
480

What You Will Learn in This Chapter

•	 How	is	data	retrieved	from	a	cube	and	used	in	calculations?		
•	 What	are	the	basic	elements	of	an	OLAP	cube?
•	 What	are	the	main	objects	in	MDX	queries?
•	 What	is	the	primary	structure	of	an	MDX	query?
•	 How	are	MDX	queries	written	and	what	basic	data	do	they	provide?
•	 How	are	computations	and	new	measures	defined?
•	 How	does	MDX	handle	complex	computations	that	cross	levels	or	rows	of	data?
•	 What	other	MDX	functions	are	commonly	used	in	business	problems?

Chapter Outline

MDX
10Chapter

Introduction,	482
OLAP	Cube	Review,	482

Dimensions and Hierarchies, 484
Rolling Thunder Bicycles Cube, 484

Definitions	and	Concepts,	487
Main	Syntax,	489
Basic	Examples,	490

A First Example, 491
Adding a WHERE Condition, 492
Displaying Specific Dimension Values,
494
Cross Join, 494

Calculated	Measures,	495
Complex	Computations,	496

Percentages, 497
Compute Changes, 498
ParallelPeriod Function, 499

Some	MDX	Functions,	501
 EXCEPT: Taking Values Out of Totals,

501
Conditions with IIF and CoalesceEmpty,
502
TopCount Function, 504
Year to Date, 505
Moving Averages, 507

Summary,	509
Key	Words,	510
Review	Questions,	511
Exercises,	512
Additional	Reading,	515

481Chapter 10: MDX

Dallas Cowboys Merchandizing
Merchandising is an important element for any sports team, including those in the
National Football League (NFL). The Dallas Cowboys are no exception—in fact,
Bill Priakos notes that “nobody gives out their exact numbers, but we feel comfort-
able we are in the upper echelon,” along with teams like Manchester United and the
Chicago Bulls. As one of the top merchandizer, the Cowboys sold more than $100
million worth of gear—shirts, jerseys, and other items in 2009. The Tony Romo jer-
sey was estimated to be the most popular sports jersey in the nation in 2008—sell-
ing half a million items alone. But, as any clothing retailer knows, retail sales are
challenging. In fact, all of the NFL teams except the Cowboys outsource all of the
retail operations to Reebok. In 2002, the Cowboys chose to control all manufac-
turing, sales, and distribution themselves. The merchandizing organization installed
software from Microsoft to handle basic sales and data tasks, but ended up buying
software from Tableau Software, Inc. to answer the harder questions. Creation of a
digital dashboard was a key element in tying together all of the underlying data. Pria-
kos notes that the software lets “us find answers instantly.” Such as answering “How
are Internet sales of our jerseys doing?” or “Where do our jerseys sell well outside of
Texas?” Without the dashboards and visualization software from Tableau, it used to
take 30 minutes to create queries to answer these types of questions. [Lai 2009]

Digital dashboards are constructed from key performance indicators and many of the
steps can be automated using MDX tools.

Eric Lai, “BI Visualization Tool helps Dallas Cowboys Sell More Tony Romo Jerseys,”
Computerworld, October 8, 2009. http://www.computerworld.com/s/article/9139140/
BI_visualization_tool_helps_Dallas_Cowboys_sell_more_Tony_Romo_jerseys

482Chapter 10: MDX

Introduction
How is data retrieved from a cube and used in calculations?
Multi-dimension expression or MDX is a query language for OLAP cubes. It
appears to have been initially defined by Microsoft but has been adopted by al-
most all of the major data mining tool providers, including SAS and IBM. Docu-
mentation and examples can be found on the Web both from official (corporate)
sources and individual writers. The big question is whether you need to know how
to write (or even read) MDX queries. For most business users of data mining,
you can simply use the browsing tools created by various vendors and explore
cubes with the graphical designers. Microsoft’s PivotTable—widely available in
Excel—is a good example of a tool that is easy to use with drag-and-drop features.

In some ways, this chapter is optional. However, it turns out that the founda-
tions of MDX are relatively straightforward; and some advanced problems might
be easier to solve using MDX directly instead of trying to force a graphical brows-
er to do what you want. Also, some situations call for integrating OLAP data into
other tasks, such as spreadsheets, Excel, or other tools. In these cases, the power of
MDX is useful because it can be written as a text query, passed to the server, and
the results returned directly to an application for further analysis or processing.

A few writers have suggested that MDX is similar to SQL, but these two tools
are completely different. Confusingly, MDX uses similar keywords (SELECT,
FROM, WHERE), but they have no relationship to anything in SQL. More im-
portantly, the goals are completely different. SQL is designed to retrieve data from
relational tables. MDX is designed to retrieve data from an OLAP cube. Conse-
quently, one of the first steps in this chapter is to review the concepts of OLAP
cubes and to create a sample cube. A key feature of OLAP cubes is that they are
designed to work with aggregate data—or multiple subtotals. This difference is
critical to MDX—all queries are designed to return subtotal data—and you almost
never enter a SUM function; so the process is automatic.

This chapter is relatively short. It reviews basic concepts and terminology for
OLAP cubes. Then a section highlights the main concepts in MDX—largely in
terms of hierarchical dimensions. The main syntax of MDX is relatively short,
but somewhat confusing. The best way to understand MDX is to work with ex-
amples. This chapter uses the Rolling Thunder Bicycle company database to gen-
erate a cube and show how to apply MDX. The examples use Microsoft SSAS
(SQL Server Analysis Services) and Visual Studio to generate the OLAP cubes
and process the MDX commands. Because of changes in SSAS and Visual Studio,
PivotTables in Excel are also used to provide better displays of the cubes.

OLAP Cube Review
What are the basic elements of an OLAP cube? Recall the main con-
cepts of OLAP cubes from Chapter 3. A cube is a way to visualize and explore
data relationships. The main data in a cube consists of measures which represent
variables that are important to the decision. Common business measures include
sales revenue, profit, cost, and counts of items sold. Measure variables have to be
numeric. A cube presents a way to quickly explore subtotals of the measure data
relative to various attributes. Attributes can be derived from a sale (location, date),
the product itself (color, size), the customer (age, income), or internal data such as
salesperson or division. Ultimately, the question is to examine how the measure
subtotals vary based on the different dimensions. For example, are sales in some
states consistently higher than those in other states?

483Chapter 10: MDX

Figure 10.1 shows a sample cube for Rolling Thunder Bicycles. The measure
consists of sales value. The three dimensions pictured are: (1) product category
or bicycle model type, (2) customer location or state, and (3) date or time of the
sale—expressed in months. The values within a single cell of the cube show the
sales value for a specific category to a given state in a specified month. Hyper
cubes can have many dimensions—but it is difficult to draw anything above three
dimensions. The point is that attributes are displayed as dimensions on the cube.
Analysts can then use tools to choose dimensions, examine individual values on
specified cells, and compute subtotals across dimensions (such as all states for a
given month). It is important to remember that the cube displays subtotals.

