force the compiler to create new versions of these files. Figure 8.11 shows the
basic elements of the HTML Help compiler and the resulting compiled Help file.

The final step is to set up the Visual Basic forms so that they open the correct
Help file to the correct page. Keep your list of keywords handy, you will have to
enter them into the form properties. The first step is to drag a HelpProvider object
form the Toolbox onto the form. Set the HelpNamespace property to the name of
the help file (AllPowder.chm). Do not enter other path or drive location informa-
tion since you cannot control the location the user will choose. By using only the
file name, you simply have to make sure that file is stored in the same folder as the
executable file. Use Add/Existing and add AllPowder.chm to the project, then set
its “Copy to Output” property to Copy if newer.

Figure 8.12 shows the properties that have to be set for each control. Enter the
HelpKeyword (Customer), and set the HelpNavigator action to KeywordIndex.
This action performs a search for the keyword and displays the matching topic.
To be safe, make sure the ShowHelp property is set to True. In some cases, you
might want only a single topic for the entire form. In that case, select the Form
object and set the Help properties, then every control that does not override those
settings will display the same Help form when the user presses the F1 key. It is
usually easier to set one topic for a form and then change entries for only one or
two controls; instead of setting the same properties for every control.

Remember that you created a Help entry on the main menu. Menu options do
not use the HelpProvider, so you need to add program code to open the help file.
You can call the help system directly, so you really only need one line of code:

Chapter 8:

Applications

161

2% Powder0B - Microsoft Visual Studio

Ele Edt Vew Project Buld Debug Data Took

PN W RN =N

Window Community Help

b Debug * Any CPU

- | loappt

s R= ey SR

L oo 3 e

3

DataGridview
(] Dataset

7 DakeTimePicker

[&] DirectoryEntry

{1 DirectorySearcher
DamainlpDasn

Q Erorrrovider

1] Evertiog

5] FleSystemWatcher
== FlowLayoutPanel

|] FelderBrowserDialag

A Unkiabel

Lithox

g Customer P

All Powder Board and Ski Shop

P Customer Sales Repert
ki Board St \
Sae

» | Solution Explorer - Solution Ponder... » & X
~

B2 & F|EE &
Ele|

|50] CustamerDakaet xsd

7] Customerist.vb

0] CustomerListDataset.xsd

154l EmployeelistDataset.xsd
r

ymentMethodDataset. xsd
ntal. b

Customer List

Test Sean

R HelpKeyword:
Customer

(40l RentalDataset, csd
=1 RentalDiscount b
clsalution Explorer |25 Class Yz

Properties -1

U e

Test Locks

(4 FortDislog

[*"] GroupBox

HelpProvider

3 HcrolBar

(5 Imagelist

537 Listvien

[s.] MaskedTextox
) Menustrp
3 MessageQueus]

(GDat. .. | 3er.., 38 Too..,

E MenuaQL () HelpProvider1

A Label
Cutput

Shar outpu from:

[FhError List | 5] output

HelpProvider
HelpNamespace:
AllPowder.chm

Keyw

CustomerButton System. Windows. Forms.E ~

(;rd Index—l

[E3

v

X

lcapE]
Size

vix
= Helphiavigator on He Keywordindes

Helpstring on HelpPr
ShonHeln on HelpFr True

HelpString on HelpProvider1

Determines the Help string assotiated with this

contral.

T
88,23

Misc

Helpkeyword an Hel) Customer

v

Ready

Figure 8.12

Help.ShowHelp(Me.btnCustomer,

“AllPowder.chm”,

HelpNavigator.TableOf-

Contents). The ShowHelp command needs to be associated with a control and not
the menu, so pick the first button (btnCustomer). You have to enter the name of
the help file since it does not use the value from the provider. The next parameters
tell the help system to display the table of contents page. You might change those
to use the KeywordIndex and enter a search word to open a specific page. But,
often, people who select Help from a menu are looking for a more general starting
point. Compile everything and test it by moving to various controls and pressing

Figure 8.13

Customer
SkiBoard Style
Sale

Fental

Custamer List

Test Scan

Test Locks

All Powder Board and Ski Shop

P Board and

o oe & W

Hide Back Fiint DOptions

Contents |\ﬂdex Search

he Board and Ski Shop
Options

= &

@ Sales Options

[~

=1 ([Intraduction to the All Powder Board

|~

Customer Options

Enter the basic customer data. Try to get
their skill level and age. but do not press
them if they are reluctant to reveal ther
exact age.

Adding New Customers

Click the button to add a new customer,
then enter the basic data. The data will
be saved automatically when vou leave
the form.

Chapter 8: Applications 162

Private Sub HelpToolStripMenultem_Click(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles HelpToolStripMenultem.Click
‘ Open Table of Contents in Help
Help.ShowHelp(Me.CustomerButton, “AllPowder.chm”, _
HelpNavigator.TableOfContents)
End Sub

Figure 8.14

the F1 key. Also test the Help menu item. Figure 8.13 shows the simple help file
for the Customer button. In a real case, you will spend considerably more time
writing detailed help instructions. Someone should also proofread all of the top-
ics to make sure they contain no errors. On large projects, a separate team is often
created just to write and maintain the help system. You can also purchase more
advanced tools to help create the topic files.

Most applications include a general Help entry on the main menu. You need
to handle the Click event on this button so that the general help file opens to the
Table of Contents when users click on the Help button or icon. Visual Basic has
a built-in ShowHelp function that makes this step relatively painless. Figure 8.14
shows the basic code that you need.
Activity: Deploy an Application
Creating and building an application
can be a complex and time-consuming
task. However, you have one more im-
portant step to complete before you are
finished. You need to package the ap- : ;
plication so it is easy to deploy and in- | Test the uninstall option.
stall on the client computers. If you are
building the application as a Web-based system, it is relatively easy to deploy—
you basically install everything on the server and send the URL of the startup page
to users. You will probably have to give users their login credentials, and probably
provide some training, but deploying the application is relatively easy because it
is in one location. Remember that the reports will be deployed to the Reporting
Services folder, which might be on a separate server. If you are deploying a more
traditional PC-based system, you need to work a little harder.

Fortunately, Visual Studio has the ability to create an installation file that will
copy files and install your application on client computers with minimal hassle.
You can also buy third-party installation systems. Many of these systems have
complex options that enable you to test the target machine, install updates, and
process complex scripts to handle multiple configurations. They also have auto-
matic tools to uninstall your application. Visual Studio 2005 has a relatively pow-
erful publishing system that quickly builds an installation file that can be installed
from a variety of locations, including downloaded from a Web site. One of its
strengths (particularly compared to the 2003 version) is the ability to automati-
cally check for updates and download them from a specified Web server. Even
if your application is installed via CD, the deployment system can periodically
check your site for updates and install them automatically.

Action

Choose the Build/Publish option to create
an installation file for your application.

Copy it to a new computer and test it.

Chapter 8: Applications 163

SQL Server complicates the installation process because the client computers
need to be able to locate and reach the database server. Figure 8.15 shows the
basic concepts when the database is stored on a central server that is accessed by
multiple client computers. As a developer, you create SQL scripts that define the
database tables, relationships, queries, and stored procedures. These are run on
the server and the initial data is loaded into the tables. The client application is
compiled in Visual Studio and published as an application. Within that applica-
tion, you include database connection strings that specify the location of the data-
base server. These strings are usually automatically created with in the application
properties and stored in the app.config file. In the case of a single database server,
you can usually preset these variables and the application will find the database
when it is run. In other cases, you might have to hand-edit the app.config file after
the application is installed on a client computer. Or, you might have to create a
separate installation script or startup routine that asks the user to select the appro-
priate server, and then write the proper connection string to the file.

The installation process is slightly different if you are building a standalone
application where the database is stored on the client computers. Today, this ap-
proach is relatively rare, because it is difficult to share the data with other users. If
you choose this approach, you would generally use the SQL Server option to cre-
ate independent files that are stored within your application directory. That way,
you always know where the data will be stored. Otherwise, you need a startup
script to ask the user to browse and locate the database needed for your project.
Few users would understand the question, and would be unlikely to perform the
task correctly, so try to stick with simple solutions. Otherwise, you will need to
provide additional installation help when the application is deployed.

Figure 8.15

Database scripts
Data loading

Database server

Application users

Compiled forms
Developer files Compiled reports
Help files

Chapter 8: Applications 164

Exercises

=D

Crystal Tigers

The Crystal Tigers club is mostly interested in tracking members and events. The
officers who will use the system do not know much about computers, but they
can enter data into forms. They are also interested in a few key reports. For in-
stance, they want to be able to get totals for the number of hours members devoted
to charity events. They also want monthly summaries of the amount of money
raised. The vice president also wants to be able to print a simple listing of the of-
ficers, their phone numbers and e-mail addresses. Sometimes, she also wants a
similar list for members who have participated in the initial steps of an event. She
wants to be able to carry the list with her when the event starts so she knows who
to contact if problems arise.

1. Create a design template and standardize the forms and reports.

2. Build the forms and reports into an application with a start-up form.

3. Create the Help files for the system, and remember that the users have limited
computer experience.

Capitol Artists

= Job tracking is the most important aspect of the application needed by Capitol Art-
ists. In particular, the employees need to be able to quickly select a job and enter
the time and expenses for the task performed. This data is then used to create a
monthly billing report for the client. Consequently, you need to focus on creating
the forms to capture this data. You need to make sure they are fast and easy to use.
The managers also want weekly reports showing the hours and money generated
by each employee so they can use the data in personnel evaluations.

1. Create a design template and standardize the forms and reports.

2. Build the forms and reports into an application with a start-up form.

3. Create Help files for the system.

& Offshore Speed

Special orders have always been a complex problem for the Offshore Speed man-
agers. Customers come to the shop because it is one of the few that can obtain the
custom parts they want. But the company has always had problems training em-
ployees to collect all of the order data and, keep track of getting the orders placed
and delivered in a timely manner. Some of these orders include contracts with
other local firms to perform customization and finish work on the boats. Although
these firms do excellent work, most are terrible at keeping records. Consequently,
the managers want to use the system to generate reports on individual boats for
each contract shop that can be used to remind the other owners of the details. The
company also needs reports on the inventory status of the specialized parts. They
are having trouble keeping some items in stock, and other items seem to sit on the
shelves forever; but they have no good way of keeping track at the moment.

1. Create a design template and standardize the forms and reports.

2. Build the forms and reports into an application with a start-up form.

3. Create Help files for the system.

Chapter 8: Applications 165

Final Project

The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you pick one
or your instructor picks one, perform the following tasks.

L.

2
3.
4

Define a form template and standards for consistency.
Build the forms and reports into an application with a start up form.
Build a menu toolbar that makes the application easier to use.

Create help files for the system.

Chapter

Data Warehouses and Data
L] °
Mining
Chapter Outline
Data Warehouse, 167
Case: All Powder Board and Ski Shop, 168
Lab Exercise, 168
All Powder Board and Ski Shop, 168
Introductory Data Analysis, 184

Exercises, 196
Final Project, 198

Objectives

« Extract data from spreadsheets and import it into a data warehouse.
» Create and browse an OLAP cube.

* Analyze time series data.

* Analyze geographic data.

* Analyze data with statistical tools.

166

Chapter 9: Data Warehouses and Data Mining 167

Data Warehouse

Data warehouses have evolved because of the need for online analytical processing
(OLAP) and its conflicts with online transaction processing (OLTP). The goal of a
data warehouse is to hold consistent data, possibly obtained from several sources,
which can be quickly searched and analyzed. Microsoft handles data warehouses
and OLAP capabilities through the Business Intelligence components. Note that
these components are not provided in the Express version of SQL Server. You
need at least the Standard edition to handle the tasks in this chapter. Another op-
tion is to use tools in Microsoft Office. The Microsoft Access Workbook explains
how to use those tools.

Microsoft has continually enhanced its data warehouse and business intelli-
gence tools. Some of the tools can be integrated into the reporting systems, but the
majority of the tools are based on first creating an OLAP cube. These tools are in-
tegrated with the Visual Studio development editor. Most of them are designed for
programmers and developers who can use the advanced tools to extract data, clean
it up, and place it into a cube. Once the data is in a cube, it can be turned over to
business analysts who use the tools to search for useful patterns.

A large portion of many projects (often 60-80 percent of the development time)
is spent on finding and cleaning up data. To be useful, a data warehouse needs to
have an automated system to update data as it changes within the transaction sys-
tems. Consequently, developers often have to write routines to extract and clean
the data automatically. These routines run at night in the off-hours so that manag-
ers and analysts have updated data the next day. Figure 9.1 illustrates the basic
process. Along the way, the data is often stored in an OLAP cube format that is
indexed and optimized for fast searches.

Microsoft’s data warehouse tools focus on simplifying this process of extract-
ing, cleaning, and transferring data into the cubes. The Integration Services tools
contain predefined objects designed to handle the most common tasks. These
objects can also be programmed with specific features to handle complex tasks
involving data from multiple sources, and even timing issues. The examples pre-
sented in this workbook show the basic steps, but the data is simplified to keep the
exercise relatively short. In actuality, the tool is powerful and can be programmed
to handle highly complex data transfers.

Figure 9.1
OLAP Cube

Relational .

Tables Star Design
w Dimension Dimension

I
I Saleltem Fact
Item _— Measure
Dimension Dimension

Chapter 9: Data Warehouses and Data Mining 168

Case: All Powder Board and Ski Shop

Like most businesses, the managers of All Powder need to analyze data to spot
trends and solve problems. One of the most challenging aspects of a board and
ski shop is the huge variety of inventory needed. As vendors produce even more
styles and variations, it becomes difficult to stock all of the items in a collection
of sizes. Yet, if the store does not have items in stock, it will lose sales. This bal-
ancing act between inventory costs and sales revenue has destroyed many other
firms. The owners of All Powder are committed to running a large enough shop so
that they can afford to carry a large selection of snowboards and skis. However,
managers constantly need to evaluate styles and products so items can be cleared
out if needed. For that analysis, one of the main tools they need is an OLAP cube
browser or perhaps the Microsoft PivotTable that shows sales split by several fea-
tures and categories. Figure 9.2 lists some of the main dimensions that managers
want to examine in terms of sales. They are not certain about the validity of the
last three, so they are displayed with question marks.

Managers also occasionally raise some more challenging statistical questions,
such as whether customers who rent equipment are likely to buy that equipment,
and whether skiers buy certain types of poles or boots with their skis. They also
need to forecast sales by categories. In particular, they often argue about whether
certain styles are increasing or decreasing in popularity. Some of these analyses
might require the help of a statistician to build a formal model, but the managers
would at last like to see some rough analyses.

Lab Exercise

All Powder Board and Ski Shop

As organizations grow over time, the internal processes evolve, data changes, sys-
tems improve, and product identifiers stay the same. Consequently, most informa-
tion systems consist of a mix of technologies and databases. Rarely is the data
consistent across all of these systems. For the All Powder shop, before the data-
base was created, the managers kept limited records in Microsoft Excel. These
records are not perfect: They are organized by Sales and by Rentals and the data
is not normalized. Also, they are focused primarily on the equipment and do not
have data on customers. From our more modern database perspective, the records

Figure 9.2

Sales Dimensions
State (ship)
Month
Category
Style
SkillLevel
Size

Color
Manufacturer
BindingStyle
WeightMax?
ltemMaterial?
WaistWidth?

Chapter 9: Data Warehouses and Data Mining 169

K1) Lab 09.01 Early Sales and Rentals s [Comp
c

A B
1 [RentDate _IRentlD ExpectedRet
2 7172003 6253 1/4/2003

1/172003 6253 1/4/2003

1122003 078 11372003 Other cra.
17212003 08 17372003 Other cra:
12

65:
Salas 2003-2005

513500 DMR-560 168
5232 00 WTGC-684 5

R
b3
m
o
4

Figure 9.3
are a pain, but at least they are electronic and not paper so you do not have to enter
all of the data by hand.

Nonnormalized data is common in business, and you will often be asked to
convert this data into a relational database. Fortunately, you can use the power
of SQL as a magical super tool to impress mere mortals with your skills. Figure
9.3 shows the layout of the data in the two worksheets. Again, notice the lack of
normalization. Each row represents an item that is sold or rented. Fortunately, the
worksheets repeat the SalesID and RentalID so you can still recover which items
are grouped onto a single sale or rental. Likewise, they repeat the descriptive item
data for each time the model was sold. To ensure your information is really ac-
curate, you should eventually check to see that the managers were consistent in
recording this data. For example, ModellD BVG-290 might have been given a
different description at different times. If there are many inconsistencies of this
type, it will be difficult and time-consuming to clean up this data. Most of the
corrections would have to be handled manually, unless you have a third source
of data that you know is correct. These are the types of problems you often face
when extracting data from diverse systems.

@ Activity: Extract and Transform Data

Note: If you are working on this lab in a class, you might want to skip this par-
ticular activity because it is time con-
suming. You can download and install
the full data set that already contains
the adjustments made in this section.
On the other hand, most of the time
spent on data analysis and warehouse
projects lies in building the systems de-
scribed in this section to extract, clean,
and load the data into a data ware-

Action

Delete all sales with SaleID>2000.
Copy the two CSV files to your server.
Create two SQL tables to hold the data.

Modify and run the SQL BULK INSERT
command to import the early rental
data.

Insert CustomerID 0 and EmployeelD 0.

Chapter 9: Data Warehouses and Data Mining 170

house. So, it is worthwhile to at least read this section. And, if you plan to build a
data warehouse project, this section provides some ideas on how to organize and
clean the data.

The first step in extracting and transforming this data is to get it into the data-
base where you can use SQL to work on it. SQL has at least three related methods
of importing data. The simplest command is to use BULK INSERT within a SQL
Query window. A variation of this command is used by the data files that accom-
pany this book to create and load the sample databases. The main drawback is that
you need to put the data files on the SQL Server computer. It is also relatively dif-
ficult to automate—so it can be a problem if you need to build an automated sys-
tem to run every night and extract data from one computer, transfer it, and clean
it. A second, older method is to use the command-line sqlemd utility. With some
effort, you can integrate this utility within a Windows script file and issue com-
mands directly to the database. Along the same lines, you could write a custom
program in Visual Studio to use ADO .NET to connect to data sources and transfer
the data to the SQL Server database. This approach is powerful, but tedious. Mi-
crosoft created the SQL Server Integration Services (SSIS) tool that handles many
common tasks for you automatically, yet still provides detailed control over the
data. SSIS is a useful tool in a production environment, where you have multiple
data sources and need to schedule transfers, trap errors, and make changes over
time. But, its power means that it is relatively complex, so this section will show
only a simple application.

The BULK INSERT command is relatively easy to use, and it is a convenient
approach for manually loading large amounts of data stored in text or comma-
separated values (CSV) files—which can be generated from Excel spreadsheets
or other database systems. To illustrate the process, download the two CSV files
that contain early Sales and Rentals data. Note that these files have already been
cleaned to be acceptable for BULK INSERT. They contain simple data, with no
header columns, no dollar signs, and no quotation marks. Put the files in a folder
on your SQL Server computer and write down the location.

You need a table to hold the new data, so use the CREATE TABLE command
shown in Figure 9.4, or use the table-builder in the Management Studio. Be care-
ful to ensure that the columns in the new table exactly match the columns in the
CSV data file. The column order and data types must match. You can delete col-
umns or rows later, but the bulk insert command imports all rows and columns.
Write the BULK INSERT command shown at the bottom of Figure 9.4. Enter the
correct path for the file (without the angle brackets) and run the command. If your
data files has errors, or you did not match the columns correctly, you will receive
errors and the data will not be loaded. It is hard to track down which row caused
problems, so sometimes you want to import data in small batches; or test it in Ex-
cel to ensure data is in the correct columns with no extra commas. BULK INSERT
works on all versions of SQL Server, but your account needs the BULK INSERT
role, or the DBO role, so do not assume casual users can run the command.

SQL Server Integration Services was created to handle vastly more complex
tasks, such as scheduling data transfers, processing and sequencing transfers from
multiple computers, and running unattended with a full error-reporting facility.
However, the free (Express) version of SQL Server does not include this tool, and
for complex situations, you will probably need the Enterprise version. The simple
import command can be handled with the Standard edition.

Chapter 9: Data Warehouses and Data Mining 171

CREATE TABLE OldRental

RentDate datetime,
RentID int,

ExpectedReturn datetime,
PaymentMethod nvarchar (50),
SKU nvarchar (50),
RentFee money,

ReturnDate datetime,
ModellD nvarchar (250),
ltemSize float,

ManufacturerID int,

Category nvarchar (50),

Color nvarchar (50),
ModelYear int,

Graphics nvarchar (50),
IltemMaterial nvarchar (50),
ListPrice money,

Style nvarchar (50),
SkillLevel int,
WeightMax float,
WaistWidth float,
BindingStyle nvarchar (50)
)

BULK INSERT OldRental
FROM ‘<folder name>\Lab 09-01 Early Rentals.csv’
WITH

FIELDTERMINATOR =",
ROWTERMINATOR = \n’

Figure 9.4
As of the initial release of SQL Server 2008, SSIS still has some “issues.” You
can find notes on some of them on Internet forums. If you stray from the instruc-
tions in this section, you are likely to encounter some of those issues—even in
this relatively simple example.
SSIS can retrieve data from Excel spreadsheets, flat files, and several other da-|
tabase systems. Although, a 64-bit operating systems seems to have compatibility
issues with Excel, so this example will use a CSV file. SSIS runs as a project
module within Visual Studio, which uses a graphical approach and object proper-
ties to define data sources, destinations, and connections. Ultimately, it generates
packages that can be installed on various computers and run when data needs to
be transferred. The system is designed to handle package scheduling and interac-
tions, but this example is much simpler.
Begin by creating a CSV file from the Excel spreadsheet. You can save some
time by including the column headings in the CSV file. It is also clearer if you
create your own data file in the database. Figure 9.5 shows the columns needed in|
the OldSale table. These columns match the Excel/CSV columns, but later, you
will have the ability to change the mapping of the Excel columns to the database
table, so they do not have to be exact.
Now start SQL Server Business Intelligence from the Windows Start com-
mand. When it is ready, create a new project using the menu commands: File

New/Project, and choose the Integra-
tion Services Project. You should see

Chapter 9: Data Warehouses and Data Mining 172
Action
Open the Excel spreadsheet and save the
Sales data as a CSV file.

an empty graphics screen. Importing
data is handled by defining a data flow
and then specifying the source and
destination. From the Toolbox, drag a
Data Flow Task object onto the Control
Flow page. In larger projects, you will
want to name it and specify additional
properties. Double-click the new ob-
ject box to open its corresponding Data
Flow page.

From the Toolbox, drag a Flat File
Source onto the Data Flow page. Dou-
ble-click it to open its property editor.
Click the New button to add a new con-
nection manager. Name it: Old Sales
CSV. Browse to find the CSV file you
created. Set the checkbox for “Col-
umn names in first data row.” This step
saves you from having to retype all of
the column names and reduces errors
when matching the CSV columns to
the database columns. Click the Col-
umns entry in the menu list to see the
column names.

Create the OldSale table in SQL Server.

Start SSIS, use File/New/Project to
create a new Integration Services
Project.

Drag a Data Flow Task object onto the
Control Flow pane.

Double click this object to open the Data
Flow page.

Drag a Flat File Source onto this pane.

Double-click it and attach it to the CSV
file.

Set the data types for the columns.

Drag an ADO .NET destination object
onto the Data Flow page.

Drag the arrow from the Flat File source
object to the ADO destination object.

Double-click the destination object and
assign it to the OldSale table in your
database.

Save and run the project to transfer the
data.

One drawback to CSV files is that the system assigns all columns a simple text
data type. The good news is that it is relatively easy to change these types. (It is

Figure 9.5

CREATE TABLE OldSale
(SalelD int,

SaleDate datetime,
ShipState nvarchar(50),
ShipzIP nvarchar(50),
PaymentMethod nvarchar (50),
SKU nvarchar (50),
QuantitySold int,

SalePrice money,
ModellD nvarchar (250),
ltemSize float,
ManufacturerID int,

Category nvarchar (50),
Color nvarchar (50),
ModelYear int,

Graphics nvarchar (50),
ItemMaterial nvarchar (50),
ListPrice money,

Style nvarchar (50),
SkillLevel int,
WeightMax float,
WaistWidth float,
BindingStyle nvarchar (50))

Chapter 9: Data Warehouses and Data Mining 173

SalelD long (DT_l4)

SaleDate database timestamp (DT_TIMESTAMP)
ShipState unicode string (DT_WSTR)
ShipZIP unicode string (DT_WSTR)
PaymentMethod unicode string (DT_WSTR)
SKU unicode string (DT_WSTR)
QuantitySold long (DT_l4)

SalePrice currency (DT_CY)
ModellDunicode string 250 (DT_WSTR)

Size double (DT_RS8)

ManufacturerlD long (DT_I4)

Category unicode string (DT_WSTR)
Color unicode string (DT_WSTR)
ModelYear long (DT_l4)

Graphics unicode string (DT_WSTR)
ltemMaterial unicode string (DT_WSTR)
ListPrice currency (DT_CY)

Style unicode string (DT_WSTR)
SkillLevel long (DT_l4)

WeightMax double (DT_RS8)
WaistWidth double (DT_RS8)

BindingStyle unicode string (DT_WSTR)

Figure 9.6

more challenging with Excel files.) Click the Advanced option in the menu list
and change the data types for every one of the columns. Figure 9.6 shows the val-
ues needed to match the database types.

With the data source defined, you simply need to pick a destination. The trick
here is that you need to avoid using the SQL Server destination object. Although
it has the most efficient insert method, Microsoft notes that the SQL object only
works if the data source is located on the same machine as SQL Server. Other
users report issues with security conditions, so it is better to use the ADO .NET
object instead. Note that this object was introduced with SQL Server 2008. For
SQL Server 2005, use an OLE DB object. Simply drag the ADO .NET destination
object from the Toolbox onto the Data Flow page. Before configuring the destina-
tion, connect it to the source. Select the Flat File source object. Drag its arrow (on
the bottom left) and drop it onto the new destination object.

Double-click the destination object to begin its configuration. Click the New
button to create a connection manager. Click the second New button to create
a new ADODB connection. Pick the server hosting your database. If necessary,
select SQL Server Authentication and enter your login credentials. Choose the da-
tabase from the drop-down list (probably AllPowder). Click the OK buttons to
accept your choices. With the connection defined, select the destination table that
you created (OldSale). Click the Mappings menu item. Verify that all source col-
umns match the destination columns. You will probably have to choose Size to
match ItemSize. Click OK to return to the Data Flow page.

