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What You Will Learn in This Chapter

•	 How	is	it	possible	to	make	decisions	when	so	many	events	are	random?
•	 What	is	randomness	and	what	rules	does	it	follow?
•	 How	are	probabilities	handled	when	events	are	not	independent?
•	 How	can	probability	concepts	be	generalized	to	for	handling	new	situations?
•	 How	are	statistics	used	in	data	mining	to	find	interesting	results?
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Human Biases
In general, people make many mistakes when evaluating data. One particular prob-
lem is known as “confirmation bias,” where people seek information that confirms 
what they already believe. Business people and even professional researchers are 
prone to this problem. When we create theories, we like to “prove” that they are 
right. A psychology study with nearly 8,000 participants concluded that people are 
twice as likely to seek information that confirms their beliefs instead of seeking out 
conflicting data to disprove them. Psychologist Scott Lilienfeld of Emory University 
noted that “We’re all mentally lazy. It’s simply easier to focus our attention on data 
that supports our hypothesis, rather than to seek out evidence that might disprove it.” 
Consequently, people are reluctant to change their opinions and models, and instead 
rationalize why things might have gone wrong. And gathering more data makes the 
problem worse. If you are focusing on confirming beliefs, then new data reinforces 
those beliefs, reducing the value and diversity of the information available. [Zweig 
2009]

Try to collect unbiased data first then analyze it with an open mind. Keep notes dur-
ing the early stages to record options and uncertainties. Return to those notes later to 
explore alternatives. Involve other people and look for options and criticisms.

Jason Zweig, “How to Ignore the Yes-Man in Your Head,” The Wall Street Journal, 
November 13, 2009. http://online.wsj.com/article/SB1000142405274870381160457
4533680037778184.html?mod=WSJ_hps_LEADNewsCollection 
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Introduction
How is it possible to make decisions when so many events are 
random? Randomness exists in many aspects of the world and business. Many 
events are subject to fluctuations and occurrences that cannot be defined with cer-
tainty. The business world is not deterministic. Instead, the same action taken at 
two points in time can lead to different results. One manager can make a decision 
and the results can work out well. A second manager facing the same problem can 
make the same decision and have everything fail. Of course, the first manager gets 
a huge bonus and a writes a book proclaiming the brilliance of the decision, and 
the second manager looks for a new job. But, perhaps instead of brilliant, the first 
manager was merely lucky. So how is it possible to make decisions, and evaluate 
decision makers, when the world is random? 

The science of probability and statistics was developed specifically to deal with 
questions of decision making under uncertainty. It defines the concepts of ran-
domness and describes mathematical rules that determine relationships among 
events. Statistical tools developed over centuries of research form the foundations 
of data mining and decision making.

The field of probability and statistics is large and complex. It is based largely 
on mathematics, and some of the most powerful theorems were found with the 
use of advanced mathematical concepts. Fortunately, it is possible to use the re-
sults of this work without needing to understand the heavy mathematics. Yet, to 
understand the results of some of the tools, it is important to know some of the 
basic foundations and definitions. This chapter presents the basic concepts needed 
to use and understand the results of common data mining tools. It begins with a 
summary of some key probability concepts. It also explains some of the critical 
concepts in statistics that are commonly used in decision making problems and 
business intelligence. The chapter will be easier to read if you have already had an 
introductory course in probability and statistics, but the text does define the funda-
mental concepts needed for the rest of the book. The main goal of the chapter is to 
develop a statistical perspective and improve your “intuition” or understanding of 
how probability and statistics are understood and evaluated in making decisions.

Probability Basics
What is randomness and what rules does it follow? Randomness 
can arise from many sources, but those details are not critical yet. For the mo-
ment, random simply means that some events or outcomes cannot be predicted 
with complete certainty. Instead, an outcome is said to have some probability of 
arising. The concept of probability is critical to understanding randomness and 
statistics. Technically, two good definitions of probability exist. Ultimately, the 
two definitions lead to similar conclusions and applications, but it is sometimes 
useful to look at the world one way or the other. The oldest and most common 
definition of probability is known as relative frequency: The probability of an 
event arising is equivalent to the number of times the event can arise versus the 
total number of events that can occur. The simplest example is a coin flip with the 
events of a head or tail appearing on top. With two total events possible (staying 
on an edge is considered a bad toss and ignored), the relative frequency or prob-
ability of either event is 1/2. Rolling a six-sided die is another common example, 
where the total number of possibilities is 6 and each side has the same probability 
of arising, so the chance of any single number appearing is 1/6.
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In probability calculations, the list of total events has to be complete, so the 
probability of any event must always lie between 0 and 1. Writing probability as 
P, and using a generic outcome A, the probability of any event cannot be less than 
zero or greater than one:

  0 ≤ P(A) ≤ 1

The function P(A) is read as “the probability of A” where A is some event. For 
instance, the probability of tails occurring from a coin toss is 1 out of 2 or 1/2. 
Probabilities of all outcomes must add to one. Sometimes it is useful to refer to all 
other outcomes as the negation, or not A. It is often written P(A’) and read as “the 
probability of not A.” So, P(A) + P(A’) = 1.

The second way to define probability is known as the Bayesian approach for 
reasons that will be clear later. In this method, probability is subjective and de-
fined as the degree of belief of some event happening. The interesting twist is that 
any individual could have a different belief about the probability of an event. The 
probability must still fall between zero and one, but it is subjective. For instance, 
perhaps the person flipping the coin knows how to flip it so that heads appears 
more often than half the time. Alternatively, perhaps the probability belief by one 
person, or entire organization, is biased, or even wrong. As a child with limited 
experience, perhaps you believed that when flipping a coin, the head could ap-
pear more often than tails. Probability theory reveals that someone with this belief 
would likely be wrong many times, but the beliefs would change with experience 
or increased information. Subjective probability is an interesting and useful way 
to approach some problems, and some types of data mining are based on this ap-
proach. Instead of looking at coin flips, consider the question of predicting the 
level of sales for next year. Each range of outcomes has some probability of oc-
curring that is unknown and could be subjective. As more information is collected 
(say daily or weekly sales), these probabilities could be adjusted to provide a more 
accurate forecast. 

The issue of subjective probability highlights a second key aspect of probabil-
ity. The actual probability of an event might be unknown. Some events are simple 
enough to enumerate or count and the probabilities can be defined. With more 
complex events, estimating the probability is an important step in forecasting and 
statistics. 

Figure 4.1
Examples of discrete and continuous data. Gender and Model are discrete because 
the values are specifically defined and can be counted. Weight, Price, and even Age 
are continuous data. Although the values displayed are truncated, the attributes could 
take on any value.

Customer 
Gender

Car Model Customer Age Car Weight Car Price

Male Focus 21 2588 15520
Female TT 42 2965 35200
Unknown Suburban 36 5607 40370
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Discrete and Continuous Data
Two types of data often exist in problems: discrete and continuous measures. 
Discrete events can be counted—there might be an infinite number of options, but 
each one is unique and can be assigned a number. Examples of discrete data in-
clude the coin flip, the sides of a die, the gender of a customer, whether a product 
is defective, a car model, and the types of products produced in a bakery. 

Continuous data is measured in real values instead of integers, and it cannot be 
counted as simple groups. Examples include the gas mileage of a car, the height 
of a customer, the temperature of a food item, and the weight of a bicycle. Some 
measures might first appear to be discrete, but the measurement might be trun-
cated, and it could take on any value. For instance, the age of a person is com-
monly truncated to years; but if the date of birth is available, the age could be 
measured in days. In fact, the age of a person is continuous data because time 
could be divided into any level of measurement. Similarly, the price of an automo-
bile would be continuous data—particularly measured in cents. Figure 4.1 shows 
some simple examples of discrete and continuous data. The Customer Gender and 
Car Model are clearly discrete because the options are well-defined. Car Weight, 
Car Price, and Customer Age are continuous data. The values displayed are trun-
cated to integer values, but given appropriate measuring tools, the attributes could 
take on any value. Car price might (or might not) be limited to cents, which might 
appear to make it a discrete measure. But, because cents is such a small fraction of 
the overall value, prices are typically treated as continuous data. 

Continuous and discrete data are treated differently in statistics and so the data 
mining tools are different as well. Interpreting results and making decisions is 
somewhat different as well. Because some tools work only with discrete data, 
it will sometimes be beneficial to convert continuous data into discrete groups. 
Discretizing continuous data is an important step in some of the procedures. For 
example, the weight of a car could be classified into three discrete categories: 
(1) Light where weight < 2000 pounds, (2) heavy where weight > 4000 pounds, 
and (3) medium with weights between 2000 and 4000 pounds. It can be difficult 
to determine the number of categories and the cutoff values. Sometimes they are 
established by experts or tradition. In other cases, some tools exist to help identify 
appropriate categories. 

The differences between discrete and continuous data appear in many chapters, 
and the statistical implications are covered in more detail in the statistical sections 
of this chapter. For the moment, basic probability concepts are easier to under-
stand with discrete events instead of continuous.

Counting and Combinations
Look again at the basic definition of probability: the number of ways an event can 
occur divided by the number of total events. For discrete data, this definition re-
quires knowing how to count. Sure, that seems easy; but it means knowing how to 
count the number of ways a specific event can occur. For simple problems, such as 
the coin flip or defective/not-defective, the number of cases is easy to specify and 
counting to two is easy. More complex problems with multiple outcomes and in-
teractions can be harder to count. Also, it can take a while to list thousands or mil-
lions of possible outcomes. Mathematicians have developed tools to help count 
outcomes for certain cases that arise quite often. 
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Counting when Order Matters
A marketing manager wants to use standard capital letters to assign codes to prod-
ucts. The firm currently has 250 different products, and is planning to introduce 
another 30 per year. The manager has suggested using a three-letter code (e.g., 
AAB, ABC, DFG) to identify product types. Is this code large enough to handle 
all of the products? This problem has two important characteristics: (1) Order of 
the letters matters, and (2) letters can be repeated or reused. For an example of (1), 
ABC is different from CBA even though both use the same letters. To illustrate 
(2), AAB and DDD are both legitimate codes even though letters have been used 
more than once. This type of problem is one of the simplest to count. With three 
letter positions available, each one is different, and each can hold any of the 26 
letters in the English alphabet. So, a three-letter code has the following number of 
possibilities: 26*26*26 = 17,576. This number is clearly large enough to handle 
well over 100 years of new products (100*30=3000). Would a two-letter code be 
large enough? Maybe, because 26*26=676, but subtract the original 250 products, 
and the remaining codes would last for a little over 14 years. In a similar question, 
assume a state assigns car license plates using three letters and three digits. How 
many unique plates can be made? The answer is 263 103 or about 17.5 million. 
That seems like a large number, but go back and talk to New Jersey officials in the 
1990s—when the state ran out of numbers. The car problem is complicated if the 
state wants to avoid reissuing numbers for a couple of years.

Counting becomes more complicated as constraints are added to the problem. 
Consider an example of a presentation where the top officers of the company will 
be seated on a platform in a row. How many ways can these people CEO, CFO, 
HRM, CIO, and CMO be arranged? Notice that the list consists of unique items, 
so duplicates do not exist. Simple arrangements are relatively easy to count. Start 
with the first location. With n items, there are n possible choices for the first spot. 
After one of those is selected, there are n-1 possibilities for the second slot, n-2 for 
the third and so on down to one person for the last position.

  Number of Arrangements = n!

 The exclamation point means factorial, or n*(n-1)*(n-2)*…*1. Technically, 
0! is defined as equal to one. So, the presentation would have 5! or 120 arrange-
ments. But, change the problem slightly: The CEO has to sit in the middle seat. 
How many arrangements exist now? Many counting problems are exercises in 
logic and definitions. This one is straightforward to solve once you realize the 
problem now involves arranging only four people. So the answer is 4! or 24 pos-
sibilities. This number is much smaller than the 5!, so factorials grow rapidly. Per-
haps with only 24 arrangements, the remaining executives will be able to select 
their preferred seats in less time.

A variation of arrangements is to add a new constraint. A permutation is an 
arrangement of items but some of them are not displayed. Consider a situation 
where a company has a showroom or Web site for products. A retail Web site 
wants to showcase its daily sales items on its main page. The company puts 20 
products on sale each day and wants to build a display ad that showcases three 
products in a row, showing each product for 15 seconds before moving to the 
next. Each time a person opens the main page the display should feature a differ-
ent group of three products or at least in a different order. How many permutations 
exist? The count of the number of permutations of n items taken k at a time is:

  Number of permutations P(n,k) = n! / (n-k)! 
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This formula can be derived much the way the arrangements formula was cre-
ated. Start at the first position with n items, the next has n-1 and so on. The dif-
ference is that the progression stops when you run out of spots (k). Write out the 
formulas for n! and (n-k)! to see that dividing creates: n (n-1) (n-2)… (n-k+1), or 
the numbers in sequence from n until all k spots are filled. In the example, the an-
swer is 20! / (20-3)! = 20! / 17! = 20*19*18 = 6,840 different displays. 
Counting when Order does not Matter: Combinations
Another constraint that often arises in problems is that order might not matter. 
Typically, in lottery games, picking the three numbers is important, but they could 
be chosen in any order—particularly when the numbers are unique and drawn 
without replacement. In business, it can be important to know which items are 
purchased together, but it rarely matters if one item was placed into the basket or 
on the counter before another one. A combination is a collection of items (k) out 
of a total set (n) where order does not matter.