A key aspect of dimensions is that many of them are hierarchical. Some of the
hierarchies are “natural” in the sense that everyone commonly uses them. The two
main examples are time and location. Cube browsers often have pre-built tools to
handle these standard hierarchies. For example, time is often examined from the
top down: Year – Quarter – Month – Date. Similarly, geographical location can be
written in terms of Nation – State – County – City – ZIP Code. Both dimensions
could have multiple hierarchies. For instance, some companies emphasize sales
by week which creates a slightly different time hierarchy: Year – Week – Date.
Other dimensions can also have hierarchies, which are customized based on the
specific problem. For instance, product categories might fall into hierarchies, such
as by department. And a company itself is probably organized into departments
and sub-departments which could be important for some questions. These hier-
archies have to be manually defined but they ultimately behave the same as the
natural hierarchies.

Figure 10.1
Sample OLAP cube for RT Bicycle sales. The numbers measure something of interest
in decisions—in this case sales value. This cube has three dimensions: location
(state), product category (model type), and time based on the order date.

Time
Sale Month

Customer
Location

CA

MI

NY

TX

Jan Feb Mar Apr May

Race
Road

MTB
Full S

Hybrid

880 750 935 684 993

1011 1257 985 874 1256

437 579 683 873 745

1420 1258 1184 1098 1578

484Chapter 10: MDX

Dimensions and Hierarchies
Cubes and MDX have many options to handle and explore hierarchical data. Fig-
ure 10.2 shows two of the main concepts. Cube browsers tend to be visual and the
data is often displayed in an expansion format where analysts can drill down (ex-
pand) or roll up (compact) the data levels to look at specific items or higher-level
subtotals. However, MDX treats hierarchical dimensions as trees. Trees have lev-
els where increasing detail is shown at lower levels of the tree. The topmost level
is the root and items in the bottom level are sometimes referred to as leaves. Func-
tions exist to refer to a parent level (an item value immediately above the current
level), and to list all children of any given node. An interesting concept is the
ability to examine items in parallel. For instance, it might be necessary to compare
data for each month within two different quarters. Parallel tracking could be used
to compare the first month in quarters one and two (January versus April) and then
move to the second month in each quarter at the same time. These advanced fea-
tures are built into MDX and are difficult to handle with visual browsers.

Rolling Thunder Bicycles Cube
It is difficult to discuss and understand MDX in abstract terms. All of the concepts
are easier to follow by illustrating them with actual data. Rolling Thunder Bicy-
cles provides a good case example. It has enough data with a reasonable number

Figure 10.2
Concepts in hierarchies. Visual cube browsers often use drill down and roll up
methods to show different levels of subtotals such as the +/- notations on the left side
of the diagram. MDX treats hierarchical data as a tree where the higher level is the
parent and lower level items are children.

2010

Q1

Q2

Q3

Q4

Jan
Feb
Mar

Apr
May
Jun

Jul
Aug
Sep

Oct
Nov
Dec

-2010

-Q1
Jan
Feb
Mar

+Q2

+Q3

+Q4

Cube display:
Drill down and roll up

Tree concepts

Parent / Children

parallels

485Chapter 10: MDX

of dimensions and measures to illustrate most points without overburdening most
systems. If you want the ability to write and test MDX queries, you should install
the SQL Server version of the RT Bicycles data. Also be sure that Microsoft SSAS
is installed on your computer along with at least the Visual Studio client compo-
nents to develop new business intelligence projects. All of these components can
be installed from the Developer version of SQL Server which is available through
MSDN or with a time-limited free download version. If the Developer version is
not available, use the Enterprise version. The SQL Server RT database is available
from the book’s Web site: http://www.JerryPost.com.

If you do not install the SQL Server elements, you should carefully check the
following figures which show the steps in creating the Cube. The cube structure is
important to understand the sample queries. The queries all refer to the structure
and data in the database.

The main steps to creating a cube are: (1) In Visual Studio, start a New/Proj-
ect: Analysis Services, Multidimensional…, (2) Add a new Data Source to con-
nect to the SQL Server RT database, (3) Create a new Data Source View with the
desired tables, and (4) Create a new Sales Cube with the desired measures and
dimensions.

Creating the new project and the data source should be straightforward. Figure
10.3 shows the tables and relationships needed in the Data Source View for RT
Sales. Clearly the Bicycle table is needed because it contains the data measure
(Sale Price). The other tables provide data for the dimensions. One catch arises
after adding the specified tables. Notice that three tables refer to the City table:
Customer, Employee, and RetailStore. All three tables contain address informa-
tion and link to the City table to get standardized information about cities. But, in
terms of sales, only the link between the Customer and City table is useful. It is
important to delete the links between Employee -> City and RetailStore -> City.
If these links remain, the results will be severely constrained because the links
would force all customers, employees, and retail stores to be in the same city.
Simply select the two extraneous links and delete them.

The process of creating the Cube uses the wizard, and the main step is to select
the tables correctly. First, the bicycle table is selected for its measures. The col-
umns to use for measures need to include at least: Sale Price, List Price, Sales Tax,
and Bicycle Count. A couple of other columns might be interesting, such as Frame
Size if there is a reason to examine bicycle sizes across states. But by default the
wizard selects all numerical columns and many of them will just clutter up the
displays later so they should be unchecked. For the attribute dimensions, use all of
the other selected tables—which are checked by default.

The Bicycle table includes an OrderDate column which is a useful measure for
tracking when bicycles were sold. Some of the other dates might also be useful but
just stick with OrderDate for now to keep the problem simpler. However, dates are
a natural hierarchy, so it is important to create this date dimension. Right-click the
Dimensions entry in the Solution Explorer and add a new dimension. Choose the
option to “Generate a time table on the server.” This new table becomes a lookup
table that contains all possible dates. You need to set the starting and ending dates
to January 1, 1994 and December 31, 2015. Then pick the time periods as: Year +
Quarter + Month + Date. Change the name to: Date Hierarchy to remind you that
it includes multiple levels.

 An interesting aspect to dimensions in SSAS is that they standalone—a dimen-
sion is really just a lookup table that contains a distinct list of all possible values

http://www.JerryPost.com

486Chapter 10: MDX

for that dimension. The new Date Hierarchy dimension still needs to be added to
the cube and connected to the data. Figure 10.4 shows the basic steps. Open the
Cube window and examine its structure. Right-click the Dimensions window to
add the new Date Hierarchy dimension.

It is also critical to click the “Dimension Usage” tab. Click the empty box next
to the Date Hierarchy. As shown in Figure 10.5, the hierarchy needs to be assigned
to the OrderDate column. First set the relationship type as Regular, and set the
Granularity to Date if it is not set automatically. In the Measure Group Columns,
pick the OrderDate column. This process assigns the Date Hierarchy specifically
to the OrderDate column. Finish the wizard and return to the Cube Structure tab.

The last step is to add some elements to the Customer dimension. By default,
the Customer dimension includes only ID values, but analysts will find those al-
most useless. As shown in Figure 10.6, edit the Customer dimension and add the
more useful columns by dragging them to the attribute list. Include at least the
columns: City, State; and Gender and ZIP Code from the City and Customer ta-
bles. By default, the Customer dimension includes only ID values which
are Code.ludes only the ID values. Edit the dimension and dra Analysts
might also find Income and population to be useful but they are not required for

Figure 10.3
Data source view for RT Sales. The Bicycle table has the measures (Sale Price). Then
add the tables with the desired attributes: Customer and City, Employee, RetailStore,
LetterStyle, Paint, and ModelType. These tables are needed to provide lookup data.