You have now completed all of the hard work of finding the source and the
destination and mapping the columns. Figure 9.7 shows the source, destination,
and two connection manager objects. Save the project and run it—using the small
green (debug) arrow in the top menu. The package will run and transfer the data.
Note that this process can be repeated, and the package can be deployed to a dif-
ferent computer and scheduled to run whenever you need to update the data. You

Chapter 9: Data Warehouses and Data Mining 174

2§ ImportoldSales - Microsoft Visual Studio 1= x|
File Edit View Project Build Debug Data Format SSIS Tools Window Help
El-lod | % B3 @ |9 - ™ -| b |Development ~ Diﬁ‘}t‘ﬂv‘_'
?T‘ Package.dtsx [Dﬁignll: StartPage | PRl olution Explorer e
= C i) |
S ||| 3™ ControlFlow |4 DataFlow |i2| EventHandlers |72 Package Explorer 2la
g '/ Impor
o Data Flow Task: Id,j Data Flow Task =l [Data Sources
- |57 Data Source Views
B~ [£5 SSIS Packages
iee || Package.dtsx
- [Miscellaneous
@ Flat File Source
ADO NET Properties ~ 1 x
Destination
Data Flow Task Task -
EHNE
Description Data Flow Task -
= D :39EBE3F6-7.-’J\F1-4621J
| Connection Managers MName Data Flow Task
1 Old Sales Csv o
d POSTSGL2008. AlPowder LR
Specifies the name of the object.
|_ﬂ Error List‘
Figure 9.7

can add multiple controls and many sources and destinations. The system also
tracks errors and you can write custom error controls.

In any case, you should now have two new tables (OldSale and OldRental) that
contain earlier sales and rental data. However, remember that these tables are not
normalized, and various columns need to be extracted with the data transferred to
other tables. But, now that the data is in SQL Server tables, you can use SQL com-
mands to do the hard work.

Looking through the temporary Sale table, you will see that the data needs to
be split into four tables: Saleltem, Sale, Inventory, and ItemModel. Go back and
examine the relationships for those tables, and you will see that because of the
dependencies, you will have to enter data first into the tables for ItemModel, In-
ventory, Sale, and finally Saleltem. The relationships and foreign keys require that
data be entered in that order. You must also be careful with the Customer and
Employee data. If you try to create a row in the Sale table, the system will try to
set a value of zero for the CustomerID and EmployeelD. But there is no match-
ing data for a zero ID in either of these tables. So, either you try to force a blank
CustomerID and EmployeelD, or you create a new Customer and new Employee
called “walk-in” and “staff.” This latter approach is slightly better than relying on
blank data. So your first task is to create these new entries in the respective tables.
Figure 9.8 shows the basic SQL commands needed to create these two entries.

SQL makes it relatively easy to extract the new model data and copy it to the
ItemModel table. The first step is to create a SELECT query that retrieves the

Figure 9.8

INSERT INTO Customer (CustomerlD, LastName)
Values (0,'Walk-in’)

INSERT INTO Employee (EmployeelD, LastName)
Values (0, Staff’)

Chapter 9: Data Warehouses and Data Mining

175

Category,

FROM OldSale;

SELECT DISTINCT OldSale.ModellD, OldSale.ManufacturerlD, OldSale.

OldSale.Color, OldSale.ModelYear, OldSale.Graphics, OldSale.ltemMaterial,
OldSale.ListPrice, OldSale.Style, OldSale.SkillLevel, OldSale.WeightMax,
OldSale.WaistWidth, OldSale.BindingStyle

Figure 9.9

model data from the temporary tables
and removes the duplicates. This pro-
cess is slightly complicated because of
the two tables. It is possible that a mod-
el has been sold but not rented and vice
versa. The easiest way to handle this
problem is to write two queries and use
UNION to combine the results. Figure
9.9 shows the basic query to retrieve
the model attributes from the OldSale
table. Move this query to the side and
build a similar one from the OldRentals
table. Be extremely careful to list the
columns in exactly the same sequence.
Add the data rows from the two que-

Action
Create a new query that retrieves

DISTINCT values from the saved
UNION query.

Verify that it works.

Add an INSERT INTO statement above

the SELECT statement to copy the data
to the ItemModel table.

Run the query.
Use a similar process to add SKU,

ModellD, and Size to the Inventory
table.

Follow a similar process to copy
the Sale, Rental, Salesltem, and
Rentalltems tables.

ries with the UNION statement. Figure
9.10 shows the basic structure of the query but yours will contain several more
columns. Save this query as qryOldModels so you can use it as one set of data.

Now that you can retrieve the new model data, it is relatively easy to write a
query to insert these rows into the base ItemModel table. Build a new SELECT
query using the qryOldModels query with all of its columns. Add the DISTINCT
keyword to be absolutely certain that all duplicates are removed. Run the query
to make sure it retrieves the data. As shown in Figure 9.11, at the top of the query
add the phrase: INSERT INTO Item Model (ModellD, ...). Because you do not
have data for all of the columns, you must list them in the parentheses and they
must be in the order of the columns being selected. Run the query and all of the
new models will be added to the ItemModel table.

Follow a similar process to add the SKU, ModelID, and Size data to the Inven-
tory table. Note that you should set the QuantityOnHand to zero for each of these
items since the store probably does not have any of the old models in stock. If
they do happen to have a few items around, the quantity can be entered by hand
later. Figure 9.12 shows the final step that inserts the data into the Inventory table.
Remember that you have to create the UNION query first. Notice the use of the
column alias to force a zero value into the QuantityOnHand column for each row.

Figure 9.10

SELECT DISTINCT ModellD, ManufacturerlD, Category, ...
FROM OldSale

UNION

SELECT DISTINCT ModellD, ManufacturerlD, Category, ...
FROM OldRental

Chapter 9: Data Warehouses and Data Mining 176

INSERT INTO ItemModel (ModellD, ManufacturerlD, Category, Color,
ModelYear, Graphics, ItemMaterial, ListPrice, Style, SkillLevel, WeightMax,
WaistWidth, BindingStyle)

SELECT DISTINCT qryOldModels.ModellD, qryOldModels.ManufacturerID,
gryOldModels.Category, gryOldModels.Color, qryOldModels.ModelYear,
qgryOldModels.Graphics, qryOldModels.ltemMaterial, gryOldModels.ListPrice,
qryOldModels.Style, gryOldModels.SkillLevel, gryOldModels.WeightMax,
gryOldModels.WaistWidth, qryOldModels.BindingStyle

FROM gryOldModels;

Figure 9.11

The Sale and Rental data is considerably easier because they are separate and
you will not need the UNION command to merge the two sets of data. In fact, you
can copy the Sale (or Rental) data with one SQL command. First, build a query to
retrieve the distinct sales data from the OldSale table. Be sure to include the DIS-
TINCT keyword in the SELECT statement. After you test the SELECT statement,
add the INSERT INTO line above it. Figure 9.13 shows an additional trick that is
often helpful. If you added new rows of data to your Sale table, the system might
have generated values that would conflict with the values from this older dataset.
To avoid this problem, you can add an offset number to the old SaleID (+5000 in
this example). If you choose a large enough offset, this step will ensure that all of
the new ID values will be safe. However, you must also remember to add the same
calculation in the final step of transferring the Saleltem rows.

Figure 9.12

INSERT INTO Inventory (ModellD, SKU, Size, QuantityOnHand)
SELECT DISTINCT gryOldinventory.ModellD, gryOldinventory.SKU,
gryOldinventory.ltemSize, 0 As QuantityOnHand

FROM qgryOldinventory;

Figure 9.14 shows that the query for the Saleltem table is almost identical to
the query that copied the sale data, but with slightly different columns. Remember
that if you transform the SaleID in the Sale table, you must make the identical
transformation for the Saleltem table. Otherwise, the data will never match and
cannot be joined. If you forget, you will usually receive several error messages.
But some of the data might be joined to your existing Sales data, making it dif-
ficult to reverse the query. Finally, you need to do the same two steps for the
Rental and Rentalltem tables. The Rental table uses columns RentID, RentDate,
ExpectedReturn, and PaymentMethod. The columns for the old rental table do not
include repair charges and are limited to RentID, SKU, RentFee, and ReturnDate.
At this point, you have successfully imported the old data and cleaned it up so
it can be used within your database. At this point, you should also drop the two
imported tables because they are no longer needed. You can use a simple DROP
TABLE OldSale command.

Figure 9.13

INSERT INTO Sale (SalelD, SaleDate, ShipState, ShipZIP, PaymentMethod)
SELECT DISTINCT OldSale.SalelD+5000, OldSale.SaleDate, OldSale.
ShipState, OldSale.ShipZIP, OldSale.PaymentMethod

FROM OldSale;

Chapter 9: Data Warehouses and Data Mining 177

INSERT INTO Saleltem (SalelD, SKU, QuantitySold, SalePrice)
SELECT DISTINCT OldSale.SalelD+5000, OldSale.SKU, OldSale.
QuantitySold, OldSale.SalePrice

FROM OldSale;

Figure 9.14

ﬁ Activity: Create an OLAP Cube

If you skipped the prior section, you
should download the “Full” version of
the database files and rebuild your data-
base. This copy contains the historical
data that has been cleaned. You need
the a_d ditional data to provlde. MOTC 1 Create a Data Source View using: Sale,
meanmg’_ful reports and charts with the Saleltem, Inventory, ItemModel,
data mining tools. Manufacturer tables. For lookups,

Once the data has been consolidated include BindingStyle, Customer,
in the primary database, you need to | PaymentMethod, ProductCategory,
create an OLAP cube so that it can be SkiBoardStyle, and SkillLevel.
browsed and analyzed. Microsoft uses
a special view to hold the data for cubes and analyses. It basically pre-builds all
table joins so that data is immediately available for browsing and analysis without
having to retrieve it through queries. The first objective is to use the BI tools to
create a Data Source View. Overall, the process is similar to that used when creat-
ing any query. Connect to the database, select the tables, and choose the columns.
However, it helps to think in terms of the cube by focusing on the facts you want
to observe relative to various data dimensions.

Investigating sales by a variety of dimensions is an important task for the man-
agers and owners of All Powder. It would be difficult to train all of them to build
queries to examine all of the items that might be of interest. A faster and more
flexible solution is to create an OLAP cube that contains the sales value (price
times quantity) as the measure fact, along with the various dimensions. Using
Business Intelligence tools, the cube can be manipulated to see subtotals and sort
or filter the dimensions. The cube can also be used as the source of data for statis-
tical analyses.

When building OLAP cubes, you should think in terms of two major steps. In
the first step, developers create a Data Source View that collects all of the data
needed (facts and dimensions). Developers also define the initial cube structure.
You can create multiple cubes for different purposes or managers. These cubes are
then deployed to a database server where managers interact with the cube to per-
form their searches and analyses. In most cases, managers work with predefined
cubes and do not need access to the underlying developer tools. Hence, it is criti-
cal to interview managers to determine what types of data they need to see and
how it will be analyzed. For this example, you will create a simple cube that en-
ables managers to analyze sales by various dimensions.

Begin the process by running the SQL Server Business Intelligence Develop-
ment Studio from the main Windows menu. Create a new project from the menu
by choosing File/New/Project, and selecting the Analysis Services Project tem-

Action

Use Business Intelligence Studio to
create a new Analysis Services project.

Create a new Data Source (server
connection).

Chapter 9: Data Warehouses and Data Mining 178

g AllPowdersales - Microsoft Visual Studio

ol x]

Fle Edit View Project Buld Debug Datsbase Tools Windo
G- @ % Ba@|9 - ™ | b |Deveopment - c:!ﬁx»g-._‘
SE -
B 2|&
g iy AllPowdersales
E B [Data Sources
3 AlPoader ds
- SO e [Data Source Views
i [Cubes
i+ [Dimensions
B AtPowderszles a art Page i S !::wensg Structures
s : : £+ 5 bl
onder
i Miscelaneous
Select Tables and Views e
Select objects from the relational database to be incuded in the data source
vien
Avaiable objects: Incuded objects:
Name [ope [= Name: [mwe T
(Jeindngstyle (doo) Table [saleltem (dbo) Table
Open: Project, [customer (dbo) Table & [H sale (dbo) Table
Create: Project... = merskil (dbo) Table
— | CJveportment@bo) Table :
[Employee (dbo) Table
ety
Introduding Business Inteligence De | 1T Table
SQU Server 2008 (How Do) (3 Menufacturer (cbo) Table i
[oldrental {dbo) Table
[oldsale (doa) Table << =
[pavmentviethod (d... Tabe =
Fiter: g Add Related Tables |
T~ Show system ghjects Name
Specifies the name of the
— (|| Foder.
<ok [mext> | Erishos concel |
23 Error List] Y

Ready

Figure 9.15

plate from within the Business Intelligence Project list. Enter a name that you
will recognize, such as AllPowderSales. You can generally stick with the default
folders. Remember that ultimately the project cube will be deployed to a database
server. The folders hold the development templates and source code.

As with any database project, the first step is to create a database connection
(Data Source) that defines the connection to the database server. In the Solution
Explorer, right-click Data Sources and choose the New Data Source option. Click
the New button to create a new connection. You will see the typical login screen.
You should be able to create a standard connection based on your network. How-
ever, eventually, you will have to consider how users will connect to the data cube
and how you want to handle security. Some companies emphasize the use of Win-
dows Authentication and handle security rights through Active Directory. For sim-
pler projects, it is often easier to create separate accounts within SQL Server and
rely on permissions within SQL Server to handle security rights. For now, it is
probably easier to use SQL Server Authentication, but the database administrator
will have to set up this account ahead of time. In any case, be sure to test the con-
nection to verify that you have the basic permissions to access the database. If you
are asked to select how Windows should connect to the Data Source, choose the
option to Use the service account. Note that it is possible to pull data from mul-
tiple servers, but this exercise will stick with this one connection.

Look in the Solution Explorer window and you will see that creating a Data
Source View is the next step. Right click that entry and choose the New Data
Source View option. Pick the AllPowder connection you created. Now you need
to choose the tables that hold the data you will need. Figure 9.15 shows the basic
process: Select a table on the left and click the > button to select it by moving it to
the right-side window. To provides plenty of options for the cube, you will use the
Saleltem table as the main facts (price and quantity). Dimensions will come from
the Sale, Inventory, ItemModel, and Manufacturer tables. Additional dimensions
and lookup lists are found in the BindingStyle, Customer, PaymentMethod, Pro-
ductCategory, SkiBoardStyle, and SkillLevel tables, so include all of those tables.

Figure 9.16

Chapter 9: Data Warehouses and Data Mining 179

78 AllPowdersales - Microsoft Visual Studio I =5
fle Edt Vew Progct Buld Debug Format Database DataSowceView Toos Window el
G- E @ % B[O b [Development - | FF R B D
All Powder Sales.dsv [Design]* | start Page |
[hale=ds(xE3a-
Diagram Organizer
R HiTabess

4

xogo)

a

=
3|
g
o

EEEEEEEEEEE]
e [e o e o e T

Delete Bl
unneeded e e e
connections =
Ta | _»Fg
|23 Error List|
Ready v

Double-check to verify that you have :

included 11 tables. Click Next and | Action

change the name to All Powder Sales. Remove extra (qycle) connections in the
When you finish your selections, the Data Source View.

wizard will build the design of the new In the Saleltem table, add a concatenated

. : et
Data Source View. It places all of the lé%yl‘jconvert(nvamhar’ =CLD)

tables in a diagram and uses arrows to Add Value=SalePrice*QuantitySold to

show how they are connected. For the Saleltem.
most paI.‘t, thg connec.tlons'wﬂl fOH,OW Add SaleYear and SaleMonth to the Sale
the relationships specified in the origi- table.

nal database design. However, some
relationships or connections can cause problems. Notably, they might cause cy-
cles in the design, which must be removed. In this example, as shown in Figure
9.16, scroll the design towards the bottom and notice the unwanted connections:
BindingStyle-SkiBoardStyle, SkiBoardStyle-ProductCategory, and Manufacturer-
ProductCategory. If you try to leave these in the design, you will eventually re-
ceive error messages. You can see the problem by tracing multiple paths from the
ItemModel table to the ProductCategory table. All three of these connections need
to be deleted to avoid cycles in the data. Simply click on each arrow and press the
Delete key (or right-click and choose Delete). Click the Save All button once in a
while to ensure that your project is saved as you make changes.

You need to make several changes within the Data Source to make it easy to
use for the OLAP cube. The first change is tricky but seems to be required. The
Saleltem table is important because it contains the primary facts to be evaluated.
However, it has a composite primary key (SaleID, SKU). The system works best
if you create a new column that concatenates the two keys to form a single col-
umn to represent the primary key. Right-click the edge of the Saleltem table and
choose the New Named Calculation option. Enter SaleID SKU as the name and
Concatenated key as the description. For the expression, enter: Convert(nvarchar,
SaleID) + - + SKU. You need to use the Convert function because SalelD is

Chapter 9: Data Warehouses and Data Mining 180

numeric. It is helpful to test functions

by opening a simple database query))

and building and testing the expression | Create anew Dimension based on
oy . - the Sale table using only SaleDate,

within the query editor. From within SaleYear, and SaleMonth.

the BI studio, you can right-click the Set the Year, Month, and Date data types.
table and choose Explore Data to en- . . .
Create a new hierarchy starting with

Action

sure you entered the expression cor- ileeme. ihen Sl ait . angl
rectly, but the database query window SaleDate. Save the dimension as
is more interactive. You also need to SaleDateH and test it.

add a Value calculation that multiplies | Create a new dimension with at least
SalePrice by QuantitySold. To create Color, ItemMaterial, Manufacturer
a date hierarchy, you also need to add Name, ShipState, and Gender.
SaleYear and SaleMonth to the Sale

table. Create new calculations and use the Year() and Month() functions to define
these items.

Another useful trick is that you can add a Friendly Name to any column or table
within the Data Source View. Simply right-click a table or column and choose the
Properties option. Scroll through the list to find the Friendly Name entry and type
in a new name. This new name will be displayed to the managers, but the queries
will still extract data based on the underlying real name. Friendly names are im-
portant when your tables and columns came from transaction databases that used
abbreviations and hard-to-understand names. This is your opportunity to provide
names that are clear to managers.

The third major step is to select basic dimensions and create any hierarchies that
will make it easier to browse the data. Hierarchies are important to cube browsers
because they enable managers to see overall totals and still drill-down to see the
detail. The most common hierarchies are based on dates. Managers often want to
see totals by Year-Month-Date, but you also often have to include quarters and
weeks. Other natural hierarchies exist for geographic regions (continent-nation-
state-city). Businesses also define hierarchies in terms of accounts in the general
ledger, customers, plants, and employee job. Plus, companies often create custom
hierarchies to meet their individual requirements. In SQL Server, the process of
creating hierarchies is similar regardless of the type of data. However, many of
the common hierarchies are predefined within the Dimension tool to make them
easier to create.

To illustrate the process, create the simple Year-Month-Date hierarchy for the
SaleDate. Save your work and close the Data Source View if you want to keep
it out of the way. In the Solution Explorer, right-click the Dimensions entry and
choose the New Dimension option. Keep the option to use an existing table (later,
you can experiment with the time table option). Select the Sale table, leaving the
key and name columns at their defaults. Uncheck the PaymentMethod and Cus-
tomer entries in the Related Tables screen. Uncheck PaymentMethod and Cus-
tomerID in the Select Dimension Attributes screen.

Now select the SaleDate, SaleYear, and SaleMonth attributes, but pause for
a second. At this point, the values are simply unrelated data. Because dates are
commonly used in hierarchies, you need to tell the Dimension wizard the role of
these three items. For each item, click the “Regular” entry next to it and select the
drop-down arrow to open up your choices. Expand the Date and Calendar entries.
Scroll through the list to assign the appropriate role to each value: SaleDate=Date,
SaleYear=Year, SaleMonth=Month. Figure 9.17 shows the initial choices for the

Chapter 9: Data Warehouses and Data Mining 181

5 AllPowderSales - Microsoft Visual Studio

Fle Edt View Project Buld Debug Datsbase Tools Window Hep

G- H @& B9 | b Devdoprent - |G S 2 B0 g

2 |||[18 Dimension Structure |[s Attribute

lealp-xlzalaa

]| start Page RO a sc'-tn Explorer
s |Lg Translations |1 Browser

Hierarchies Data Source View

Select Dimension Attributes
Specify dimension atiributes and select Enable Browsing to surface them a5

hierarchies.

Availzble attrbutes:
I7 [Attrbute Name [Enable Browsing | Attrbute Type |
al eguar 5
eqular -
cquler 5
1 Account
 Currenc
a

|| | K| | | - - S

b Error List|

Ttem(s) Saved 4

Figure 9.17

SaleDate attribute. You might want to look through the list to see the many other
options that you can use for other types of data. Be happy that this lab is only us-
ing the three easy ones. But do not get too happy, you still have another step to
complete.

Once you finish the wizard, you will see the design screen shown in the back-
ground of Figure 9.17 with the Attributes and (empty) Hierarchies panels. You
create the date hierarchy by dragging the SaleYear attribute onto the Hierarchies
panel. Then drag the SaleMonth attribute and drop it onto the <new level> spot.
Do the same for the SaleDate. Rename the Hierarchy to SaleDateH so you (and
the managers) remember what it represents. To test the dimension, right-click its
name in the Solution Explorer and choose the Process option. When the main
form appears, click the Run button. When processing completes, close the pro-
cessing forms and click the Browser tab for the dimension. You should be able
to expand the All entry to see the years, which can be expanded to see the month
numbers. Note that it is possible to display month names instead of numbers, but
it takes several additional steps, beginning with adding a MonthName column to
the Data Source View using the DateName function.

Save your work and close this dimension. You now need to add the simple attri-
butes into one large dimension group. Right-click the Dimensions row in the So-
lution Explorer and add a new dimension. Stick with Existing tables, and choose
the Saleltem table. For the Name column, select the SaleID SKU attribute that
contains the concatenated keys. Keep all of the related tables. Now select the de-
sired attributes, including Value and QuantitySold as facts. You can leave the at-
tribute type as “Regular.” Your list should include at least the entries selected by
default, plus: Color, ItemMaterial, Manufacturer Name, ShipState, and Gender.
If you have time, you might want to add hierarchies for State, City, and possibly
ZIP Code—which means you have to select those items now and build hierarchies
later. These hierarchies can always be added later, because all of the objects you
are creating are easy to edit. So, save your work and close the new dimension.

Chapter 9: Data Warehouses and Data Mining 182

You are now ready to create an OLAP cube. Right-click the Cubes entry in the
Solution Explorer and choose the New Cube option. Stick with the existing tables
and pick the Saleltem table as the measure group (fact) table. You might as well
use all of the entries (Quantity Sold, Sale Price, Value, and Sale Item Count) un-
less you need to limit the managers to just the Value entry. Keep both dimensions
that you created and click Next and Finish to create the new cube. That is all it
takes to create the cube, but it has to be processed before it can be used. Process-
ing basically copies all of the data from the database and builds special OLAP
tables to hold the final data to improve browsing speed. Whenever the underlying
data gets reloaded, you will need to reprocess the cube; but the steps are relatively
automatic.

Right-click the new cube name in the Solution Explorer and choose the Process
option. Click the Yes and then the Run buttons to begin processing. Close the pro-
cessing form when it is finished. You can right-click the cube name and choose the
Browse option to run the cube, but this step is covered in more detail in the next

section. .
Activity: Browse the Sales Data Action
OLAP Cube Right-click the new Cube name and

choose Browse.

Once you have created the cube and Set SaleDateH as the column field.

processed or deployed it, it can be used
to search the data for various relation- | SetProduct Category as the row field.
ships. The easiest way to see how the Place Value in the total section.

cube works is to run the Browser built | Add Color, Manufacturer Name, and
into the BI Developer Studio. If neces- Ship State foihetiterticlds:)
sary, restart the Business Intelligence Play with the cube to test the options.
Studio and open the project. To start

the browsing process, simply right-click the name within the Cubes section of the
Solution Explorer and choose the Browse option.

Figure 9.18
98 AllPowdersales - Microsoft Visual Studio = P [=[]
Fle Edit Ven Proect Buld Debug Datbase Cube Took Windon Hep
- J @] % @[9I |veveoment - | FFRB T
3| /All Powder Sales.cube [Design] | start Page - x
L e
8 ||| # cube. @1 Dimen... |ig) Calcul... |&® wris |G Actons Partitions |3)% Aggre. Perspe... | (g Transl "}, Browser 2
£ Soim.. (51 oren | co. | e 1§ tcron [e 8 e |G e [Tooe] (202
2l | m e a2 % B - GE T @ | Persectve: [Al Ponder sles =] Language: [Default |
Measure Group: Dimension Hierarchy | operator | Fiter Expression
<Al | | <Select dimension>
(51 Al Powder Sales =i [Cubes
5 ul Measires L1 Al Ponder Sales.cut
E1 [Sale Item 41 | ||| = Dmensins

leDate. i
Drop Filter Fields Here 17 sale ttem.dim
_ [Pron Column Feis Fere [Miing Structures
g [Roles

wil Quantity Sold
ail Sale Ttem Count
uil Sale Price

ail Value

ssssssssss

Date
Sale 1D
sale Month

<« | »

Sale Year
2, SaleDateH Server : localhost
1 sku Database : AlPowderSales

T Command
Drop Totals or Detail Fields Here

Status:

Deployment
Completed

57 Propertes |43 Deploymen...

3 Error List|

Item(s) Saved g

Chapter 9: Data Warehouses and Data Mining 183

9§ AllPowderSales - Microsoft Visual Studio =1olx|
Fle Edt Vew Project Buld Debug Datsbase Cube Took Window e
-l @] % 5[| b | Development - |5 3 Bl g
'SE|/AllPowder sales.cube [Design] | SiartPage | O ol onpoicer -3 x
5[@ abe... |51 omen. |G cond. | s [acns | @ paveos (37 ... | perse.. | . [moweer| || 20|

I Alipowdersales

) m % il BB - MO T 2 #| Perspectve: [AlPowdersaes] Languages [Default 1=l Bl [Data Sources
Al Powder.ds

Mezsure Group: Dimension | Hierarchy | Operator | Fitter Expression - [Data Source Views

<Al> | | <sclectdmension> | 9 Al Powder Seles ds

(30 All Ponder Sales B El- [Cubes
5 ul Measures =1 AlPonder Sales
B [Sale Ttem 4 | (3| & £ Dmensions
wll Quantity Sold i T = leDate..di
wl Sele Item Count Saie TtemColor > ‘;T" 2 I:ITI- = } |7 sele ttem.dim
il Sale Price e [Mining Structures
ul value - B Roles
= 147 sale Tiem 2003 5 Assembies

Product Category - Category v |Value | Vae | Vaue | Vae | Vaue

S BIEnb 7 es Board 43477 647 | 1BB | 1ATS | 3H04R
Sale Item. Color Boots 17380 18658 44010 67120 147178
Sale tem. Customer 1D Clothes 16855 25270 66710 E5l4 199950
Sale Item.Gender

Sale Item.ltem Material

[Miscellaneous

Sale Ttem Manufacturer ID
Sale Item.Model I

Sale Ttem.Name

Sale Item.Payment Method wax
Sale Item Product Categary - Catec | [Grand Total 125023 200805 330014 412803 1072645
Sale Ttem.Quantity Sold

Sale Item.Sale - Sale ID

sale Item.Sale ID

Sale Ttem Ship State L
Sale Ttem.Skil Level

Sale Item SKU

Sale Item.Ste

Server : localhost.
Rack 834 1931 2306 913 6034 e

Unknown 186 204 809 1075 2274 () Command

Status:

sale Ttem Value @ Deployment
B |gf SaleDate = Completed
g D 5 Properties |3 Deploymen...
3 Error List|
Ttem(s) Saved 4

Figure 9.19

Figure 9.18 shows the basic outline of the empty cube. The left panel contains
the list of fact and dimension attributes. Notice that they are organized into folder
groups. You can create your own groups if you have a large collection of attri-
butes, but it is not required. The cube structure is the most important element.
Notice that it contains four major areas: Row Fields, Column Fields, Filter Fields,
and Totals or Detail Fields. Remember that the purpose of the cube is to display
subtotals (and details) for a given fact, based on various dimensions. Hence, you
place a fact measure in the middle of the cube (Totals) and then position dimen-
sions as either row or column fields. There is no difference between using rows or
columns, but typically you place smaller dimensions as columns because a page
can display more rows than columns. But the choice is not critical because man-
agers can simply drag the fields around to wherever they want them. Filter fields
are a little trickier. Anything placed in a Filter field can be used to restrict the data
shown in the entire cube.