Consider the shopping basket example. If a company sells 20 products, how 
many different shopping baskets exist that contain exactly 5 items? The order of 
the items is unimportant, so a basket containing items A, B, C, D, E is equiva-
lent to one with E, D, C, B, A. The answer is to take the number of permutations 
(where order does matter) which is given by n! / (n-k)!, and divide by the number 
of possible arrangements (k!). This formula appears in several areas of mathemat-
ics (e.g., Pascal’s triangle and the binomial formula) and is important enough to 
have its own symbol:

 Number of combinations = 
!( , )

( )! !
n nC n k
k n k k

 
= =  − 

In the example, n=20 and k=5. Excel has a COMBIN function that computes 
the value directly. To find the value by hand, compute the permutation then divide 
by k factorial to get 20*19*18*17*16 / 5*4*3*2 = 15,504 different baskets. 

Other problems exist with different constraints, but most are derived from these 
formulas. 

A BA 
∩

B

Figure 4.2
Venn diagram of two events A and B. If events A and B can overlap—both happen 
together, then the circles overlap and the overlap is the portion of space where both A 
and B occur.
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From Counting to Probability
The counting formulas are used for discrete data to determine both the denomina-
tor (all possible ways) and numerator for various probability computations. Con-
sider the example in the previous section. A company has 20 products, identified 
as A, B, C, …, T. Assume the items are equally-likely to be purchased (pi = 1/20) 
and the purchases are independent. What is the probability that a customer who 
purchases exactly 5 items buys both items A and B? The solution is to find the 
number of ways that A and B and three other items can be purchased and divide 
by the number of ways that any 5 items can be combined. The denominator is the 
total combination and is straightforward: C(20,5). The numerator is slightly tricky. 
Write it as five slots with two of them filled: A, B, __, __, __. Because A and B are 
fixed, the numerator asks for the number of ways to find 3 items out of 18 remain-
ing products or C(18,3). Compute the two combination counts and divide to get: 
816 / 15,504 = 0.0526. There is slightly more than a five percent chance that any 
two specific items will be purchased in a 5-item cart when 20 products are avail-
able. The trick is to identify exactly what needs to be counted and which rule ap-
plies based on the conditions of the problem.

Probability Rules
Specific rules have been found that make it easier to work with probabilities and 
probability functions. They deal with situations where multiple events can arise. 
The two most powerful are the addition and multiplication rules. Before defin-
ing the rule, it is important to understand how two events can interact. Figure 4.2 
shows the common Venn diagram for two events. Event B was deliberately drawn 
with a smaller circle to indicate that the two events do not need to be equal. The 
point where the circles overlap represents the fact that both events could occur. If 
there is no overlap and the two events must occur separately, the events would be 
called mutually exclusive. Events are rarely mutually exclusive—unless a situa-
tion is defined that specifically prevents them from happening at the same time. 
For instance, consider two possible events: a person could attend a theater perfor-
mance or go to a concert. These two might appear to be mutually exclusive, but 
more information is needed. Does the problem call for the two events happening 
at the exact same time, in remotely different locations, with no inclusion of video 
streaming, and require the person to attend the full performance of both events? It 
is these often-unstated assumptions that tend to make probability questions chal-
lenging. See (Mlodinow 1998) for some curious examples of interpreting condi-
tions and applying probability to everyday life.
The Addition Rule: Union of Events
The first rule can be observed from the Venn diagram. The probability addition 
rule states:
  P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

In words, the probability of A union B is equal to the sum of the probabil-
ity of A plus the probability of P minus the probability of A and B both oc-
curring. A union B is often read as the probability of A or B. In the Venn dia-
gram, the probability of A is represented by the area of the entire A circle. 
Similarly, P(B) is the area of the B circle. The problem with simply adding the 
two probabilities is that the overlap portion is counted twice—once for A and 
once for B. Hence, the subtraction term in the formula removes the second in-
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stance. If A and B are mutually exclusive, they cannot both occur together and 
there is no overlap, so P(A ∩ B) is zero and the formula reduces to P(A) + P(B). 
To be safe, it is best to remember the entire formula with the subtraction term.
The Multiplication Rule: Joint Events
The second rule also requires an understanding of events. It deals with the issue 
of two events occurring together: P(A ∩ B), the intersection of A and B which 
makes them joint events. The description of joint events is one of the more com-
plicated aspects of probability and a critical element in much of data mining and 
business intelligence. This section deals with the simplest version of joint events. 
The following sections explore some of the complications and their implications 
for probabilities.

Two events are independent if the occurrence of one event does not affect the 
other. For example, with a balanced coin, the probability of tossing heads does 
not affect the probability of tossing heads a second time. The two tosses are inde-
pendent. In business terms, the probability of a customer in New York buying a 
specific product is generally unrelated to the probability of a different customer in 
Los Angeles buying the same product. As long as the customers do not know each 
other, share Web comments, and so on. The simple multiplication rule states:

 If A and B are independent, P(A ∩ B) = P(A) * P(B).

When events are independent, the joint probability is obtained by multiply-
ing the two independent probabilities. Simple examples are easiest to see with 
games. Say event A is rolling a fair die and obtaining a 6. Call event B roll-
ing the die a second time and obtaining a 6. The two events are independent—

Figure 4.3
Contingency table for 2009 LA Lakers free throws by players with more than 30 
games. The cells contain the count of the free throws made and missed for each 
player. Margin totals are displayed for the rows and columns.

Last	Name FT	Made FT	Missed Total
Ariza 156 77 233
Brown 27 6 33
Bryant 657 104 761
Bynum 180 78 258
Farmar 59 37 96
Fisher 141 25 166
Gasol 443 136 579
Odom 199 124 323
Powell 44 12 56
Radmanovic 23 4 27
Vujacic 75 7 82
Walton 52 23 75
Total 2056 633 2689
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whatever happens on the first roll has no effect on the second. A standard die has 
six sides and the probability of any one number appearing is 1/6. The joint prob-
ability of obtaining a six on the first roll and a six on the second roll is (1/6)(1/6) 
= 1/36.

As a business example, two machines (A and B) produce parts and occasionally 
create defects. P(defect from A) is 1/200. P(defect from B) is 1/300. Assume the 
machines and the defect rates are independent; for example, they are not both run 
by the same person. The probability of finding a defect from both A and B is 1/200 
* 1/300 = 1/60,000.
A Scary Example
Try a scary example. A complex machine, perhaps a jet or a space shuttle, has 
50,000 components. Each part has a 1/10,000 chance of failing so the probability 
of success is 1-1/10,000 or 0.9999. In business shorthand, this success level is 
sometimes referred to as four nines, and it is a relatively high success rate. As-
sume the chance of failure in each component is independent but if one part fails 
the entire system fails. The probability of system success is the joint probability 
that each part is successful: P(S1 ∩ S2 ∩ … ∩ S50000). From independence, 
these probabilities can be multiplied: P(S1)*P(S2)*…P(S50000). Each individual 
probability is high, but the joint probability of success is 0.999950000 or 0.0067. 
Less than a one percent chance the system will not fail!

How can a complex machine possibly succeed? The answer lies with the same 
analysis: redundancy. Build the system so that each component has a backup that 
is independent of the original. For convenience, assume components and backups 
have the same failure rates (1/10,000). A component fails only if both the original 

Figure 4.4
Contingency table written as probabilities. Each cell value was divided by the grand 
total.

Last Name FT Made FT Missed Total
Ariza 0.058 0.029 0.087
Brown 0.010 0.002 0.012
Bryant 0.244 0.039 0.283
Bynum 0.067 0.029 0.096
Farmar 0.022 0.014 0.036
Fisher 0.052 0.009 0.062
Gasol 0.165 0.051 0.215
Odom 0.074 0.046 0.120
Powell 0.016 0.004 0.021
Radmanovic 0.009 0.001 0.010
Vujacic 0.028 0.003 0.030
Walton 0.019 0.009 0.028
Total 0.765 0.235 1.000
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and its backup fail. So P(failure1) = P(F1a and F1b) = P(F1a)P(F1b) = 1/10,000 
^ 2 = 10-8. So the probability of success for the entire system is P(Success) = (1 
- 10-8)^50,000 = 0.9995. This success probability is much higher than the origi-
nal—but it carries a huge cost because everything is doubled: size, cost, weight, 
and so on. 

Interdependencies: Joint Probabilities
How are probabilities handled when events are not indepen-
dent? Independent events are important, but business problems usually involve 
events that are related. Most business intelligence applications are designed to 
find and evaluate these interdependencies. Several aspects of probability were 
specifically designed to deal with joint probabilities and lay the foundation for 
evaluating relationships among attributes and events. This section reviews the ba-
sic concepts and defines the important terms. A detailed discussion and proofs can 
be found in most introductory probability books. This section relies on the use of 
discrete data and relatively small problems. All of the concepts and results can be 
applied to continuous data and more complex problems.
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0.818
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0.137
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0.849
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P(Ariza ∩ Made) 
= P(Ariza)*P(Made|Ariza)

Joint Probability (and)
P(Made | Ariza)
Conditional Probability

P(Ariza)
Margin Probability

Figure 4.5
Partial tree diagram of the Lakers’ free throws. The nodes represent values of the 
attributes. Here, players and whether free throws were made or missed. The numbers 
are essentially conditional probabilities, except for the values on the leaf nodes which 
are the joint probabilities. Reading from left to right, Ariza took 8.7 percent of the 
free throws. When he was shooting, he made 67 percent for a joint probability of 
0.087*0.670 = 0.058. 
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Contingency Tables
The easiest way to understand the concepts and terms involved with interdepen-
dencies is to examine the smallest problems that involve only two attributes or 
events with discrete data. This type of problem is easily displayed in a contin-
gency table that places one attribute as rows and the second as columns. Typically 
the tables contain counts of the number of observations that fall into each cell, but 
sometimes the tables will display the percentages. 

Figure 4.3 provides a sample contingency table using the basketball database. 
To keep the table relatively small, the data shows the players from the 2009 Los 
Angeles Lakers who played more than 30 games that season. (The 2009 Lak-
ers were the world champions.) The columns list the total free throws made and 
missed by each player for the entire season—including the playoff games. If you 
are not interested in sports, consider the problem an issue in management. A simi-
lar table could be made for any company that keeps statistics on successes for its 
employees, such as jobs completed on time or number of closed sales. 

Each cell in the contingency table represents a joint probability where the spe-
cific row and column event occur. When the cells contain counts, the probability 
is found by dividing by the grand total. In the example, the joint probability that 
Player=Ariza and a free throw is made is computed as 156/2689 = 0.058. Be care-
ful, this value is not the same as Ariza’s free throw percentage or success rate. It 
is the probability that a player on the floor taking free throws is Ariza and that 
the free throw is made. The figure also shows the margin totals for the rows and 
columns. The margin totals are used to compute the percentages or probabilities 
within the row or column and to show how the specific row or column relates to 
the overall total. Figure 4.4 shows the same contingency table with the cell val-
ues and margin totals computed as probabilities by dividing by the grand total. 

Yes

No

Ariza
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Bryant

Ariza

Brown

Bryant

Technical Result

Made
Missed

Made
Missed

Made
Missed

Player

Made
Missed

Made
Missed

Made
Missed

P(Technical) P(Player | Technical) P(Made | Technical ∩ Player)

Figure 4.6
Adding an event to the tree. Trees can be organized with events in any order—
whatever makes the most sense for the problem and managers.
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Notice that the row totals show the percentage of times that each player takes a 
free throw, not the percentage made. The column totals show the overall team’s 
success rate. The huge value of 76.5 probably helps explain why the team won 
the championship—and that is a question that could be examined with later data 
mining tools.

A common value that is useful in making decisions is the probability of mak-
ing the free throw for a specific person. For example, the coach (manager) wants 
to know the probability that a free throw will be made if the player is Bryant. In 
probability terms, this value is written P(FT Made | Player=Bryant). This expres-
sion is read: The probability the free throw will be made given the player is Bry-
ant. It is known as a conditional probability, because it is conditioned on the in-
formation provided (Player=Bryant).  In general terms, the conditional probability 
is found by:
  P(A | B) = P(A ∩ B) / P(B)

In the example, the probability the free throw is made given Bryant is at the 
line is found as P(FT Made | Bryant)/P(Bryant) =  657 / 761 = 0.863. These val-
ues are taken from the original table of counts which is closest to the way most 
people read the sports table. But the same result can be found using the Figure 4.4 
probability table: 0.244/0.283 = 0.863. The definition of conditional probability is 
important and you need to remember it. The trick is to remember that you divide 
by the probability of the item in the condition (B).

The same formula can be rewritten as the general multiplication rule:
   P(A ∩ B) = P(A | B) *P(B) 

This rule can always be used to find the joint probability of two events. If events 
A and B are independent, P(A | B) simply reduces to P(A). Independence means 
that the probability of A stays the same, regardless of whether event B occurred.