487Chapter 10: MDX

this demonstration cube. Similarly, you should eventually perform a similar pro-
cess for the Employee and Retail Store dimensions to add the employee and store
names. To verify your work and to populate the cube, it needs to be saved and
processed.

The cube now contains measures—notably Sale Price; plus dimensions for
Customer, Employee, Letter Style, Paint, Model Type, Retail Store, and the Order
Date hierarchy. The name of the cube is RT Sales, but you might choose a dif-
ferent name. Keep this list handy, the exact names will be needed when building
MDX queries.

Definitions and Concepts
What are the main objects in MDX queries? MDX is a text language
designed to compute and display the subtotals displayed on the cube. It uses most
of the same terminology and concepts as the cube. The concepts of totals, di-
mensions, and hierarchy trees are critical to MDX. Probably the most important
thing to remember about MDX is that it is designed to query data from an OLAP
cube—so all of the results are subtotals. If no constraints or details are specified,
a simple MDX query will retrieve a single total. Specifying dimensions or values
generates subtotals for those dimensional values. Think of a cube as a huge col-
lection of SQL GROUP BY subtotals. MDX simplifies the syntax so that only the
GROUP BY and WHERE conditions need to be provided.

MDX uses a few key concepts or terms. Measures are numeric values that will
be displayed as results—generally summed. Most cubes have a specific measures

Figure 10.4
Add Date Hierarchy dimension to the cube. Right-click the left Dimensions window
and add a new dimension. Select the newly created Date Hierarchy. Then click the
Dimension Usage tab.

488Chapter 10: MDX

Figure 10.5
Assign Date Hierarchy to the OrderDate column. Set the relationship to Regular,
Granularity to Date, and pick the OrderDate column in the Measure Group list.

Figure 10.6
Add elements to the Customer dimension. By default the Customer dimension
includes only the ID values. Edit the dimension and drag useful columns into the
attribute list: City, State, Gender, and ZIP Code.

Drag to add Attributes:
Gender, State, ZIP Code

489Chapter 10: MDX

set that contains a list of variables that can be used as totals. Within MDX, a spe-
cific measure variable is referenced by its full name, such as [Measures].[Sale
Price]. The square brackets are used to support names that might contain spaces,
key words, or special characters. Essentially, the brackets provide a way to delimit
a name that could use characters that might be misinterpreted. In the example, the
dot (.) indicates that the [Sale Price] attribute is a member of the [Measures] set.

A similar syntax is used to identify items within other dimensions. For exam-
ple, several model types exist (race, road, mountain, and so on). To indicate a spe-
cific value of a model, use a term of the form: [Model Type].[Race]. For hierar-
chies, use the names from the top down, such as [Date Hierarchy].[Year – Quarter
– Month – Date].[Date].members. Note that the last item here is members, which
returns a list of all the values within the context (Date in this case). The members
(or sometimes allmembers) keyword returns all item values at the specified level
in the descriptor. It is similar to the children keyword, but technically the term
children refers to the entries in a hierarchy tree; whereas members applies to any
values—even if no tree is involved. For instance, to get a list of all bicycle model
types, use the notation: [Model Type].members. Yes, the choice between “chil-
dren” and “members” is confusing. When in doubt try “members” first and switch
to “children” to see if the difference matters.

MDX notation also relies heavily on the concept of a set. Similar to a math-
ematical set, MDX uses collections of items. These collections can be a simple
list of entries—such as a list of the model types; or a complex collection of di-
mensions—such as combining all model types with a list of states. Sets are de-
fined inside of curly braces { }. They are most commonly used to specify the
row and column dimensions for the cube. The terms rows and columns represent
two common axes of a cube. The column axis is number 0 and the rows axis is
number 1 so they can be referred to as axis(0) or axis(1); or even just 0 and 1.
Sometimes the numbers are more convenient, such as when building a cube that
contains more than two axes.

MDX borrows the concept of a tuple from SQL, which is somewhat of a
strange term. In the context of MDX, think of a tuple as a specification of di-
mension values. For example, a tuple (Race, March 2007, CA) provides specific
values for the Model Type, Month, and State dimensions. MDX uses this concept
in formulas to define specific values. For instance, a formula with the term [Mea-
sures].[Sale Price] refers to the total sale price across all dimensions. To refer to
the Sale Price value at a specific set of values or points, use the parentheses nota-
tion. For example, ([Model Type].[Race], [Measures].[Sale Price]) computes the
total sale price just for the Race model type. Multiple dimensions are supported
simply by separating them by commas.

Main Syntax
What is the primary structure of an MDX query? An MDX query
can become relatively complex, but as shown in Figure 10.7, the basic structure
is fairly simple. A query has four basic elements: (1) calculated values defined at
the top using the WITH MEMBER command, (2) the sets of dimensions used
for each axis specified using the SELECT command, (3) the name of the OLAP
cube holding the data using the FROM command, and (4) WHERE conditions
that restrict the display to specified dimension values. These keywords might look
familiar, but they have nothing to do with SQL; and the syntax and results are
completely different.

490Chapter 10: MDX

Note that the WITH MEMBER and WHERE phrases are optional, so the initial
examples will ignore those elements to focus on the underlying goals and syntax
first. These two elements along with several useful functions are covered in later
sections. At first glance, the main structure of MDX focuses on defining the axes
for the OLAP cube and the dimensions to assign to each axis (in the SELECT sec-
tion). The WHERE section simply provides a way to slice the cube and control
the data. However, the optional WITH section has considerable power to perform
complex calculations. The results are still computed as sums and displayed in the
form of a cube, but the computations can be used to answer some relatively com-
plex business questions. A key aspect of MDX is that all of the elements rely on
sets of data and almost all of the computations involve subtotals.

Basic Examples
How are MDX queries written and what basic data do they pro-
vide? The flexibility and power of MDX is easiest to see through examples. This
section covers the basics—to highlight the syntax and the results. Two additional
sections cover computed values and some more advanced tricks that can be useful
in business analyses.

SQL Server has two main ways to run MDX queries: (1) Within a Visual Stu-
dio Analysis Project Cube Browser, and (2) Connecting SQL Server Management
Studio to the Analysis database. Both of them use similar steps and produce simi-
lar results. The Management Studio supports cut-and-paste on some of the results,
but the Visual Studio Cube Browser supports a Designer mode where basic cubes
can be built by dragging and dropping dimensions. The examples in this chapter
can be run with either method; but some examples found on the Web will run only
in the Management Studio.

Creating and running MDX queries is a little tricky in the recent versions of
Visual Studio. If necessary, open the project used to define the cube. Open the
RT Sales cube. If necessary, process the cube so all dimensions, hierarchies, and
subtotals are built. Click the cube’s Browser tab. By default, the browser is in
designer mode—where you can drag and drop dimensions and measures to cre-
ate a cube. This process automatically generates MDX queries—which can pro-
vide useful examples. But for now, turn off the designer by deselecting the Design
Mode icon, which switches the display to a window to type MDX queries and a
window to display results.