It is easiest to see the differences with an example. Expand the SaleDate di-
mension and drag the SaleDateH hierarchy to the Column Fields area. Expand
the Saleltem dimension and drag the Product Category attribute to the Row Fields
area. Expand the Measures, then Sale Item entry and drag Value onto the Totals
area in the middle of the cube. For comparison, drag Color, Manufacturer Name,
and Ship State from the Sale Item dimension onto the Filter Fields area. Initially,
these three are set to “All” so they have no effect on the data.

Figure 9.19 shows the initial cube. To understand the value of hierarchies, click
the plus sign (+) to expand a year. Instantly, you get subtotals for each month for
each category. You can further drill down within a month to see sales on a specific
date.

Another useful trick is to remove some items from the list. Click the drop-down
arrow on the top-right of the Product Category list. Uncheck everything except the
Board and Ski entries. When you click OK, you can focus on just the sales of the
snowboards and skis.

2

Chapter 9: Data Warehouses and Data Mining 184

Similarly, managers can open the Filter fields and choose which values should
be displayed in the table. Try it by opening Color and deselecting some of the
colors. Now, all values in the cube represent just the colors that remain. Reset the
options by opening the Color field and clicking the All entry. Do the same for the
Product Category. Now open the State field and click the All entry to deselect all
items, and click just your state to see sales within that state.

If you, or managers, want to transpose the cube, you can drag the column date
hierarchy entry over to the rows and drag the product category attribute to the col-
umn heading area. You can also drag attributes from the top-of-the-page filter area
onto the cube itself. The cube is a flexible approach to viewing data from almost
any perspective. However, it is important that the cube contain all of the fields
that managers want to evaluate. It is possible to add new fields to the lists, but you
have to go back and revise the Data Source View and dimensions, and then repro-
cess and redeploy the cube.

To set the format of the Value item—for example as currency—you have to go
back to the cube definition. Click the Cube tab on the left of the designer. Select
the Value attribute and examine its properties. You can set the DataType to Cur-
rency, or even specify a detailed format string. But, you will have to rerun the
Process and Browse commands to see the changes.

For one more useful trick (there are many others), right-click a Value heading
in the cube and choose the Show As option. Then select Percent of Grand Total to
get percentages instead of totals.

Introductory Data Analysis i

Acfiz)ity.- Ana{yze Time-Series Data Start a new BI Analysis Services project.
Add a data source, but you can reuse the

SQL Server provides some relatively L& ?
existing connection.

powerful data mining tools—particu- i
larly in the 2008 edition. The good | Createanew Data Source View, but do
news is that they are relatively easy v ta D e
to use. However, ultimately, managers Create a Named Query that totals

: . . ’ SalePrice*QuantitySold and computes
need to be familiar with the underly- a date sequence: (Year(SaleDate)-
ing statistical theories. This point is il- 2003)*12+Month(SaleDate).
lustrated even in a simple time series
forecast.

As a developer, one of the most important points to remember about Micro-
soft’s Time Series tool is that it requires a data column that contains a time vari-
able. This column must be numeric and continuous and it must be a single col-
umn. In other words, you somehow need to combine year and month into a single
value. In most cases, the easiest solution is to create a query that basically counts
the number of months. If you have limited data and some months are missing, you
can use an outer join with a calendar table to fill in the missing months.

To analyze time series data, start with a new BI Analysis Services project.
Sometimes you can simply embed the data mining tools into the existing data
cube project, but for the lab it is better to create a new project to reduce errors by
keeping the processing separate. You will need to add a new Data Source (right-
click in the Solution Explorer). However, you should be able to reuse the existing
connection—simply select the value shown. If you do not have an existing con-
nection, click the New button and enter the basic login credentials.

More importantly, you need to create a new Data Source View. Even if you are
reusing an existing project, it is important to build a new view. Right-click Data

Chapter 9: Data Warehouses and Data Mining 185

Source View in the Solution Explorer and choose the option to build a new one.
The trick here is to not pick any tables. Simply leave that screen blank and click
Next. When you get to the View designer, right-click the main screen and pick the
option to Create Named Query. (You also could have created this query within the
database and then imported it as a table.) Use the query builder or simply type the
SQL:

SELECT (Year (SaleDate)-2003)*12+Month (SaleDate) As

MonthSeq,

Sum(Saleltem.QuantitySold*Saleltem.SalePrice) As

SalesValue

FROM SaleItem

INNER JOIN Sale ON SaleItem.SaleID = Sale.SaleID

GROUP BY (Year (SaleDate)-2003)*12+Month (SaleDate)

This query computes the total sales (price times quantity) for each month. It
also computes a month sequence number that numbers each month consecutively.
This sequence number is required by the Time Series tool. Notice that you need to
know the starting year (2003). If necessary, you could use a subquery to compute
this value, but the query is faster if you simply plug in the known value. Click the
Save All button to save your work. Right-click the query and choose Explore Data
to ensure the query works. Note that the data is not sorted—because SQL Server
does not allow you to save an ORDER BY clause in a stored query. Do not worry,
the Time Series tool will handle the sorting automatically.

Create a new data mining structure by right-clicking Mining Structures in the
Solution Explorer and choosing New Mining Structure. Pick the option to use ex-
isting tables and choose the Microsoft Time Series technique from the drop-down
list. Choose the Monthly Sales data source view that you just created. Accept the
default choice of the single table.

The next steps are critical. As shown in Figure 9.20, set SaleYearMonth as the
Key and set the Input and Predictable options for the SalesValue attribute. The Key

Figure 9.20

5 AllPowderlonthlySales - Microsoft Visual Studie —of x|
File Edit View Project Buld Debug Database Tools Wind

Gl-H @6 BRE|9 -0 b |peveoprent - |G 0 B0
7| Al Powder.dsv [Design] | Stert Page RaEad Soluton Splorer
Bllnules@Es|x|3 Q-

g

£

Diagram Organizer =
TR <Al Tables> H) SslesByMonth

_ol x|
pecify the Training Data
Specify the columns used in your analysis. -
Tables
& SalesByMonth e
~ Tebles/Columns [Fy | F bpt |7 Predc. |
O @ selessymonth
¥ @& Monthseq [O O
7 % sdesvale [m] 2 o]
|| |B Locati
Name Mining Structure:
Recommend inputs for currently selected predictzble:
Suggest
Name
<Back | Next > I Einish >3] | Cancel |/ e
| folder.

Chapter 9: Data Warehouses and Data Mining 186
er I |
e E E se MinngModel Took Window Help
E-Hd % RR[9-C- nt - | QFRBIO- g
3£| ~Sales By Month.dmm [Design] | all Powder.dsv [Design] | StartPage X
g [, Mining Structure | A Ming Models I& Mining Madel Viewer],ﬁ Mining Acaracy Chart | ¥ Mining Model Prediction
)| baing Mocel: [sales By Month | viewer: [Marosoft Time Series viewer =l a
{ Eharts | Model |
o3 21 EI 4b:)-3] [~ show historic predictions ™ show Deviations Predictionsteps [5 —|
=
60000. [sdesvoe |) [Mining Structures
/A, Sales By Month.dmn|
oo 7 ssles valie 5 Raks
/1 - [Assembles
40000, [Miscellaneous
Ty
AV e
20000 T o
1000 .AA/\UAVN b.4
/] e
0
1 ; 7| Forecast, 572 e T
- low
@ 0Errors || 1\ 0 Warnings | |(i) 0 Messages
|| Desaription [Fie Lne | Coum [Project
| Error List 5] Output
Item(s) Saved

Figure 9.21

column must always be the time series
sequence value. The Input and Predict-
able indicators are used for the primary
data that you wish to forecast—often
sales. The SQL Server method also al-
lows you to add other attributes that
might affect the time series. For ex-
ample, you might want to know how
the location or age of a customer affect
the prediction. If these values are in the
Data Source View, you can select them
on this screen by checking the Input
(but not the Predictable) option. They

Action

Create a new mining structure choosing
the Time Series technique.

Use the Monthly Sales data source.
Set SaleYearMonth as the Key.

For SalesValue, check the options for
Input and Predictable.

Process the new structure and Browse it.

Set the Algorithm Parameters to use

only the ARIMA model and suggest a
12-month period.

Reprocess and browse the model to
evaluate the forecast.

are handled using a Decision Tree ap-

proach. For now, stick with the two variables and follow the prompts to close out

the wizard with the default values.

To see the results, you need to process the model and then switch to the view-
er. In the Solution Explorer, right-click the new data mining structure name and
choose the Process option. Follow the prompts to run the processing. When it is
finished, close any open windows. Return to the Solution Explorer and right-click
the model again, this time choosing the Browse option. To see the results, click
the Mining Model Viewer tab on the main screen.

Notice in the resulting chart shown in Figure 9.21 that the forecast (in the shad-
ed region) seems low. The Microsoft Time Series tool uses two approaches to
forecast trends: (1) A decision tree that tries to factor the data into relevant groups,
and (2) ARIMA—a standard statistical time-series tool. ARIMA (autoregressive,
independent moving average) relies only on the underlying data series to estimate
basic patterns in time series data. In this situation, it will be more accurate than the

decision-tree approach.

Chapter 9: Data Warehouses and Data Mining 187

94 AllPowderlMonthlySales - Microsoft Visual Studio

Fie Edt View Project Buld Debug Database

odel Tooks Window telp

G-Hd B9 ent - | B R BID -
3%| -~ Sales By Month.dmm [Design] | All Powdk [Design] | Start Page PSRN 5oluition Explorer
& | 8 Mning structure | < Mining Modsls (S MininaModel Viewer | 2] Mining Acauracy Chart | % Miing Medel Prediction
)| Mining Model: [sales By Month =] Viewer: [Mirosoft Time Series Viewer =l a
Charts | moce! |
@ || B8 A|4s| T show historic predictions I~ show Devistions Predicton steps [12 =]
60000, Salles Value x
50000.
7 M sales vae

40000,

30000,

20000.

10000,

Figure 9.22

To alter the way the BI tool computes the forecast, you need to change a couple
of parameters. (These steps are slightly different if you are using BI 2005 instead
of 2008.) Click the Mining Models tab to return to the model. Right-click the
Sales By Month header (or anywhere in that column). Choose the Set Algorithm
Parameters option. Find the Forecast Method row and click the cell in the Value
column. Enter ARIMA to force the model to use only the ARIMA approach. Since
sales data probably also has an annual pattern, find the Periodicity Hint row and
click the cell in the Value column. Enter {12} or perhaps {1, 12} to suggest that
there is a 12-month cycle. Click OK to accept the changes.

Whenever you change the model or data structures, you have to reprocess the
model. Right-click the Sales By Month heading and choose Process Mining Struc-
ture, followed by All Models. Click the Run button. When processing is complete,
close the open windows. Switch to the Mining Model Viewer tab and click Yes
to refresh the view. As shown in Figure 9.22, increase the Prediction Steps to 12
(months). The resulting forecast looks much more reasonable than the initial fore-
cast. Notice that the ARIMA tool does a good job at picking up seasonal patterns.

Overall, the time series forecasting tool is relatively easy to use. However, you
cannot just blindly follow the default suggestions. Developers have to work with
managers to recognize when initial

forecasts are weak, and then under-
stand the tools (ARIMA) to know how
to improve the forecast..

Activity: Analyze Data with
Regression

Linear regression is a tool that is rela-
tively easy to use and is supported by
a variety of platforms, including Excel.
SQL Server 2008 BI tools has a ver-
sion of linear regression, but it is based

Action

Use the database studio to import the
demographic data from Excel.

Create a view to compute sales by state
for 2006.

Create a view to list the state, sales,
population, and income.

Start a new BI project and build a Data
Source View from the database view.

Create a new Mining Structure to apply
Linear Regression to the Sales data.

Chapter 9: Data Warehouses and Data Mining 188

on the Decision Tree algorithm so the results are presented somewhat differently.
Linear regression can be used for many things, and many options and features
exist in high-end tools. Its primary purpose is to compare sets of data in terms of
closeness or fit. In the classic multidimensional case, regression is used to deter-
mine how various dimensions (independent variables) statistically affect the fact
(dependent) variable. In the All Powder case, the managers would like to analyze
the state data and see if the total sales within a state are heavily determined by the
income level or population of the state. In this case, the income and population
are exogenous variables (predictors) and the sales total is the endogenous variable
to be predicted. As a data mining tool, regression has some strengths and weak-
nesses. Its main strength is that it has been heavily analyzed and applied for many
years, and the results are relatively easy to understand and interpret. Its main
drawback is that the results are largely determined by averages, so the conclusions
apply to the average or general group, but not necessarily to the outliers. Some-
times the most valuable insights come from understanding the outliers—such as
the people who do not buy certain items, or the few leading edge customers who
pursue new sports before the crowd arrives.

Demographics and economic data on states and counties can be found in the
federal government publications. The http://www.fedstats.gov site contains links
and search engines for an enormous amount of data. For this exercise, the 2006
population and 2006 per-capital personal income by state have been saved in an
Excel spreadsheet. The worksheet is relatively easy to import into SQL Server as a
one-time import. Start the database Management Studio. Right-click the All Pow-
der database entry, select Tasks and Import. Select Excel from the drop-down list
and browse to the location of the Excel file (which can be downloaded from the
book’s Web site). Import the data from the StateDemographics worksheet which
has column names in the first row. This action will create a new table.

You next need to create a query that computes the sales by state for 2006. You
could use all of the years, but it makes more sense economically to stick with a
single year. It is straightforward to build the view within the main database:

CREATE VIEW StateSales2006 AS

SELECT Sale.ShipState, SUM(Saleltem.SalePrice*Saleltem.

QuantitySold) As Value

FROM Sale

INNER JOIN SaleItem ON Sale.SaleID=Saleltem.SaleID

WHERE Sale.SaleDate between ‘1/1/2006’ and ‘12/31/2006’

GROUP BY Sale.ShipState

Now you need to match the state demographic data with the state sales data,
which is relatively easy with a JOIN query:

CREATE VIEW StateSalesFactors AS

SELECT StateDemographics$.State, StateDemographicsS$S.

Pop2006, StateDemographics$.Income2006, StateSales2006.

Value

FROM StateDemographics$

INNER JOIN StateSales2006 ON StateDemographicss$.

State=StateSales2006.ShipState

This view now contains a simple list of the state, population, income, and sales.
It would be easy to copy the data and paste it into Excel for further analysis. How-
ever, you can also use the BI tools to analyze the data—which makes it easier to
share the results; or to apply additional tools.

Chapter 9: Data Warehouses and Data Mining 189

"5 AllPowderRegression - Microsoft Visual Studio e -[of x|
Fle Edt Vew Project Buld Debug Database Tools
(R =N A Y P TR 3 Deuelnpmem-c’gﬁ}:g.i
?}; All Powder.dsv [Design]* | Start Page R Solution Explorer -3 X
H ; = 2|8
fllmales@s (X3 Q-
= || biagram Organizer
] <Al Tables> [l StatssalesFac..
State
Pop2006
Income2006
Value
/<_Data Mining Wizard i ol x|
e Specify the Training Data OfE=Ee=D
Tebles Specify the columns used in your analysis. -~
[StateSalesFactors
Mining mode! structure:
[Tables/Columns [ey [F mpa | Predo..|
E @ StteSelesFactors
¥ 43 Income2008 O F O
¥ 4] Pop2006 r ~ [m] Mining Structures
P& saw 4 [x] (] B =
¥ @ Vele r ~ 4 5 Location
Show output from:
Recommend inputs for currently selected predictable:
E it
_seet | ame
Spedifies the name of the
<gack [mert> | Enenosl | canat | o
A

Figure 9.23

Start a new BI Analysis Services project (AllPowderRegression). Use the So-
lution Explorer to add a new Data Source.You should be able to reuse the con-
nection created for the other labs, otherwise you will have to re-enter your login
credentials. Create a new Data Source View and pick the the StateSalesFactors
view you just created.

You are now ready to right-click the Mining Structures entry in the Solution
Explorer and create a New Mining Structure. Choose the option to use existing
tables. Select the Microsoft Linear Regression technique from the drop-down list
and accept the default values until you get to the Training Data screen. As shown
in Figure 9.23, select the State as the Key attribute, check the Input option for the
Income and Population attributes, and select both Input and Predictable for the
Value (sales) attribute. Click the Next button. The system automatically reserves
data for testing (versus estimation or training). With a limited number of observa-
tions, you want to use most of them for training, so reduce the percentage for test-
ing down to 10. Finish the wizard and :
use Save All to save your work. Action

Right-click the new mining structure | Create a new Data Mining Structure
in the Solution Explorer and choose using the Linear Regression technique.
the Process option. Click the Run but- | Set State as the Key, Income2006 and

. : Pop2006 as Input types, and Value
ton. When processing finishes, c_lose needs the Input and Predictable options.
the open pop-up windows. Right-

click the mining structure and choose RTSTlce the percentage of testing data to

the Browse option, then switch to the
Mining Model Viewer tab to see the

Process the model and Browse it.
Expand the Data Mining Legend to see

outlgome. 9.24 sh he basi | the results.
1gure 7.2% SNows t. ¢ basic resu 1s. In the Model Viewer, set the
Users with experience in statistical sys- Algorithm Parameters to Force

tems will find it hard to read. The best Regressor={Income2006}
answer is to expand the Mining Legend | Reprocess and Browse the results.

Chapter 9: Data Warehouses and Data Mining 190

2H AllPowderRegression - Microsoft Visual Studio = 101 x|
fle Edt Vew Project puld Debug Dabase MringModel Toos Window e

(- @] 4 B9 -] b | Develpment - [T A 3 B -

| state Sales Fa...s.dmm [Design]|” All Ponder.dsv [Design] | StertPage ¥ x
8 ||| 2R Mining Structure | A, Mining Models [@;‘ Mining Model Viewer \Q Mring Accuracy Chart | Mining Madel Preciction =ik
= 11| pining Model: [state Sales Factors =] viewer: [Microsoft Tree viewer = o4 &~ [Data Sources
& alPowder.ds
DecsionTree | Dependency Network | G- 23 Data Source views
K| Lol el 3 Tree: Value - DefaultExpansion: |3 Levels 0 Al Ponder.dsv
[Cubes
Hstograms: [& =] Background: |4l Cases = showlevel1 ——— [Dimensions
! &
A State Sales Factors.dmm
[Rokes

- [Assemblies

a o

e e o »

Show output from: Build - RAB|x%|E
Generating deployment scrips P
Add Database AllPowderRegression
Done 4 | vl
Sending deployment seript to the ssrver...
ne Existing Cases: 33 Al
— Missing Cases: 0
Deploy complete —- 0 erzors, 0 warmings
e resioi 1 sumceasas, 0 fatied, 0 sxippes o | sbe = it.204 47240.002"Fopa006-
. . . 6,688,844.182)
< I_'l_I 2 =
) Error Lst|[=] Output “AProperties| Mining Le... [Deploym. ..
Ttem(s) Saved 4

Figure 9.24

tab in the lower-right corner. The coefficients and basic regression equation are
shown in the grid and the bottom section of the legend. First, notice that the sys-
tem subtracts the mean from the input variables (e.g., Pop2006 — 6,688,844) so
the constant coefficient is slightly different than in traditional regression. More
importantly, the system does not report significance or coefficient estimates. How-
ever, the system simply does not report coefficients that lack significance—hence
Pop2006 is included because it affects sales, but Income2006 is not displayed so
it is insignificant.

It is possible to force variables into the regression computation. Click on
the Mining Models tab to make some minor changes. Right-click in the State

Figure 9.25

2§ AllPowderRegression - Microsoft Visual Studio = 10/ x|
Fle Edt WView Project Buid Debug Database MiningModel Tools Window Help
(- G X G390 -® | b |Develoment - |32 BIET- g
;x State Sales Fa..s.dmm [Design] | StartPage -
2 ||| B Mining Structure |f\ Mining Models (5, Mining Model Viewer |] Mining Accuracy Chart ‘o Mining Model Prediction
| Mining Model: [state Sales Factors =] Viewer: [Microsoft Tree viewer =l a & [Data Sources
i G Al Powder.ds
Dedsion Tr
Sitlliees |De°e"“a”“ Network | B [2 Data Source Viens
@|q| Ll 53 Tree: Vae ~ Default Expangion: [3Levels ||| |~ ¢} Al Powder.dsv
i [Cubes
e B Background: |All Cases ~ showtevelt f———||| " 5 Dimensions
I E- [Mining Structures
: A State Sales Factors.dmm
i [Rokes
i [Assemblies
B T
Mining Legend ~ax
High Low
L‘ | _'I Total Cases: 43
I [Coefh... | Histogram |
(@ 0srmors]| i\ 0Warnings | (i) 0 Messages 8014830 I
= 0.180
| [Description [Fie [Line [comn [project oo i
« I»
Vissing Cases: 0 =
Value = 11,503.096+0. 180%(Income 2006
-34,241.860) +0.002%(Pop2006-
6,677,225.837) =
|53 Error List [5] Output S&RProperties| Mining Le... [{ Deploym.
Ttem(s) Saved V.

Chapter 9: Data Warehouses and Data Mining 191

Sales Factors column and choose the Set Algorithm Parameters option. Find the
Force Regressor row and click the cell in the Value column. Enter the value: {In-
come2006} with the braces. You can add other columns by separating the names
with commas. Click the OK button to close the editor.

Right-click the State Sales Factors heading and pick Process Model option.
When the reprocessing finishes, you can choose the option to Browse the model
and return to the Mining Model Viewer tab to see the updates. Figure 9.25 shows
the new results. Again, focus in the Mining Legend area and you will see that the
Income2006 attribute is now included. Without significance values, it is difficult
to evaluate the coefficients. However, scroll the Legend area to the far right and
check out the histogram. Notice the relatively small value attributed to the In-
come2006 attribute versus the other two attributes (constant and Pop2006).

These results are accurate—the sample data was generated based on population
without income. However, actual data from a real store would be more interesting
and should indicate responses to more variables. You can use a similar process
to use more complex tools such as non-
linear regression, neural network, and
Bayesian analysis..

Action
Create a new Analysis Services project.
Add a new Data Source, reusing the

Activity: Analyze Association Rules existing connection.
f07’ Market Baskets Create a new Data Source View with just
the Sale table.

Although it requires some effort to use,
the Oracle data mining package can | AddaNamed Query to the View using
provide some useful results. In par- gagfg;em’ Inventory, and ItemModel
ticular, the association rule or market L

basket analysis is a classic data min- Set the primary keys and connect the

.)) NamedQuery to the Sale table.

ing tool. The goal is to search for items

that are likely to be purchased together. For instance, a person who purchases
cross country skis might commonly purchase gloves. Knowledge of these patterns
could provide insight into your customers and give you tips on how to train your
sales staff to increase sales. On the other hand, the correlations could be purely ar-
bitrary. Managers must critically evaluate all results to see if they make sense and
determine if they can be applied to the individual store.

Microsoft’s Association Rules tool is relatively easy to use and has some nice
graphical features to make it easy for managers to search for interesting rules. The
key to any market basket approach is to understand that you need a dataset that
contains an identifier for the sale (SalelD), and a list of items purchased at each
sale (Saleltem table). However, remember that the Inventory table (SKU) identi-
fies every product variation carried by the company. For instance, skis of different
lengths have different SKUs even though they represent the same model. Partly to
reduce the number of dimensions, but mostly to make the results clearer, you want
to examine sales baskets in terms of the broader ltemModel definition (a downbhill
ski is a downhill ski regardless of length or manufacturer). This reduction will be
handled by creating a new Model attribute that concatenates the Category with the
Style. For example, someone could purchase a Ski_Downhill.

Begin by creating a new Analysis Services project (AllPowderBasket). In a real
project, you would probably build most of these tools into a single project, but for
now it is safer to keep them apart so errors in one lab do not affect another one. In
the Solution Explorer, right-click the Data Source entry and add a new one. You
should be able to base it on the existing connection. If it is not displayed, click the

Chapter 9: Data Warehouses and Data Mining 192

New button and enter the connection and login information. Pick the Use service
account option.

Right-click the Data Source View entry to add a new data source view. Pick
only the Sale table and finish the wizard. Instead of the Saleltem table, you will
build a query to compute the simplified Model definition. Right-click an open
space in the View designer window and pick the option to create a Named Query.
Name it SaleModel. Pick the Saleltem, Inventory, and ItemModel tables. Use the
query builder to create the query, or copy the SQL:

SELECT Saleltem.SalelID, Saleltem.SKU,

ItemModel.Category + ' / + Coalesce (ItemModel.Style,’’) As

Model B

FROM SaleItem

INNER JOIN Inventory ON SaleItem.SKU=Inventory.SKU

INNER JOIN ItemModel ON Inventory.ModelID=ItemModel.

ModelID

Action

Create a new Mining Structure and
choose the Microsoft Association
Rules.

Select the Sales table and mark the Case

The Coalesce function is important
because some of the model Style en-
tries are Null, and the analysis system

does not allow Null values. Coalesce option.

automatically picks the first value | gelect SaleModel and select the Nested
(Style), unless it is Null, in which case option.

it switches to the second value (empty | Choose the SalelD attribute and set the
string). Test the query and accept it. Key option.