Tree Diagrams
Contingency tables are useful because they show all of the relevant details, but 
they get unwieldy when the problem gets large—with too many rows and col-
umns. Also, they can show the values of only two attributes. Tree diagrams are 
another way to display relationships in dependent events. They take up space on 
the page, but tree viewer software typically enables analysts to zoom in and out to 
examine the nodes.

Figure 4.5 shows the tree for the Lakers 2009 free throw data for the first seven 
players. The nodes represent the values of the attributes (Player and Result). The 
probabilities on the lines or on the specific node are the conditional probabilities. 
The tree is read from left to right, so any probability to the right is conditional 
on everything that came before. In the example, P(Ariza)=0.087 from the start-
ing point, which corresponds to the percentage of times that Ariza was shooting 
the free throw. For the next step, P(Made | Ariza) = 0.670; or P(Missed | Ariza) = 
0.330. The final probability is the joint probability, and it is found by multiply-
ing every probability gathered along the way from the node: P(Ariza ∩ Made) = 
P(Ariza) * P(Made | Ariza) = 0.087 * 0.670 = 0.058. The joint probabilities match 
those in the contingency table cells.

The tree diagram can be extended to handle more events. Each event or at-
tribute would create a new level, where every value of the attribute gets repeated 
for each existing node. In the example, additional data might be found to indicate 
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whether the free throw was due to a technical foul or not. This addition would 
double the number of end nodes. The conditional probabilities are added to the 
new connectors or nodes and the final joint probability is the multiplication of 
every value along the tree to that specific node. Figure 4.6 shows one way to ex-
tend the tree in the basketball example. Events can be organized in any order to 
make the tree readable by managers. In most cases, if a technical foul is called, the 
coach can choose the player to shoot the free throw, so it makes sense to perform 
the split on technical first. Learn to read decision trees; they are heavily used in 
Microsoft’s Analysis Services. 

Bayes Theorem
Thomas Bayes, a British mathematician and Presbyterian minister in the early 
1700s, derived an interesting equation using the probability definitions. The proof 
is easy, and even the theorem is straightforward. The ultimate implications have a 
profound impact on statistics and on data mining.

For the simple explanation, begin with the definition of joint probability:
  P(A ∩ B) = P(A|B)P(B)

But, A and B are any two events, so the two terms easily could be reversed:
  P(B ∩ A) = P(B|A)P(A)

Put the two definitions together by setting the two right-hand sides equal:
  P(A|B)P(B) = P(B|A)P(A)

Figure 4.7
Basketball data in more common format, providing limited data. The denominator in 
Bayes’ theorem requires multiplying the two columns and computing the sum.

FT	Percent Frequency	Fouled
LastName P(FT	Made	|	

Player)
P(Player) multiply

Ariza 0.670 0.087 0.058
Brown 0.818 0.012 0.010
Bryant 0.863 0.283 0.244
Bynum 0.698 0.096 0.067
Farmar 0.615 0.036 0.022
Fisher 0.849 0.062 0.052
Gasol 0.765 0.215 0.165
Odom 0.616 0.120 0.074
Powell 0.786 0.021 0.016
Radmanovic 0.852 0.010 0.009
Vujacic 0.915 0.030 0.028
Walton 0.693 0.028 0.019

0.765



173Chapter  4: Probability and Statistics

Rearrange slightly to get Bayes’ Theorem:
  

( | ) ( )( | )
( )

P B A P AP A B
P B

=

It looks straightforward. The key lies in understanding how it can be used.
Simple Example of Bayes
In the simplest cases, Bayes’ theorem is not needed. Consider the basketball ex-
ample and look at Figure 4.4 again. Initially, the contingency table was used to 
find the conditional probability P(FT Made | Bryant), or the probability that a free 
throw would be made if it is taken by Kobe Bryant. Consider a slightly different 
version of the question. You are watching a Lakers basketball game on TV and 
you notice that someone makes a free throw, but you cannot identify the person 
before the coverage cuts to a commercial. What is the probability the player is 
Bryant? Or, in a management context, you encounter a new client who praises a 
salesperson but does not remember the name. With the same data defined as com-
pleted sales, what is the probability the salesperson was Bryant? 

If the complete contingency table or decision tree is available, it is possible 
to find this new conditional probability directly. In the table, find P(Bryant ∩ FT 
Made) = 0.244. Find the margin probability P(FT Made) = 0.765 and divide to 
get: P(Bryant | FT Made) = 0.244 / 0.765 =  0.320.

Even using Bayes’ formula, if all of the data are available, the computation is 
straightforward. The formula requires P(FT Made | Bryant), P(Bryant), and the 
total P(FT Made). By the formula, the computation is: 0.863 * 0.283 / 0.765 = 
0.320, which should be the same as the direct calculation, except for some round-
ing errors
Common Application of Bayes
The real strength of Bayes’ theorem is that many problems do not provide com-
plete data. Some data might be too expensive to obtain, or timing problems might 
make it difficult to obtain complete data. Figure 4.7 shows a more common ver-
sion of the basketball data. The first column contains the free-throw percentage 
made by each player. In probability notation, it is P(FT Made | player). The second 
column is often harder to obtain, but rough values tend to exist. It shows the rela-
tive frequency of each player getting fouled—which means taking free throws. In 
probability terms it is P(player). With this limited data, Bayes’ theorem becomes 
useful. Still considering the Bryant question, the numerator is simply P(FT Made | 
Bryant) * P(Bryant) which is found by multiplying the two columns. The denomi-
nator P(FT Made) or total probability seems to be harder to find. However, it can 
be rewritten as

 
( ) ( | ) ( )

i
P FTMade P FTMade player i P player i= = =∑

That is, the denominator is the sum of the probabilities for all of the players. As 
shown in the table, simply compute the multiple for each player row and add them 
up. To obtain the probability Bryant made that last free throw, take the value for 
Bryant and divide by the total to get: 0.244 / 0.765= 0.320. This table is easy to 
extend to find the probability that any of the other players made the shot, but the 
highest probability lies with it being Bryant. 
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This summation approach is a common aspect of problems that require Bayes’ 
theorem. The point of the theorem is that data is often provided in pieces, but the 
formula makes it possible to determine other information based on those pieces. 
To look at the approach one more time, examine the decision tree in Figure 4.5 
again. It clearly shows the probabilities and conditional probabilities. Multiply 
each line from the root to the ending leaf node. The resulting value is the joint 
probability. Pick the value for the chosen player (e.g., Bryant) to use as the nu-
merator. Complete the multiplications for every node labeled FT Made, and add 
up the values. The resulting sum is the overall total used for the denominator.
Information Value of Bayes’ Theorem
Bayes’ Theorem is often used in data mining applications. The usage derives from 
using the theorem to look at probabilities in a different light. A slight rearrange-
ment of the theorem yields:

 

( | )( | ) ( )
( )

P B AP A B P A
P B

=

This rearrangement leads to a completely different interpretation of probability: 
Probability is a subjective belief that can change over time as new information 
is gained. In the formula, P(A) is the a priori belief in some event A. P(A|B) is 
the updated posterior probability—the new belief about A given that information 
B has been provided. The posterior belief is computed from the prior belief by 
multiplying by the normalized information term P(B|A) / P(B). Typically, deci-
sion makers begin with a simple naïve belief about the probability—as neutral 
as possible, and the addition of information is used to successively create better 
estimates.

Figure 4.8
Counting heads. Computing the probability of obtaining 7 or more heads in 10 
tosses of a coin is a good exercise in counting. The tosses are independent so the 
probabilities can be multiplied. The trick is to understand that the tail can appear in 
different tosses, so the values need to include the combination term.

To	obtain	10	heads	in	10	tosses:		H	H	H	H	H	H	H	H	H	H
Only	one	way	to	get	it	and	P(H)=1/2,	so	P(10H)=	(1/2)^10

To	obtain	9	heads:	H	H	H	H	H	H	H	H	H	T
P(H)	=	1/2	and	P(T)	=	1/2,	so	start	with	(1/2)^9	(1/2)
But	the	tail	could	appear	in	one	of	10	locations,	so	multiply	by	C(10,	1)

For	8	heads:		H	H	H	H	H	H	H	H	T	T
Start	with	(1/2)^8	(1/2)^2	and	multiply	by	C(10,2),	the	combination	of	ways	of	to	get	the	
two	tails.

For	7	heads:	(1/2)^7	(1/2)^3	C(10,3)

Total	these	four	values	to	get	P(7	or	more	heads	|	fair)	=	0.171875
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In general, business managers do not need to worry about the mechanics of how 
the prior belief is updated to become the new probability. However, it is worth ex-
amining a simple problem just to gain some understanding of the process. A friend 
shows you a coin and claims that it is fair (50 percent chance of heads and tails). 
You mostly trust your friend, but have some skepticism (say 10 percent). You flip 
the coin 10 times and 7 heads appear. How should you adjust your belief that the 
coin is fair?

By Bayesian updating, the goal is to find:
P(Fair | 7 or more heads) = P(Fair) * P(7+heads | Fair) / P(7+heads), where
P(7+heads) = P(7+heads|Fair)*P(Fair) + P(7+heads|not Fair)*P(not Fair)

Begin with the a priori value of P(Fair) = 0.9. Most of the other values can be 
computed, but there is no absolute way of knowing how biased the coin might 
be. It appears not to be completely biased (always head), so just pick a value and 
guess that P(7 or more heads | not Fair) is 90 percent. The other value to calculate 
is the probability of obtaining 7 or more heads with a fair coin. Why “7 or more” 
instead of just 7? Because the coin could be unfair if it shows the 7 heads you 
did receive or any amount more. Computing this probability is a good exercise in 
counting.

Start with the probability of obtaining 10 heads (in 10 tosses) and work down 
to 7. Figure 4.8 shows the basic process and why it is a good exercise in counting. 
The case of 10 heads is easy because there is only one way to obtain all heads. 
Each toss is independent, so the probabilities can be multiplied. With a fair coin, 
the probability of 10 heads is (1/2)10, or 0.000977, which is a small number. The 
case of 9 heads and 1 tail shows the counting issue. The initial probability part is 
straightforward. With 9 heads and 1 tail, start with (1/2)9 *(1/2) 1 to get the base, 
but the tail can appear in any one of the 10 tosses, so this base must be multiplied 
by 10 which is the number of ways of arranging the one tail in the 10 trials. Es-
sentially, the additional rule for mutually exclusive events is applied ten times to 
the same number.

Follow the same process for 8 and 7 heads. For 7 heads the probability is (1/2) 

7 * (1/2) 3 * C(10,3) = 0.1171875. Technically, the arrangements of tails and heads 
are not combinations. With only two possibilities for the ten trials (H or T), the 
10 values consist of 7 items the same (H) and 3 items the same (T). The number 
of ways to arrange 10 items is 10!, but because 7 items are the same, this number 
needs to be divided by 7!. Because the other 3 (10-7) are the same, this value 
also needs to be divided by 3!, which results in: 10!/(7!3!) which is equivalent to 
C(10,3).

Add up the values to obtain the probability of getting 7 or more heads of 
0.171875.  Plug this value into Bayes’ formula:

P(Fair | 7+heads) = 0.9 * 0.171875 / (0.171875*0.9 + 0.9*0.1) = 0.632184

Remember that you started with a 90 percent belief that the coin was fair. After 
obtaining so many heads, your adjusted belief that the coin is fair has dropped to 
63 percent. Information obtained from testing has improved the probability belief. 
This same approach is used for business problems. The example could be restated 
as a management question—such as whether you believe a machine is operat-
ing correctly, an employee is performing acceptably, a customer will purchase an 
item, and so on. Business problems quickly become more complicated, but the 
underlying adjustment process is the same.  
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Probability Distributions
How can probability concepts be generalized to make it easier 
to handle new situations? The fundamental aspects of probability are use-
ful, but it would be time consuming to go back to the basic rules for every problem 
encountered. It turns out that many problems fall into certain categories, defined 
by specific assumptions and characteristics. Statisticians have developed tools to 
handle these specific cases. Once a new problem is categorized, it is straightfor-
ward to apply the tools and understand most of the details about the new problem. 
Probability distributions are one of the key statistical tools. Several standard dis-
tributions are used in many applications. In the early days, tables of these distribu-
tions were published and used to solve problems. Today, computerized functions 
quickly provide values for many probability functions. For convenience, the stan-
dard statistical functions are programmed into spreadsheets such as Excel. Also, 
distribution functions are the only way to examine probabilities with continuous 
data. However, discrete cases are simpler so they are examined first. 

Discrete Data
Recall that discrete data consists of values that can be counted. Simple examples 
include binary cases with yes/no or success/fail as the only options. Broader cases 
include categorical data such as gender, product category, country or state, and 
so on. Discrete cases also include classic games problems such as the number of 
heads appearing in 1,000 tosses of a coin. Discrete data can contain many values, 
even an infinite number, but the values are all distinct (and countable). 

Return to the example from the prior section in Figure 4.8 involving the num-
ber of heads appearing in 10 flips of a coin. This type of problem is a classic 
example of one of the common probability distributions. Probability is defined in 
terms of an experiment, which consists of a set of events or trials and a sample 
space. A sample space is a set of all possible outcomes from an experiment. Ex-
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Binomial Probability: n=10, p=1/2

Figure 4.9
Binomial distribution example. P=1/2, n=10. 