Figure 10.7
Basic MDX syntax. The four primary keywords are used to define calculated values,
choose the sets of dimensions for each axis, specify the cube name (only one cube),
and limit the display to specified attribute values.

WITH	MEMBER	 create	calculated	values
SELECT	 define	the	axes	by	selecting	dimensions
		{				…				}		On	Columns,
		{				…				}		On	Rows
FROM	[cube	name]	 name	of	the	cube
WHERE	(…)	 restrict	results	to	specified	dimension	values

491Chapter 10: MDX

To create MDX queries in SQL Server Management Studio, start the Manage-
ment Studio from Windows and change the Server type to: Analysis Services.
Choose the correct server name and login information. In the Object Explorer,
expand the Databases entry to find the project you created and saved within Visual
Studio. Right-click that entry (RT Sample) and choose the option for New Query/
MDX.

A First Example
Begin with a query that uses the simplest syntax possible. The business question is
to display total sales by model type. Figure 10.8 shows the query and the results.
The FROM command is the simplest because it just lists the name of the data
cube. Only one cube can be used in any query. The SELECT element specifies
two sets—one for each axis of rows and columns. The braces indicating a set are
required—even if only a single dimension is needed. The first set { [Model Type].
members } is assigned to the rows. The .members notation tells the system to look
up all entries for model type. The second set { [Measures].[Sale Price] } specifies
the values to be displayed. Every query must have at least one measure in the SE-
LECT statement. Note that the order of the sets in the SELECT statement does not
matter (columns can be defined before rows). Check the results to see that all of
the model types have been retrieved. Notice the (null) and Unknown entries. The
Unknown value is automatically included to handle cases where the model type
might not be given. The (null) row shows the grand total. Out of curiosity, change
the .members to .children and rerun the results. The values will be the same, but
the .children approach does not include the grand total row.

Figure 10.8
Initial MDX query. Total sales (Sale Price) by Model Type. The query needs to
specify only the rows dimension (Model Type), and the column measure (Sale Price).
MDX automatically totals across all other dimensions. The (null) row in the result
shows the grand total. The Unknown row is automatically included in case some
values are not specified. Changing [Model Type].members to [Model Type].children
removes the (null) total.

SELECT
		{	[Model	Type].members	}	on	rows,
		{	[Measures].[Sale	Price]	}	on	columns
FROM	[RT	Sales]

Model	Type Sale	Price
(null) 208438543
Hybrid 3399366.21
Mountain 25793699.63
Mountain	full 61436230
Race 61700574.07
Road 46617603.73
Tour 9268120.59
Track 222948.77
Unknown (null)

492Chapter 10: MDX

Adding a WHERE Condition
What if the analyst wants to limit the results? For example, the analyst wants to
see the sales of model type but only for 2010. Note that the date is not currently
included in the display—the existing values are computed for all possible years.
Restricting the results to a single year can be thought of as looking at a slice of the
cube. As shown in Figure 10.9, this basic condition is straightforward to add to the
WHERE clause. The one catch is that the condition has to be written as [Calendar
2010] because that is the way the data was generated for the Date Hierarchy di-
mension. In many cases it helps to build a sample query using the designer first—
just to see the exact specifications of the data for these generated dimensions.

Note that a WHERE condition specifies values that will limit the subtotal com-
putations. To specify additional conditions, separate them by commas. The totals
will then be computed where all of the specified conditions are true. For example,
keep the year 2010 condition and add another restriction to the state of California
(CA). Figure 10.10 shows the syntax and the results. Note that the values in the
WHERE clause are separated by commas and data must match both conditions to
be included in the result totals. More complex conditions require the use of func-
tions; which are described in a later section.

Notice that Track and Hybrid bikes were only sold in some years—and not in
2010—so the results include missing (null) values. Because this effect occurs on
only two rows it might not matter. But if a data result contains many empty rows,
the analyst might want to remove them to focus on the values that do exist. MDX
uses the NON EMPTY keyword to remove rows that are completely empty. Fig-
ure 10.11 shows the keyword and the result.

Figure 10.9
Adding a WHERE condition. Conditions added to WHERE limit the data to the
specified values. The new table results are structurally the same as before but the
values are computed only for 2010. Note the need to specify [Calendar 2010] because
that is the way the values are entered in the Date Hierarchy dimension.

SELECT
		{	[Model	Type].members	}	on	rows,
		{	[Measures].[Sale	Price]	}	on	columns
FROM	[RT	Sales]
WHERE	([Year].[Calendar	2010])

Model	Type Sale	Price
(null) 14501690
Hybrid (null)
Mountain 1018340
Mountain	full 4277740
Race 5171940
Road 3417090
Tour 616580
Track (null)
Unknown (null)

493Chapter 10: MDX

Figure 10.10
Multiple WHERE conditions. The WHERE clause specifies values that will be
included. Separate them by commas and only data matching all conditions will be
used for the totals. Here, the state of California for the year 2010.

SELECT
		{	[Model	Type].members	}	on	rows,
		{	[Measures].[Sale	Price]	}	on	columns
FROM	[RT	Sales]
WHERE	([Year].[Calendar	2010],	[State].[CA])

Model	Type Sale	Price
(null) 895730
Hybrid (null)
Mountain 73530
Mountain	full 226640
Race 290470
Road 262160
Tour 42930
Track (null)
Unknown (null)

SELECT	NON	EMPTY
		{	[Model	Type].members	}	on	rows,
		{	[Measures].[Sale	Price]	}	on	columns
FROM	[RT	Sales]
WHERE	([Year].[Calendar	2010],	[State].[CA])

Model	Type Sale	Price
(null) 895730
Mountain 73530
Mountain	full 226640
Race 290470
Road 262160
Tour 42930

Figure 10.11
Removing empty rows. The NON EMPTY keyword drops the rows from the results
that are completely empty (null).

494Chapter 10: MDX

Displaying Specific Dimension Values
What if the analyst wants to focus on just the mountain and mountain full bikes?
Because the Model Type dimension is used in the SELECT clause, it should not
(or cannot) be used as a WHERE condition. The answer is to not select all mem-
bers but just specify the desired entries on the SELECT statement. Remember that
selection of dimensions for the axes use a set so many different values can be en-
tered. Figure 10.12 shows the change in the MDX query that removes the .mem-
bers keyword and replaces it with the two model types (mountain and mountain
full). The computed values are the same as the earlier query but now display just
the values for the two selected model types.

It is possible to add other types of dimensions to the same set. However, it
might be more useful to put different dimensions on different axes. On the other
hand, the browser with SSAS 2012 really only supports rows and columns. It has
no interface to show different combinations of dimensions. The Microsoft Pivot-
Table in Excel does a better job of handling multiple dimensions at the same time.
So, a cube could be constructed and saved in SSAS and then browsed with a Piv-
otTable. Some of these issues arise in the next section on cross joins.

Cross Join
The whole point of an OLAP cube is to provide the ability to explore data and
browse through different dimensional subtotals and different hierarchical levels.
MDX has some useful tools to create these types of cubes. Unfortunately, the cube
browser shipped with SSAS 2012 is weak and does not support interactive rol-
lup and drill down. Hopefully, the browser will be improved in future editions.
In the meantime, it is still important to understand how MDX handles multiple
dimensions.