In the designer, you need to assign | Choose the Model attribute and set the
the primary keys to the new query, so Key, Input, and Predictable options.

select both the SaleID and SKU col- | Select the Allow drill through option at
umns. Right-click them and pick the the end.

option to assign the Logical Primary
Key. Now drag just the SaleID from the new SaleModel table and drop it on the
SaleID column in the Sale table. Ensure that the columns are correct in the rela-

Figure 9.26

5 AllPowderBasket - Microsoft Visual Studio . = =1ol x|
File Edit View Project Buld Debug Database Tools Window Help

G b @ X BR[O P |peveopment - | R B
All Powder.dsv [Design]* | Startpage |

[halee@Es X3

Diagram Organizer

TR <Al Tables> (] sale 3 SalesModel
7 seled s ET
eleDat

[pospor 3¢

Tables

[sale
2 SalesModel

[l Tables/Columns. [Koy [¥ put [V Predic..| 2]
W & saeD ~ 0 [m]
r SalesTax r r r
[u] ShipAddress [=] [u] [u]
0 ShipCity [} 0 0
0 ShipState [n] 0 o =
[w] shipzp [u] [] [] Bax
Show output from: B [J] selesModel
¥ @3 Model 2 ~ v [|
0 SKU 5] O 0 =
Recommend inputs for currently selected predctable:
_swet ||| fame

Spedfies the name of the folder.

<Bock | Mext> | Frshcsl | cancel |/
4

Item(s) Saved

Chapter 9: Data Warehouses and Data Mining 193

tionship box and accept it. Click the Save All button to protect your work and run
the Explore Data option to check the result.

You can now create a new Mining Structure by right-clicking that option in
the Solution Explorer. Use the existing data option and choose the Microsoft As-
sociation Rules entry in the technique drop-down list. Select table Sales and set
the Case option checkmark next to it. Select the SaleModel table and check the
Nested option to indicate there can be many models for each sale. Click the Next
button.

You need to choose only two columns on the column selection screen: SalelD
and SaleModel. But, Figure 9.26 shows that you have to be careful in setting the
options. The SaleID should have only the Key option set. The Model attribute
needs to have all three options (Key, Input, and Predictable) checked. You do not
need any of the other columns. Click the Next option to continue. On the last
screen, check the Allow drill through option, and click the Finish button to close
the wizard. Click the Save All button.

You can now Process and Browse the results. In the Solution Explorer, right-
click the new data mining entry and choose the Process option. When the con-
trol screen pops up, click the Run button. Processing could be time consuming in
large projects with many sales and too many models. Close the popup windows
when the processing is complete. Right-click the data mining entry and choose the
Browse option.

Figure 9.27 shows the initial results. You should close extraneous windows to
provide more space to see the list. Understanding probability (first column) and
importance (second column) are critical to understanding the table. Probability is
more commonly called “confidence” and it is the proportion of baskets containing
X (the first item) that also contain Y (the second item). If Y is always purchased
whenever X is purchased, the confidence is 1. Importance is typically called “sup-
port” and is the percentage of baskets in the database that contain both (all) items
in the list. If two items are rarely purchased, the probability (confidence) could be
high, but the importance (support) will be low because the event rarely occurs.

Figure 9.27

g AllPowderBasket - Microsoft Visual Studio R =1olx

Eie Edit Vew Project Buid Debug Database MningModel Tools Window Help

E- @ | % B[- ™| b |vevopment - | G Bl g

e ina vl L
g [, Mining Structure | A Miing Models [, Mining Medel Viener | 2] Mining Accuracy Chart | Mining Model reciction If 2
=1 baring Model: [salenseagation =] viewer: [Mirosoft Assocation Rules viewer | 3 B & Data Sources
p 4 wder s
RS] remsets | Dependency etwork | b ol
Minimum probabilty 0.40 =] Fiter Rue: [=] . n:! Rzt
e A 008 =] Show: [Show attribute name and value =l s g »Dal‘:i";‘su.::[ms
™ Show long name: Maximum rows: 2000 = - A, SaleAssodation.dmm
- [Roles
T Pr. | Importance [Rule | [Assemblies
1000 [<75 Electroni isting, Ski_Downhill = Exdsting -> Board_Half-Pipe = Existing J [Miscelaneous
1ooo NN 0.221 Electroni isting, Board_Ride = Existing > Clothes_ = Existing
vooo N 0.+23 Unknows ting, Wax_ = Existing -> Board_Half-Pipe = Existing
vooo [N 0.243 Unknown_ = Existing, Wax_ = Existing -> Boots_ = Existing
1oo0 0341 Unknown _ = Existing, Wax_ = Existing -> Clothes_ = Existing
1000 [o 541 Glasses_ = Existing, Ski_Cross-Country-Skate = Existing -> Ski_Freestyle = Existing
vooo [N o235 Rack_ = Existing, Ski_Downhil = Existing -> Boots_ = Existing
1.000 0.570 Unknown_ = Existing, Ski_Jump = Existing -> Ski_Cross-Country-Traditional = Existing B el s b s
vooo [570 Poles_Cross-Country-Traditional = Existing, Ski_Freestyle = Existing -> Ski_Cross-Country~ g:’;:’a‘mb?‘“;‘fv: e
vooo [o 5>+ Rack_ = Existing, Ski_Downhil = Existing -> Ski_Freestyle = Existing o
vooo | o 5+ Unknown_ = Existing, Board_Ride = Existing -> Board_Extreme Board = Existing (2 Command
o0 [N o-253 Unknown_ = Existng, Bcard_Ride = Existing -> Beats_ = Existing
1000 [N 0.221 Poles_Cross-Country-Traditional = Bxisting, Ski_Jump = Existing - Clothes _ = Existing
1000 | ©.5+1 Rack_ = Existing, Ski_Cross-Country-Skate = Existing - 5ki_Freestyle = Existing
1000 [N O.152 Poles_Cross-Country Trational = Existing, Wax_ = Existing -> Clothes _ = Existing
vooo [N 0.243 Glasses_ = Existing, Ski_Cross-Country-Skate = Existing -> Boots_ = Existing
vooo NN 0243 Existing, Ski_Downhill = Existing - > Boots_ = Existing Status:
vooo [o733 isting, Ski_Cross-Country-Tracitional = Existing ->» Ski_Back-Country = Exis
oo [N 0.255 stng, S0 _Freestyle = Existing - Bosts_ = Bxstng .
e e PR e ey e AN
<] _>|_I @ Deployment Completed
Successfully
Rules: 152 _
5 Properfies | 3 Deployment Progress

Item(s) Saved 4

Chapter 9: Data Warehouses and Data Mining 194

O AllPowderBasket - Microsoft Visual Studio =10l x|
Ele Edt Vew Project Buid Debug Database MningModel Tools Window Hep
P @b [T ¢ b | oeveopment - | R Bl O g
?x SaleAssociation.dmm [Design] | Start Page | - x e e
8 ||| B Mining Structure \f\ Mining Models [g, Mining Model Viewer | .| Mining Accuracy Chart |<7 Mining Model Prediction ‘—j' el
g o
|| Mining Mode: [SaleAssociation =] viewer: [Microsoft assodation Rules viewer =) £ [Data Sources
«» Al Powder.ds
Rules H
| ttemsets | Dependency Network | b emrers
- {3 All Powder dsv
Minimum probabilty: 0.60 =] FiterRulk: [=l B Cabes
= [Dimensions
Minimum importance: 052 = show: Show attribute name only B i &
s I -] & [Mining Structures
I Show long name Maximum rons: 2000 = I A SaleAssodiation.dnm
i [Rokes
T _Pr... [Importance [Rule L [Assembles
1000 [0423 Unknown_, Wax_ -> Board_Half-Pipe “o [Miscellaneous
vooo [0 542 Unknown_, Board_Ride -> Board_Extreme Board
1ooo [o.570 Unknown_, Ski_ump -> Ski_Cross-Country-Traditional
1ooo [N o.570 Poles_Cross-Country-Traditional, Ski_Freestyle -> Ski_Cross-Country-Traditional
vooo [o 541 Glasses_, Ski_Cross-Country-Skate ->» Ski_Freestyle
vooo [N o-+75 Electronic_, 5ki_Downhill - Board_Half-Fipe
vooo NN 0.5+ Rack_, SK_Cross-Country Skats -» Sk_Fresstyle ———— =
vooo | o733 Electronic_, Ski_Cross-Country-Tracitional -3 Ski_Back-Country B ey L P
vooo [N o517 Poles_Downhil, Ski_Back-Country -> Ski_Cross-Country-Tracitional ;:gi’asa‘ﬂi‘ms; S
vooo [o541 Poles_Downhil, Ski_Back-Country - Ski_Freestyle =
vooo [- 772 Poles_Downhill, Ski_Dowrhill -> Ski_lump (») Command
vooo [o-5=+ Rack_, Ski_Downhill - Ski_Freestyle
o667 [o <75 Rack_ Ski_Cross-Country-Traditional -> Board_Ride
(o [Unknown _, Clathes_-> Baard_Half Pipe
oco0 [N o452 Wax_, §Ki_Back-Country - §Ki_Cross-Country-Traditional
Status:
1 | @ Deployment Completed
ssfully
Rules: 15
e Froperties | ¢ Deployment Frogress
Ttem(s) Saved 4

Figure 9.28

Figure 9.28 shows that you (or the :
manager-analyst) can clean up the re- | Action
sults by changing the minimum values | Process the rules and browse them.
for probability and importance to hide | Set the minimum probability and
weak rules. In the example, probabil- importance to reduce the number of

ity was set to 0.6 and importance to s dlSplaye,d')))
0.32. Set the values and wait a couple Check out the list of items in the itemset
e tab.

of seconds for the display to refresh.)

The resulting rules are more likely to Switch to the Dependence Ne‘Fwork tab.

be valid. However, managers must still | Select a node and move the slider to

examine the rules to see if they make remove the weaker rules.

sense and can be applied correctly to Think about what the results would mean
. in terms of sales and marketing.

the business. Also note that you can use

the drop-down list to display just the

attribute name—which makes the rules easier to read.

The data viewer contains two other tabs that are useful. The Itemsets tab dis-
plays a sorted list of item sets—or things that were purchased together. Essen-
tially, it contains a list of the left-side of the rules. Figure 9.29 shows that the list
is sorted by frequency of occurrence. In the example, Clothes appears by itself
(Size = 1) 473 times. Similarly Board Half+Pipe and Clothes appear together in
112 baskets. This list can help managers determine whether rules are important, or
help them focus on specific combinations that have a large impact on sales.

The third tab (Dependency Network) is more fun, and more useful. Select the
tab to get a network diagram of how the various items are related to each other.
Again, you will want to select the option to show the attribute name only. Initially,
the diagram shows all major itemsets and connections. Figure 9.30 shows that you
can click one of the nodes to highlight it. By moving the slider down, you can fil-
ter out the weaker connections. The result in this case shows the five major items
that directly affect the purchase of Boots. In this case, two of them—electronics
and glasses—are somewhat unexpected. This result is probably due to a quirk in

Chapter 9: Data Warehouses and Data Mining 195

[\ Mining Structure | A, Mining Models [, Mining Model Viewer | 2] Mining

Mining Model: [SaleAssodiation | viewer: [Mirosoft Associati

[Rules Itemsets | Dependency Network |

Minimum support: 1 =] Filter Ttemset: |_
Minimum itemset size: o = Show: [od

Maximum rows: 2000 = ™ show long name
©_ Support | size [Itemset
374 1 Boots_
247 1 Board_Half-Pipe
198 1 Ski_Cross-Country-Traditional
188 1 Ski_Freestyle
173 1 Ski_Cross-Country-Skate
163 2 Boots_, Clothes_
148 1 Board_Extreme Board
127 1 Ski_Downhil
124 1 Board_Ride
121 1 Ski_Back-Country
112 2 Board_Half-Fipe, Clothes_
109 1 Ski_Jump
£ 2 Ski_Freestyle, Clothes_
87 2 SKi_Cross-Country-Traditional, Clothes_
80 2 Board_Half-Pipe, Boots_
75 2 SKi_Cross-Country-Skate, Clothes_
71 2 Ski_Freestyle, Boots_
69 2 Ski_Cross-Country-Skate, Boots_

Figure 9.29

the generator used to create the data. However, if the data were real, the result
could be used to target sales of new boots to customers who come in for electron-
ics and new glasses/goggles. The slider makes it easy to explore relationships with
any of the nodes.

Figure 9.30

4 AllPowderBasket - Microsoft Visual Studio =01 x|
Fle Edt Vew Project Buld Debug Datebase MningModel Toos lWindow Hep
: ¥ o ® - | b | Development ~ | & 57 3¢ Bl - g
] iati 1| Start Page — e
8 || & mining Structure | < pining Models ining Model Viener | 2] Mining Accuracy Chart |9 Mining Model Precicton E &
| Mining Model: [aleAssociation = viewer: [Microsoft Association Rules Viewer =] 51 - [2 Data Sources
§» All Powder.ds
Depende Network:
ues | Tiamsets 53| B [Data Source Views
R @ G a| 23| B show: show attrbutename only | | showlong name 47 AlPonder.dsv
[Cubes
Ak [Dimensions
- [Mining Structures
A, SaleAssodiation.dmm
[Roles
[Assemblies
[Miscellaneous
Deployment Prc AlPowderBa... ~ 3 X
Server : localhost
Database : AlPowderBasket
(») Command
Status:
Select a node in the network to highlight its dependendies.
. [selected node I precicts both ways enlerymirmt ¢ et
Strongestlins 7] 145 node predicts the selected node [seected node predcts this node @ Successfully
[5rPraperties | 2 Deployment Progress
Ttem(s) Saved =

Chapter 9: Data Warehouses and Data Mining 196

Exercises

“AJ, \
R
Ioh

Crystal Tigers

The Crystal Tigers club does not have a huge amount of data to analyze within the
organization. However, the club members are interested in comparing their ser-
vice data and the organizations they work with to see if they are serving the needs
of the community. Periodically, they survey people in the surrounding areas to
determine if they have heard of the club, if they know what charities the club sup-
ports, and their overall opinion of the club. In the process, they also ask citizens
about the events and problems that most affect their lives. A substantial part of
the survey is a listing of support organizations with which the club is considering
partnering. Crystal Tigers has collected this survey data every six months for the
last three years, and they get several hundred responses each time. All of the data
is stored in Excel spreadsheets.
1. Create two sample spreadsheets with the survey data. Create tables in SQL
Server to hold the normalized data. Write the SQL statements to transfer the
data. Build this code into a form and button that will automate the transfer.

2. Create an OLAP cube that can be used by managers to analyze the data.

Create an OLAP cube that will enable managers to analyze the existing club
service data. Use two possible fact fields: hours worked and money raised.
Include all of the dimensions you think managers might need.

4. Do a time series analysis of the money raised. Managers are particularly
interested in trends and in identifying the months that raise the most money.

5. Assume you have data on money raised for several years (make up
monthly totals if necessary). Obtain personal income data for your state or
metropolitan area over those years and see if the income level is correlated
with the money raised.

Capitol Artists

= The managers of Capitol Artists are primarily interested in identifying the best

employees and the most profitable customers. The job-tracking system ultimately
generates a considerable amount of data—at the hourly and daily levels. Note that
all employee tasks are supposed to be recorded in the system based on the client,
job, and task involved. The firm has considerable information on clients, including
a size classification (tiny, small, medium, and large), and type of company (such
as printing shop, marketing, retail, and medical). This additional client informa-
tion is currently stored in a spreadsheet, with one page devoted to each client.
1. Create three sample client worksheets with sample data. Modify the tables as
needed to handle this new data. Create a form that will enable a clerk to find
the worksheet and transfer the data to Oracle.

2. Create an OLAP cube that will enable managers to analyze the hours worked
and revenue generated by employees, day of week, client, client size, and so
on.

3. Create an OLAP cube that compares employees based on billable hours by
day during the past month.

Chapter 9: Data Warehouses and Data Mining 197

4. Assume that you have approximate sales numbers representing the size of
each of the clients (make up the data). Create a categorical variable for the
client industry (for example, 1 = printing shop, 2 = marketing, and so on).
Perform a regression to see if the client size or industry influence the amount
of sales revenue Capitol Artists generates.

5. Analyze the data with the association rules to see if there are relationships
between the items purchased.

&2 Offshore Speed

Inventory control is critical for Offshore Speed because it has to stock thousands
of small parts for different engines and drives. All of these parts are grouped into
categories in terms of the manufacturer and the location within the engine or boat.

Lately, the owners think there has been an increased demand for oil pump impel-

lers, but they are not certain because there are several different brands. They also

suspect that sales of electronic navigation devices have tapered off. Although they
have the sales data available, they are not sure how to analyze and compare it.

Of course, the sales data for the past three years is stored in Excel spreadsheets.

One sheet for each month of sales, and each line contains a sale number, date,

part number, quantity, and price. Unfortunately, the part numbers do not match

the new ones entered into the database. However, there is a separate spreadsheet
that maps the two numbers. The first column lists the old number and the second
column contains the new number.

1. Create at least two sample spreadsheets for the older sales, and the
spreadsheet that maps the old numbers to the new ones. Create a form that
can be used by a clerk to pick a spreadsheet and import the data into the new
database.

2. Create an OLAP cube that will enable managers to analyze sales by category,
manufacturer, and time. Note that category should be a hierarchy. For
example, managers might want to see detailed parts, or just the parts that are
used in engines (or drives, or steering, and so on).

3. Create an OLAP cube chart that analyzes sales of the major categories over
time based on monthly sales.

4. For some reason, an employee of the company has kept records of the
weather for the last three years. She has a spreadsheet that contains the date,
the amount of rain on that day, and the high temperature for the day. Create a
regression to see if there is a relationship between the weather and your sales.
(Make up some sample weather data, or find it on the Internet for your area.)

5. Ifyou have access to software that performs association or market basket
analysis, this case would be a good application to see what types of parts
might be purchased together.

Chapter 9: Data Warehouses and Data Mining 198

Final Project

The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following tasks.

L.

Identify at least one primary fact attribute that managers would want to
track, along with several dimensions. Create the query and an OLAP cube to
analyze the data.

Identify any data that could be analyzed over time, and create an OLAP cube
chart and forecast the data.

Identify any data that could benefit from market basket or association
analysis. If you have access to the software, create the queries and analyze
sample data.

Identify any data that could benefit from geographic analysis. If you have
access to the software, create the queries and analyze sample data.

Identify any correlations or regression analysis that might help managers
better understand the operations and effects of various attributes. If possible,
collect sample data and analyze it.

Chapter

Database Administration

Chapter Outline

Database Administration Tasks, 200
Case: All Powder Board and Ski Shop, 202
Lab Exercise, 202
All Powder Board and Ski Shop, 202
Security and Privacy, 210
Exercises, 218
Final Project, 220

Objectives

« Evaluate and improve the application performance.

« Establish backup and recovery methods and plans.

« Install simple security controls to provide basic protection of the data.
» Protect the data with user-level security controls.

« Encrypt data in the database.

199

Chapter 10: Database Administration 200

Database Administration Tasks

One of the powerful features of a major DBMS like SQL Server is its performance
on large databases under a heavy load of users. However, obtaining this perfor-
mance often requires detailed work by the database administrator. SQL Server
provides several tools to monitor performance and tune the database. Advances
in hardware and storage systems also play a role in handling huge databases. Al-
though hardware details are not explored in this chapter, the monitoring tools can
help tell you when you need to investigate new tools. Ultimately, large databases
need to run the Enterprise version of SQL Server. Its primary contribution is the
ability to spread workloads across multiple computers, but it also provides even
more monitoring options.

Every DBMS maintains an internal list of all of the database objects, such as
table, query, and report names. Only recently has the SQL standard proposed a
common method to obtain these names. Consequently, most systems have propri-
etary tables and columns for the metadata tables. You have seen that the Manage-
ment Studio makes it easy to list databases, tables, and columns. However, as an
administrator, you will often use the internal tables and views to search for infor-
mation about tables. You can issue queries against this meta data, much the same
as any other query.

SQL Server follows at least some of the SQL Standard defining some of the
standard INFORMATION SCHEMA views. More detailed meta data is pro-
vided in the proprietary sys views. Figure 10.1 lists some of the commonly-used
elements of both views. You can find the complete list in the master table. Use
the Management Studio to open the master table and expand the entries under
the Views heading. Or you can get the list from a query: SELECT * FROM sys.
all views ORDER BY name. The beauty of the views is that you can retrieve
the data with a simple query. You can also access the data programmatically, so
you can write code to search for things, build backup structures, or transfer data
automatically.

Performance is always a tricky issue in a DBMS. Small tables with a limited
number of joins and a handful of simultaneous users rarely encounter performance
problems. Also, with hardware improvements, performance improvements simply

Figure 10.1

INFORMATION_SCHEMA

Description

CHECK_CONSTRAINTS
COLUMNS
REFERENTIAL_CONSTRAINTS
TABLES

VIEWS

Table constraints and keys
Table columns

Foreign key constraints
Tables

Views (saved queries)

SELECT Table_Name FROM INFOMRATION_SCHEMA.Tables

sys

Description

database_files
servers
synonyms
sysusers
traces

triggers

types

Storage files allocated

List of servers available
Synonyms/shortcuts

User list

Trace logs for performance
List of triggers
User-defined data types

SELECT * FROM sys.sysusers

Chapter 10: Database Administration 201

File group File group
Table Data Rollback segments
Redo logs
AN AN
\\Bi@rive \\Bis@rive
Data Files Data Files Data Files Data Files

Figure 10.2

come down to “buy more processors and disk drives.” However, since one of SQL
Server’s strengths is its ability to handle huge amounts of data, you will encounter
some databases that will need changes to improve performance. To understand
some of the performance controls, you need to be aware of how SQL Server stores
data on the file system. At the base level, the DBA allocates data files on disk
drives. If you are not using a RAID system to automatically store data on multiple
drives, you can accomplish a similar effect by creating separate storage files on
different disk drives.

To simplify installation and management, SQL Server handles most data-stor-
age tasks automatically. However, tools exist to help you override the defaults and
create custom configurations for more complex tasks. First, realize that all data is
stored in files defined in the operating system. These files can be specified when
you create a new database, or you can edit them later in the Management Studio
by right-clicking a database, selecting Properties / Files option.

File groups are logical folders that can utilize multiple data files. Tables are
assigned a specific file group to store the data. By default, SQL Server creates a
primary file group with one (.mdf) file to hold the data. SQL Server also uses a
special sequential log (.1df) file to hold transaction and rollback data. As indicated
in Figure 10.2, you get a substantial gain in performance if you store the table data
and rollback segments in separate file groups on different drives. Two drives spin-
ning independently means (1) the computer can write the data simultaneously, and
(2) there is less chance of a loss in the event of a hardware failure.

Backup and recovery are critical aspects to a database designed to handle thou-
sands of users and processes running at once. In many cases, the database must
run 24-7, so you cannot stop it to make a backup copy. Consequently, even while
you are backing up data, new rows are being added and data is changing. SQL
Server has systems to protect all of this data, but if there is a hardware crash, you
need to be careful about putting everything back together.

In some ways, security in SQL Server is straightforward. Security and user
identification are an integral component of the DBMS. You also have the option of
relying on Windows to identify users—this option is most useful in large systems
where you are using Microsoft’s Active Directory to authenticate users across the
network.

By default, users have minimal access to any data in the database. Consequent-
ly, the major security efforts consist of identifying the access that people need and

Chapter 10: Database Administration 202

then enabling it with an SQL command. Of course, the security team will want
to monitor system and database activity for potential breaches. Database triggers
can be used to provide additional security controls by logging changes to sensitive
tables.

Case: All Powder Board and Ski Shop

Ultimately, the owners of All Powder want to assign individual user permissions.
Although the shop trusts its employees, it does often hire students to work as
clerks, and the owners would like to limit what the clerks can do with the applica-
tion. The issue is only partly a matter of trust. It is also useful to protect the data-
base so clerks and other users cannot start changing form layouts or accidentally
delete items.

The managers are also somewhat concerned about performance, particularly at
the checkout machines. Sometimes the checkout lines get hectic, and the applica-
tion has to be fast. Some of the issues can be handled by installing more comput-
ers, that way the salesperson can enter the basic customer data immediately, and
the checkout clerk simply selects the customer and enters the product numbers. Of
course, more computers mean that the company will need a network, and it means
that more people will be simultaneously accessing the data, so the risk of colli-
sions and locks increases.

Lab Exercise

&

All Powder Board and Ski Shop

DBMS developers learned early that indexes can significantly improve the per-
formance of a relational DBMS. Primary key columns are almost always indexed
because they often represent single-item lookups. Without an index, the computer
has to search each row sequentially to find a match. SQL Server automatically
builds indexes on primary keys. However, you also need to think about building
indexes on foreign keys to provide performance gains for joining tables.

Activity: Monitor the Application Performance

Databases continually evolve over -

time. New data is added, new forms | Action

and reports are built and run, and users Start the Database Management Studio.

find new ways to explore the data. All | Right-click the server name and open the

of these changes alter the load on the Activity Monitor.

DBMS, so performance changes over Run some queries to see if the monitor

time. Every organization experiences changes.] o

periods of heavy use versus lighter us- | Start the Windows Reliability and
Performance Monitor and add counters

age. As tasks change, the effect on the for memory, drive, and some SQL

DBMS can be huge. As DBA, you need statistics.

to monitor the performance, forecast | gyn some forms, reports, and queries to

potential problems, and decide if per- see if they influence the monitors.

formance can be improved with param-

eter and index changes or if it is time to implement new solutions.

SQL Server has three main tools to help you monitor performance: (1) moni-
toring reports within the Management Studio, (2) performance indicators for the
Windows performance monitor, and (3) custom alerts e-mailed to you by the SQL
Server Agent. SQL Server also has the SQL Server Profiler and Database engine

Chapter 10: Database Administration 203

Performance Object Counter

Processor % Processor Time
Memory Bytes Available
SQLServer: Access Methods Full Scans/sec
SQLServer: GeneralStatistics User Connections
SQLServer: Locks Average Wait Time (ms)

Figure 10.3

Tuning Advisor to help you analyze and improve performance. Basic items can be
monitored within the Management Studio. Right-click the server name in the Ob-
ject Explorer and pick the Activity Monitor. Open a query window for All Powder
and run a couple of queries. When you return to the Activity Monitor, you should
see some basic activity in the processor, resource waits, and data file I/O charts.
You can also expand the list of Recent Expensive Queries. If any of these basic
items get out of control, your users will be unhappy with the performance. Of
course, by the time these items indicate problems, it might take days or weeks
to fix the problems. So, you need to keep an eye on trends within these indicator
charts so that you can plan and implement improvements before they get out of
control.