Number of 
Heads

Probability

0 0.00098
1 0.00977
2 0.04395
3 0.11719
4 0.20508
5 0.24609
6 0.20508
7 0.11719
8 0.04395
9 0.00977
10 0.00098
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periments might be clinical—where the investigator has complete control over 
the experiment. Or, particularly in social and business environments, experiments 
might consist of solely of observations on real-world activities. For instance, over 
a two-month interval a company collects data on customers and sales totals. The 
investigator might have no control over the experiment, or perhaps variables such 
as price or advertising were altered to see what changes occurred. In any case, it is 
possible to define all of the possible outcomes of the experiment.

A random variable is an assignment of a number to every possible outcome 
in the sample space. For example, if the experiment is to flip a coin ten times, a 
random variable could be the total number of heads that appear. In other experi-
ments, a random variable could be defined as the weight of a group of workers, or 
the total sales made to a customer. Note that before the experiment is conducted 
or evaluated, there is no way of knowing the exact value assigned to the random 
variable—hence the name “random.”  Discrete random variables take on a limited 
(countable) number of values. A discrete random variable X can be assigned any 
value xi from a set of values. Each possible outcome can be assigned a number 
called a probability p(xi) = P(X=xi) that must meet the basic conditions:

   p(xi) ≥ 0 for all i items in the set

   1
( ) 1ii

p x∞

=
=∑     

The function p is the probability function and the pairs (xi, p(xi)) define the 
probability distribution of X. More recently, the term probability mass func-
tion has become popular instead of just probability function.
Binomial Distribution
The concept of distributions is easiest to see with an example. Consider the coin 
tossing example. A fair coin has a 1/2 probability of displaying a head on any 
individual toss. Throw the coin 10 times and count the number of heads in that 
experiment. The outcomes range from 0 to 10. Figure 4.9 shows the probability 
distribution along with a chart of the probabilities. The probabilities at each value 
are computed using the basic probability rules. The example of 7 heads and 3 
tails was outlined in the prior section. Each trial flip is independent of the oth-
ers, so flipping a total of 7 heads means the probability of one head AND another 
head and so on up to seven. Because the events are independent, P(H1 ∩ H2) is 
P(H1)*P(H2) for seven times. Generically, the probability of obtaining one suc-
cess (head) is defined as p, which is 1/2 in this example, but will be different for 
other problems. In general, the probability of obtaining k successes P(X=k) = pk. 
But, with n trials, k successes appear only if k-n failures appear, so the formula 
needs the probability of obtaining exactly k success and n-k failures:  pk pn-k . 
The other catch is that it does not matter when the successes or heads appear. The 
experiment is only interested in the totals. The formula to this point defines one 
way of obtaining the specified number of successes. The base probability must 
be multiplied by the number of ways of arranging the outcomes. Because only 
two different outcomes exist, the ways of arranging them are n! / n! (n-k)!, where 
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the divisors handle the duplicates of the two outcomes. The result is the binomial 
distribution:

  
( , , ) : ( ) (1 )k n kn

binomial k p n P X k p p
k

− 
= = − 

 

  k: Number of observed successes.
  p: Probability of observing success on a single trial.
  n: Total number of trials.

  Excel: BinomDist(k, n, p, false)

 The binomial distribution is used for any experiment that (1) has a binary re-
sult (success or failure), (2) a repeated number of trials, and (3) a fixed probability 
of success on each trial. The third requirement applies to experiments where the 
items are draw with replacement. For problems where items are drawn from a 
finite set and not replaced, the probability changes with each draw and it is neces-
sary to use the hypergeometric distribution. However, it is rarely used in data min-
ing so it is not covered here.

 What if a problem has more than two outcomes? The multinomial distribution 
handles cases with multiple outcomes. This probability function generalizes the 
binomial, where the outcomes are considered as categories (x1, … xk):
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k  Number of outcomes or categories
 x1 … xk  Number of observed successes in each category
 n Total number of trials

Figure 4.10
Poisson distribution example. Mean = 5. The probability of seeing 10 or more 
arrivals in the time interval is 1-0.968 or about 3 percent. 

k p(k) cdf(k)
0 0.006738 0.006738
1 0.033690 0.040428
2 0.084224 0.124652
3 0.140374 0.265026
4 0.175467 0.440493
5 0.175467 0.615961
6 0.146223 0.762183
7 0.104445 0.866628
8 0.065278 0.931906
9 0.036266 0.968172
10 0.018133 0.986305
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Poisson Distribution
The Poisson distribution is another useful discrete distribution. It is commonly 
used in business and operations management problems to evaluate the number of 
arrivals during a fixed time period. For example, retail stores and fast food restau-
rants need to know how many customers might arrive during a lunch hour so that 
a sufficient number of checkout clerks can be hired to handle the peak load. The 
probability function is given by:

  
( )

!

a ke aP X k
k

−

= =

In the function, α is a parameter that must be provided. It is the average number 
of arrivals expected during that time period. This value is generally estimated by 
counting the number of customer arrivals over time; or by pulling the data from 
the database using the time stamps on receipts. To illustrate, consider a restaurant 
that averages 5 customers per minute during the lunch hour time slot. What is the 
probability that the company is swamped with 10 or more customers during one 
minute? Figure 4.10 shows the probability and cdf values for the number of arriv-
als ranging from 0 through 10. There is about a 2 percent chance that exactly 10 
customers will arrive within any minute. The cdf can be used to compute the prob-
ability of 10 or more customers because that value is 1 minus the probability of 9 
or fewer customers. Hence, the answer is 1-0.968, or about 3.2 percent chance of 
having that many customers arrive in one minute.
Cumulative Distributions
An important aspect of probability distributions is that they are point values that 
return the probability of only that one discrete value. For instance, Binomial(7,1/2, 
10) returns the probability of seeing exactly 7 heads in 10 coin flips. However, 
many problems are written so that they require cumulative values. Such as what is 
the probability of seeing 3 or fewer heads? The problem with point values is that 
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Cumulative Binomial: n=10, p=1/2

Figure 4.11
Cumulative distribution function for binomial. The s-curve is common and it must 
run from zero to one. F(x) = P(X ≤ x).
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in many cases, the probability is small for seeing exactly one specific result. This 
point is even more critical in the next section on continuous variables.

The cumulative distribution function (cdf) F(x) is defined as P(X ≤ x). With 
discrete random variables, it is the sum of all of the values from zero up to x.

  
( )

:

 ( )
j

j
u x x

F x p x
≤

= ∑

Figure 4.11 shows the cdf for the simple binomial example. Changing the pa-
rameters will alter the cdf, but the basic s-curve shape is common for most dis-
tributions. The values must range from zero to one and the function is non-de-
creasing. Cumulative probability tables are often used to lookup specific values. 
Computer functions are typically available to compute cumulative distributions. 
For instance, the Excel function BinomDist uses the last parameter to specify that 
the function should return a cumulative value (true) or just the point value (false).

Figure 4.12
Binomial probability with an increasing number of trials. Observe what happens to 
the point probability as the number of trials increases. With continuous data, the point 
probability at any point is zero. 

p 0.5 0.5 0.5
n success 7 70 700

trials 10 100 1000
Binomial 0.1171875 2.32E-05 5.07E-38

Figure 4.13
Probability density function for continuous data. Probability is computed as the 
integral of the pdf over the specified range—which is the area under the pdf curve. It 
is also the difference of the cdf values: F(1) – F(-1) = 0.841-0.159 = 0.683
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Some problems ask for the probability of X falling between two values P(a ≤ 
X ≤ b). This value can be computed by finding the cumulative probability up to 
value b and subtracting the cumulative probability up to value a. Be careful with 
discrete distributions. In the sample binomial distribution, what is the probability 
that the number of heads falls between 3 and 7 (inclusive)? Because N is only 10, 
this value could be computed by using the simple probability distribution function 
(non-cumulative) and adding the results. If N is large, this total can be tedious, 
even with a spreadsheet. With the cumulative approach, the answer is found us-
ing: P(X ≤ 7) – P(X ≤ 2) or 0.9453-0.0547 = 0.891.

Continuous Data
With these basic concepts, it is now time to examine distributions for continuous 
data. The first, most important, concept to understanding continuous data is that 
the point probabilities are all equal to zero. Recall the binomial example for 10 
trials. The probability of obtaining exactly seven heads was almost 12 percent. 
Check Figure 4.12 to see what happens to that point probability as the number 
of trials increases. With continuous data, the probability of any specific point is 
always zero. Think about it in terms of the number of possible values. It has to be 
impossible to hit exactly one specific number out of infinity. 

With continuous data, probability is defined only in terms of the cumulative 
distribution function. Probability can be found only for ranges of values. Techni-
cally, a probability density function (pdf) or probability mass function exists, 
but it is defined only in terms of the cumulative values:

  f(x) ≥ 0 for all x
  

  
( ) ( ) 1F x f x dx
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Figure 4.14
Cumulative distribution function. This function makes it easier to compute 
probabilities across a range.
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Integration can be interpreted as the area under the pdf curve. It is also the 
value of the cumulative distribution function. Figure 4.13 shows a sample pdf 
for a continuous distribution. The shaded area shows the method of computing 
the probability P(-1 ≤ X ≤ 1). Given the specific form of the pdf, this probability 
could be computed directly. However, the pdf functions tend to be difficult to inte-
grate, so the values are found from cumulative tables or using computer numerical 
formulas. In the example, the probability can be found using the cdf: F(1) – F(-1) 
= 0.683. The probability of X falling between -1 and 1 is about 68 percent. 

To obtain those specific values, you need to know that the pdf plotted is for 
the standard normal distribution. Note that because the probability at any point is 
zero, you do not need to worry about the end points and inequalities, which are a 
concern with discrete distributions. Figure 4.14 shows the cumulative distribution 
function for the example. The approximate cumulative probabilities can be read 
from the chart, but more precise values can be found in tables or with computer 
functions.

Joint and Conditional Probabilities
Note: This section shows theory and could be skipped.
Most probability density functions are discussed and displayed in terms of a 
single variable. These functions are easy to plot and to tabulate values for both 
the pdf and cdf. However, most business problems involve multiple attributes or 
variables. Fortunately, the computational tools are built to handle multiple vari-
ables. Even better, the behavior of the functions is the same for multiple variables. 
So, once you understand the functions in terms of single variables, that knowl-
edge can be applied to multiple variables. However, multiple variables add a few 
complications. 

First, as shown with contingency tables and tree diagrams, multiple variables 
require a joint density function. In discrete terms, the joint probability function 
could be expressed as P(X=x and Y=y) = p(x,y). Continuous variables require 
defining probability from a joint density function that is integrated to obtain the 
cumulative distribution:

    f(x, y) ≥ 0 for all x, y.

 ( , ) 1f x y dxdy =∫∫
For more variables, another integral (summation) is added for each variable. 

Recall that the contingency table included margin probabilities that were comput-
ed as the sum of probabilities for a given value of x or y (row and column totals). 
The same principle leads to marginal density functions for continuous variables, 
replacing summation with integrals:

  ( ) ( )   :  ,marginal pdf for x g x f x y dy=∫

  ( ) ( )   :  ,marginal pdf for y h y f x y dx=∫

Consequently, conditional probabilities are defined similarly to the probability 
case:

  
( ) ( )( , )  |  ,    0

( )
f x yconditional pdf g x y for h y
h y

= >
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With these definitions, Bayes’ Theorem also applies to continuous data. With 
continuous random variables, Bayes’ Theorem leads to a method to update the 
entire density function not just a simple probability. Methods that use this ap-
proach begin with a neutral pdf (often a uniform distribution), evaluate the data 
and adjust the density function. This new pdf is plugged in as the new a priori 
function and the process repeats until the data is used up. The result is a pdf that 
incorporates all of the information from the dataset and can be used to compute 
the probabilities of any range of values.

Expected Value (Mean) and Variance
Probability distributions need to be general so they can be applied to many differ-
ent types of problems. Most of the distributions are defined in terms of param-
eters that fit the distribution to specific problems. For example, in a non-statistical 
context, a line can be defined as y = mx + b. The variables x and y represent the 
data, leaving m and b as parameters. The values for m and b are estimated from 
the data and represent the slope and intercept values. Probability functions have 
similar parameters that enable them to be fit to a specific problem. Two of the 
most common parameters are the mean and variance. 

To understand probability functions and parameters, it is important to under-
stand the concept of expected value. Given a random variable X, the expected 
value of X is defined to be
Expected Value

   
[ ]
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 ( )i i
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E X x p x
∞

=
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 X is discrete

   
[ ] ( ) E X xf x dx

+∞

−∞

= ∫
 X is continuous

Expected value is easiest to see with discrete values because most people find it 
easier to compute sums than integrals. Expected value is an extremely useful tool 
for solving basic business problems. Figure 4.15 shows a simple example of an in-
vestment that has three possible outcomes. The random variable is the net return, 
shown for each possible outcome. Probabilities exist for each of the outcomes—
they could be subjective probabilities. Compute the expected value by multiply-
ing each outcome value by its associated probability and summing the values. 

Figure 4.15
Expected Value computation. Three outcomes exist for an investment. The net 
return and probability are given for each outcome. The expected value is found by 
multiplying each value by its associated value and adding. The expected value here is 
positive so the investment is worthwhile.