The cross join is an important tool in building a cube. A cross join takes all
the values of one dimension and combines them with every value from a second
dimension. For example, say the state dimension has 50 states and the model type
dimension has 7 entries. Crossing every state with every model type leads to 7
* 50 = 350 entries. Think of the results in terms of a matrix—using 7 columns
against 50 rows. In fact, this is the way most cube browsers would display this
cross join.

Figure 10.12
Selecting only some rows. Selection values are sets can contain lists and
combinations of dimensions. Remove the .members value that retrieved all model
types and specify just the two values for mountain and mountain full model types.

SELECT	NON	EMPTY
		{	[Model	Type].[Mountain],	[Model	Type].[Mountain	full]	}	on	rows,
		{	[Measures].[Sale	Price]	}	on	columns
FROM	[RT	Sales]
WHERE	([Year].[Calendar	2010],	[State].[CA])

Model	Type Sale	Price
Mountain 73530
Mountain	full 226640

495Chapter 10: MDX

To demonstrate the cross join in MDX, start with a new problem. The goal is to
cross the Date Hierarchy with the Model Type dimension to examine Sale Price
over time and model. Figure 10.13 shows the MDX command and a small portion
of the results. The key to creating the cross join is the asterisk (*). MDX syntax
includes a cross join key word but the asterisk is actually easier to read. The
basic syntax is dimension1.members * dimension2.members. The SSAS 2012
browser display is not interactive so most people would transfer the cube to an
Excel PivotTable for browsing instead. The Visual Studio editor does have a but-
ton to transfer the data to Excel but the cube has to be reconfigured. Of course,
filters can still be used to reduce the number of rows—such as selecting individual
states or the gender of customers.

Notice that the SSAS 2012 browser does not display the data as a cube. Instead,
it generates a new row for each entry and then lists the corresponding dimension
value. This approach makes it harder to see patterns, but easier to display multiple
measure values. Also, the data can be passed cleanly to other analysis tools such
as statistical packages.

Calculated Measures
How are computations and new measures defined? Many busi-
ness problems require manipulating the measure values to compute new variables.
Simple computations include profit margin (revenue – costs) and simple percent-
ages such as Costs / Revenue. These computations are straightforward because
they operate on data within the same cell.

Figure 10.13
Selecting only some rows. Selection values are sets can contain lists and
combinations of dimensions. Remove the .members value that retrieved all model
types and specify just the two values for mountain and mountain full model types.

SELECT	NON	EMPTY	
		{	[Measures].[Sale	Price]	}	ON	COLUMNS,	
NON	EMPTY	
		{	([Date	Hierarchy].[Year	-		Quarter	-		Month	-		Date].[Date].ALLMEMBERS	
	 *	[Model	Type].[Model	Type].[Model	Type].ALLMEMBERS)	}		
ON	ROWS	
FROM	[RT	Sales]

Note that the hyphens in the [Year – Quarter …] term are picky. You might have to copy
and paste the notation from the designer.

Year Quarter Month Date Model	Type Sale	Price

Calendar	1994 Quarter	1 January 01-JAN-1994 Race 2990

Calendar	1994 Quarter	1 January 01-JAN-1994 Road 3490

Calendar	1994 Quarter	1 January 02-JAN-1994 Race 2478.95

Calendar	1994 Quarter	1 January 03-JAN-1994 Mountain 5020

Calendar	1994 Quarter	1 January 03-JAN-1994 Race 10410

…	

496Chapter 10: MDX

In MDX, calculated measures are defined in a separate section at the top of the
query. A new variable name is assigned and the formula is delimited with single
quotes. Figure 10.14 shows the formula for computing the simple profit margin
for Rolling Thunder Bicycles (ignoring labor costs). The measure is defined in the
WITH MEMBER section added to the top of the query. It must be given a unique
name (Measures.Margin) and the calculation is delimited in single quotes. The
new variable can then be used within a SELECT statement.

The syntax for defining a new measure is straightforward—just remember to
place single quotes around the expression that defines the computation. Also, be
sure that the name of the new variable is unique. Similar computations involving
data from the same source at the same level are equally straightforward to cre-
ate. However, MDX has several built-in functions that make it possible to answer
more complex questions.

Complex Computations
How does MDX handle complex computations that cross levels
or rows of data? The computations in the previous section were deliberately
kept simple to illustrate the syntax for calculating new values. MDX has several
powerful functions that can be used to answer more complex questions. Most of
these types of questions involve the use of data beyond that found in a single
row. For example, calculating percentages requires dividing the current value by
a subtotal which must be computed across all the members within the same level.
Similarly, many time-based problems involve looking at consecutive values to
compute changes over time. Special functions are often needed to handle these
jumps across different levels, but MDX has several of these capabilities.

Figure 10.14
Calculated Measures. Computations are defined in the WITH MEMBER section
which contains the name of a new measure (margin) and is definition delimited in
single quotes. The new variable can then be used in the SELECT statement.

WITH	MEMBER	[Measures].[Margin]
			AS	‘[Measures].[Sale	Price]	-	[Measures].[Component	List]	-	[Measures].[Frame	Price]’
SELECT	
		NON	EMPTY	{	[Measures].[Margin],	[Measures].[Sale	Price]	}	On	columns,
		NON	EMPTY			{	[Year].members	*	[Model	Type].members	}	ON	rows
FROM	[RT	Sales]

Year Model	Type Margin Sale	Price
(null) (null) 47211482.32 208438543
(null) Hybrid 884842.47 3399366.21
…	
Calendar	1994 (null) 261651.05 2555013
Calendar	1994 Hybrid 14310.22 199006.21
…	

497Chapter 10: MDX

Percentages
A common business situation is the need to display subtotals along with their per-
centage of the overall total. Consider the sales for Rolling Thunder by model type.
A listing of the model types followed by the total sales value is interesting. But,
the numbers can be easier to understand if they are computed as percentages. For
instance, rather than just listing: Race 2000, Mountain 4000, and so on; the dis-
play could list: Race 15%, Mountain 35%, and so on. These percentages would be
even more useful to examine changes over time. The computation of the percent-
ages in MDX is handled by defining a new measure and using the parent property.

Figure 10.15 shows the MDX command and the results with the percentages.
The key trick is in the formula for the divisor. Look closely at the formula: (
[Model Type].CurrentMember.Parent, [Sale Price]). This formula uses the Parent
function to move up one level in the hierarchy; and one level up means to look at
all model types. MDX then sums the [Sale Price] at that parent level—which pro-
vides the total sales for all model types.

What would happen if you combine the cross-join with percentages? That is,
the business analyst wants to examine the total sales by model type by year; and
wants to see the percentages computed within each year. The answer is that you
simply need to add the cross join to the MDX row axis. Everything else stays the
same. Figure 10.16 shows the MDX query and a portion of the results. Again, the
results would be easier to browse if the model type were displayed across the top
as columns as in an Excel PivotTable. But the main point is that MDX computed
the percentages using the correct totals. The totals are correct because the Parent

Figure 10.15
Computing percentages using Parent function. The computation relies on the fact
that MDX always computes totals. The key term is: ([Model Type].CurrentMember.
Parent, [Sale Price]) which computes the overall total to use as the divisor. Note that
the Format_String does not work in Visual Studio 2012.