A drawback to the Management Studio reports is that you need to leave the
Management Studio running. Also, you are limited to these basic items. Hence,
the Windows Performance Monitor is a better choice for day-to-day monitoring.
From Windows, run Start/All Programs/Administrative Tools/Reliability and Per-
formance Monitor. The default view shows current usage of the CPU, Disk, Net-
work, and Memory. But, the monitor is a powerful tool with several options. Ex-
pand the Monitoring Tools folder and select the Performance Monitor. The default
chart shows CPU usage. Click the plus sign button on the main toolbar to add
counters. Scroll down the list of categories to get to the large group of SQLServer
entries. You have many choices, and DBAs eventually choose their favorites. Fig-
ure 10.3 shows a couple of choices. Typically, you want to monitor the processor,
memory, and SQL server potential problems. You also might keep an eye on disk
usage.

Many of the variables will change slowly over time, which helps you in long-
run planning. But, if one suddenly spikes, you know you have a problem. DBAs
often keep a performance monitor window open on the desktop to watch it during
the day. Even though it rarely needs immediate attention, it provides a constant
monitor on the status. Figure 10.4 shows a sample screen, but you can resize it
can focus on the variables that are most limiting in your situation. The CPU and
memory indicators can help the DBA identify hardware bottlenecks. If the system
is constantly low on memory or the processors maxed, you need to either improve
the database performance or purchase additional hardware. The graphs on wait
times indicate if some process is blocking others. The main point of the chart is
that you should watch it over time to monitor trends and catch problems before
they become huge. In a production environment, you will also want to use the
SQL Agent to monitor some critical items and send you e-mail alerts so you can
stop impending disasters.

In terms of a development machine, these numbers typically will remain low.
You can run a few queries or fire up some reports to see if the charts move, but the
information will not be very useful. On the other hand, you can obtain stress-tester
software that will enable you to set up a test environment and throw thousands of

Chapter 10: Database Administration 204

{€ Reliability and Performance Monitor

@ Fle Acton View Favorites Window Help ‘;Iilﬁl

e 2m|E=Hm |

[@ Reliabiity and Performance R G ELN T

= [Moritoring Tools
=& Performance Monitor
&= Relizbility Monitor 100
3 Data Collector Sets
I Reports

0
L12:24PM 1:12:55PM L13:25PM L12:23PM

Last | 1.990 Average | 0.617 Minimum | 0.000

Maximum | 4.001 Duration | 140

Figure 10.4

[6Y

transactions at the database. Then you can watch the counters and statistics and
figure out where the bottlenecks are likely to arise. You can also capture ongoing
production data using the SQL Server Profiler and have the test environment scale
it up to see what happens with realistic data scenarios. In both cases, once you en-
counter limits and problems, you can use the other performance tools to figure out
how to improve the database system.

Activity: Expert Index Recommendations

Because of the complexity of managing
large databases, SQL Server provides
several tools for tuning the database | Startthe SQL Server Profiler.
performance. Although it takes years | Work through typical applications in the
of experience (and reading) to become | @pplication from Chapter 8.
an expert in tuning databases, you can | Stop the Profiler
practice with a couple of tools to learn | Open the Database Engine Tuning
some of the main concepts. One of the | Advisor.
casiest tools to use is the Database En- | Browse to the Profiler file data and run

. . . . the Advisor.
gine Tuning Advisor. You can start it .
from the main Windows Start menu or | Evaluate the recommendations.
from the Tools menu within the SQL
Server Management Studio. However, the Tuning Advisor needs a sample of com-
mands to work with. The best approach is to create a workload sample captured
by the SQL Server Profiler. Basically, you start the Profiler, run through typical
operations with forms and reports (or capture actual transactions in a production
environment), and save the workload into either a file or a database table. The
other option is to write a SQL script that performs several tasks that you want to
analyze as a group. This script could be as simple as a group of SELECT queries
that execute within a Query window. If you use this approach, save the SQL script
in a file with a .sql suffix.

Action

Chapter 10: Database Administration 205

[¥% soL server Profiler =lol x|
File Edit View Replay Tools ‘Window Help
ANEErs BADR TP
| Trace Properties x|
General | Everts Selection |
Trace name: IChaplEﬂ [
Trace provider name: POSTSQLZ008
Trece provider type [Microsoft SQL Server 2008 version: 1001482
Use the template: [standand (defaut) = |
W Savetofie [c:vSQLDatabases\Temp ChapteriGa e =)
Set maximum file size (MB) 5
I Enabe file rollover
I~ Server processes trace data
I Save totable: |
T St i couws (i thousands] 1
I~ Enabletrace stop time: e -] [soex;pm =
Crea | _ron
[Comnections: 14

Figure 10.5

For now, the fastest approach to getting a workload sample is to simply run
through the sample forms and reports created earlier. You might want to test them
first to ensure that they connect to the database and work reasonably well. To cre-
ate a workload, open the SQL Server Management Studio if necessary. Use Tools/
SQL Server Profiler and log in with administrator privileges. Enter a name for the
trace (Chapterl0a). Accept the standard (default) template. As shown in Figure
10.5, check the box to save to a file. Use the browse button to find a location to
store the file. Remember this location. Increase the maximum file size to at least
50 MB. When you are ready to proceed, and ready to run the All Powder applica-
tion, click the Run button to start recording the trace file. Start up the All Powder
application and work through whatever forms and reports are available. Try to
mimic a typical workload—add a Sale and a Rental. When you are finished, close
the All Powder application and return to the Profiler. Click the red Stop button to
stop the trace recording. Close the Profiler.

Figure 10.6

i Database Engine Tuning Advisor o (=]
Fle Edit View Actons Tools Window Help 3
b Start Analysis B s | P
POSTSQL2008-JPost /212008 42203 P |
Biconnect | B (4
= | FOSTSGLZ00E Gererel | Tuning Options |
[JPost 7/21/2008 4:22:03 P} |
Session name:
[1Post 7/21/2008 4.22.03 P11
— Workdoad
@ Fle " Table
[C\SQLDatabases Temp'Chapterlla i | &
Database for workload analysis: master VI
Select detabases and tables to fune:
7 Name Selected Tables -
4 | v i | AlPowder 210f21 ~
,F 4l ‘ . ™ () master Click to select individual tables = | —!
S —_— | model ick to select individual tables « __|
=1 I~ del Click Io select individual tables .
| G"I[‘ i = Click to select individusltablss =
e ™ | PetSiore Clik to select individualtables ¥
5 Stalus ™ (3l ReportServer Clck to select individusltables = =
Creation time 4] o B
Ready. Connections: 2 .

Figure 10.7

T Database Engine Tuning Advisor
Eile Edit View Actions Tools

Start Analysis
Bacomnect | 3 (3

Bl [POSTSGL2008
{iZ] JPost 7/21/2008 4:26:59 PD

Window

|3

Chapter 10: Database Administration

206

Help
4@

=10l

x

POSTSQL2008 - JPost 7/21/2008 4:26:53 PM 1

Genersl | TuningOptiors | Progress |

Reports |

improvement: 35%

Partition Recommendations

Index Recommendations

« K

|_EDalabasaName ~ | Object Name_~ | Recommendation + | Target of Recommendation

" “h _dta_index_Customer_B_1
%h _dta_index_Invertory_8_1
h, _dta_index_emModel_8_

| MIPowder
I3 L‘J AllPowder
7 [AlPowder

] [dbo][Customer] creste
= [dbolllnvertory] create
I [dbo][temModel] creste

SQL Script Preview

| e

™ Show existing of

\"REATE NONCLUSTERED INDEX
[_dta_index_Customer_8 1275151588 K2 _K3_K4_1]ON [dbo]
[Customer]

[LastName] ASC.
[FirstName] ASC,
[Phone] ASC

)
INCLUDE ([CustomerlD]) WITH (SORT_IN_TEMPDB = OFF,

Copy to Clipboand Close

|]

Tuning session completed successfully.

Connections: 2 _.:

In the Management Studio, use Tools/Database Engine Tuning Advisor to start
the Advisor. You will probably need the administrator role. As shown in Figure
10.6, in the Workload option, choose File and use the Browse button to find the
workload file you just created (Chapter10a.trc). Choose your AllPowder database
in the workload drop-down list. In the list of databases to tune, check the AlIPow-
der database to select all of the tables. Click the green Start Analysis button in the
toolbar and wait a couple of minutes. The system provides progress reports, so
wait until it finishes.

For the most part, the Tuning Advisor recommends the addition of indexes. It
generally checks that primary key columns are indexed and then examines the
usage patterns to determine how additional indexes might improve performance.
Figure 10.7 shows recommendations for adding three indexes. Your results may
vary—depending on the forms and reports you tested. You can scroll to the right

Figure 10.8

T Database Engine Tuning Advisor

Fle Edit View Actons Took

i | 3 B8 Start Analysis
#icornect | 3 3]
B [POSTSGL2008
{iZ] JPost 7/21/2008 4:26:59 P1

| |
13
B General N
D 1
Name JF

=101 x|
Window Help x
=BH% P
POSTSQL2008 - JPost 7/21/2008 4:26:59 PM 1
General | TuningOptions | Progress | Recommendstions | Reports |
Time taken for tuning 1 Minute d
Estimated percentage improvement 1555
Maximum space for recommendation (MB) 17

Tuning Reports

Select report

port

AlPowder
AllPowder
AlPowder
AlPowder
AllPowder
AllPowder
AllPowder
AlPowder
AlPowder
AlPowder

Ll

dba
dbo
dbo
dbo
dbo
dbo
dbo
dba
dbo
dbo

SkiBoardStyle
ltemMaodel
ProductCategory
Customer
Inventory
CustomerSkil
PaymentMethod
BindingStyle
Sale

Rerttal

Database Name | Schema Name | Table Name Number of references

5

4
3
3
2
2
2
2
1
1

2941
2353
17.65
17.65
11.76
11.76
11.76
11.76
588

588

Percent Usage

il

Tuning session completed successfully.

Connections: 3 :

Chapter 10: Database Administration 207

and click on the entry in the Definitions column to generate the SQL syntax for
creating the suggested index. It is straightforward to copy the script and run it to
create the suggested index.

The Tuning Advisor also creates several reports that help you evaluate perfor-
mance and understand the many components of your database. Figure 10.8 shows
one of the reports. To choose a report, simply click the Reports tab and select the
desired report from the drop-down list. This particular report shows how often
each table was referenced during the sampling period. This knowledge will help
you decide where to focus your efforts to improve performance. Obviously, the
more realistic the data sample that you provide, the better the insights and recom-
mendations from the system.

You might have noticed that the Tuning Advisor has an additional option. You
can configure this option with the Advanced properties button. For small data-
bases, it will not matter, but for large systems, you will want to allow the system
to suggest partitions to the database. Partitions essentially split tables into pieces.
Sections of data that are heavily used are stored on high-speed disks, while por-
tions that are rarely used are stored on slower, less-expensive drives. Of course,
you need multiple drives for partitions to make sense, and given the declining
prices of even high-speed drives, partitions only make sense if the database con-
tains huge amounts of data.

Activity: Analyze Query Performance

Many times as a DBA and as a devel-

oper, you will find that a few queries]

present the greatest performance is- | Open SQL Server Management Studio.

sues. If a query is run once or twice a | Create anew Query with a subquery.

year, performance might not matter. If | Choose Query/Display Estimated

the query is an integral part of an appli- Execution Plan.

cation, or inside of a loop and executed | Choose Query/Analyze Query in

thousands of times, it is worth the time | Database Engine Tuning Advisor.

to optimize the query. SQL Server pro- | Run the Advisor and check the

vides a query analyzer to help you find recommendations. i -

ways to speed up queries. You can use Choose Query/Include Client Statistics.

the SQL Profiler to identify queries that | Run the Query.

are heavily executed making them like- | Click the Client Statistics tab.

ly candidates for improvements.
For specific queries, you can look at the Estimated Execution Plan to see how

SQL Server analyzes the query and will process the results. It shows the estimated

time required for each major step. Since SQL Server uses a cost-based optimizer,

you cannot change the steps, but you can use the information to see where the

most effort is spent and then decide if there is a way to avoid that step. Although

Action

Figure 10.9

SELECT Lastname, Firstname, Customer.CustomerID
FROM Customer
INNER JOIN Sale

ON Customer.CustomerID = Sale.CustomerID
WHERE Customer.CustomerID NOT IN

(SELECT CustomerID FROM Rental)
ORDER BY Lastname, Firstname;

Chapter 10: Database Administration 208

B Microsoft SQL Server Management Studio -1oix|

Fle Edt View Query Project Debug Tools Window Community Help
Qtewoey || BB BB SHI &y

9 17 | AlPowder v | ¥ Execte b W o I3 :;u 9 iy | == 2
SQLQuery1.sql .08\ JPost (54))* - x
Comect- |47 %0 m T [I SELECT Lastname, Firstname, Customer.CustomerID
[J Database Snapshots & R
= () AlPonder INNER JOIN Sale ON Customer.CustomerID — Sale.CustomerID
® £ Datahase Diagrams WHERE Customer.CustomerID NOT Iif
£ [Tables (SELECT CustemerID FROM Rental)
[System Tables ORDER BY Lastname, Firstname: _'LI
(1 dbo.BindingStyle Ll 3
dho.Custoner £ Messages 3 Brecutionplan |
dbo.CustomerSkil
o e i Query 1: Query cost (relative to the bateh): 100%
dbo.Employee SELECT Lastname, Firstnams, Customer.CustomerID FROM Customer INNER JOIN Sale ON Cus.
3 dbo.Inventory !ﬁ
[21 dbo.Ttembodel B)
[& dbo.Manufacturer = sorc =" clustered Index Scan (Clustered)
3 doo.ClcRental e [Renzall . (pk Renzall
® 3 dbo.CldSale osTs = %
& 3 dbo.PaymentMeth
dbo.ProductCateg @ DL]
o] Nested oops == targe goin =
£ dbo.Rentaiscour (Left Anci Semi Join) (Inner Join)
T doo.Rentltem stz 1 % Cost: 3 %
& dbo.sale
dbo.Salltem
dbo.SalesCategor
dbo.SkBoardStyle
dbo.SkilLevel
dbo.Stat=Demogrc
[Views -
3 Synonyms
[Frogrammabilty
[Service Broker
3 Storage
[seauity
[Petstore L | b
1 L’J (@ Query executed successfully. POSTSQL3008 (10.0 CTP) | POSTSOL2008\JPost (54) | AlPonder | 00:00:01 | 0 rows

Ready A

Figure 10.10

the optimizer is good, sometimes you can gain even more speed by rewriting the
query—perhaps even breaking it into several pieces. You can manually review a
query and the plan to look for potential gains. Figure 10.9 shows a query from
Chapter 5 that returns a list of customers who have purchased items but never
rented anything. As a challenge to the optimizer, it uses a subquery instead of a
left join.

Open the SQL Server Management Studio and create a new query for the All
Powder database. Enter this query and run it to ensure the syntax is correct. Use
Query/Display Estimated Execution Plan on the main menu to see the plan. Figure
10.10 shows part of the graphical plan. As you select each major step, the chart

Figure 10.11

"« Database Engine Tuning Advisor = 3]
Ele Edit Mew Actions Tools \Window Help x

Start Analysis B HR P
POSTSQL2008 - JPost 712220088 1129AM |

2 connect | 33 ()
=] U’ POSTSQL2008 General | Tuning Options | Progress | Recommendations Reports \

1 JPost 7/22/2008 8:11:29 Al ‘ Estil d improvement: 51%
4] JPost 7/21/2008 7:24:00 P} =
(] JPost 7/21/2008 4:32:45 P Partition R ecommendations

<

2] JPost 7/21/2008 4:26:59 P : -
Index Recommendations ¥
[| Database Name v | Object Name ¥ | Recommendation ~ | Target of Recommendation
[|| AllPowder 3 [dbo] [Customer] create (] _dta_stat_1275151588_2_
¥) AlPowdsr =1 [dbo] [Customer] | create “h _dka_index_Customer_8_1:
7 [J AlPowder = [dbol[Rertal] | create %h _dta_index_Rental_8_181¢
¥ [J AlPowder 2 [dbo] [Sale] create %h _dta_index_Sale_8 20111}

O General -]

D

Name 4 | |
B Status i i : ; : &

Creationtime | 7/22/2008 811 A ™ Show gxsting abjects @) See Reportsfor sizes of exiting obiects

Tuning session completed successfiilly.

Connections: 2 .

Chapter 10: Database Administration 209

&, Microsoft SQL Server Management Studio -0l x|

Fle Edt Ven OQuery Project Debug Tools Window Community Help
Stenceey [B BE DB SHI E

99 437 | AlPowder - ¥ eear b m o 18 E[H]
Object Explorer SN | SqLqueryLsal 08\JPost (54))° | i
Comnect~ | @1 #3 m T 3§ [SELECT Lastname, Firstname, Customer.CustomerlD
[Database Snapshots 4] LGE] @
i = [J AlPouder 70T Sale ON Customer.CustomerID = Sale.CussomerID
[Database Diagrams WHERE Customer.CustomerID NOT IN
) [Tables (SELECT CustomerID FROM Rental)
3 System Tables ORDER BY Lastname, Firstname:
[dbo.Bindingstyle -
= dbo.Customer 4| | »
= i || 23 Rt L Wtsen |37 reion 13 e Stes |
= dbo.Employee [Tral 1 [Average |
= dbo.Inventory Client Execution Time. i 08:13:55
3 doo.Itemodel Guery Profie Statistics
g e Tacure Number of INSERT, DELETE and UPDATE statemerts | D -+ 00000
3 dbo.Oldsale Flows affected by INSERT. DELETE. or UPDATE statem . 0 + 0.0000
= dbo.PaymentMeth Number of SELECT statemerts 2 = 20000
1 3 dbo ProductCateg Rows retumsd by SELECT statements 72 + 720000
! g::o‘gengn Number of transactions [- 0.0000
® !
= dh:ﬂz:ﬂte:m” Networke Statistics
3 dboSale Number of server roundirips 3 - 3.0000
= dbo.Saleltem TDS packets sent from client 3 - 3.0000
[dbo.SalesCategor TDS packets received from server 9 + 9.0000
3 dbo.SkiBoardstyle Bytes sert from client 618 = 618.0000
S dbosilevel 1| pyes received from server 25202 - 252020000
\fle“l‘isho‘SEtEDEmngn e
3 Synonyms Client processing fime 1 - 1.0000
[Programmability Total execution time 0 + 300000
[Service Broker Waittime on server replies 2 + 29.0000
(3 Storage
3 Security =
4 o5 _.l_l (& Query execute... | POSTSQL2005 (10.0 CTP) | POSTSQL2008\IPost (54) |AJIPowdEr |nn:nn:nn ‘17mws
Ready no colo .

Figure 10.12

will display a tooltip with details about the operation and cost of each step. The
Execution Plan provides information, but you would have to figure out how to im-
prove execution time yourself. It is an interesting tool, and it can show you trouble
spots, and for some queries, the only way to speed them up is to completely re-
think the problem. But it is hard to do.

Another approach is to see if you can improve the query by adding more index-
es. Again, you ultimately face the possibility of having too many indexes, but they
do offer significant performance gains in many cases. The quick approach here
is to let the Tuning Advisor examine the query and suggest new indexes. From
within the Management Studio, select Query/Analyze Query in Database Engine
Tuning Advisor and click the Start Analysis button after the tool loads. Figure
10.11 shows the results for this query. The Tuning Advisor suggests adding four
indexes. You can scroll to the right to see more details and click the link to gener-
ate the SQL command that will create an index for you. The primary suggestion in
this example is to index CustomerID in the Sale and Rental tables—because it is
a foreign key. The system also suggests an index for customer name to reduce the
time to sort the results. The Customer table probably does not change too often, so
the name index makes sense. The additional indexes on the Sale and Rental tables
should be tested before being implemented. It likely will have a net positive ef-
fect, but those two tables change often during the day, and the added overhead of
more indexes might cause problems for time-critical operations. Since the original
query is not likely to be run very often, it probably makes more sense to ignore the
indexes and just let it run slower—to avoid interfering with day-to-day operations.

The Query menu contains another useful tool (Include Client Statistics). You
can select that option and run the query. As shown in Figure 10.12, you will find
a tab for Client Statistics next to the Results tab. These statistics provide informa-
tion on the amount of data transferred and execution time. It also counts the trans-

3

Chapter 10: Database Administration 210

actions and the number of SQL statements executed. These results are useful for
complex queries—particularly triggers and other code blocks.

Improving performance of very large databases and complex queries can be a
difficult process. Analyzing the tables is critically important for the query optimiz-
er to function correctly. Even on small tables, the statistics can make an enormous
difference in the performance. More detailed tuning is accomplished by using the
index and tuning wizards. Just remember that adding too many indexes can cause
problems with tables that have a high rate of change due to data entry or updates.
Also, remember that it is important to monitor the daily performance aspects of
the database. Keeping benchmarks on at least a weekly basis will enable you to
spot long-term trends.

Security and Privacy

Activity: Backup and Recovery

Backup and recovery of a SQL Server database can be straightforward, or it can be
complex. If you are able to shut down :
the entire database, you could simply | Action

use the operating system utilities to | Start SQL Server Management Studio.
copy the underlying data files. More | Right-click the All Powder database and
realistically, the business will want to choose Tasks/Back up.

run the database without interruption. | Seta location for the backup file.

SQL Server uses its redo logs to write | Run the backup process.

all changes to a log file first. As DBA, | Copy the backup file to a safe location.
you can set one of three levels of log-
ging: full recovery mode which is the most intensive, bulk-logged recovery, and
simple recovery mode. Full recovery is the default, which is useful, but can gen-
erate large redo log files—even on your development machine. Periodically, you
have to issue a backup command to clear the logs or they get out of control. Gen-
erally, you want to leave the database in full recovery mode. If you are running
the database largely for data warehousing, you could consider switching to bulk
or simple recovery mode—since you could recover the database fairly quickly by
reloading it from other systems.

Overall, SQL Server makes it relatively painless to back up the database files.
Open SQL Server Management Studio, find the database in the list, right-click the
name, choose Tasks/Back up. Figure 10.13 shows the basic choices. For smaller
databases, choose the Full backup option. For huge databases, this choice takes
considerable time and disk space, so organizations tend to make full backups per-
haps once a week, and then differential backups in between—perhaps daily. Dif-
ferential backups only store data that has been changed. This process takes less
storage space but makes it slightly more complicated to restore the database if
something goes wrong. The other main choice you have to make is where to store
the backup file. You can accept the default or remove it and create your own. Ide-
ally, it should be on a disk drive separate from the main database and log files.
Either way, write down the location of the file and copy it to a safe place once
the backup is completed. For example, you could write the file to a tape drive and
move the tape to an off-site storage facility. Never leave the backup file on the
same drive as the main database files.

The Options tab makes it easy to create a script file that can run the backup
process for you at regular intervals—such as 3:00 AM when the load is prob-

Chapter 10: Database Administration 211

[Back Up Database - AllPowder -0l %]

5 Serpt ~ I Help

E‘ Options

Source

Database INIPcwder d
Recovery model Jruce
Backup type [Fun |
™ Copy Only Backup
Backup component:
@ Database
" Files and filagroups: 4'
Backup set
Name: [AIPowder-Fuil Database Backup
Description: I

Backup set will expire:

S O

© 0On

Destination

Server.
POSTSQL2008

Connection
POSTSQL2008Post

3§ Miew connection properties

Figure 10.13

ably lighter. The system can send you an e-mail message when the job starts and
finishes.

Recovering from a crash is also relatively painless. You simply load you back-
up tape and copy the backup file to an accessible drive. Inside the Management
Studio, right-click the database name, choose Tasks/Restore, and fill in a similar
form.

SQL Server (Enterprise version) also has the ability to mirror the database.
You have many options, including server clusters that share processing tasks, to
a single duplicate mirror server. Each server needs a copy of SQL Server, and for
simple mirroring, you primary server simply sends all SQL commands across the
network to the secondary server—providing an exact copy of the data. The SQL
Server documentation explains the details. Keep in mind that you should also use
RAID drives for most database files. These drives dramatically improve perfor-
mance and provide immediate hardware-level backups. If one drive fails, you can
replace it and the system can continue with no loss of data. High-end systems
even support hot-swappable drives that can be replaced without stopping the da-
tabase. With multiple servers in a cluster and RAID storage, the entire system can
continue running even if an entire machine fails. With these techniques, it is pos-
sible to maintain very high reliability systems that can run without interruption for
extended periods of time.

Activity: Setting User-Level Security Controls

The SQL Server database system is built and distributed with a complete security
system. Users must log in to the system to see any of the data. The DBA can create
new users and assign rights to the users or to groups of users. Initially, users have
no permissions. Users and security rights can be created through SQL commands
or by using the enterprise manager. The Management Studio provides a relatively

Chapter 10: Database Administration 212

easy-to-use graphical interface, and is
useful when you need to make simple
changes or check on a particular item.
However, if you need to set several se-

Action

Identify the SalesClerk and
SalesManagers roles and determine
what permissions are needed on the

curity permissions at one time, it is of- basic Sale, Saleltem, Customer, and
ten easier to write the SQL commands Inventory tables.

into a text file and execute the file as a | Create three new users and assign them
query. If you do not happen to remem- simple passwords.

ber the exact SQL syntax, it is some-
times helpful to set up a test example using the Management Studio interface, and
copy the SQL command that it writes.

The first issue to face is that SQL Server needs to be able to identify the indi-
vidual users. Figure 10.14 outlines the basic process. The main database applica-
tion contains forms, reports, and tables. As the DBA, you want to assign individ-
ual permissions to separate users for each object. For instance, sales clerks would
be able to read some supplier data, but not change it, and probably would not need
access to the main supplier form. But, before you can assign any permissions, the
database application needs to be able to identify the user.

Identifying a user is an important step in securing a database or a computer
system. SQL Server has two primary means of identifying users: (1) Individual
accounts can be created within the database, where users are assigned a unique
username and a password, or (2) User accounts can be created on Windows, using
the server or more likely, Active Directory. Each organization must balance the
costs and benefits of the two methods. It is relatively easy to set up a new user ac-
count within SQL Server. The main drawback to this approach is that users need
to remember yet another username and password. Firms are increasingly looking
for single sign-on systems where users log into a central directory and all comput-
ers and applications pull the user identity from this central server.