Net Return Probability X*p
1000 0.05 50
700 0.7 490

-2000 0.25 -500
Total/EV 40
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The result is a 40 gain, so this investment is acceptable. Note that 40 is not the 
amount you would make or lose from the investment. You will actually obtain one 
of the three values shown in the net return (1000, 700, or -2000). In fact, with a 
70 percent probability on a single investment, the most likely outcome is that you 
would receive 700. However, the expected value represents the average amount 
you would receive if the experiment/investment were repeated a huge number of 
times. Most of the time (70 percent), you would make 700, but 25 percent of the 
time you would lose 2000. In the end, you would make 40 on average.

Consider one more example using a binomial distribution. The probability of 
success, say heads on a coin toss, is p. If success is measured as 1 and failure 
(tails) as zero, the expected value of one toss is 1/2. If the coin is flipped 10 times, 
the total expected number of heads is: 1/2 + 1/2 +1/2 +…+ 1/2 for ten times which 
is 10*(1/2) or 5. In general, the expected value of the binomial distribution is n*p. 
If you are curious, the expected value of the Poisson distribution can be computed 
to be alpha (α), its single parameter.

The expected value is also known as the mean of the distribution. It is the cen-
ter point. In physics terms, it is the center of mass of the distribution.
Variance
Expected value is a powerful tool and relatively easy to understand. Unfortunate-
ly, too many people focus on just the mean when making decisions. After all, the 
mean indicates the expected outcome if the experiment is performed many times. 
But, there might be many ways of getting to that mean. Consider the investment 
example again and assume it is an investment you can make repeatedly. For the 
first few times, you are relatively lucky—after all, 75 percent of the time the in-
vestment returns positive values. Then, bang, you lose 2000. The investment is 
characterized by relatively large gains and losses.

Consider a second investment option that has the same expected value. Fig-
ure 4.16 shows a second investment option that has been configured to have the 
same expected value (40) as the first option. Compare the probabilities of the two 

Figure 4.16
Variance calculation. A second investment option has the same expected value but the 
variance is considerably lower.

Outcome Net Return probability X*p X-E(X) p(X-E[x])^2
1 1000 0.05 50 1000 50000
2 700 0.70 490 700 343000
3 -2000 0.25 -500 -2000 1000000

40 1,393,000

Outcome Net Return probability X*p X-E(X) p(X-E[x])^2
1 150 0.2 30 100 4500
2 700 0.3 210 700 147000
3 -400 0.5 -200 -400 80000

40 231,500
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investments. They are roughly the same in the each of the three outcomes for the 
second investment. They are widely different for the initial investment. Look at 
the net returns for the three outcomes. Again, in the second case the net returns are 
closer together in all three outcomes. 

This concept is known as variance and it has the statistical definition:
  V(X) = E[X – E(X)] 2

That is, the variance is the expected value of X minus the mean, squared. Fig-
ure 4.16 shows the direct way to calculate the variance. Subtract the mean from 
each value, square that difference and multiply by the probability to get the ex-
pected value. Add up the values to get the variance. The base formula is useful for 
understanding that variance measures the deviation from the mean, but an easier 
calculation method can be found by modifying the formula to:

  V(X) = E(X2) – [E(X)]2

With this version, the mean E(X) and the term E(X2) are computed in one pass 
through the distribution. Then square the mean and subtract it from the first term.

The point is that when X values have large deviation from the mean or center, 
the distribution has a higher variance. Figure 4.17 shows the effect using the two 
investment options. The first investment has large swings or deviations about the 
mean. The second investment is more consistent. Both distributions have the same 
mean. Looking only at the mean, it might be tempting to conclude the two invest-
ments are equally valuable. Incorporating the variance provides more informa-
tion. Most investors would choose investment two that has less variance.

Look again at the original definition for variance. It uses (X – mean) squared. 
The variance is measured in squared units of the random variable. For instance, if 
the data is dollars, the mean is measured in dollars, but the variance is measured 
in squared-dollars. Consequently, a more useful definition is to define standard 
deviation as the square root of the variance. The standard deviation is in the same 
units as the original data, yet still represents variation from the mean.
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Figure 4.17
Variance effect. The first investment returns bounce wildly around the mean. The 
second investment is more consistent, even though both have the same mean.
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The mean and standard deviation appear in many distributions and many sta-
tistical situations. For the distributions, the mean is usually denoted as μ and the 
standard deviation as σ. Variance is the square of the standard deviation or σ2. 
Correlation Coefficient
When a distribution has more than one random variable (dimension), then the pos-
sibility exists for correlation between two variables. These correlations are criti-
cally important to data mining. The business analyst wants to find correlation pat-
terns to see which variables move together. If two variables are independent, the 
correlation will be zero. If positive changes in one variable (say X) are matched 
by positive changes in a second variable (Y), the two are said to be positively 
correlated. With negative correlation, the variables move in opposite directions. 
These concepts are defined statistically with the correlation coefficient:
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Figure 4.18
Sample correlation coefficients. At zero, the scatter plot is essentially random. As 
the correlation approaches one, the relationship is closer to a straight line. Negative 
values exhibit the same relationship, but the slope of the line is negative.
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The correlation coefficient is similar to the definition of variance, except that 
it measures the deviation from the mean for X and multiplies it by Y’s deviation 
from the mean. The denominator uses the two variances to normalize these de-
viations, so the correlation coefficient varies between -1 and 1. Values of -1 or 1 
represent perfect correlation. If the X and Y values were plotted on a chart, they 
would fall on a single line when the correlation is perfect. This concept is ex-
plored in more detail in the regression chapter.

Figure 4.18 shows some sample correlation coefficients. The correlation coef-
ficient measures the relationship between pairs of variables. Near zero, the scatter 
plot is essentially random—the variables are independent. As the coefficient ap-
proaches one (or negative one), the scatter plot becomes closer to a straight line. 
Negative values exhibit the same effect but the slope of the line is negative. Keep 
in mind that correlation is a statistical measure only. It does not imply causation. 
Higher correlation numbers simply mean the variables move together, but it does 
not mean that changes in one will always cause changes in the other variable. 
Causation has to be determined by a model that provides a theoretical explanation 
for the joint movement.
Discrete Distributions
The parameters of a probability function often determine the mean and variance 
of the distribution. The expected value and variance can be found by applying 
algebra to the underlying distribution function. Sometimes the process is tedious, 
but the values have already been computed for the standard distributions. They are 
listed here without proof, because they are useful to know when working with the 
selected distribution. Also, they provide some insight into the distributions. 

Figure 4.19 shows the mean and variance for the common discrete distribu-
tions. For the binomial distribution, the variance is often written as npq, where q 
is the probability of failure or 1-p. In the coin-flipping example where p=1/2, pq is 
equal to 1/4, so the variance for tossing the coin 12 times is npq = 3. The follow-
ing sections describing continuous distributions will explain the value of knowing 
the standard deviation. 

Important Continuous Distributions
Discrete distributions are useful for understanding the basic concepts and for solv-
ing specific types of problems. However, many random variables involve continu-
ous data. More importantly, the continuous distributions are critical to solving cer-

Figure 4.19
Summary of mean and variance for common discrete distributions.
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tain problems. In particular, the normal or Gaussian distribution is the foundation 
for much of statistics—partly because many of the other distributions, including 
binomial, converge to that distribution as the number of observations increases. 
This section presents the most important of the continuous distributions. The sec-
tion is merely a summary. Details can be found in any statistics textbook. 

Remember that probability for continuous variables depends on a specified 
range. The probability density function defines probability (pdf) as the area under 
the curve. Consequently, the cumulative distribution function (cdf) is often used 
to compute actual probability values. 
Uniform or Random Distribution
The uniform distribution is useful for two reasons. First, it is easy to understand, 
and second, it represents a basically equally  random distribution of data. It is 
often used as an a priori distribution in Bayesian analysis because it imposes no 
specific structure on the data. It does require specifying finite minimum (a) and 
maximum (b) points to limit the range. Figure 4.20 shows the pdf and cdf for the 
uniform distribution. The distribution has two parameters: a and b, the starting 
and ending points of the range. Data is evenly distributed, so fixed range has the 
same probability. Hence, the distribution is sometimes called random because it 

Figure 4.20
Uniform distribution. Data is evenly distributed across a fixed interval. Sometimes 
used as a neutral starting point for Bayesian analysis.
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imposes no emphasis on any particular values. The pdf and cdf are mathemati-
cally easy:
   f(x) = 1/(b-a)
   cdf(x) = (x-a) / (b-a)
   Mean: (a+b)/2
   Variance: 1/12 (b-a)2

The uniform distribution has limited use except for providing a neutral starting 
point for some investigations.
Normal or Gaussian Distribution
By far, the most important continuous distribution is the Normal or Gaussian dis-
tribution. One of its most important values is that most of the other distributions 
converge to the Normal distribution as the number of data points increases. So it 
is the benchmark for most statistical analyses. This section explores some of the 
fundamental properties of the Normal distribution, but many of the concepts apply 

Figure 4.21
Normal or Gaussian distribution. With a large number of observations, most 
problems will follow a Normal distribution. The distribution is defined by the mean 
and standard deviation, but all problems can be converted to the standard normal 
N(0,1) with a mean of zero and standard deviation of one. 
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to other distributions as well. Figure 4.21 shows the pdf and cdf for the standard 
normal distribution. The Normal distribution is defined by the mean and standard 
deviation, but all problems can be converted to the standard normal which has a 
mean of zero and a standard deviation of one. It is commonly written N(0,1). 

The equations for the pdf and cdf are hugely important in statistics and math-
ematics, but they are mathematically difficult. In particular, there is no simple so-
lution to the cdf. The integration and probability values can be found only through 
computer numerical analysis.
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  Mean: μ
  Variance: σ2 
  Conversion to standard normal:   Z = (X – μ) / σ
  Excel:  NormDist(X, μ, σ, cumulative)

Figure 4.22
Normal distribution and standard deviation. Increases in the standard deviation widen 
and flatten the pdf, pushing more of the probability into the tails.
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The Excel function returns the value of the pdf if the entry for cumulative is set 
to false, otherwise it returns the cdf value.

The mean establishes the center of the distribution—it is symmetric about the 
mean. As shown in Figure 4.22, increases in the standard deviation widen and flat-
ten the pdf. Consequently, more of the area under the curve or the probability is 
pushed into the tails away from the center. If the standard deviation is very high, 
the distribution resembles the uniform distribution, providing little information 
about the underlying data.

A key aspect to understanding the Normal distribution is to recognize that when 
a random variable follows the Normal distribution, most of the observations are 
close to the mean. A smaller standard deviation means that the data are clustered 
even closer to the mean. To see how close, Figure 4.23 shows how to compute the 
percentage of data falling within one standard deviation of the mean. The value 
can be found quickly using the cdf, because it is simply cdf(1) – cdf(-1) = 0.6827. 
Think about that for a second. In a Normal distribution, over two-thirds of the data 
fall within one standard deviation of the mean. Check the values for two and three 
standard deviations: 0.9545 and 0.9973. In a large enough group, with any random 
variable, almost every value will fall within three standard deviations of the mean. 
Find a group of people, measure everyone’s weight and height. Very few outli-
ers will exist. Give an exam to 100 students and 95 percent of the values will fall 

Figure 4.23
Percentage of data falling within one standard deviation of the mean. Area under 
the pdf between [-1,1], or cdf(1)-cdf(-1) is 0.6827. The percentage for two standard 
deviations is 0.9545 and for three it is 0.9973.
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within two standard deviations of the mean, and there is only a 0.3 percent chance 
of someone scoring outside of three standard deviations. These conclusions arise 
because of the role of standard deviation. If the standard deviation is high, a huge 
variation in values can still exist. 

The mean is important because it shows where the distribution is centered. 
But the standard deviation describes how tightly the data is clustered around that 
mean. For example, perhaps daily sales have a mean of 10,000 and a standard 
deviation of 1000. If the data follow a normal distribution, it is easy to predict 
that tomorrow the sales total will be between 8,000 and 12,000 with a 95 percent 
probability. On the other hand, if the standard deviation is 4,000; the 95 percent 
forecast would be from 2,0000 to 18,000, which is not very useful.

The multivariate normal distribution has also been studied extensively, but it is 
basically a generalization of the simple normal distribution.
T-Distribution
What happens if there is not enough data to justify using a normal distribution? 
The Student’s T distribution was specifically created to handle problems with 
small samples. It functions the same way as the Normal distribution, but has one 
more parameter: degrees of freedom. For most problems, the degrees of freedom 
are one less than the number of observations, or n – 1. Figure 4.24 shows the pdf 
and cdf for the T distribution with 25 degrees of freedom. It looks the same as the 

Figure 4.24
T Distribution with 25 degrees of freedom. It is similar to the normal distribution. 
Standardize the data T = (X-μ)/σ. Degrees of freedom are typically n – 1. 
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normal distribution. Just to be complete, the equation for the pdf is given here, but 
even that is relatively complex because of the gamma function. The cdf is even 
more complex. Both functions are typically computed using numerical analysis.
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The Excel formula TDist is different from the normal distribution function. 
TDist only works for positive values of T and it does not return the pdf or the cdf. 
Instead, it returns P(T > x), or the probability in the right-hand tail. This value 
can be converted to the cdf by subtracting it from 1 to get P(T < x) for values of 
x greater than zero. Because of the way the T distribution is typically used, the 
Excel formula makes sense, but it is important to realize exactly what is being 
computed.