WITH
		MEMBER	Measures.PctSales	AS	‘([Model	Type].CurrentMember,	[Sale	Price])	/	([Model	
Type].CurrentMember.Parent,	[Sale	Price])’	,	FORMAT_STRING=”0.00%”
SELECT	
{	[Measures].[Sale	Price],	[Measures].[PctSales]	}	ON	COLUMNS,
{	[Model	Type].Members	}	ON	ROWS
FROM	[RT	Sales]

Model	Type Sale	Price PctSales
(null) 208438543 Infinity
Hybrid 3399366.21 0.01631
Mountain 25793699.63 0.12375
Mountain	full 61436230 0.29475
Race 61700574.07 0.29601
Road 46617603.73 0.22365
Tour 9268120.59 0.04446
Track 222948.77 0.00107

498Chapter 10: MDX

function simply moves up one level from the current item (model type within a
given year) and then computes the total at that level. So, regardless of how the
cross join is defined, the totals and percentages will be computed across the model
types for the level.

Yes, it is possible to navigate further up the data tree using multiple parent
commands (.parent.parent). Such a command might be used to compute a grand-
grand total. But, be careful to ensure that the data tree has enough levels or trying
to move to a non-existent parent will trigger an error.

Compute Changes
Another common analytical issue is the need to examine changes in data—partic-
ularly over time. As shown in the earlier examples, computing totals at any point
in time is straightforward in MDX. Picture a table listing the Year and Sale Price
for each year. The challenge now is to take the value for one row and subtract
the value from the previous row. That means MDX needs a function to retrieve
the value on the previous row. The function PrevMember does exactly that task.
There is also a NextMember function that looks forward instead of back. For

Figure 10.16
Cross-join with percentages. Compute sales by model type by year and the
corresponding percentages within each year. The only change is to add the cross-join.
The parent function automatically computes the total across model types within the
same year.

WITH
		MEMBER	Measures.PctSales	AS	‘([Model	Type].CurrentMember,	[Sale	Price])	/	
										([Model	Type].CurrentMember.Parent,	[Sale	Price])’	
SELECT	NON	EMPTY	
		{	[Measures].[Sale	Price],	[Measures].[PctSales]	}	ON	COLUMNS,	
NON	EMPTY	
		{	([Year].AllMembers	
												*	[Model	Type].[Model	Type].[Model	Type].ALLMEMBERS)	}		ON	ROWS	
FROM	[RT	Sales]

Model	Type Sale	Price PctSales
Hybrid 199006.21 0.07789
Mountain 559019.63 0.21879
Race 928984.07 0.36359
Road 486773.73 0.19052
Tour 346200.59 0.13550
Track 35028.77 0.01371
Hybrid 124240 0.04200
Mountain 567940 0.19199
Race 294390 0.99516
Road 1074490 0.36322
Tour 709230 0.23975
Track 187920 0.06352

499Chapter 10: MDX

more extreme situations, the Lag and Lead functions accept a number to go back
or forward more than one item at a time. These functions overlap somewhat. For
example, data on the previous row could be referenced by any of the commands:
PrevMember, Lag(1), or Lead(-1).

Figure 10.17 shows the Change variable defined with the PrevMember func-
tion. The basic syntax is to use parentheses to specify the variable to look up (Sale
Price) and then the PrevMember function of the year variable: ([Measures].[Sale
Price], [Year].PrevMember). Check the change values in the partial results table.
Notice that the first row does have an entry—it is equal to the first value of sales
(for 1994). Specifying this value is always a question when computing changes.
MDX assumes that the system starts at zero, so any data in the first year must be
the full change amount from zero. Other systems might leave the first row empty,
so it is worth remembering this approach in MDX.

ParallelPeriod Function
Many business questions require comparing numbers at different points in time.
Comparing data to the prior period is common, but more complex comparisons are
also common. For example, consider a listing of monthly sales using the time hi-
erarchy. The hierarchy shows Year, Quarter, and Month. The challenge is that the
business managers want to compare sales in a given month to the same month in
the prior quarter. For example, sales in April (second quarter, first month) should
be compared to sales in January (first quarter, first month). The ParallelPeriod
function was designed to handle these types of question.

Figure 10.18 shows the basic objective. Looking at the month of April, the
matching value is found by moving up the tree (parent) to the quarter; then mov-
ing back one quarter. From that point, the three months are matched in parallel to
the months in the original quarter.

Figure 10.17
Computing change values with PrevMember. Change values require looking at
values in prior (or next) rows. The PrevMember function looks back one item.
NextMember looks forward by one, and Lag and Lead functions can jump multiple
rows at one time.

WITH
		MEMBER	[Measures].[Change]	AS	‘[Measures].[Sale	Price]	
	 -	([Measures].[Sale	Price],	[Year].PrevMember)’
SELECT	
{	[Measures].[Sale	Price],	[Measures].[Change]	}	ON	COLUMNS,
{	[Date	Hierarchy].[Year].Children	}	ON	ROWS
FROM	[RT	Sales]

Year Sale	Price Change
Calendar	1994 2555013 2555013
Calendar	1995 2958210 403197
Calendar	1996 4050860 1092650
Calendar	1997 5358120 1307260
…	

500Chapter 10: MDX

Figure 10.19 shows the MDX command to compare the corresponding months
from a quarter to those in the prior quarter. The heart of the query is function: Par-
allelPeriod([Date Hierarchy].[Year – Quarter – Month – Date].[Quarter], 1). The
first parameter tells the function to use the quarters (parent of the month level).
The second parameter specifies to go back a single quarter. A third parameter can
be added, but it defaults to the current member (month) being displayed and is
easier to leave blank. Actually, for this specific query, all three parameters could
be blank because the default values match the desired elements. Looking at the

Figure 10.18
Comparing monthly values against the corresponding month in the prior quarter. The
comparison uses the hierarchy to move up one level (to quarter from month) and then
back one quarter. Then it tracks the months in parallel to the original data.

Q1
January
February
March

Q2
April
May
June

Quarter, 1 back
Parallel values from prior quarter

WITH	
		MEMBER	[Measures].[ParQtr]	AS	
				‘([Measures].[Sale	Price],		
							ParallelPeriod	([Date	Hierarchy].[Year	-		Quarter	-		Month	-		Date].[Quarter],	1))’
	SELECT	NON	EMPTY	
		{	[Measures].[Sale	Price],	[Measures].[ParQtr]	}	ON	COLUMNS,	
NON	EMPTY	
		{	([Date	Hierarchy].[Year	-		Quarter	-		Month	-		Date].[Month].ALLMEMBERS)	}		ON	
ROWS	
FROM	[RT	Sales]

Year Quarter Month Sale	Price ParQtr
Calendar	1994 Quarter	1 January 215836.97 (null)
Calendar	1994 Quarter	1 February 205952.48 (null)
Calendar	1994 Quarter	1 March 211128.77 (null)
Calendar	1994 Quarter	2 April 188159.83 215836.97
Calendar	1994 Quarter	2 May 225387.63 205952.48
Calendar	1994 Quarter	2 June 210278.66 211128.77
…	 	 	 	 	

Figure 10.19
ParallelPeriod function. The totals are monthly so the function uses the parent level
(Quarter) to move back one period. It then automatically parallels or matches the
corresponding months.