Before attempting to create users and assign security, you should write down a
list of usernames and initial passwords that will be asked to enter into the work-
group database. While you are identifying users, you should also classify them
in terms of tasks or groups. You almost never want to assign permissions to in-

Figure 10.14

Database
Adminstrator assign
w} Database Application
““ credentials “Form1 Form2 | Form3 | Form4
Workgroup data- %‘ --------
base usernames X~ S T
and passwords Iogi/:;\
User 2
User 1

Chapter 10: Database Administration 213

Sales |Customer | ltem

table | table table
Sales clerks S,Ul [SU,Ll S
Sales managers | S,U,I,D|S,U,l S
Rental managers S,U,l S

Sales Managers

Individual users

Figure 10.15

dividual users. Instead, you place users :

into groups and assign database per- | Action

missions to the roles of these groups. | Create the SalesClerk and SalesManager

Figure 10.15 illustrates the main con- rOl_e& . o

cept. By assigning permissions to the | Assign appropriate table permissions to

role, you should only have to set per- | henew roles.

missions once. As individual roles are ArSISIgn Onre of the roles to each of the

added to or removed from users, their . ev:hus;: ? o (o e B .
fean . S€ the dSales 1orm to tes € accounts

p er(r:rilsstl'ons automatically C.h an%e. b and roles.Test the roles by using SQL

~ Creating a new user requires two ba- statements.

sic steps: (1) Define the user identity—

either in Windows or in the main Security section of SQL Server Management

Figure 10.16

E.. Microsoft SQL Server Management Studio -1oj x|

Fie Edit View Tools Window Community Help

i 0l ew Query | [Ty | iy R §
Object Explorer
Connect~ | 3] 39 m T

5 Senpt ~ [Help

et s | VO Jrorined
= 8 POSTSQL2008 (SQL Se | 3 Server Roles

[Databases 2 User Mapping Login pame: Clackson Search.
=} L;-‘ls_f.“i"t" 2 Securables £ Windows atthentication
jns]
® P | [FIREED 4 50L Server authentication
[3 Credentals Pt fesse
[Cryptographic
3 Audits Confim password: |.."
) 3 Server AuditS; I Speciy old password
[Server Objects
[C Replication 0Qld password: |
38 Management ¥ Enforcs password policy

[5L Server Agent I e e
¥ User must change password at next login
" WMapped to cefficate [

" Mappedto asymmetric key [I |
[Z]

™ Mapto Credential [£ Add
WMapped Credertials Credential Provider

Server.
POSTSGL2008

Connection:
POSTSQL2008\JPost

4 View connection properties

eed] Defauit database

Default language:

Chapter 10: Database Administration 214

P [4]
| Selectapag 5 Serpt + [y Help

2 General

17 Server Roles
127 User Mapping
|2 Securables Map | Database [User | Defautt Schema |

Users mapped to this login.

1 Status ¥ | AlPowder Clackson =]
[m] master
 model
r msdb
[PetStore
™ RepoServer
[~ RepoServerTempDB
r RT
I tempdy
I™ | Guest accourt enabled for: AlPowder.
Database role membership for: AlPowder
] db_accessadmin
[db_backupoperator
Server.
POSTSQL2008 vl db_dataread
¥l db_c
Connection: 7 d
POSTSQL2008\Post T db_denydaiareader
3 View connection properties | || db_denydatawriter
] db_owner
] db_securityzdmin
|Progress % publc
Ready

=)

Figure 10.17

Studio; (2) Assign the user to a particular database. The example here will use
SQL Server to define the user, but the process for using Windows is similar.

Figure 10.16 shows the basic process for defining a new user. The main trick in
the Management Studio is that you must open the Security section that is not lo-
cated within a database. Users or logins are defined within the entire SQL Server
system, not a specific database. After a login is created, you can assign it to a
specific database. Simply expand the main Security node, right-click the Logins
entry and choose New Login. Enter a username that will be displayed within SQL
Server. Choose the SQL Server authentication option, enter a password and verify
it. Be sure you remember the password for later use. There is one important de-
tail. When you installed SQL Server, you needed to select the option to support
both authentication methods. By default, the installation tends to stick with just
Windows. If you the SQL Server option is not available, you can use the Windows
authentication until you get around to installing the SQL Server authentication. If
you choose the Windows authentication, you pick a username from your Windows
security directory and do not need a password. You should select the default data-
base for the user (All Powder).

The second step you need to complete is to assign this login to a database. You
can perform this step when you create the user, or you can do it later. The steps
are similar in both cases. If necessary, open the user account by double-clicking
the login name. As shown in Figure 10.17, you need to select the User Mapping
option and assign the user to the All Powder database. You could also give the
person basic read and write permissions at this point so you can test the login.
Ultimately, you will define business roles, give the permissions to the roles, and
assign the roles to each user.

If you need to create several users at the same time, it is often easier to create a
script file with SQL statements. You can combine the login creation and database
mapping with two basic commands:

CREATE LOGIN CJackson WITH PASSWORD = N’password’;

Chapter 10: Database Administration 215

_ (o] x|
5 seript ~ [Help
G
7 Securables
47 Bxtended Propetties Role name: [SalesClerc
Dumer [AlPawder -
‘Schemas owned by this role:
[Owned Schemas -
I : db_accessadmin
I dbo
™ db_securityadmin
™ db_awner
™ db_backupoperstor
I | dh_ddladmin j
Members of thi role
[[Role Members]
=
Server
POSTSQL2008
Connection
POSTSQL2008"Post
2 View connection propeties
| ProgeE
Ready
Add Remove
o

Figure 10.18

USE AllPowder;
CREATE USER CJackson FOR LOGIN CJackson;

You simply edit the name and password for each person and then execute the
script to create all of the accounts at one time. You can also write a SQL program
that would read the list of names and passwords from a file or table and execute
the statement to create each account automatically.

The next step is to create the roles of SalesClerk and SalesManager. Again, you
could use SQL (CREATE ROLE SalesClerk AUTHORIZATION ‘AllPowder’),
or you can use the graphical tools in the Management Studio. Figure 10.18 shows
the basic steps for creating a role. Within the All Powder database, expand the Se-
curity node and the Roles node. Right-click the Database Roles entry and pick the
option to add a new role. Enter the name of the role (SalesClerk).

The main task shown in Figure 10.19 is to click the Securables option and begin
assigning permissions for the role. You should rely on your notes, such as those
in Figure 10.15 to guide you in setting the permissions. Once you know what ac-
cess rights are needed, the process is straightforward. Click the Search button to
list items that can be secured. Often, the easiest starting point is to choose a list
of all tables. Then select each table and place check marks in the lower grid to as-
sign the permissions needed by this role. The two main choices are GRANT and
DENY which are fairly clear. Generally, you assume all permissions are denied
and you explicitly grant access to the items needed by each role. If you ever do
select a DENY option, that choice always wins and blocks the role’s access—even
if some other permission granted a similar access elsewhere. Use it sparingly be-
cause it can be hard to track down later. The With Grant option should also be
avoided in most cases. If you select that option, the role (and user) not only gains
the ability to perform the task listed, but can pass that permission onto someone
else. If you are using a decentralized security model, you might grant this option
to department chairs and ask them to assign final permissions to everyone in the

Chapter 10: Database Administration 216

=
mz f L5 Scipt - | Help
2 General
3 Securables
2 Extended Properies Datzbase role name: [SalesCleric
Securables Search
Schema [Hame [Type [RE
O dbo OldSale Table
= dbo PaymentMethod Table
= ProductCategory Table
= dbo Rental Table
O dbo RentalDiscourt Table
= dbo Rentem Table
3 dbo Sale Table i
= dbo Saleftem Table
= SalesCategory Table
= dbo SlaBoardStyle Table -
1! = S ; Tt I L'_I
Pemissions for dbo.Sale: Column Pemissions |
s Explict |
erver
POSTSQLZ008 Pemission | Grantor | Grant [WihGernt [Deny =]
— ot @ 2 r r
POSTSQL2008\Post References dbo [m] [m] [m]
4 View connection properties Select dbo ¥ 0 0
Take ownership dbo [m] [m] [m]
sy &= o L] L]
Fa— View change tracking dbo O [m] [m]
View definition dbo r =] O &
| | [
0K Cancel
[ox] _cmee |
Figure 10.19

department. If you need to maintain central control over permissions, avoid giving
the WITH GRANT permissions to any other role.

Again, it is actually easier to assign permissions via SQL:

GRANT SELECT, INSERT, UPDATE ON Sale TO SalesClerk;

When you write the SQL statements, you can collect them in a log file. Later,
the auditors and you can refer to the file to see what permissions are assigned to
each role. And, if you ever need to re-establish permissions, you can simply ex-
ecute the script file.

The final step is to assign the SalesClerk role to individual users (who are sales
clerks). You can make this assignment from within the role or within the security
properties editor for each user. As shown in Figure 10.20, it is easier to work from
the Role screen and simply add members—enabling you to see all of the users and
which ones have already been assigned to the role. If necessary, open the role and
click the General option. Click the Add button at the bottom of the Members box
and select the users who should be assigned that role. It is also possible to assign
members to roles using SQL, but there is no standard SQL command. Instead, you
need to call the internal security function: sp_addrolemember.

When defining roles and assigning them to users, it is important to remember
that users are often assigned multiple roles. Security is more effective when the
roles are assigned with relatively small granularity. That is, instead of creating two
or three all-encompassing roles and assigning one to a person, it is better to break
roles into smaller pieces and assign multiple roles to each person. In the All Pow-
der case, you should consider separate roles for Sales, Rentals, Receiving, Add-
ing Customers, and so on. Then sales clerks would be granted the roles for sales,
adding customers, and perhaps one or two other tasks. If a person is promoted or
moved to a different position, you simply have to change the role assignment to

Chapter 10: Database Administration 217
atahase Role Properties - SalesClerk -0 x|
| Selectapage. 25 Serpt ~ I Help
| General
|| 2 Secursbles
% Extended Properties Role pame: [SalesCleric

Owner: [iPawder =]
‘Schemas owned by this role:
[Owned Schemas -
I”_| db_accessadmin
™ dbo
™ db_securiyadmin
™ db_owner
™ db_backupoperator
I dh_ddiadmin LI
Members of this role
[Role Members |
LA Clackson
Comrecion
Server
POSTSGL2008
Connection:
POSTSGL2008\JPost
4] View connection propetties
| Progress
Ready
oK Cancel
[= [[e2 1)

Figure 10.20

&

match the new job. It is important that the roles and their names closely match the
business jobs.

Of course, you need to test the security assignments. Try the test first using the
forms—which is how the sales clerks will generally use the application. Notice
that the forms themselves are stored outside the database, so they are not directly
subject to the security conditions. However, as soon as the form tries to retrieve
data, the security conditions are imposed, so unauthorized users will not be able to
see any data. In fact, the first time you try to run a form as a sales clerk, you will
probably receive an error message.

Activity: Encrypt Data

Many situations arise where you need to encrypt data stored in tables. In particu-
lar, any personal data collected from customers or employees should be encrypt-
ed. The privacy laws are written so that if data is encrypted, even if it is stolen
you do not have to notify customers of
the data theft (always consult an attor-
ney for details). SQL Server provides

Action
Start the Database Management Studio.

a couple of interesting methods for en-
crypting data. The most useful is to use
a security certificate.

At heart, encryption today is
straightforward to implement. The big-
gest problem involves the keys—where
do you store them to keep them secure
and still make it relatively easy for
your application to find the keys to en-
crypt and decrypt the desired data. The

Right-click the server name and open the
Activity Monitor.

Run some queries to see if the monitor
changes.

Start the Windows Reliability and
Performance Monitor and add counters
for memory, drive, and some SQL
statistics.

Run some forms, reports, and queries to
see if they influence the monitors.

simplest approach in SQL Server is to create a security certificate and use it for
encryption and decryption. Security certificates are created and assigned to the

Chapter 10: Database Administration 218

specific database server and stored securely by the operating system. If an attacker
manages to steal the database, it will still not be possible to decrypt the data. How-
ever, if the attacker acquires administrative rights on the server, anything is pos-
sible—so you still need to implement other security measures.

The first step is to create a certificate. SQL Server provides a couple of meth-
ods to create certificates, but the easiest to create (particularly for a lab exercise)
is to generate one using a password. In SQL Server Management Studio, open a
new query window for the All Powder database. You need to create the certificate
by running this code once:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = ‘complex

password’ ;

CREATE CERTIFICATE MyCert

AUTHORIZATION dbo WITH subject="Main encryption
certificate’;

Be sure you enter a random complex password—something that can never be
guessed or figured out through brute force. You should also give the certificate
a meaningful name (other than MyCert), because you will need to use the name
whenever you encrypt or decrypt data. Finally, after you create the certificate, you
should export the certificate as part of your backup routine in case you have to re-
cover from a crash. You can also create symmetric and asymmetric keys, but you
do not need them for this exercise.

Once the certificate has been created, you can use it for encryption and decryp-
tion by using the EncryptByCert and DecryptByCert functions. The following
SQL commands illustrate the process. Create a new query window and test them
in your database:

DECLARE @QUserPassword nvarchar (250);

DECLARE (QEPW varbinary(500);

DECLARE @DPW nvarchar (250);

SET @UserPassword='mypassword’ ;

SET QEPW=CONVERT (varbinary(500), EncryptByCert (Cert
ID('‘MyCert’), @UserPassword))

SET @DPW=CONVERT (nvarchar (250), DecryptByCert (Cert
ID(‘MyCert’), @EPW))

SELECT @EPW As EncryptedPW, @DPW As DecryptedPW

To store encrypted data in your tables, simply define a column as varbinary—as
a general rule, make it twice as large as the unencrypted data because encryp-
tion expands the length—and use the EncryptByCert function whenever you store
data into the column. This function is probably not readily available for bulk data
loads. However, you can bulk load unencrypted data and then write a short query
that encrypts the data and writes it into a separate encrypted column. Then delete
the unencrypted data with a second query.

Exercises

Many Charms

Samantha and Madison do not believe that security will be a critical issue at Many
Charms. The database will run on one machine and rarely be used by anyone ex-

Chapter 10: Database Administration 219

cept the two of them. On the other hand, they do need a system on which it is easy

to create backup copies. And, for some security, they are willing to use the single

database password. On the other hand, they are concerned about performance.

Although they do not expect too many orders arriving at one time, they do want to

examine some lengthy reports to evaluate sales trends.

1. Run the performance analyzer to improve the performance of the database
and identify indexes needed. Also check the performance for the report
queries.

2. Create a backup option that makes it easy for the managers to create a backup
copy. As much as possible, keep it down to one button. But provide some
notices about moving the backup copy offsite in case of fire.

3. Add the security provisions needed by Samantha and Madison.

/% Standup Foods

A
«b” Security is a serious concern for Laura. The database contains a large amount of
data about employees—and celebrity preferences. Managerial employees will
need access to the database to enter a considerable amount of information regard-
ing other employees and the status of the event. Consequently, employee access
has to be carefully thought out. Managers should have the ability to enter data on
employees who report to them, but should not be able to even see most data on
other employees. You will have to use queries to provide this level of security.
Assigning access to the entire employee table would give managers too much per-
mission. Instead, you will have to set up queries that retrieve the data for specific
approved managers and then give the managers access to the data through that
query.
1. Run the performance analyzer to improve the performance of the database
and identify indexes needed. Also, check the performance for the report
queries.

2. Create a backup option and a written set of procedures that Laura can follow
to ensure the data is protected.

3. Create the security provisions needed by Laura. Concentrate on the
permissions needed to handle evaluation of employees by a manager—
without allowing the manager full access to data for all employees.

Kfﬁ EnviroSpeed
=

The knowledge in the EnviroSpeed database is a major strategic asset to the com-
pany. This data represents experience gained over several years and enables the
company to be considerably more productive and profitable than its competitors.
Tyler and Brennan believe it is critical to protect this asset. On the other hand, it
is also critical that employees and hired experts have immediate access to all of
the knowledge during a disaster cleanup. Security controls need to be set carefully
to protect the database from outside hackers. Fortunately, Brennan and Tyler can
trust all of the employees and experts and do not believe it is necessary to track
the exact usage by each person to prevent theft.
1. Run the performance analyzer to improve the performance of the database
and identify indexes needed. Also, check the performance for the report
queries.

Chapter 10: Database Administration 220
Create a backup option and a written set of procedures to follow to protect
the database.

Create the security provisions needed. Concentrate on protecting the data
from external attacks.

Final Project

The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you pick one
or your instructor picks one, perform the following tasks.

L.

Run the performance analyzer to improve the performance of the database
and identify the indexes needed. Also check the performance for the report
queries. Identify the main areas that will be stressed as loads increase.

Create a backup option and a written set of procedures to protect the
database.

Identify the main risk factors and implement the security provisions needed
to protect the data, but still ensure users have the access needed to perform
their jobs efficiently.

Chapter

Distributed Databases

Chapter Outline

Location, Location, Location, 222
Case: All Powder Board and Ski Shop, 223
Lab Exercise, 223
All Powder Board and Ski Shop, 223
The Internet, 231
Exercises, 239
Final Project, 241

Objectives

» Split a database and link the parts for use on a LAN.
* Replicate a database and synchronize the changes.
« Create Web pages to edit data over the Internet.

» Export and import data as XML files.

221

Chapter 11: Distributed Databases 222

Location, Location, Location

Even small companies often need to access data in multiple locations. This distrib-
uted access generates several issues in database management. The most important
question you will face is where to store the data. The answer depends on how the
database is used, how fast the connections are, and whether everyone needs 24-
hour access to immediately current data. The first step in designing a distributed
system is to answer these questions and determine the most efficient method for
handling data updates in the various locations. Note that efficiency also includes
cost issues.

SQL Server provides several tools to support distributed access to data, but
you most likely need the Enterprise version to use all three. The three primary ap-
proaches are (1) Internet access, (2) linked databases, and (3) data replication. You
could also make the argument that the cluster system is a distributed system on a
local scale. The primary purpose of the cluster system is to improve performance
and reliability. You can use storage area networks to separate the data files from
the processors. Clustering enables multiple processors to work on the same data
at the same time. At some level, SQL Server treats all of this hardware as a single
(really fast) system. On the physical side, you gain flexibility by being able to
move, change, and add hardware without altering the database design.

In terms of distributed access, the use of Web-based forms and reports provides
considerable flexibility in terms of client access. The database itself has become
more centralized, which makes it easier to manage. Yet, managers can access the
information from any place with an Internet connection. As wireless devices, in-
cluding cell phones, gain more Internet features, managers will have almost con-
tinuous access to the data regardless of location. And this power comes almost
automatically when you build Web-based forms and reports. Since the other labs
cover these tools, this chapter will focus on database links and replication. Just
remember that whenever you encounter the need for a distributed system, you
should first ask whether the problem can be solved using the Internet.

Figure 11.1

Server

Network
switch

Chapter 11: Distributed Databases 223

Case: All Powder Board and Ski Shop

Initially, you might think that All Powder with only one store would not care
much about distributed databases. Certainly, if the owners consider adding a sec-
ond store, the issues become more complex. This situation will be examined in a
second lab exercise. In the meantime, even with one store there are some simpli-
fied distributed issues to address. The distributed aspect arises because there will
be several locations within the store that need access to the database—the check-
out stations, the rental desk, and a couple of offices. Figure 11.1 shows that each
of these locations will have a computer that needs to run the forms and share the
data.

Distributed questions within a single building are much easier to solve than
those spread across wide geographic areas. The reason is because of the speed of
local area networks. Within the store, it is relatively easy to install a high-speed
LAN that can transfer data as quickly as a typical computer can transfer data to an
internal hard drive. Consequently, it is possible to store the database in one loca-
tion and share it with all of the other computers—with no noticeable delays. You
have already built the system so that all of the data files, forms, and reports run on
the server. To provide access from multiple locations, all you need to do is ensure
that each station has a machine with a network connection back to the server.
You might even consider portable wireless devices for some of the employees so
they can help customers throughout the store. The key point is that the database
will run without any changes. The forms application is installed on each Windows
computer and it connects to the central database server over the network.

Lab Exercise

All Powder Board and Ski Shop

The existing single server with network access will work well as long as most
of the operations occur in one location. How well would this system work if the
company acquires an inventory warehouse or opens another store? The answer
depends on how fast of a connection the company is willing to lease between the
other locations and the database server. With a relatively high-speed connection,
the Web-based approach will work fine. There might be slight delays if everyone
opens major reports at exactly the same time, but most of the time, the connection
is simply transferring small amounts of transaction data. With only a few users,
even a fractional T1 line or frame relay might be sufficient to handle the typical
loads. You could also use a cable-modem connection, but you will have to run a
virtual private network (VPN) connection over it to emulate a local network with
reasonable security; unless you completely switch to a Web application. In a real-
life situation, you could monitor the amount of traffic and network usage within
the existing store to get a better idea of how much bandwidth would be needed to
connect to a second store.

On the other hand, you could eventually reach a situation where you need faster
response times at each location. In this case, you might split the database and run
two or more servers. The servers would support local operations, but some reports
would need to retrieve data from both databases. As long as you have a network
connection, you can create a database link that enables forms, reports, and SQL to
access data from any connected database. The process is relatively easy, but you
will need to think about security issues.

Chapter 11: Distributed Databases 224

Activity: Create Database Links

The first step is to find or create a sec-
ond database. It is even better if you
happen to have two machines running
as SQL servers. The easiest solution
is to work with a colleague and share with four or five rows of data.

databases. If that is not possible, you R :
. . eturn to your main database and create
will have to start a second instance of | ', jatabase link to the target.

SQL Server on a se?cond Cornputer: The Run an SQL statement that retrieves data
shortest approach is to create a virtual across the link.

machine and run it as a second server.
To be safe, you can create a new TempCustomer table. Figure 11.2 shows the
standard SQL commands along with some sample data. If you are connected to a
database server run by a trusted friend, you could share your existing tables (but
you might want to make a backup copy first). To share databases, you first need
security permissions to access the database server. So you need to assign a login
and access rights to the user who wants to access the system. Since you probably
do not have control over a Windows Active Directory, it is probably easiest to cre-
ate a new SQL Server login and give it at least SELECT rights to the All Powder
Customer table and the new TempCustomer table. Share the login credentials with
a friend if you are working together.

You can connect to several other types of databases, including SQL Server,
Oracle, IBM DB2, Access, and even Excel spreadsheets. In all cases, you need a
network connection, the name of the server, and the name of the database. Test the
network connections (try a Web browser or the ping command) before proceeding.

For SQL Server connections, the simplest approach is to add the other server(s)
to the explorer list in the Management Studio. You can click the Connect button
if it is visible, or right-click in the Object Explorer and select the Connect option.
You will be asked to enter the same type of information you used to connect to the
initial database. Be sure to specify the server name and the proper login creden-
tials. The new server will appear in the Object list and you can perform manage-
ment tasks on the server—if you have administrative permissions.

Many things can go wrong in trying to establish a network connection—par-
ticularly with the security-enhanced Windows 2008 and SQL Server 2008. You
can try several of the following steps, but there is not enough room to describe

Figure 11.2

Action

If necessary, create a second database,
preferably on a different machine.

Create a small Customer table and load it

CREATE TABLE TempCustomer

(CustomerID int,
LastName nvarchar(50),
FirstName nvarchar(50),

Constraint pk_Customer Primary Key (CustomerID)

);

INSERT INTO Customer (CustomerlD, LastName, FirstName)
Values (1,'Smith’, ‘Adam’);

INSERT INTO Customer (CustomerlD, LastName, FirstName)
Values (2,'Keynes’, ‘John’);

INSERT INTO Customer (CustomerlD, LastName, FirstName)
Values (3,’'Samuelson’, ‘Paul’);

INSERT INTO Customer (CustomerlD, LastName, FirstName)
Values (4,’'Robinson’, ‘Joan’);

Chapter 11: Distributed Databases 225

EXEC sp_addlinkedserver ‘PostSQL2008c’, N'SQL Server’
GO

SELECT *
FROM PostSQL2008c.AllPowder.dbo.TempCustomer

Figure 11.3

them in detail. (1) Use ping to ensure the network connection works and your
computer can find the other server. (2) Test your login credentials locally on the
remote server to ensure they are correct. (3) Check the firewall connections on the
target server. Microsoft has a list of ports you need to open, but try turning off the
firewall completely first. If the connection then works, you can turn the firewall
back on and dig into the details of configuring it to support SQL Server. (4) Use
the SQL Server Configuration Manager to ensure that at least the TCP network
services are enabled. You might also need named pipes.

When you have connected to the other SQL Server database, you should regis-
ter the connection. Registration essentially stores the login credentials making it
easier to establish connections and run queries in the future. The easy registration
method is to right-click the server name and choose the Register option. You can
also choose View/Registered Servers from the main menu to see a list of servers,
to add new ones, or to create new groups. The next step is to add the server name
as a linked server using a stored procedure. As shown in Figure 11.3, open a new
query window in the All Powder database and run the EXEC command. Replace
the server name with the name of your server.

The first parameter is the name of your server in quotes. The second parameter
is always the same for SQL Server databases. The N (national/Unicode text) is
required. If the database is something other than a SQL Server database, you have
to enter the appropriate name; and you have to enter additional login information.
See the SQL Server documentation for details and examples. The SELECT com-
mand tests the connection by retrieving the data from the new table you created
on the remote server. You could also use the AllPowder customer table if you are
connecting to a friend’s server and did not create the TempCustomer table. Notice
that you specify the entire table name with the syntax: Server.Database.Schema.
Table. If you get tired of typing the long syntax repeatedly, you can define a syn-
onym for it. For example:

CREATE SYNONYM tempC

FOR PostSQL2008c.AllPowder.dbo.TempCustomer

SELECT * FROM tempC;

The point is that once the link has been made, you can access any of the linked
tables just as you would any other table. Just bear in mind that the data has to trav-
el across the network connection, and if the connection is slow, the query might
take a long time to run. Of course, you can also use UPDATE, INSERT, and DE-
LETE commands as well—so linked servers are a useful method for transferring
bulk data from one server to another.

Now it is time to learn a cool trick introduced in SQL Server 2008. Most
DBMSs support some version of linked servers. Few (if any) support multi-server
queries. A multi-server query runs on all of the servers in a group—at the same
time.