To demonstrate the effect of the degrees of freedom, Figure 4.25 plots the T 
distribution at several different values for the degrees of freedom. With a small 
number of observations, the pdf is flatter and wider—pushing more of the prob-
ability to the tails. Outliers, or extreme effects are more likely to arise. Going the 
other direction, even at df=50, the plot of the pdf is almost identical to the plot of 
the normal distribution.

Figure 4.25
T Distribution with different degrees of freedom. Even at df=50, the pdf is almost on 
top of the normal distribution. At lower degrees of freedom, or smaller samples, more 
of the probability is moved to the tails.
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The T distribution, or the normal for large problems, is heavily used in hy-
pothesis testing—which is covered in the statistics sections of this chapter. The T 
distribution is more accurate for smaller problems.
Chi-Square Distribution
Figure 4.26 shows the Chi-square distribution at varying degrees of freedom. 
Even a quick glance at the pdf indicates that this distribution is different from 
the others. It is defined only for positive values of X and positive values of the 
degrees of freedom. The distribution is not symmetric—more of the probability is 
concentrated near zero. The distribution is often written with the Greek letter Chi: 

2
nΧ , or Chi-square with n degrees of freedom.
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The Chi-square distribution has some specific uses that are covered in the sta-
tistics section. It can also be applied in cases that involve squared random vari-
ables. A random variable with an N(0,1) distribution, when squared will have a 
Chi-square distribution with one degree of freedom. In fact, if the degrees of free-
dom exceed about 45, and a random variable Y has a Chi-square distribution, a 
new variable can be defined as sqrt(2Y), and it will have a normal distribution 
N(sqrt(2n – 1), 1). For now, simply remember that the Chi-square distribution is 
useful for squared data. 

Figure 4.26
Chi-Square distribution at different values of degrees of freedom. Note that it is not 
symmetric, and more of the probability is clustered at the low end. The different plots 
are due to different values for the degrees of freedom.
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Central Limit Theorem
One of the most important results in the theory of probability and statistics is 
called the central limit theorem. The theorem states that for almost any random 
variable X, the average of the X values will have a standard deviation of σ/√n 
and the standardized Z value will have a normal distribution for sufficiently large 
number of observations. In other words, for almost any data the average of that 
data will follow a normal distribution.

   

  ~ (0,1)
/

X N
n
µ

σ
−

This theorem means that almost any data evaluated in the context of data min-
ing can use the Normal distribution. Small samples should use the T-distribution. A 
few specialized problems benefit from the Chi-Square distribution, but largely, if 
you understand the Normal distribution, the concepts will apply to most problems.

Statistics
How are statistics used in data mining to find interesting re-
sults? The discipline of statistics is used by researchers to determine relation-
ships, find patterns in data, and to test research hypotheses. Many of the tools 
and concepts developed for use in research have proven useful in data mining. 
However, some key differences in attitude exist between research statistics and 
data mining. Data mining is an exploratory process. Its purpose is to provide in-
formation to analysts to generate intuition and provide directions for additional 
research. Consequently, many of the statistical tools are applied differently than 
they would be for scientific research. In scientific research, certain protocols need 
to be followed to ensure the data observations are independent and unbiased. Data 
collection is a critical step in the research. Analyzing data for scientific research 
also constrains how some procedures are used.  This section reviews the key con-
cepts in statistics that often arise in data mining. However, it does not deal with 
the protocols that are critical to scientific research.

Probability theory in the earlier sections described basic rules of probability and 
provided the foundations of probability distributions. Probability explains how the 
population or total set of possibilities is related. Statistics deals with a random 
sample of observations from a population. For example, the population might be 
the set of all people who are potential customers. A sample might consist of actual 
customers, or of a set of people randomly chosen and contacted by the marketing 
department. A statistic is a random variable that defines some measure on the ran-
dom sample. Because a statistic is a random variable, it follows some probability 
distribution. With enough observations, the central limit theorem states that the 
normal distribution is a good approximation. The measure can consist of almost 
anything, such as demographic characteristics of people (age, height, weight, in-
come, and so on), or business outcomes including intention to purchase, amount 
of money spent each month, or profitability. 

Samples
For most research projects, obtaining a good random sample that is representative 
of the population is critical. A sample is a selection of observations taken from the 
population of potential data. It costs money and time to obtain research data, so 
researchers try to obtain the best sample possible at reasonable costs. With data 
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mining, the concept of a sample is different. Generally, organizations have already 
collected the data—through traditional transaction processing systems. In many 
cases thousands, millions, or even billions of rows of data exist. The analyst typi-
cally has access to as much data as the computer can process. However, two com-
mon situations arise in data mining where samples become useful. 

First, sometimes there is simply too much data to analyze it efficiently. If a 
company has billions of rows of transaction data and needs to perform intensive 
analyses, it might take too long to obtain results. Some data mining algorithms 
are designed to handle huge amounts of data efficiently; others that are based on 
traditional statistics tend to struggle with huge amounts of data. In these cases, it 
makes sense to take a random sample of observations from the main data set. The 
analyst can explore the sample data fairly quickly. Any conclusions reached can 
then be tested against larger samples, or possibly even the entire data set. With 
preliminary results, it is easier to run one or two tests against the large data set.

Second, data mining faces the risk of over fitting. Over fitting is a polite term 
for stating that the tools and the analyst have pushed too far and tailored the re-
sults to the specific set of data. It is one of the key risks that researchers need to 
avoid, and it is the reason the term data mining was originally a derogatory term. 
Given a small set of data and enough tools, it is possible to define a model that 
almost exactly describes every point in the sample. But that model will work only 
with that specific data set. The model and conclusions could fail completely when 
applied to other data. One way to reduce the risks of over fitting is to withhold a 
random sample of the dataset. After the tools are run on the first set of data, they 
can then be tested against the random sample. If the results are radically different 
on the second set, then over fitting is a problem. A few data mining tools go even 
further and split the data into multiple samples. The tools then compute results 
on each set and combine them to obtain the overall values. By default, most SQL 
Server tools automatically withhold 30 percent of the data to use as a test sample. 

A third possible issue exists with samples, but it is rare in data mining. Some-
times not enough data exists to handle complex analyses. In these cases, a boot-
strap process can be used. The sample data are analyzed as a distribution and 
new data is randomly generated that matches that distribution. The initial sample 
is expanded by randomly adding data that matches the underlying distribution. 
The process enables the tools to perform more detailed analyses of the data, but 
there is always a risk that the expanded sample does not completely match the real 
distribution.

Common Statistics
Some common statistics are computed for almost any measure. Remember that 
probability distributions have parameters. These parameters provide a mechanism 
to adjust the distribution to specific cases. In particular, the Normal distribution is 
completely defined by two parameters: mean and variance or standard deviation. 
Hence, it is important to estimate values for these two parameters. They are esti-
mated by the sample mean and the sample variance, which makes them the two 
most important statistics to be computed for any problem. The sample mean is the 
simple arithmetic average:

  1

1  
n

i
i

samplemean X X
n =

= ∑



197Chapter  4: Probability and Statistics

The sample variance is the squared deviation from the mean:
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Note that the variance has n – 1 in the divisor instead of simply n. This term 
is important to keep the estimate unbiased. It also leads to the use of n – 1 as the 
degrees of freedom when using the T-distribution. Loosely stated, the degrees of 
freedom are reduced by one (from n) because the same data were already used to 
estimate the sample mean. Because the sample mean is used in the definition of 
the sample variance, one degree of freedom is lost.

The sample mean and variance commonly appear as parameters in other distri-
butions. They are relatively easy to calculate, and most data mining and statistical 
packages perform the computations automatically. Even SQL has internal func-
tions to compute these values. Other common statistics include the minimum and 
maximum values. 

With multivariate data, it is also common to compute the sample correlation 
coefficient to determine the degree of relationship between two variables X and Y. 
The coefficient is defined as
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Figure 4.27
Find 95-percent confidence interval. Normal distribution, 95-percent in the middle 
leaves 0.025 probability in each tail. Inverse cumulative normal says that occurs at 
1.96, or about 2 standard deviations.
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However, it is easier to compute by simplifying the equation:
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Data mining tools can compute this coefficient automatically. Variations of it 
are commonly used in regression analysis. It is not necessary to memorize the for-
mula, but it is important to remember that a value of zero means the two variables 
are uncorrelated or independent. Values of 1 and -1 indicate perfect correlation, 
but perfect correlation is rare. 

Confidence Intervals
Much of the probability and statistics discussion ultimately reduces to one basic 
concept that is used for two key tools: Confidence intervals and hypothesis test-
ing. The two concepts are two ways of looking at the same question. Remember 
that a sample is just that—a sample of observations that might or might not be 
accurate. A key question is to evaluate the sample data and determine its accuracy. 
Another way to examine the question is to treat the average as a forecast, and then 
ask about the accuracy of the forecast. Will actual values be close to the forecast, 
or does a wide range of possible outcomes exist? 

A confidence interval is typically created by assuming the statistic follows a 
normal or T-distribution. Define a Z (or T) value as the difference between the 
average and true mean divided by the standard deviation of the average:
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The true mean exists but cannot be observed directly, so rewrite the equation:
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Figure 4.28

Find 95-percent confidence interval for average bill in Diners database. A simple totals 
query retrieves the count, average, and standard deviation of the bill total. Compute the 
standard deviation of the average and multiply by the Z value of 1.96.

Avg(X)	=	83.26
StDev(X)	=	73,958
N	=	73,233
StDev(Avg)	=	73.958/sqrt(73,233)	=	0.272
Z	=	1.96
95-percent	CI:		83.26	–	1.96(0.272)	,	83.26	+	1.96(0.272)
	 =	(82.73,	83.79)
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As shown in Figure 4.27, choose the value of Z so that this interval has a speci-
fied probability of containing the true mean. For instance, it is common to pick a 
95-percent CI. To get 95-percent of the probability contained in the interval leaves 
0.025 percent in each of the two tails. In the old days, you would read through 
probability tables to find the Z value that leaves 0.025 in each tail. Today, you can 
use the computerized inverse cumulative Normal function (NormInv in Excel) to 
learn that point occurs for Z=1.96, which most people round off to 2. An interval 
that is plus-or-minus two standard deviations wide has a 95-percent chance of 
containing the mean. In terms of forecasting, future values would have a 95-per-
cent chance of falling within that interval. Some people also like to examine the 
99-percent confidence interval. The Z value for a two-tailed 99-percent CI is 2.58. 

Finding a confidence interval for the mean requires computing the mean and 
the standard deviation of the mean. Be careful when reading that sentence. It says 
“standard deviation of the mean,” not standard deviation of X. The typical vari-
ance or standard deviation functions compute the standard deviation of the origi-
nal data (X). But the average is the sum of the X values divided by the number 
of observations n. Based on some probability rules that are beyond this book, the 
variance of the mean is V(X)/n. Take the square root to get the standard deviation 
of the mean:

  ( )  ( ) /SD SD X nX =

The process is straightforward, and all of the components have been defined. 
Consider a simple example using the small Diners database. The owner/chef 
wants a 95-percent confidence interval for average purchases on a single sale. The 
data are already stored by individual table or sale and includes the BillTotal. Cre-
ate a simple totals query:

SELECT Avg(Diners.BillTotal) AS AvgOfBillTotal, 
StDev(Diners.BillTotal) AS StDevOfBillTotal, 
Count(Diners.DinerID) AS CountOfDinerID
FROM Diners;

Figure 4.28 shows the results of the query with the average and standard devia-
tion of the Bill Total. Divide by the square root of the number of observations to 
obtain the standard deviation of the average. Plug these values and the Z value 
of 1.96 into the CI formula to learn that the confidence interval is (82.73, 83.79). 
This interval is tight because the standard deviation is low from the large number 
of observations. Remember that it is the interval for the mean, not for a specific 
bill. It means that over this time period, the average is an accurate indicator of 
the overall mean. This number (83.26) could then be used to compute reliable 
estimates of the revenue for the restaurant. For example, assuming the number of 
customers can be forecast, multiply by the average bill total to obtain the revenue 
estimate.

Use the same data to compute the 99-percent confidence interval. The only 
number that changes is the Z value, which becomes 2.57 instead of 1.96. The 
resulting interval is (82.56, 83.96). It is wider than the 95-percent CI, which will 
always happen. To be more confident, the interval has to be wider. But, because 
the standard deviation of the mean is so low, the effect is negligible—about 25 
cents or less than one percent of the mean.
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The process for computing confidence intervals for the mean is similar for any 
data. Find the average, standard deviation, and count. Compute the standard de-
viation of the mean and multiply by the desired Z-value. Add and subtract this 
value from the mean.

The process of creating confidence intervals is applied to many types of prob-
lems. The main challenge lies in finding the correct value for the standard devia-
tion. The formula shown in this section applies to the mean. If you wanted to cre-
ate a confidence interval for a forecast of the original data, the standard deviation 
is much higher—it includes the standard deviation of the mean and the original 
data. Many data mining packages create confidence intervals for forecasts and 
they automatically compute the standard deviations. In most cases, you simply 
need to understand how to interpret the confidence interval. 