501Chapter 10: MDX

partial results, it is clear that the function has picked up the matching months from
the prior quarter—except for the first quarter of null values because nothing exists
before that time.

In a similar manner, companies often want to compare monthly sales to the val-
ue in the prior year. The ParallelPeriod function in this example could be modified
to handle a full year simply by changing the second parameter from 1 to 4, be-
cause 4 quarters make up a year. This function simplifies many common business
comparisons over time. Note that the function itself returns the time value not the
actual data. Hence the new member measure is defined using the tuple notation
with parentheses: (data item, member/level) where the member value is obtained
using the ParallelPeriod function.

Some MDX Functions
What other MDX functions are commonly used in business
problems? MDX has many functions and they can be used to solve tricky prob-
lems. For example, check the Web for examples of problems such as computing
year-to-date totals for current and prior years. The purpose of this section is to
briefly describe some of the commonly-used functions in MDX. Only a partial
list is covered here—the online reference documents for MDX provide complete
lists and more examples. Figure 10.20 lists some of the main MDX functions by
category. Detailed lists and descriptions of the functions can be found online in
the reference documents. Some of the functions are straightforward; others are
complex and require detailed explanations and examples. Some of the functions
have already been mentioned (Lag, Lead, ParallelPeriod, Parent, PrevMember). A
couple of additional functions are described in this section, but a comprehensive
discussion would require an entire textbook just to cover the functions.

 EXCEPT: Taking Values Out of Totals
Recall the WHERE conditions given in the initial examples. Expressions entered
in the WHERE clause act as a cube slicer or filter and limit the totals to just that
data. The example computed total sales by Model Type for the state of California
(CA). The syntax was straight forward:
SELECT NON EMPTY
 { [Model Type].members } on rows,
 { [Measures].[Sale Price] } on columns
FROM [RT Sales]
WHERE ([State].[CA])

But, what if the business manager wanted the opposite information: Sales in all
states except California? So far, all of the functions and tools of MDX have fo-
cused on selecting data to be included and displayed. The solution is to use the
EXCEPT function, which returns all of the values from a set minus the ones spec-
ified. The EXCEPT function takes two parameters: (1) The full set of items, and
(2) The item to be excluded.

Figure 10.21 shows the MDX query to display the sales by model type for all
states except the state of California. The results show the query executed three
times with different WHERE conditions. The data can be tested in Excel to verify
that the EXCEPT column contains the total for all states except California. The
EXCEPT function can also be used within the SELECT clause to choose which
model types should be displayed. In most cases, it will be easier to read the query

502Chapter 10: MDX

if the desired items are entered. However, for long lists, the EXCEPT function
could make it easier to create a query. The syntax remains the same; simply enter
the EXCEPT function inside a SELECT brace and enter the full list and the excep-
tion item.

Conditions with IIF and CoalesceEmpty
Much like SQL, MDX is designed to operate on sets of data and it is not designed
to function as a sequential programming language. Conditions are a key aspect of
sequential languages (IF … THEN … ELSE), but are less important in queries.
Instead, the SELECT and WHERE statements control which items are included
or excluded. Nonetheless, sometimes queries require different treatment for cer-
tain situations. A common example is to handle problems arising from division by
zero. A calculation might be performed differently, or skipped, if a divisor is zero.
MDX, as with many other tools such as Excel, handle conditions with the IIF
function. IIF stands for “immediate if,” and consists of three parameters:
 IIF (condition, true, false)

Figure 10.20
Some MDX functions. Some are more useful than others and the full list and details
can be found in the online MDX reference documents.

Meta Axis
Count
Hierarchy

Level
Name
Ordinal

Navigation Ancestor
Ascendants
Children
Cousin
Current
CurrentMember

DataMember
FirstChild
FirstSibling
Lag
LastChild
LastSibling

Lead
LinkMember
NextMember
Parent
PrevMember
Siblings

Logical IIF
IsAncestor
IsEmpty

IsGeneration
IsLeaf
IsSibling

Sets AllMembers
BottomCount
BottomPercent
BottomSum
Crossjoin
Descendants
Distinct
Except

Exists
Extract
Filter
Generate
Head
Hierarchize
Intersect
Members

NonEmpty
Order
Subset
Tail
TopCount
TopPercent
TopSum
Union

Statistical Avg
Correlation
Count
Covariance
DistinctCount

Max
Median
Min
Rank
RollupChildren

Stdev
Sum
Var
VisualTotals
LinReg…	

Time ClosingPeriod
LastPeriods
OpeningPeriod
ParallelPeriod

Mtd
Qtd
Wtd
Ytd

PeriodsToDate

503Chapter 10: MDX

Most of the data in the Rolling Thunder Bicycles case is relatively clean, with
few chances of dividing by zero. However, several examples do generate miss-
ing or null data which can also be used to illustrate the IIF function. Figure 10.22
shows an example of the IIF function. Full suspension mountain bikes were not
introduced by the company until 1997, so model type computations before that
year contain missing (null) values. The IIF function is used here to check for miss-
ing (IsEmpty) values before dividing by sale price. If the value is missing, the
function returns a zero, otherwise it performs the division. Technically, the IIF
function is not needed for null data because any computation with null value al-
ways results in a null value so the system does not bother to attempt the actual
computation. But the format and use of the function is the same if testing for zero
values—simply replace the IsEmpty function with a test to see if the item equals
zero (a = 0).

The IIF function can also be used to recode data—but it only codes two items
at a time. For instance, the condition could test to see if total sales are above some
limit and then return an positive indicator, otherwise, it returns a zero or some
other value.

Dealing with null values is common enough that MDX has a separate function
just to handle this situation: CoalesceEmpty. Essentially it is a simplified test to
see if a value is empty. Remember that any computation with null values creates
a null result. Consider a calculation that adds two numbers: [Measures].[Frame
Price] + [Measures].[Component List]. What happens if a customer purchases a
frame but no components? Then [Component List] will be empty and the total
will also be defined as null, and essentially discarded from the analysis. To treat

Figure 10.21
Except function. The query was run with three different WHERE conditions to verify
the results. The EXCEPT function requires two parameters: (1) The full list, (2) The
item to be excluded from the list.

SELECT	NON	EMPTY
		{	[Model	Type].members	}	on	rows,
		{	[Measures].[Sale	Price]	}	on	columns
FROM	[RT	Sales]
WHERE	(EXCEPT	([State].Children,	[State].[CA]))

Model	Type All CA EXCEPT	CA
All 208438543 16274614.3 192163928.7
Hybrid 3399366.21 219987.38 3179378.83
Mountain 25793699.63 1742601.88 24051097.75
Mountain	full 61436230 4362440 57073790
Race 61700574.07 5879280.04 55821294.03
Road 46617603.73 3380330 43237273.73
Tour 9268120.59 654335 8613785.59
Track 222948.77 35640 187308.77

504Chapter 10: MDX

the two items as optional, they can be coalesced to a zero value before trying to
add them:
 CoalesceEmpty([Measures].[Frame Price], 0)
 + CoalesceEmpty([Measures].[Component List], 0)

Now if either value is missing, it will first be converted to zero before attempt-
ing to add the values together. As a result, the calculation will not generate null
values even if one of the two items is missing.