Chapter 11: Distributed Databases 226

Figure 11.4

[0

R, Microsoft SQL Server Management Studio = o [=] 3]
fle Edt View Query Project Debug Tools Window Community Help

0w Query | [y | 8 £ [O | 25 bl 8 [0

29 33 | <multiple R R e = e e
5QLQuery5.sql -...rious logins>)* | - X
’a B B [3 SELECT TOP 10 =
D [Datbese Engine L FROM AllPowder.dbo.Customer
E1 (22 Local Server Groups =
& PosTsqQL2008 4 | _,,J
|7 PosTSQL2008C
5] Central Management Servers [Resuls |_‘,J Messages |
[T Server Name CustomerlD | LastName | FrstName | Phone EMai Address
1| PosTsaLa00: | 0 Wakin NULL NULL NULL NULL
2 |PoSTEGLIN0E 1 Jones Jack 1112223333 Jones/202@msncom 123 Man
3| PosTsaLzooee 2 Sanchez Paul 1114449999 SanchezP844@msncom 777 Ock
4 | PosTsaLzo0ec 3 Gamer Chad 2130804599 GamerC73@msncom 555 Tridert Pla
5 | PosTsaLzooec 4 Resves G 2131866502 ReevesG630@msncom 2914 Summers
6| PosTsaL2008c 5 Hicks Eveln 2139535499 HicksEB08@msncom 2815 Church 5t
7| PosTsaLz00ec 6 Grmes Emest 3128177845 GrmesE460@msncom 7118 Green Ric
8| PosTsaLzo0ec 7 Rice Chaotte 3126086819 RiceC65@msn.com 411 Owens Stre
9 | PosTsaLzo0ec 8 Madow Jemy 2136060452 MarowJ674@msn.com 2250 Cave Spn
10 | PosTsGL2008 9 Rogers Robin 2131439519 RogersR135@msncom 2519 Pleasant |
11 | PosTsaLzooe 0 Wakn | NULL NULL NULL NULL
12 | PosTsaLz008 1 Jones Jack 1112223333 JonesJ202@msncom 123 Main
13 | PosTsaLzo0e 2 Sanchez Paul 1114449999 SanchezP844@msncom 777 Oak
14 | PosTsaLzooe 3 Gamer Chad 2130804599 GamerC73@msncom 555 Tridert Pla
15 | PosTsaLzo0e 4 Resves G 2131866502 ReevesG630@msncom 2914 Summers
16 | PosTsaL2008 5 Hicks Eveln 2139535499 HicksEB08@msncom 2815 Church 5t
17 | PosTsaLz00e 6 Grmes Emest 3128177845 GrmesE460@msncom 7118 Green Ric
18 | PosTsaLz08 | 7 Rice Chadotte 3126026819 RiceC65@msn.com 411 Owens Stre
(15 | PosTsaLzoos | 8 Madow Jery 2136060452 Madowl674@msn.com 2250 Cave Spn
(20 | PosTsaLz008 | 8 Roges | Robin 2131439519 RogersR135@msncom 2513 Pleasant |
4] | |
i Registered Servers [J4 Object Explorer | () Query executed successfully. Local Server Groups | <various logins>» | <multiple> | 00:00:00 | 20 rows
Ready In1 Col 1 chi s

Close any existing queries and choose View/Registered Servers from the main|
menu. Verify that your local server and at least one remote server are registered in|
the Local Server Groups. Right-click the group name (Local Server Groups), notj
an individual server, and choose the New Query option. Execute a simple query:

SELECT TOP 10 * FROM AllPowder.dbo.Customer;

Figure 11.4 shows the results. Check them carefully. Because both servers
have a Customer table, the query returns results from both servers! In the ex-
ample, both tables have the same data, but you can see the duplication, and the
system returns the server name as part of the results (which can be controlled
through properties). This trick could be useful for combining lists of customers or
employees from multiple locations; or even for helping search for an item when|
you cannot remember which server holds the answer.

By default, the query merges the results into a single list. You can also right-
click and choose Query Options and select the Multiserver line under the Results
node. This screen enables you to set Merge results to False. When you rerun the
query, the results from each server will be presented in a separate grid. In general,
the merged option seems most useful for a SELECT command, but sometimes
you will want to separate the results.

Whenever you link servers and run SELECT queries, always think about the
amount of data that has to be returned across the network. In a large organiza-|
tion, servers could be scattered around the world, and you could clog expensive
networks by issuing open-ended SELECT statements. At a minimum, you should
use the TOP n command to reduce the amount of data returned from any single
server.

Activity: Replicate and Synchronize a Database

Internet pages and linked tables are an efficient and easy solution when all of
the computers are connected by high-speed networks, or when you only need to

Chapter 11: Distributed Databases 227

transfer a limited amount of data at one
time. They will not work as well when
you have multiple locations that are
connected by slower links. In particu-
lar, when most of the traffic is local,
you should consider replication. For
example, if the company had stores in
two different countries, it is unlikely
that workers in the first store would
need to share data on a daily basis with the other store. In this configuration, it
does not make sense to have one central database and transfer everything back to
it. Instead, you would want to install separate database servers in each location
that would handle the operations within that area. Yet, on a regular basis, you need
to synchronize the data so that managers can still retrieve all of the information to
make decisions.

Building replicated databases requires some decisions about how you want to
link the databases. The main decision is whether you want the databases to com-
municate all of the time, or just once in a while on a schedule or on demand. The
second approach works best if you have limited bandwidth, when the servers do
not need to share data very often, or when the databases are mobile and not always
connected. The SQL Server replication process is similar in both cases, so this
exercise will use on-demand merges.

The replication and synchronization process in SQL Server has changed some-
what with each of the latest versions. SQL Server 2008 is used in this example.
The steps are similar in SQL Server 2005, but the location of some of the com-
mands has changed. Security is the most complicated problem with SQL Server
2008 and Windows Server 2008. You will probably need administrator rights on
two servers and two databases. It might be best to work with a colleague—other-
wise, server virtualization comes in handy. In the following discussion, one data-
base will be the publisher and the other will be the subscriber. Most of the initial
work is done on the publisher machine. A table on that computer will be replicated
to the subscriber computer. Changes made on either machine will be synchronized
with the other copy.

1. Configure Security on the Publisher and Subscriber computers.

Begin in Windows by starting the SQL Server Agent account on both computers.
This account was installed by default but it was set to Manual start. Use Windows/
Computer Management and expand Services. Find the SQL Server Agent service
and start it (arrow in the menu or right-click). If you are building this connection
for a real project, you probably want to change the startup property to Automatic
instead of Manual. Remember to set it on both computers.

While you are in the Computer Management snap-in, you need to create new
security accounts that will run many of the jobs behind the scenes. You need four
local accounts on the publishing server. You can use any name and password that
you want, but Figure 11.5 shows the suggested names that are easy to identify.
Open the Local Users and Groups node in the Computer Management Console.
Right-click the Users line and pick New User. Enter the names and passwords
for all four entries on the Publisher server and for the last two on the Subscriber
server. Be sure you remember the passwords.

Action

Configure security on the publisher and
subscriber computers.

Configure distribution on the publisher.

Set database permissions on the
publishing server.

Define publication data to be shared.

Chapter 11: Distributed Databases 228

Role Server Suggested name

Snapshot Agent Publisher <server>\repl_snapshot

Log Reader Publisher <server>\repl_logreader

Distribution Agent Publisher and Subscriber <server>\repl_distribution

Merge Agent Publisher and Subscriber <server>\repl_merge
Figure 11.5

SQL Server replication works by storing temporary data in a shared folder on
the Publisher server. You need to assign permissions to this folder, so you should
create it by hand. Use Windows Computer explorer to create a new folder. The de-
fault location is usually: C:\Program Files\Microsoft SQL Server\MSSQL10.MS-
SQLSERVER\MSSQL\repldata, but you could put it anywhere. When the folder
is created, right-click it and choose the Sharing option. Click the Advanced button
if necessary and share the folder. Be sure the Share name is repldata. Click the
Permissions button to assign rights to the Share. If necessary, remove the Every-
one entry from the list. Add the snapshot, distribution, and merge accounts you
created. Set Full Control permissions to the snapshot agent and just Read for the
others. You might also want to give yourself Full Control. Close the Sharing Win-
dow and select the Security tab. Click the Edit Permissions button and repeat the
process to give permissions to the folder itself. Again, the snapshot user gets Full
Control, the others need only Read permission. You can close the Management
Console.

If your network uses Active Directory, you can create the accounts on that sys-
tem. If not, you should also create a repl _merge account login on the Subscriber
computer. Log in to the Subscriber computer and create a repl _merge user on that
machine.

2. Configure Distribution on the Publisher

Back on the Publisher machine, start the SQL Server Management Studio and cre-
ate a new table to share. You could share an existing table, but replication causes
some internal changes to the table, so it is best to practice on a simple table until
you get familiar with the process. If you have not done it already, create the Temp-
Customer table shown in Figure 11.2 within your AllPowder database. Be sure to
add at least a couple rows of sample data.

To enable distribution, right-click the Replication folder and choose Configure
Distribution. Accept the default option to act as your own distributor. You need to
specify the path location of the snapshot files that you created. Initially, the wiz-
ard sets the location using a full path/file name. You need to change this value to
a network format so that it can be accessed by external computers (subscribers).
Enter \\myserver\repldata, where you enter the name of your server for myserver.
Accept the default options for the remaining screens and click the Finish button.

3. Set Database Permissions on the Publishing Server

The user accounts that you created need to be able to access the database. On
the publishing server, in SQL Server Management Studio, open the main Secu-
rity node, right-click the Logins entry and choose New Login. Enter login data
for myserver\repl snapshot—use the Search and Check Names buttons to ensure
you get the username exactly correct. Select the User Mapping screen and add
the snapshot user to both your AllPowder and distribution tables. The distribution

Chapter 11: Distributed Databases 229

=1

F... Microsoft SQL Server Management Studio

Fle Edit View Project Debug Tools Window Community Help

§ El New Query | [y | £ 0 o | [| 5 b & | 0

Comnect~ | 41 @ m T [7] § @ Hew Publication Wizard
P

[Database Diagrams & |
3 Tables

[Views

[Synonyms

ication Type
Choose the publication type that best supports the requirements of your
application

3 Programmability Publication type:

(L3 Service Broker & Snapshot publication

3 Storage Transactional publication

3 Security & Transactional Eubhcaﬂun with uida\ab\e subsmﬂmns
|l PetStore

U Reportserver
|Jl ReportServerTempDB

e Publication type descriptions:

= (3 Security i S = E
14 Logins The Publisher stream; to SQL Server ofter they receive an initial
[Server Roles snapshat of the published daia. Transactions onginating at the Subscrber are applied o the

[3 Credentials Publisher.
(L3 Cryptographic Providers =
[Audits T":@“ ication:
& Publsher and Subscribers can update the published data independently after the
(3 Server Audit Spedficatens |Subscrbers receive an inial snapshat of the published data. Changes are merged
[Server Objects periodically. Microseft SQL Server Compact Ediion can only subscribe to merge publications.
(1[4 Replication
-1 Local Publications.
(23 Local Subscriptions

<Back [Met> | Fwshos Cancsl |
V.

(L3 Management
[} QL Server Agent

i o

Ready

Figure 11.6

table was automatically created in the previous step. In both databases, assign the
db_owner role to the snapshot user. Repeat the process for all three of the other
logins: repl_logreader, repl_distribution, and repl merge. Remember to assign the
db_owner role in both databases to each of these login accounts.

4. Define Publication Data to be Shared

You need to define a new publication. A publication is a table or a view, but you
can also control which columns and which rows are distributed. Read the Micro-
soft SQL Server replication tutorial and it will show you how to filter rows that
are sent to each subscriber based on the individual machines. To keep the process
simple, this example will share the entire TempCustomer table.

On publishing server, inside the SQL Server Management Studio, expand
the Replication folder if necessary. Right-click the Local Publications node and
choose New Publication. Choose your AllPowder database. As shown in Figure
11.6, select Merge publication as the type. If possible, stick with the SQL Server
2008 option. As shown in Figure 11.7, expand the table list and pick the Temp-
Customer entry. Ignore the column and row filters. Select Create a snapshot im-
mediately, and clear the Schedule the snapshot... checkbox.

Agent security is an important screen and it is the reason you set up the ac-
counts in the first step. Click the Security Settings button. For the Process Ac-
count, enter the myserver\repl snapshot user and enter the password you assigned
to that account. When asked for a name, enter something descriptive such as All-
PowderMergel. Finish the wizard.

You now need to provide read permissions to the repl merge user. If needed,
expand the Replication and Local Publications folders. Right-click the AllPow-
derMergel entry and pick the Properties option. Select the Publication Access List
page and click the Add button. Enter the myserver\repl merge user and click OK
a couple of times to accept and close the windows.

Chapter 11: Distributed Databases 230

=

F.. Microsoft SQL Server Management Studio
Fie Edt View Project Debug Tools \indow Community Help

§New query | Oy |y ff 5 | |5 W 3 | B o

Connect ~ %# gg m T E S > New Publication Wizard

Articles

Select tables and other objects to publish as aricles. Select columns to fiter
tables.

[Database Diagrams =]
[C3 Tables

3 Views

3 Synonyms

[Z3 Programmability Objects to publish:
[Service Broker O3 Manufacturer {dbo) -
3 Storage O CldRental (2bo) 2l %&"de oot =
[Security O3 oidsale (dbo) I~ Highlighted table is dowrload-only
|J petstore O PaymentMethod (dbo)
| Reportserver 3 ProductCategory (dbo) e
| ReportserverTempDa 13 Rental (dbo) ™ Show only checked articles in the list
1§ RT O3 RentalDiscount (dbo)
] = £ Security 3 Renttem {dbo)
3 Logins O sale (dba)
[Server Roles [0 Salettem (dbo)
[Credentials [T salesCategory (dbo)
[Cryptographic Providers O3 SkiBoardStyle (dbc)
[Cal Audits [SkillLevel (dbo)

[Server Audit Specification: StateDemographicss (dbo)
[Server Objects TempCustomer (dbo)|
= [Replication
[Local Publications
[Local Subscriptions
[Management
[sQL server Agent =
e l) o

Ready

Figure 11.9

5. Create a New Subscription

The prior step created a publication.
Now you need to switch to the sub-
scriber computer and create a subscrip-
tion that will retrieve the publication.
Technically, you can connect to the
subscriber computer using the same
SQL Server Management Studio. But
be extremely careful to ensure you know which database you are working with at
all times.

Run SQL Server Management Studio on the subscriber computer. Expand the
Replication folder, right-click the Local Subscriptions folder and choose the New
Subscriptions option. The publisher is on a different computer, so pick Find SQL
Server Publisher in the drop-down list. Enter the server name for the publisher
computer as well as any login information requested.

Select the newly created AllPowderMergel entry and click the Next button.
For the Agent location, pick the option to Run each agent at its Subscriber. This
action specifies a “pull” subscription where each subscriber client will request
synchronization to the server—as opposed to a push connection where the server
sends changes out to each client. The choice depends on how the servers will be
used and how much control and work you want to handle centrally.

To avoid creating problems with any existing databases on the subscriber, on
the Subscribers page, on the row listing your subscriber server, pick the option
to create a new database. Enter Customers Replica as the name and click OK and
Next to accept defaults.

On the Merge Agent Security page, click the ellipses (...) button. This agent is
running on your subscriber computer, so enter myserver2\repl _merge as the user
account. (If you are running Active Directory you might have a single repl_merge
agent that you can use.) Enter the password you assigned and click the Next but-

Action
Create a new subscription.

Set security on the new subscriber
database.

Synchronize data changes.
Test the synchronization.

Chapter 11: Distributed Databases 231

ton. Accept the defaults for the Synchronization Schedule (on demand only). On
the Initialize Subscriptions screen, select At first synchronization in the drop-
down list. Accept the defaults for Subscription type and finish the wizard.

6. Set Security on the new Subscriber Database

You just created a new database, so you have to assign permissions to it. Within
the SQL Server Management Studio connected to the subscriber database, expand
the main Security node. Right-click Logins/New Login. Add myserver2\repl
merge to the list of logins. Under User Mapping, select the Customers Replica
database and assign the db_owner role to the repl merge user.

7. Synchronizing Data Changes

When you set up the subscription, the instructions specified that you would manu-
ally synchronize the databases. This recommendation works best when you are
learning the process, or if you have a mobile subscriber that is only connected at
random times. In other situations, you can set up schedules that will automatically
synchronize the databases at specified intervals. In the manual case, you need to
perform the following steps to synchronize the databases. First, ensure that the
SQL Server Agent is running on the subscriber computer. If you truly have a mo-
bile database, you might leave this Agent set to Manual start and only turn it on
when you need to synchronize.

Connect to the subscriber database using the SQL Server Management Studio.
Expand the Replication and Local Subscriptions folders. Right-click the Cus-
tomers Replica database and choose the View Synchronization Status option.
Click the Start button. If the process fails, you will have to check the log files to
see what went wrong. The most likely errors are problems with setting security
permissions.

8. Test the Synchronization

Once the publication and subscriptions are established, the day-to-day process is
relatively easy. In the publisher database, make a change to one of the Last Name
entries. Be sure the changes are committed. If you use the graphical editor, switch
to a different row. In the subscriber database, run the Synchronize step again. Run
a select command on the TempCustomer table and verify that the changes made
in the publisher database appear in the subscriber database. You can also make
changes in the subscriber database and they will be synchronized to the main pub-
lisher database.

The Internet

Activity: Public Web Pages with SQL Server

Sometimes you need to build Web pages that can be accessed by customers or
suppliers—people outside of your organization. Generally, you cannot ask them to
install an application, but you can provide a Web site that retrieves data from the
database to answer basic questions. Microsoft has several powerful tools to help
you provide (and collect) data using a Web interface. The Web is a good way to
build interactive database applications. The data and the applications are stored
centrally and fully under your control, yet users can reach the system from almost
anywhere in the world from many different devices. You should consider build-
ing all of your applications using a Web-based approach. This short exercise only

Chapter 11: Distributed Databases 232

touches on the abilities available, but

it should be enough to get you started Action <ual Studi bsi
working on larger projects. C;r)%ﬁcat migey VST ST BED Sl

ASP NET is Microsoft’s prima-
ry technology for building applica-
tions and Web sites. It has progressed
through several variations, has hun-

Add SalelD and CustomerID text boxes
to the main page.

Create a stored procedure in SQL Server
to retrieve Saleltem data based on

dreds (or thousands) of options, is SaleID and CustomerID parameters.
relatively easy to use, includes secu- | Add a SqlDataSource to the aspx page
rity features, and is amazingly fast and that connects to the stored procedure.
scalable. At heart, it is a programming | Add a GridView object to the page to
system, but it supports a variety of lan- display the data.

guages, particularly C# (c-sharp) and | Test the form.
VB (Visual Basic). If you need to avoid
detailed programming, and still want to implement complex Web sites, you should
consider implementing Microsoft SharePoint—a Web-based technology for shar-
ing files and applications. Many of the reporting and business-intelligence fea-
tures of SQL Server 2008 interface fairly quickly with SharePoint and Excel.

This exercise presents a simple example of a customer who wants to look up
some information about a Sales order. The customer has a SalelD and a Custom-
erID. You could build the system with just one of those numbers, but requiring
both improves security by making it more difficult for people to randomly guess
the values. You can build this application with a single Web-based from in .NET.
You can test and debug the form in Visual Studio, but if you want to deploy it on
the Internet, you need to have a server that runs Microsoft’s Internet Information
Server (IIS). Any Windows-based server (and Vista) can run IIS, but you need to
install it. And, if you want to access the data from the Internet, you need to con-
figure your computer and network—tasks that are straightforward but beyond this
book.

To start, you need new application. Start Visual Studio and choose File/New
Web Site. Accept the default ASPNET Web Site type, choose a programming
language (e.g., Visual Basic), and check the path location for the new site. You
should probably rename the application to something like AllPowderl1 instead
of WebSitel. When the system completes the startup, you will have a new project
with a new Default.aspx page. An aspx page generally contains HTML along with
.NET objects. You could embed programming code on the page, but it is better to
let the system store programming functions on a separate page.

The aspx page contains a basic shell with some HTML and setup information.
In the text, change the title to All Powder and switch to Design view. Currently,
the page contains no display data. Roll your cursor over to the Toolbox and drag
a Label and drop it on the top of the form. Look at the Properties window and
change the Text entry to: All Powder Board and Ski Shop Sales Check. Use the
main menu (Table) to add a 2x2 table to the page to control layout. From the
Toolbox, drag a label into the first row and column. Set its text property to Sale
ID. Drag a TextBox to the second column and set its ID property to SaleIDText-
Box. Repeat the process for the second row using CustomerID instead of SalelD.
Finally, drag a button onto the bottom of the form and set its text to Retrieve.
Figure 11.8 shows what your form should look like, but feel free to add styles and
improve the appearance. All of the formatting and control methods in HTML and
CSS style sheets can be used within an aspx page. You can switch between Design
and HTML (Source) views to work on the page.

Chapter 11: Distributed Databases 233

1 AllPowder11 - Microsoft Visual Studio =)
File Edit View Webste Build Debug Format Table Test Tools Window Help
Style Application: Manual - TargetRule: (New Inline Style) — + .
E-H @ 5 @[9 - -] b Debu S REREA
| 3| .~ Default.aspx| Start Page + x| Solution Explorer - Soluti.. = & X
g B EEEE R
< ||| All Powder Board and Ski Shop Sales Check [Selution 'AllPewderl1’ (1 proje
— 5 3 DAWWW\AIPowderl1\
Sales ID ; § App_Data
I 3] Default.aspx
| Caustomer ID g
L
Retrieve |
f
4] i 3
g Selution Explorer [Closs View
Properties i
-, .|| pocument
5 Design | = Split | @ Source | [4][<html|[<body>|[<ferm#form1+|[<asp:Button=Buttan1 » BRI =]
Output | ALk =
. = Background B
Show output from: MREREEREY A e BgColor
Class
Culture
Debug .
Alink
Color of all active links in the
|5 Qutput Ud Error List \ document.
Ftemis) Saved n37 Col1 ch1

Figure 11.8

Currently, this page simply has text boxes so the customer can enter the SaleID
and CustomerID values. The main step now is to go to the database and retrieve
the Saleltem information for the specified sale. The real trick is to perform this
step in SQL with a simple query—avoiding the use of any code.

So, you need to write a query. Actually, you need to put a query inside of a
stored procedure. Start SQL Server Management Studio and connect to your da-
tabase. Right-click the AllPowder database and select New Query. First write a
simple query that retrieves data the customer would want to see—ignoring the
SaleID and CustomerID data. Select the SKU, Price, Quantity, Size, Category,
Style, and Color from the Sale, Saleltem, Inventory, and IltemModel tables. Run
the query to test it. Now define the @CustomerID and @SalelD parameters and
add a WHERE clause to the query. If you want to test the query at this stage, use
CustomerID=871 and SaleID=1004. Figure 11.9 shows how to turn the query into
a stored procedure that requires the two parameters. Run this query to create the

Figure 11.9

CREATE PROCEDURE GetOneSaleltems
(@CustomerlID int, @SalelD int)
AS
BEGIN
SELECT Saleltem.SKU, QuantitySold, SalePrice,
QuantitySold*SalePrice As Value, ItemSize, Category, Style, Color
FROM Sale
INNER JOIN Saleltem ON Sale.SalelD=Saleltem.SalelD
INNER JOIN Inventory ON Saleltem.SKU=Inventory.SKU
INNER JOIN ItemModel ON Inventory.ModellD=ItemModel.ModellD
WHERE (CustomerlD=@Customer|D) And (Sale.SalelID=@SalelD)
END
Go

Chapter 11: Distributed Databases 234
stored procedure (GetOneSaleltems). Your Web page will call this procedure and
pass in the values for CustomerID and SalelD.

Before you close the Management Studio, you should add a new SQL Server
login that can access this database. You could use the existing dbo account, or you
can create a special user that can only retrieve the data you want to display. Create
a new login if necessary and remember the username and password.

Return to your Visual Studio project. You are now ready to retrieve the data
from the stored procedure and display it on the page. Open the Toolbox, expand
the Data section if necessary, and drag a SqlDataSource onto the page. Click the
button to Configure Data Source. Choose Microsoft SQL Server as the data type
(read the choices carefully). Enter the name of your database server. It is often
best to choose SQL Server Authentication instead of Windows, giving you greater
control over exactly what data can be accessed via the Web pages. Be sure to
check the box to “Save my password.” Select your AllPowder database and click
the button to Test Connection. Click OK to close the window and Next to accept
the connection. Also click Next to save the connection string in the application’s
configuration file. Now you build a statement in ASP .NET that will be passed to
the server. In almost all cases, you will want to use stored procedures. Click the
option button for a stored procedure and go to the Next screen. Click the option
button for a stored procedure at the bottom of the screen and choose the one you
created (GetOneSaleltems). You will not need to change or delete any data so
click the Next button.

Your ASP .NET statement has an option to take data from the HTML page and
pass it to the stored procedure parameter. Your stored procedure has two param-
eters. Select the CustomerID parameter. In the Parameter Source drop-down list,
choose the Form option. Enter CustomerIDTextBox into the FormField. Repeat
the process for the SalelD parameter, entering SaleIDTextBox. When the page
runs, it will pick up the values returned by the form, assign them to the param-
eters, call the procedure on the server and return the results to an internal dataset.

Figure 11.10

e
G Design | @ Split | @ Source

[4][<htmix| [<body=|[<formeform1 | [<tablex| [<tr>][<td> |

wAHPowderu-MkmmﬂVsSalStumwm ' B PR
File Edit View Website Build Debug Format Table Test Tools Window Help
Style Application: Manual + TargetRule: (New Inline Style) = s
G- @[4 @]9 -] b |Debug S| QAR R E
| Start Page” Defouitaspx
-
Z || Al Powder Board and Ski Shop Sales Check
Sale ID
Customer ID
Retreve |
SqiDataSource - SqiDataSourcel
SKU QuantitySold SalePrice Value ItemSize Category| Style Color
Databound Databound Databonnd Databound Databound Databound Databound Databornd
Databound Databound Databonnd Databound Databound Databound Databound Datat
Databound Databound Databonnd Databound Databound Databound Databound Datat ‘L i L
Databound Databound Databound Databound Databound Databound Databound Datal | Soluton Exploer [T Closs View |
Databound Databound Databound Databound Databound Databound Databound Datat e T

7 || ALink

B

DOCUMENT
2=31)|E

AlLink

Background
BgColor
Class
Culture
Debug -

Color of all active links in the
document.

Ln6d Coll

Ready

Ch1l

Chapter 11: Distributed Databases 235

The only thing left to do is display the results on the page. Because it is likely
that multiple rows will be returned, you need an object that can handle repeating
data. Drag a GridView object from the Toolbox and drop it on the form. Set the
data source to SqlDataSourcel. (Note that in a large project, you should give all
of these objects better names so that when you have multiple data sources you
remember what each one does.) Figure 11.10 shows that the grid automatically
picks up the columns from the data source.

You can edit the columns to set widths, styles, and formats, but you really want
to see if the form works. Click the Save All button to be safe. Run the form by
clicking the Start/Debug button on the main toolbar. You will probably be prompt-
ed to click an OK and a Yes button to accept debugging options. The basic form
should appear with only the two boxes and the Retrieve button. Enter 1004 as the
SaleID and 871 as the CustomerID, and click the Retrieve button. Figure 11.11
shows the resulting page that retrieves the matching items for that Sale. If you
publish the project to a Web server, users simply access the Default.aspx page on
the server and the form works the same way.