Hypothesis Testing
Because it uses the same concepts, mean, standard deviation, and Z-value, hy-
pothesis testing is similar to creating confidence intervals. The focus is slightly 
different, so a few additional concepts and terms are necessary. The goal of hy-
pothesis testing is to decide if a proposed statement (hypothesis) can be rejected. 
Note the wording—rejected, as opposed to accepted. Technically, probability can 
only reject statements; which can lead to some interesting configuration of prob-
lems. However, most hypotheses in data mining are straightforward. The typical 
statement is that there is no relationship between variables, or that the effect of a 
particular dimension is zero. If this type of statement is rejected, then the relation-
ship does exist or the dimension does have a significant impact. 

Figure 4.29 shows one way to look at the hypothesis test. Assume enough ob-
servations exist so that the mean follows a normal distribution. Compute the test 
statistic for the problem as Z = (average – hypothesis)/SD(average), where the 
hypothesized value is zero. Say the result is Z=2.5. Under the assumption that the 

Figure 4.29
Hypothesis test. With large n, compute Z = (Avg-hypothesis)/SD(Avg). Say it is 
2.5 in the example. Under the null hypothesis that the mean is zero, what is the 
probability 2.5 can be observed? N(2.5, 0, 1) = 0.99379 (area to left of 2.5), so tail is 
1-0.99379 = 0.00621. Double it for two tails. Still less than a 1.5 percent chance of 
error if reject null hypothesis.
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hypothesis is true (zero mean), what is the probability that this result or higher 
could arise by chance. From the cumulative standard normal formula, N(2.5, 0, 
1) = 0.99379 which is the area to the left of the value 2.5. The area to the right in 
the tail is 1 – 0.99379 = 0.00621; or less than one percent probability. A two-tailed 
test is more common—where the computed average could be higher or lower than 
the true mean. In that case, double the tail probability (one for each side), and the 
result is less than 1.3 percent. So, rejecting the mean could result in being wrong 
no more than 1.3 percent of the time.

This probability of being wrong is a key element in hypothesis testing. Techni-
cally, two types of errors can arise in a hypothesis test:

 Type I error: Reject the null hypothesis when it is true.
 Type II error: Accept the null hypothesis when it is false.

Of these, the Type I error is usually considered the most important. In dealing 
with probabilities, no absolute answers exist—random chance could always crop 
up with atypical results. Most scientists want to be conservative and only reject 
a hypothesis if strong evidence exists. So, most hypothesis testing begins with a 
statement of the amount of Type I error you are willing to accept. Common values 
include 5 percent or 1 percent. A 1 percent error might seem “better,” but it in-
creases the amount of Type II error—there is a tradeoff. The only ways to reduce 
both types of error is to increase the number of observations and decrease the 
standard deviation. 

Defining a level of Type I error simplifies hypothesis testing. The process 
becomes:

1. Define the null hypothesis.
2. Define a level of Type I error.

Figure 4.30
Hypothesis test is similar to a confidence interval. Define the level of Type I error to 
obtain the critical values (Normal with 5 percent in two tails is 1.96). Compute the 
Z statistic (Avg. – hypothesis)/SD(Avg). If the statistic exceeds the critical value (in 
absolute value) and falls outside the confidence interval, reject the null hypothesis.
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3. Look up the critical values as a Z or T statistic, usually as a two-
tail test.

4. Compute the Z (or T) statistic:  (Avg. – hypothesis)/SD(Avg).
5. If the statistic is larger (absolute value) than the critical value, 

reject the null hypothesis.

Figure 4.30 shows how the hypothesis test is similar to a confidence interval. 
When the level of acceptable Type I error is set, the critical values can be found 
(typically 1.96 or 2.58 for 5 percent or 1 percent error). If the test statistic falls 
outside of this interval, the null hypothesis is rejected because that result can 
arise with less than the specified probability. That is, the mean is most likely not 
equal to the hypothesized value (e.g., zero). In the example, the test statistic is 2.5, 
which is greater than 1.96, so the null hypothesis is rejected.

This approach to hypothesis testing is relatively easy to perform in practice—
particularly when the hypothesized value is zero. Most computer programs dis-
play the value of the desired item or average, along with the standard deviation. 
Simply divide the item’s value by its standard deviation to obtain the T (or Z) sta-
tistic; and many programs display this value automatically. If the absolute value of 
the ratio is larger than 1.96 (roughly 2), reject the null hypothesis.

Consider a simple example, again using the Dining database. Perhaps in ex-
ploring the data, you noticed that people seem to spend more money on some days 
than on others. Is this difference significantly different from the overall average? 
To answer this question, formulate a basic null hypothesis:  The average bill on 
Saturdays is equal to the overall average bill of 83.26 found in the previous sec-
tion. Set a Type I error rate of 5 percent. Remember that the number of observa-
tions is in the thousands, so the Normal distribution can be used instead of the T 
distribution; hence, the critical value is 1.96. Create a database query to compute 
the average and standard deviation of the bill total on Saturdays.
SELECT Count(Diners.DinerID) AS CountOfDinerID, Avg(Diners.
BillTotal) AS AvgOfBillTotal, StDev(Diners.BillTotal) AS 
StDevOfBillTotal
FROM Diners
WHERE (Diners.DOW=’Sat’); 

Figure 4.31 shows the results of the query, with a count of 13,497 leading to 
an average Bill Total of 153.75 and a standard deviation of 93.25. Note that the 

Figure 4.31
Statistics for Bill Total on Saturdays. Compute the Z-statistic and notice that it is 
huge! Clearly Z = 87.82 > 1.96, so reject the null hypothesis. Diners on Saturday 
definitely spend more money on average than diners overall.

Count:	13,497
Average:	153.75
SD(Bill):	93.2479
SD(Average)	=	SD(Bill)/Sqrt(N)	=	0.8026
Z	=	(153.75–	83.26)/0.8026	=	70.49/0.8026	=	87.82
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average bill for all days is about $83 and the average for Saturdays is about $154. 
Is this difference large enough to be significant? The hypothesis tests answers this 
question and it does it by including the standard deviation. The figure shows that 
the Z statistic computes to 87.82 which is a huge number. It is clearly greater than 
the critical value of 1.96, so the null hypothesis should be rejected, and you decide 
that people do indeed spend more money on Saturdays than other days.

A statistician would observe that this hypothesis test could be improved. For 
example, perhaps a better statement would be to compare Saturday averages to av-
erages on other days—leave the Saturday values out of the overall total. It would 
not change these results, because the average without Saturday is going to be even 
lower, leading to a larger Z value. But, it could make a difference for other days. 
Similarly, managers might want to make comparisons between two specific days 
of the week. Comparing two items to each other leads to problems with defining 
the standard deviation—because both days might have different values. Statisti-
cians have found several ways to define the standard deviations for comparisons. 
These distinctions do not arise very often in data mining, but you should ask for 
help from a statistician if you encounter problems that require comparisons of two 
sets of numbers. Be particularly cautious if the values are paired—such as obser-
vations taken from the same person at different points in times. These cases are 
not considered here, but the formulas for the variances can be found by searching 
for paired T test or pooled variance for cases when the variables are independent.

Chi-Square Hypothesis Tests
The T-distribution and Normal distribution are useful for most problems—par-
ticularly tests of means. However, some problems are best solved with other dis-
tributions. In particular, the Chi-Square distribution is used in two common types 
of problems. (1) Testing a variance, and (2) goodness of fit. Because variance is 
defined as the square of the deviation from the mean, the variance follows a Chi-
Square distribution instead of a normal distribution—particularly with a relatively 

Figure 4.32
Goodness of fit example. A company wants to see if managers are promoting men 
and women in equal proportions. Assume each manager has the same promotion 
opportunities. Under the null hypothesis of no discrimination, the total ratio can 
represent the expected number of promotions.

Female Male Total
N Promoted N Promoted N Promoted

Manager1 27 15 32 12 59 27
Manager2 21 9 29 11 50 20
Manager3 16 4 21 5 37 9
Manager4 31 7 41 9 72 16
Manager5 9 3 7 2 16 5
Manager6 17 7 11 2 28 9
Manager7 19 5 7 1 26 6
Total 140 50 148 42 288 92
ratio 0.357 0.284 0.319
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small number of observations. Hypothesis testing is similar to that for means, but 
the statistic is:
   Χ2 = (n-1) s2 / σ2

The statistic uses the Chi-Square distribution with n – 1 degrees of freedom. It 
is used to test whether the variance is equal to (or greater than) some value. This 
type of test sometimes arises in data mining but it is rare.

Goodness of fit is a more interesting application of the Chi-Square distribu-
tion. How do you know if the data match a particular distribution? Or, how do 
you test if data from two sets have the same distributions? The goodness of fit 
test is one answer. Divide the problem into segments. For each segment, use the 
probability distribution to compute the expected number of observations in that 
segment. Then count the observed number of items in that segment. Compute the 
Chi-Square statistic as:
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This statistic has a Chi-Square distribution with J-1 degrees of freedom. If the 
number of observed values is consistently different from the expected number, the 
statistic has a high value and the Chi-Square test will reject the null hypothesis 
that the data matches the expected distribution. A similar version of this test is 
used to test for independence between two variables—using a contingency table.

Chi-square goodness of fit is a useful way of comparing data across a company. 
Figure 4.32 shows a potential use for goodness of fit in a data mining example. 
A company wants to know if managers are promoting men and women in equal 
proportions. Retrieving the appropriate data is the first data mining challenge. 
Under the null hypothesis of no discrimination, and assuming all managers have 

Figure 4.33
Goodness of fit results. To test the chi-square totals, find the chi-square value that has 
5 percent in the right-tail with 6 degrees of freedom. The value is 12.59 and can be 
found using the Excel formula: ChiInv(0.05, 6). Both test statistics are well below 
this critical value so the null hypothesis cannot be rejected. But, it might be worth 
looking deeper into some promotions by Manager1.

Female Male
Obs Expected X2 Obs Expected X2

Manager1 15 8.625 4.712 12 10.222 0.309
Manager2 9 6.708 0.783 11 9.264 0.325
Manager3 4 5.111 0.242 5 6.708 0.435
Manager4 7 9.903 0.851 9 13.097 1.282
Manager5 3 2.875 0.005 2 2.236 0.025
Manager6 7 5.431 0.454 2 3.514 0.652
Manager7 5 6.069 0.188 1 2.236 0.683

7.2347 3.711794



205Chapter  4: Probability and Statistics

equal opportunities to promote workers, the ratio of the total promoted can serve 
to compute the expected values for each category and manager.

Figure 4.33 shows the computation of the Chi-square statistics. In the end, the 
totals seem relatively small. To check, find the Chi-square value with 6 degrees of 
freedom that has 5 percent probability in the right-hand tail. That value of 12.59 is 
the critical value for testing within each gender across all managers. Both values 
are below that critical level, so statistically, the null hypothesis cannot be rejected. 
It is also possible to test both groups at the same time by adding the two separate 
sums and checking the Chi-square critical value with 13 degrees of freedom. That 
critical value is 22.36, which is clearly higher than the total of 10.9. On the other 
hand, it might be worth checking into promotions by Manager1. Summing the 
two cells (4.7+0.3) provides a statistic value of about 5. The critical value with 
1 degree of freedom is 3.8, so the null hypothesis would be rejected on this data.

Statistical tests of this nature can be powerful tools to automatically scan the 
data looking for anomalies. But, keep in mind that standard statistics practices are 
geared towards research. It is quite possible that small patterns exist that will not 
be revealed with a 5 percent Type I error rate. That is, patterns can exist but not be 
strong enough to pass a rigorous research test. One solution is to increase the Type 
I error rate, reducing the critical values and highlighting more potential anoma-
lies. Just be cautious when interpreting the results, and use other information to 
make critical decisions. Data mining used in this manner is useful for exploration 
and providing directions for further study. It generally cannot be used for proving 
a case or making a final decision.

Information Measure
There is a statistic that is commonly used in data mining that is rarely presented 
in introductory statistics classes. In 1948, Claude Shannon (Shannon 1948) pub-
lished a paper dealing with communication theory. A key aspect of communica-
tion is the ability to deliver information, so Shannon formulated a mathematical 
definition of information. His main point is that information must contain some-
thing new, or perhaps surprising. The classic example is a coin flip. If a coin has 
two heads and no tail, it will always come up heads. Hence, the coin flips provide 
zero information—there is no surprise. At the other extreme, if a coin is fair, the 
probability that a head is revealed constitutes new information because there was 
no way to predict the value ahead of time. 

Shannon’s information measure or entropy is defined for a random variable 
X as

  H(X) = E[I(X)]

Figure 4.34
Sample values of Shannon’s entropy measure for various sequences of 25 
probabilities. Uniform random always has the highest entropy value.