Notice that the Retrieve button does not actually do anything—it has no code.
It is only there to provide a means to submit the page back to the server. You
should also test the form with different values for SaleID and CustomerID. How-
ever, you must pick values that match a particular Sale to get results. Requiring
the user to enter both numbers is a small security precaution. If you used only the
SalelD, anyone could guess that the IDs are sequential, randomly enter numbers,
and see results for almost any sale. The owners of All Powder Board and Ski Shop
probably do not want that much information available to everyone on the Internet.

Visual Studio, SQL Server, and ASP .NET provide the ability to create vastly
more complex applications—Ilimited only by your imagination and your program-
ming ability. But notice that you were able to create a fairly useful page with no
coding.

Figure 11.11

=
/& Check Sales - Windows Internet Explorer | B

-]
@\J - (& http://localhost:49658/ AllPowder11/Default.aspx [4] % |[Boogte =

= - =
oF die [@CheckSa\as I | oo ~ = v |3k Page v (&) Tools ~

-

All Powder Board and Ski Shop Sales Check

Sale ID 1004
Customer ID 871

SKU QuantitySold SalePrice Value ItemSize Category Style Color
100006 1 320.0000 320.0000 900 Board Half-Pipe White
100303 1 411.0000 411.0000 750 Board Ride Purple
8002471 289.0000 289.0000 195 Ski Cross-Country-Skate White
8002571 248.0000 248.0000 225 Ski Downhil Turquoise
8008111 275.0000 275.0000 195 Ski Back-Country Green

& Internet | Protected Mode: On H100%

Chapter 11: Distributed Databases 236

Activity: Transferring Data with XML

One issue you will face with distrib-
uted databases is the need to transfer Use SQL M Studio .

1 1 Se anagemen 10 1O create
gata among differing da.tabase; systems. ar XML list O%Employees using FOR

or example, a supplier might send XML,

you product information electronically.
Since the supplier does not know what
type of database system you have or
how your database is organized, it can
be difficult to provide the data in a for-
mat that your system can read. The pro-
cess is complicated when suppliers have thousands of customers like your shop.
Suppliers have no desire to create thousands of different electronic files. Instead,
they should be able to send one file in a standard format, and your system should
be able to identify the necessary data, select it, and import it into your database.
This dream is not quite reality, but XML (eXtensible Markup Language) was cre-
ated to make it easier to exchange data among disparate systems.

Action

Save the output as a file.

Edit the file and add <Employees> to the
top and </Employees> to the bottom.

Open the file in Internet Explorer.

SELECT *
FROM Employee
FOR XML AUTO, ELEMENTS, XMLSCHEMA(‘Employees’)

Figure 11.12

Exporting data in XML format is relatively easy with SQL Server, but there
can be some complications. Outputting tagged data is straightforward using the
FOR XML option of the SELECT statement. However, XML files should really
include a schema definition (XSD) that describes the allowable content of the file.
Systems that use an XML file can use the XSD file to verify that the data file is
correct. Figure 11.12 shows the basic SQL command to create both the schema
and output the rows as XML-tagged data.

Figure 11.13 shows part of the resulting XML file with some editing. Before
distributing the file, you will have to open the file in a text editor to make some
minor changes. First, if you generated it, save the xsd information in a separate
file. Second, you have to add the starting <Employees> and ending </Employees>
tag around the entire set of data. Note that each <Employee> data line will be dis-
played on one row.

Figure 11.13

<Employees>

<Employee xmIns="Employees”>
<LastName>Staff</LastName>
<FirstName></FirstName>

</Employee>

<Employee xmIns="Employees”>
<LastName>Killy</LastName>
<FirstName>Jean-Claude</FirstName>

</Employee>

</Employees>

Chapter 11: Distributed Databases 237

{f'c:\Temp\Emplavees.xml-Wimfowslntemetb(plnrer = o] B4

b/ Ié C: {Temp|Employees. xml j *2(| X |L|.e Search P -
= o »

e & C:\Temp'\Employees. xml | | [- g - ibPage + (T Tools -

- <Employees=> e

- <Employee xmins="Employees">
<EmployeelD=0</EmployeelD >
<LastName =Staff</LastName >

</Employee:

- <Employee xmins="Employees">
<EmployeelD>1</EmployeelD>
<TaxpayerlD>111-33-5555</TaxpayerlD>
<LastName=Killy </LastName
<FirstName>Jean-Claude</FirstName=
<Address>112 Pyrenees</Address>
<Phone=222-333-4444</Phone>
<City =Denver</City=
<State>CO=</State>
<ZIP=81222</7IP>
«<Department=Ski- Alpine</Department=

</Employee=

+ <Employee xmins="Employees":

+ <Employee xmins="Employees">

+ <Employee xmins="Employees">

+ <Employee xmins="Employees">

+ <Employee xmins="Employees":

+ <Employee xmins="Employees">

+ <Employee xmins="Employees">

+ <Employee xmins="Employees">

+ <Employee xmins="Employees">

+ <Employee xmins="Employees":>

+ <Employee xmins="Employees">

I [T [[[[[[Computer | Protected Mode: OFf 0% -

alle

Figure 11.14

Figure 11.14 shows that you can
open XML files using the Internet Ex-
plorer browser. This approach high-
lights the individual data records and

Action

Copy the XML Employee data into a
new Management Studio query.

Add a declaration at the top to define the

makes it easy to see the structure of the XML as a variable.

data. You can expand or contract indi- | 44 o EXEC and SELECT ...
vidual segments to focus on individu- OPENXML query at the bottom.
al areas. It is a useful way to quickly

o . Test the query to retrieve the XML data
check a file to ensure that it is consis- as tablfmv?s.

tent. It is also useful for browsing data
sent from an external source so you can check the contents.

Due to the increasing popularity of XML, SQL Server has several tools to im-
port data from XML files. You can bulk load the data, you can use the Integration
Services (SSIS) to read and parse it, or you can read and parse it in a query—as
if it were another table. However, there is one other major trick: You can create
an XML data column in your table and store the XML data directly into a table.
If you choose this approach, the data will be stored as a single big collection—it
will not separate out the items. Note that XML data often represents a hierarchical
format, so you need a specialized tool to search through raw XML data. Microsoft
supports XQuery for XML data types. XQuery has commands to search for indi-
vidual items within any XML collection. But, this exercise assumes that you have
a simple XML file, like the Employee data, and you want to read each row back
into a table.

SQL Server provides the OPENXML function to make it easy to read XML
data as rows. You can treat these rows as if they came from a table. However, the
OPENXML function is not necessarily efficient. For large datasets you will be
better off using SSIS bulk loads or even XQuery statements. But, OPENXML is
relatively easy to use and it demonstrates a couple of elements of XML.

Chapter 11: Distributed Databases 238

Create a new query in SQL Server Management Studio. Read in (or paste) the
entire Employees.xml file that you created earlier. At the top of this query/file, you
need to declare the data as a new variable. The basic lines at the top are:

DECLARE @docHandle int

DECLARE @xmlDocument nvarchar (max)

SET @xmlDocument = N’

<Employees>

<Employee>

<EmployeeID>0</EmployeeID>

You need to add only the first three lines. The rest represent your XML data.
You also have to add a few lines at the bottom of the file. One of the most impor-
tant is to place a single quotation mark at the end of the XML data. Then you add
an EXEC line to a system stored procedure that prepares the text as an XML docu-
ment. At that point, you can use a SELECT statement that calls the OPENXML
function to retrieve rows directly from the XML data.

</Employees>’

EXEC sp xml preparedocument @docHandle OUTPUT, @

xmlDocument

SELECT *

FROM OPENXML (@docHandle, N’ /Employees/Employee’,2)

WITH (EmployeelID int,
TaxpayerID nvarchar (50),
LastName nvarchar (50),
FirstName nvarchar (50),
Address nvarchar (50),
Phone nvarchar (50),

City nvarchar (50),

State nvarchar (20),

Z2IP nvarchar (20),
Department nvarchar (50))

Notice that the WITH statement defines the columns of the pseudo-table in the
XML data. Of course, as long as you can retrieve data as rows, you can do any-
thing with it in SQL. For example, you might use an INSERT INTO ... SELECT
* FROM OPENXML ... command to extract the rows from the XML and add
them to an existing table. Figure 11.15 shows some of the sample rows retrieved
from the XML data.

Chapter 11: Distributed Databases 239

& Microsoft 5QL Server Management Studio -0l x|

Fle Edit View OQuery Project Debug Tools Window Commumity Help

Qo || BB 5BIL | SHS E,

30 | AlPonder - Peeae b B o 35] 1T) ER[EE]ED |

5QLQuery4.5ql ..08\Post (52))* | Employess.xml | F X

Connect~ | @3 @3 m T B </Emplayee> —

OSTSQL2008 (SQL Server 100,142 - PO = </Employees>!

L3 Catsbases EXEC sp xml preparedocument @docHandle OUTPUT, B@xmlDocument

[3 System Databases SRIEET ~

[Database Snapshots FROM OPENXML (@docHandle, N'/Employees/Employes',2)

= [AlPowder WITH (EmployeeID int,

3 Database Diagrams TaxpayerID nvarchar (50),
E 3 Tables LastName nvarchar (50),

3 System Tables FirstName nvarchar (50),
= dboBindingStyle Address nvarchar (50), _I
= dbo.Customer Phone nvarchar (50), v
& dbo.Customerskil | | »
= dbo.Department
(3 dbo.Employee 3 Results | [Messages |
3 dbo.Inventory Emplayee\D TapayerlD | LastName I FirstName Address I Phone
= dbo.ItemModel B
B O dbo Maufact 1 { NULL NULL NULL
LR B —
= dbo.CldRental ¥ 4 1 111-33-5555 PGIN Jean{laude = 112 Pyrenees
= dbo.Cidsale 3 |2 133448888 Miyshi Hidshan 444 Fuiysma 555-222.5899
= dbo.Paymentiethod 4 3 444221111 Street Picabo 333 Water 208-222-3333
= dbo ProductCategory = B 888332222 Heiden Beth 555 Hil 515-335-9383
3 dbo.Rental 6 |5 999225555 Cavagnoud Regine T77West 5559322837 v
& dbo.RentalDiscount [5
3 dbo.Rentitem -

Kl ¥ (@ query . | PoSTSGL2008 (10.0 €TF) | POSTSGLA008\Post (52) | AlPowder | 00:00:00 | 18 rows

Ready Ln238 Col 33 ch27 NS

Figure 11.15
o)
(& -
) C 1T
Al L\\,é’ rystal Tigers
Yy I \
i

Most of the information for the Crystal Tigers club can be maintained on one
computer run by the club secretary. However, the secretary sometimes needs as-
sistance entering all of the data during special events. Although he brings the da-
tabase on his laptop, it would probably be easier if two or three people brought
laptops and handled specific tasks. At the end of the day, the data could be syn-
chronized and available for analysis. It would at least speed up the data entry and
give more people access to the critical information needed during the day.

1. Replicate the database and test it on three separate computers, then

synchronize the changes a few times to see if this approach will work for the
club.

2. The club has talked about making some data available to members over
the Internet. Although many of the members do not have Microsoft Office
installed, the club would prefer to provide read-only access. Set up a page
that generates activity lists for an upcoming event so members can check the
schedule.

3. One of the charitable organizations the club works with is impressed with the
database and would like some of the data. Create a query and export an XML
file that lists the members and the hours worked for a particular event.

Chapter 11: Distributed Databases 240

Capitol Artists

Because the system for Capitol Artists collects data from many employees at the
same time, the main database needs to run on a central server. All of the computers
" are connected by a high-speed LAN and, based on the company growth rates. The
company is unlikely to open a second office; however, many of the employees
have suggested that they would be more productive if they worked from home.
The managers have suggested testing this idea by using the database work track-
ing system. Employees would connect to the database using the Web interface. As
they completed client tasks, they would fill out the work table as usual. This data
could then be synchronized with the company database at the end of the day. After
a month, the managers could see if employee productivity declined or improved.
1. Check the performance of the database using an Internet connection from
off-site. If possible, try it with a cable-modem connection and with a dial-up
connection. [s the performance fast enough?

2. Outline the security issues involved in enabling employees to access the
database from home over the Internet.

3. One of the owners travels often and wants to check on daily progress reports
over the Internet using her laptop. Create a Web page that displays the work
done for the current day and lists the hours and expense of the employees for
each project.

Offshore Speed

The Offshore Speed company has some aspects in common with All Powder. In
particular, the store needs several computers to access the application that han-
dles sales, orders, and management reports. However, with the Web-based forms,
the process is straightforward. On the other hand, the company deals with a huge
number of parts, and it seems like vendors constantly change descriptions and
prices. The company is trying to work with the vendors to connect to their data-
bases and at least be able to retrieve replicated materialized views.

1. Setup a small new database that would be created by a vendor to hold
information on parts. Replicate the table as read only so the Offshore Speed
company can subscribe to it to automatically receive changes on a regular
basis.

2. Some of the company’s partner firms would like to receive files that they can
read into their databases or into Excel. Set up a procedure that will create text
files with basic order data for a selected partner.

3. Create a Web page that customers can use to check on the status of their
orders. You should create a separate password for the customers that will be
stored within the Customer table. Verify that the password and order number
are correct before displaying the data.

Chapter 11: Distributed Databases 241

Final Project

The main textbook has an online appendix with several longer case studies. You
should be able to work on one of these cases throughout the term. If you or your
instructor picks one, perform the following tasks.

L.

Describe any distributed features or database links that will be useful to the
project and list any problems you might encounter.

Create a replica and test all of the forms and reports on both copies. Test the
synchronization.

Export at least one table into an XML file that could be sent to an outside
firm such as a customer or supplier.

Create a basic Web form and response page that enables customers (or
employees) to enter some identifier and receive additional information. For
example, a customer might select a product category and receive a list of
products in that category.

Create a second database and build a link to that database, so at least one
form operates using data in the second database.

Chapter 1 2

Physical Database Design

Chapter Outline

Storing Data, 243

Lab Exercise, 243
All Powder Board and Ski Shop, 243
Data Clusters, 246

Exercises, 247

Final Project, 247

Objectives

» Create partitions.

242

Chapter 12: Physical Database Design 243

Storing Data

SQL Server handles most data storage tasks automatically and optimizes retriev-
als based on the types and amount of data stored. You should generally let SQL
Server determine the optimal way to store and retrieve the data. In cases of huge
databases, the best recommendations are to (1) use RAID drives, and (2) use
server clusters that automatically balance the load. Also, use the Tuning Advi-
sor to recommend the use of indexes—which are based on B+trees. As explained
in Chapter 10, you can also gain some control over data storage by defining file
groups on different devices. About the only other control option you have is the
specification of partitions and recommendations for clusters.

Lab Exercise

&

All Powder Board and Ski Shop

The main text explains that data can be stored using several methods, including
sequential, Bttrees, and direct or hashed storage. For the most part, SQL Server
stores data similar to linked lists using the data pages. By default, SQL Server
indexes any primary key columns, and the indexes are stored and searched using
B+trees. This approach is the best general storage method, but sometimes you
might need more control over how the data is stored and retrieved.

SQL Server handles other storage methods through partitions and clusters. Par-
titions enable you to store different parts of a table in different locations. This
trick can be useful even for relatively small databases. In the All Powder case, the
inventory data tends to change every year as new products are introduced. You do
not want to delete the old data because the managers want to go back and look at
sales in various categories. On the other hand, you do not need it taking up space
on the main disk drives—because the old models are no longer available for sale
or rental. A partition enables you to move the older data to a different disk drive.

Activity: Create Data Partitions

Partitioning enables you to split a data
table into multiple pieces. Each piece
contains the same types of data (same Create three new filegroups with one new
column names and same data types), il fm each..)]
but are placed in different locations | Create a partition function based on an
(file groups). The filegroup option en- integer year.
ables you to store one part of the table Clrzaiia @ prinili o SEiEG:
in one location (disk drive) and the rest | Define a new ItemModel table that
in other locations. Placing data in dif- ﬁiﬁ:&giﬁa Eeliinaniiionabase el
ferent filegroups also improves query '
performance because the DBMS can
restrict the search to a single partition. It also improves backup and recovery oper-
ations since you can tell the DBMS to operate on a filegroup or partition at a time.
Finally, the partition can be invisible to the query system and the users. Existing
queries and applications will continue to work correctly with no changes.
Partitions are defined based on the data contained in the row. Oracle supports
three types of partitions: range, list, and hashed. A couple of composite types are
also supported, but they are not covered here because they are simply combina-
tions of the three base types. Range partitions are easy to understand and are often

Action

Chapter 12: Physical Database Design 244

ALTER Database AllPowder
Add FileGroup fgModel01;
ALTER Database AllPowder
Add FileGroup fgModel02;
ALTER Database AllPowder
Add FileGroup fgModel03;

go

ALTER Database AllPowder
Add File
(
Name = ltem01,
Filename = ‘C:\Program Files\Microsoft SQL Server\MSSQL10.
MSSQLSERVER\MSSQL\DATA\AP_Item01.ndf’,
Size = 20MB,
FileGrowth = 5MB
) TO FileGroup fgModel01;
ALTER Database AllPowder
Add File
(
Name = ltem02,
Filename = ‘C:\Program Files\Microsoft SQL Server\MSSQL10.
MSSQLSERVER\MSSQL\DATA\AP_ Item02.ndf",
Size = 20MB,
FileGrowth = 5MB
) TO FileGroup fgModel02;
ALTER Database AllPowder
Add File
(
Name = ltem03,
Filename = ‘C:\Program Files\Microsoft SQL Server\MSSQL10.
MSSQLSERVER\MSSQL\DATA\AP_Item03.ndf",
Size = 20MB,
FileGrowth = 5MB
) TO FileGroup fgModel03;
go

Figure 12.1

used for date or ID columns. You choose a data column and split the rows based
on ranges of data. For the case of the [temModel table, you could partition the
data based on the ModelYear. You might create a new partition for each year, or
you can use groups: Old (ModelYear < 2000), Recent (ModelYear >= 2000 and
ModelYear < 2006), New (Model Year >= 20006).

Of course, you need to create the three filegroups, or at least three new files, be-
fore running this command. You can use the Management Studio to create the fi-
legroups and files, however, it is almost as easy to write the commands in a query.
Figure 12.1 shows the commands needed to create three files and three filegroups.
The commands first define each new filegroup and then create a new file to assign
to each group. You cannot use a filegroup unless at least one file is associated with
it. Notice that all three files are created in the same folder in this example—purely
for convenience. In reality, you would define each file on a different disk drive
with different characteristics. For example, current data, with heavy access needs,
should be stored on a fast drive. Older data could be stored across a network on a
less expensive, slower drive.

Chapter 12: Physical Database Design 245

CREATE PARTITION FUNCTION ItemModelPF (int)
AS RANGE LEFT FOR VALUES (2000, 2006);

go

CREATE PARTITION SCHEME ItemModelPS AS
PARTITION ltemModelPF TO (fgModel01, fgModel02, fgModel03);
Go

Figure 12.2

The next step is to define a partition function that defines how you want the data
to be split. The partition function takes data from a single column and performs a
series of less-than-or-equal-to comparisons (RANGE LEFT) or greater-than com-
parisons (RANGE RIGHT). Essentially, the function lists the split points. Figure
12.2 shows a partition function where the year is stored as an integer. Note that if
you want to partition on dates, the split points are complicated if you want to use
a RANGE LEFT command. Because RANGE LEFT uses less-than-or-equal-to,
you have to specify the exact date and time, but times are measured in fractions
of a second, so it is much easier to use a RANGE RIGHT command for date col-
umns. In the example, notice that you need to specify two split points (2000 and
20006) to get three partitions.

After the partition function is defined, you need to create a partition scheme
that matches the function to the filegroups. Figure 12.2 also shows the partition
scheme. Basically, you give the scheme a name, provide the name of the partition
function and list the filegroups to be used for each partition.

Finally, you can run the CREATE TABLE command to build the ItemModel2
table. To save time, you can ignore the referential integrity constraints. Note that
because the partition function does not use the ModellD column, you should not
declare ModellD as the primary key. Figure 12.3 shows the basic CREATE TA-
BLE command. The only real difference lies at the end with the addition of the
ON ItemModelPS(ModelYear) statement that passes the ModelYear value to the

Figure 12.3

CREATE TABLE ItemModel2(
ModellD nvarchar(50) NOT NULL,
ManufacturerID int NULL,
Category nvarchar(50) NULL,
Color nvarchar(50) NULL,
Cost money NULL,
ModelYear int not NULL,
Graphics nvarchar(50) NULL,
ltemMaterial nvarchar(50) NULL,
ListPrice money NULL,
Style nvarchar(50) NULL,
SkillLevel int NULL,
WeightMax real NULL,
WeightMin real NULL,
WaistWidth real NULL,
EffectiveEdge real NULL,
BindingStyle nvarchar(50) NULL,
RentalRate money NULL

) ON ItemModelPS (ModelYear);

go

6

Chapter 12: Physical Database Design 246

partition scheme. You can use an INSERT INTO command to transfer the data
from the existing table into the new one. As data is added to the table, the partition
function and scheme will transfer the data to the appropriate filegroup. The power
of the partition is that nothing else changes. Queries work just as they did without
the partition, and your applications run just as before.

Data Clusters

Activity: Create Data Clusters

Clusters are different from partitions—the goal is to store related data close to-
gether. Really close together. Remember that disk drives are the slowest compo-
nent of the computer (not counting interfaces with people), because they rely on
mechanical elements. Data that is stored in different locations on the drive take
time to retrieve because the drive head has to wait for the sector to spin around.
The goal of clustering is to reduce this delay by storing related data together so
that it can be retrieved in one pass. Filegroups are one way to store data together—
but only at a coarse level. When the SQL Server goes to the engine, it retrieves
data in pages (a small group of bytes read at the same time). You can sometimes
improve performance by asking SQL Server to cluster data that is always needed
at the same time. In particular, it is helpful to keep values in primary keys close
together.

Figure 12.4 shows that it is straightforward to create a clustered index on a
table. When you create a clustered index, you are effectively telling SQL Serv-
er how to physically store the data. Consequently, if you try to create the index
shown, you will receive an error message. Because a primary key was specified
when the table was created, SQL Server automatically defined a clustered index
on that column. If you want to specify a different cluster, you must delete primary
key index. Data can only be stored physically in one way. In most cases, the data-
base will run most efficiently by clustering on the primary key.

Note that it is also possible to combine clustering and partitions—so that clus-
tered indexes are stored separately on each partition. To implement this combina-
tion, you define a primary key or clustered index as usual, but add the ON parti-
tion_scheme (column) clause at the end.

You could try to test the performance of your database with a few of these
changes, but you need millions of rows of data, and a variety of hard drives to
have any chance at perceiving a difference.

Figure 12.4

CREATE CLUSTERED INDEX idxInventory
ON Inventory (SKU, ModellD)

(Error: Only one clustered index per table.)

Chapter 12: Physical Database Design 247

Exercises

5& Many Charms
The database for Many Charms is likely to remain relatively small and perfor-
mance should not be a serious issue. Nonetheless, you should look for possible
ways to improve performance by controlling the data storage.
1. Assuming the company becomes substantially larger, what storage strategies
would be useful?

2. Partition the Production table into two sections based on the ProductionDate.

A /\“5‘ Standup Foods

[i

W Standup Foods has the potential to grow to a relatively large company over the
next couple of years. It is possible that performance will become an issue with
some of the tables. The client list is particularly interesting, because studios are
continually creating new companies and partnerships. As a result, many of the
older companies in the list no longer exist. On the other hand, the contact list is
important, since it contains data on individual people. Similarly, the Employee list
changes on an almost daily basis. Laura is reluctant to delete the older employees
because many of them come back for special projects every couple of years.
1. Identify the tables that could be improved using partitions or clusters.

Explain your reasoning.

2. Partition the project table into three sections based on the contract date.

Q& EnviroSpeed
S

The database for EnviroSpeed could eventually become quite large. Because the
system contains valuable knowledge, the company does not want to delete any-
thing. The company also benefits by keeping all of the data in one large data-
base. Although much of the data becomes dated, employees still want the ability
to search through older cases. However, the older data does not change so it could
be moved to different disk drives.

1. Identify the tables that could be improved using partitions or clusters.

Explain your reasoning.

2. Partition the Situation and ProposedSolution tables into three segments based
on the date.

3. Partition the Crew table into four regions based on Country.

Final Project

The main textbook has an online appendix with several longer case studies. You

should be able to work on one of these cases throughout the term. If you pick one

or your instructor picks one, perform the following tasks.

1. Identify the tables that could be improved using partitions or clusters.
Explain your reasoning.

2. Create a partition on at least one table.

	Database Management Systems
	Gerald V. Post
	Copyright

	Contents
	Brief Contents
	Full Contents

	Chapter 1: Introduction
	Case: All Powder Board and Ski Shop
	Inventory
	Bindings and Boots
	Sales
	Rentals

	Lab Exercise
	Project Outline
	Project Plan
	 Feasibility
	The Database Management System

	Exercises
	Final Project

	Chapter 2: Database Design
	Database Design
	SQL Server Data Types
	Case: All Powder Board and Ski Shop
	Business Objects: First Guess
	Relationships

	Lab Exercise
	Database Design System
	All Powder Design

	Exercises
	Final Project

	Chapter 3: Data Normalization
	Database Design
	Generated Keys: Identities
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Database Creation
	Relationships

	Exercises
	Final Project

	Chapter 4: Database Queries and SQL
	Database Queries
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Data
	Computations and Subtotals

	Exercises
	Final Project

	Chapter 5: Advanced Queries
	Advanced Database Queries
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Data
	SQL Data Definition and Data Manipulation

	Exercises
	Final Project

	Chapter 6: Forms and Reports
	Forms and Reports
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Shop Forms
	All Powder Basic Reports

	Exercises
	Final Project

	Chapter 7: Database Integrity and Transactions
	Program Code in SQL Server
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Data
	Database Cursors, Keys, and Locks

	Exercises
	Final Project

	Chapter 8: Applications
	Applications
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Skip Shop Application

	Exercises
	Final Project

	Chapter 9: Data Warehouses and Data Mining
	Data Warehouse
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Shop
	Introductory Data Analysis

	Exercises
	Final Project

	Chapter 10: Database Administration
	Database Administration Tasks
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Shop
	Security and Privacy

	Exercises
	Final Project

	Chapter 11: Distributed Databases
	Location, Location, Location
	Case: All Powder Board and Ski Shop
	Lab Exercise
	All Powder Board and Ski Shop
	The Internet

	Exercises
	Final Project

	Chapter 12: Physical Database Design
	Storing Data
	Lab Exercise
	All Powder Board and Ski Shop
	Data Clusters

	Exercises
	Final Project