Set H(X)
Uniform	random:	p=1/25 10.87
Random	draw	0	<	p	<	1 9.5
N(0,1)	from	-3	to	3 8.1
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In the definition, E is the standard expectation function from probability and 
I is an information measure of the X variable. Information is based only on the 
probability of the event occurring, and events with more surprise have more infor-
mation (1/p), so the function I is defined as

 I(X) = log(1/p) = -log(p)

Because Shannon was dealing with bits transferred, he used the base-2 log and 
information was measured in bits. However, the definition is neutral and could use 
any base for the log function. To understand the information function, consider 
the simple coin toss. With a fair coin, p = 1/2. When a head is tossed, the informa-
tion revealed is log2(1/0.5) = log2(2) = 1. In a communication sense, it takes one 
bit to send the information that a head was tossed. Similarly one bit is needed to 
hold the information that a tail was tossed. The bit could be 1=heads, 0=tails. In a 
larger problem, rolling a fair die, a specific number (e.g., 5) has 1/6 probability of 
appearing, so -log2(1/6) =  2.585, or almost 3 bits to carry the information content 
of the results of a roll of a die.

Combining these definitions, the standard measure of Shannon’s entropy is:
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where pi is the probability of xi appearing, and the values are summed over all 
possible values of X.

The formula is easy to compute, but it requires the probability values for each 
of the outcomes. To understand it a little better, build a simple spreadsheet and 
compute the entropy measure for a variety of sets. Figure 4.34 shows the results 
for three different random variables. A uniform random distribution would have 
the same probability (1/25) at each point. A random draw was created to define 
25 probabilities, and the normal pdf was computed at 25 points from 3 to 3. Uni-
form random variables will always have the highest entropy value, because the 
probabilities are equal and the results cannot be predicted, so the surprise value is 
the highest. Consequently, Shannon’s entropy is a measure of randomness. Con-
sequently, the measure is often used to evaluate different models to see which 
one reduces entropy (randomness) the most. The entropy measure is sometimes 
used to help determine if a dimension variable has enough information to be use-
ful in further analysis. For instance, if gender were a dimension but all of the 
data was based on women, the Shannon information value would be minimal and 
there would be little point in including that dimension. Conversely, the informa-
tion gain on a target variable is a useful way to evaluate the impact of adding new 
dimensions.

Summary
Probability and statistics are useful and powerful tools that form the foundation of 
data mining. The rules of probability provide the mathematical foundations that 
lead to probability distribution functions. These distribution functions are used to 
evaluate statistics and eventually to make hypothesis tests about the data. Random 
variables can contain discrete or continuous data and the distributions are differ-
ent. The binomial and Poisson distributions are commonly used for discrete data. 
The Normal distribution for continuous data is the most important distribution 
because the central limit theorem says that all distributions approach the Normal 



207Chapter  4: Probability and Statistics

when the number of observations is large. The T-distribution corrects for degrees 
of freedom biases in small samples. The Chi-square distribution is used to per-
form hypothesis tests on the variance, but it is more commonly used to test for 
equality of distributions and independence.  

The Normal and T-distributions are commonly used for testing hypotheses on 
the mean. The process is the same for both, but the T-distribution requires the 
number of degrees of freedom—which is usually n – 1. The basic process is to 
compute the test statistic as (Avg. – hypothesis)/S.D.(Avg). The null hypothesis is 
typically that the mean is zero, so the computation simply becomes the estimated 
average divided by its standard deviation. This ratio is generally reported by data 
mining tools. If the ratio is larger than the critical value (1.96 for Normal at 5 per-
cent error) then the null hypothesis is rejected. Values that exceed the critical level 
tend to be important in data mining problems.

Bayes’ Theorem is another useful result from probability theory that is used in 
various aspects of data mining. It defines how to compute a conditional probabil-
ity. Derived from basic probability rules, the theorem is best understood in terms 
of subjective probabilities. Beginning with a prior believe about probability (or its 
distribution), Bayes’ Theorem shows how to use data observations to update the 
probability to a new posterior probability.

Probability and Statistics have detailed high-level mathematical definitions. 
Some basic definitions are presented in this chapter simply to illustrate these foun-
dations. Fortunately, statistical data mining tools incorporate this knowledge and 
perform the computations automatically, so it is not necessary for managers to 
know all of the details. Instead, it is critical that managers using data mining tools 
understand the fundamentals and be able to interpret the results and conclusions. 
Two of the most difficult problems faced by analysts are (1) choosing the appro-
priate tools, and (2) understanding the results and limitations of the tools. A basic 
knowledge of probability and statistics is required to perform these tasks.
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Review Questions
1. What is the probability of two events both occurring if they are inde-

pendent?

2. When counting outcomes, what is the difference between arrange-
ments, permutations, and combinations?

3. What is the general probability rule for computing the probability that 
event A or event B can occur?

4. What is Bayes’ Theorem and why is it important in data mining?

5. How can a tree diagram represent Bayes’ Theorem? Hint: Draw a 
simple tree and explain it.

6. What is the difference between discrete and continuous data?

7. What is expected value?

8. When evaluating data, why is it so important to look at the variance 
as well as the mean?

9. What is the purpose of the correlation coefficient?
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10. When should a T-distribution be used instead of a Normal distribu-
tion?

11. How is a confidence interval similar to a hypothesis test?

12. What is the test statistic for comparing an observed distribution of 
data to another specified distribution?

13. When does Shannon’s entropy measure reach its peak values? 

Exercises

Book
1. A company has just hired 15 interns and wants to assign them to 

teams of 5 people each. The team members will be rotated every 
month. One manager has suggested it would be nice to set up all pos-
sible teams. How many possible teams can be made from these 15 
people?

2. A company produces a complex machine that has 10 key components. 
The probability of any individual part failing is given in the table. For-
tunately, the system is not dependent on all parts equally. Some parts 
are essentially backups for others. The system fails if: (a) C1, C5, and 
C7 all fail, (b) C8, C9, and C10 fail, (c) C2 and C4 fail, or (d) C3 and 
C6 fail. What is the probability any individual machine will fail? If the 
company sells 10,000 machines, what is the expected number of fail-
ures?

Individual failure rates:

	 			1	 			2	 			3	 			4	 			5	 			6	 			7	 			8	 		9	 		10
	 1/100	 1/300	 1/500	 1/50	 1/800	 1/700	 1/100	 1/200	 1/50	 1/600

 

3. A factory produces identical components from two machines. Machine 
A is older and is known to produce defects at the rate of 1/1,000. Ma-
chine B produces defects at the rate of 1/5,000. After a daily run of 
5,000 parts produced from A and 10,000 parts from B, an inspector 
discovered that a part in a combined box is defective. Draw the deci-
sion tree and compute the probability that the defective part came 
from Machine B.

4. Use Excel to create a table and a chart for a binomial distribution 
where the probability of success is 3/4 and there are 20 trials.
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5. A bank is thinking about adding a second ATM machine. On Fridays 
at the end of the month during lunch hour, an average of 20 people an 
hour use the existing ATM. The one machine can barely handle those 
20 people because each takes an average of 3 minutes per person to 
complete their transactions. Compute the probabilities of from 21 – 30 
people arriving to use the ATM. The manager has decided that if 30 
people arrive too often, a second ATM will be needed.

6. Given the values in the following table, find the probability that the 
mean is greater than zero using both a Normal and T-distribution for 
each of the row entries.

Avg SD(X) N
5 5 100
5 5 10
5 20 100
2 10 50
2 10 100

7. Given the data in the following table, create the 95-percent confidence 
interval for the mean for all the data points.

9.12 11.45 5.07 3.86 6.32 2.45 4.40 4.57 7.30 5.81
3.17 10.87 -0.33 2.90 -1.30 5.41 3.47 2.31 5.48 4.66
8.57 5.12 4.07 3.68 5.34 9.33 -0.45 2.51 7.30 4.52

8. Given the following values reported by the data mining software, de-
termine whether the mean is significantly different from zero in each 
of the row cases.

Avg SD(X) N
2.5 70 100
12.3 35 20
-5.4 125 50
18.4 65 100
21.7 25 50

9. Your ten coworkers have accused your boss of making decisions by 
flipping a coin. In an attempt to disprove this hypothesis and argue 
that your colleagues do not understand your boss, you have asked each 
of them to count the number of “yes” responses out of the next ten 
questions asked of the boss. The following table records the number of 
times the boss said “yes” out of ten requests. Using the data, is your 
boss really flipping a coin to make decisions?
#	Yes 0 1 2 3 4 5 6 7 8 9 10
Count 0 0 0 0 1 1 2 3 2 1 0
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10. Create an Excel spreadsheet to compute the following values:

a. Normal probability for X > 32 when the mean=25 and std. dev. 
= 5.

b. Binomial probability finding three or fewer errors in 10 trials 
where the probability of any given error is 1/10.

c. A salesperson is paid $100 for every new customer who places 
an order in the next month. If the average salesperson gets 
3 out of 50 people to place an order, how much money can a 
salesperson expect to make by calling 1000 people?

d. Someone has estimated the following probability distribution 
for events. What is the Shannon Entropy measure?

Event Total	
destruction

Irreparable	
damage

Major	damage	
fixable	in	a	month

Minor	
damage

Complete	
success

Probability 0.10 0.15 0.15 0.25 0.35

 Rolling Thunder Database

11. Compute sales by state for 2010 and decide if sales to CA are different 
from the average.

12. Compute sales (count) by gender for 2012 and determine if men buy 
more bicycles than women.

13. Are sales of bicycles by model type for 2011 evenly distributed based 
on count?

14. For 2012, use the relative frequencies to estimate the probability of bi-
cycle model type. For each model type, estimate the probability of the 
bicycle having a carbon frame given the model type. Then use Bayes’ 
Theorem to compute the probability that a carbon bike just sold is a 
race bike.

15. For 2012, what is the correlation between bicycle size (FrameSize) and 
sale price for road and race bikes (combined)?
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 Diner

16. Is the purchase of desserts equally probable on each day of the week?

17. Build a frequency distribution of total sales (BillTotal) by day of week. 
Does it resemble any of the distributions covered in this chapter? Hint: 
If necessary, use the Excel Frequency function.

Corner
Med

Corner
Med

Corner Med

18. Create a decision tree with estimated probabilities, from patient gen-
der, age (<5, 6-50, >50), and tobacco use.

19.  Create a frequency distribution histogram by count of the number of 
visits covered by each insurance company.

20. Create a frequency distribution by counting the number of visits for 
each top-level ICD10 procedure code (first letter).

Basketball

21. For each team, compute the number of wins for non-playoff games in 
2010-2011 and compute the team’s free throw percentage. Across the 
teams, what is the correlation coefficient between these two variables? 
Hint: Use the TeamGameTotals view.

22. Compute each team’s win percentage for the regular season (82 
games). Using this data as p, compute Shannon’s entropy. Compare 
the resulting value to the entropy of all 30 teams winning exactly 50 
percent of their games.  

23. Use a Chi-Square test to determine if each division has the same po-
tential/record. That is set the null hypothesis that each division wins 
the same number of games in the 82-game season for 2010-2011.

24. Across all teams, did guards score more points on average than cen-
ters did in 2010-2011?
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Bakery

25. In terms of average sales value (quantity * sale price) per day, do 
breads sell more than the average of all other products? Hint: Com-
pute sales per day by category.

26. Using relative frequencies, what is the probability that bread and cake 
are purchased at the same time. Hint: Count the total number of sales 
that include at least one bread item and one cake. 

Cars

27. Compute the correlation between MPG and acceleration (seconds to 60 
mph). Comment on the results.

28. Create a frequency distribution histogram for the MPG values. Com-
ment on the chart. Does the result resemble any of the distributions 
covered in this chapter?

29. Divide weight into three categories: light, medium, and heavy. Do the 
same for horsepower and price. Create a decision tree for these three 
attributes and include the probabilities for each node. Comment on 
any patterns.

 Teamwork

30. Choose one basketball team. Compute the average free throw percent-
age and standard deviation for the entire team for one season. Assign 
at least two players to each person on in your group. Compute the 
player’s free throw average and determine if it is significantly differ-
ent from the average for the team.

31. Split the bakery data into days of the week and assign one day to each 
team member. Have each person compute the observed probability of a 
cake and bread item being purchased at the same time on the specified 
day of the week. Compare the team’s results for the different days.

32. Look at the cars by the predefined category. Assign one category to 
each team member. Compare the average MPG, Price, and Weight to 
the overall averages. Are they statistically different for the specified 
group? Combine the team’s results and comment on any results.
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Additional Reading
Mlodinow, Leonard, 2008, The Drunkard’s Walk: How Randomness Rules Our 
Lives, Pantheon Books: New York. [A collection of examples on how difficult it 
is to apply probability to everyday life. No mathematics needed.]

Shannon, Claude,1948,  “A Mathematical Theory of Communication,” Bell 
System Technical Journal, 47, 379-423. [Shannon’s original definition of in-
formation.]

Trevor Hastie, Robert Tibshirani, and Jerome Friedman, 2001, The Elements 
of Statistical Learning, Springer: New York. [An outstanding book on data 
mining, with an emphasis on theory. A graduated-level book that requires a 
strong mathematics background.]

Zellner, Arnold, 1971, An Introduction to Bayesian Inference in Econometrics, 
Wiley: New York. [A classic book on Bayesian theory, particular focus on sub-
jective probabilities and how they can define traditional analyses. Graduate 
level with mathematics.]
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