TopCount Function
With SQL, Microsoft SQL Server introduced the TOP n option which is often
used to cut off a display list to show just the top number of items. This same con-
cept shows up in the MDX TopCount (and BottomCount) function. The purpose
of the TopCount function is to compute the desired totals, sort the totals, and re-
turn just the top n rows. The function requires three parameters:
 TopCount (row list members, n, measure to total)

 The Bottom count function works the same way but counts up from the bottom
of the list.

Figure 10.23 shows a sample use of the TopCount function. It computes the
total sales by state and returns to five highest values.

Initially, the TopSum and TopPercent functions appear to be similar to the
TopCount function; however, the behavior is different. The TopCount function

Figure 10.22
IIF function. Commonly used to handle division by zero or missing data, the IIF
function takes three parameters: (1) logical condition, (2) value if condition is true,
and (3) value if condition is false.

WITH
		MEMBER	[Measures].[ComponentPct]	AS
	‘IIF(IsEmpty([Measures].[Sale	Price]),0,	[Measures].[Component	List]/[Measures].[Sale	
Price])’
SELECT
		{	[Year].members	*	[Model	Type].members	}	on	rows,
		{	[Measures].[Sale	Price],	[Measures].[ComponentPct]	}	on	columns
FROM	[RT	Sales]

Year Model	Type Sale	Price ComponentPct
Calendar	1994 All 2555013 0.68167
Calendar	1994 Hybrid 199006.21 0.68211
Calendar	1994 Mountain 559019.63 0.64696
Calendar	1994 Mountain	full (null) 0
Calendar	1994 Race 928984.07 0.69753
Calendar	1994 Road 486773.73 0.70422
Calendar	1994 Tour 346200.59 0.64459
Calendar	1994 Track 35028.77 0.86555
Calendar	1994 Unknown (null) 0

505Chapter 10: MDX

computes the totals and then cuts off the display list by counting the number of
rows. The TopSum function has a similar syntax:
 TopSum([State].Children, 50000000, [Measures].[Sale
Price])

But the control number (50,000,000) represents a total sum. The query starts at
the top of the list and returns rows until the sum of the values exceeds the speci-
fied control value. So the sample query will list the top states needed to accumu-
late a total sales level of at least 50 million. The TopPercent function behaves
similarly to the TopSum function. It lists states from the top down until the sales
total from those states exceeds the specified percentage of the aggregate sum. So
the business query would be of the form: List the states that generated 20 percent
of the total sales. The BottomX functions operate the same but work from the bot-
tom up instead of top down.

The TopCount function also introduces some issues in how sets are organized.
What happens when a new list is created from Year cross-joined to the States?
Should the top 5 count apply within each year or across the states? Figure 10.24
shows two ways to write the function: (1) Year cross-joined to TopCount, and (2)
TopCount of Year cross-joined to State. Of course, another possibility would be to
cross join State to TopCount by Year. The point of the examples is to highlight the
importance of understanding when to apply a function versus when to perform a
cross-join. The choice depends on the specific business question to be answered;
but it is critical to match the method to the question—and then test the query by
carefully examining the results.

Year to Date
Business managers are often interested in the progress of sales throughout the
year. In particular, they want to see year-to-date totals, so they can get a feel for
the total sales for the year. Year-to-date totals are often displayed next to monthly
(or quarterly) values so the display essentially provides the monthly values and a

Figure 10.23
TopCount function. The function sorts the data and returns the top rows from the
list. The function needs to know the dimension for the rows, the number of rows to
return, and the measure to be summed.

SELECT
			{	[Measures].[Sale	Price]	}	ON	Columns,
			TOPCOUNT	([State].Children,	5,	[Measures].[Sale	Price])	ON	ROWS
FROM	[RT	Sales]

State Sale	Price
CA 16274614.3
NY 12437726.13
TX 11914093.18
IL 11408168.16
PA 11294417.46

506Chapter 10: MDX

running total. Because of the popularity of these totals, MDX has a specific YTD
function.

Technically, the YTD function returns a set of time periods within a hierarchy
from the start of the year to the current time. So, time has to be in a hierarchy that
specifies a calendar year and the MDX query has to use the Sum or Aggregate
function to total the desired measure. Figure 10.25 shows the simplest version
of the YTD function. The function automatically evaluates the time dimension
hierarchy and finds the start of the year for the current time variable—month in
this case. Hence, the function can be called with no parameters. The Aggregate
(or Sum) function is used to add up the values for the Sale Price measure over the
time periods returned from the YTD function.

Of course, business managers are never happy with the data provided to them.
So, the next question asked is going to be: Can MDX compare year-to-date val-
ues for the current year with the values from the previous year? The solution is to

Figure 10.24
TopCount function in a cross-join. The first version cross joins year to the top count,
which results in the top 5 states for each year. The second version performs the cross
join first and finds the top 5 overall totals.

SELECT
			{	[Measures].[Sale	Price]	}	ON	Columns,
			{	[Year].Children	*	
			TopCount	([State].Children,	5,	[Measures].[Sale	Price])	}	ON	ROWS
FROM	[RT	Sales]

Year State Sale	Price
1994 CA 257734.3
1994 NY 188326.13
1994 TX 151563.18
1994 IL 158728.16
1994 PA 163677.46
1995 CA 286920
1995 NY 186600

SELECT
			{	[Measures].[Sale	Price]	}	ON	Columns,
			{	TopCount([Year].Children	*	[State].Children,	5,	[Measures].[Sale	Price])	}	ON	ROWS
FROM	[RT	Sales]

Year State Sale	Price
2014 CA 1160690
2012 CA 1157050
2007 CA 1150560
2014 TX 1142330

507Chapter 10: MDX

combine the YTD function with the ParallelPeriod function. Define a new mea-
sure (PriorYTD) as:
Aggregate (
 YTD (ParallelPeriod ([Date Hierarchy].[Year -
Quarter - Month - Date].[Year], 1))
 ,[Measures].[Sale Price])

Moving Averages
One more common business problem involves moving averages—which is a sta-
tistical concept that applies to time series data. Moving averages are commonly
used in finance—they are useful for smoothing out short-term variations in prices.
But they can be used on any time series data, including sales. A moving average is
exactly what it says: an average that moves over time. The average moves because
it is defined for a set number of periods. For instance, an MA(3) refers to an aver-
age of three data points and MA(12) averages data across 12 consecutive periods.
Consider sales by month for Rolling Thunder Bicycles. An MA(3) would begin by
averaging the values for the first three months: 1994-01, 1994-02, and 1994-03.
This value would be entered for 1994-03. For the next month (1994-04), a new
average of three values would be computed from 1994-02, 1994-03, and 1994-04.

Figure 10.25
YTD function. The YTD function knows about time hierarchies and calendar years
automatically so it can be called with no parameters to use the current time variable
(month).

WITH
		MEMBER	[Measures].[MonthYTD]	AS
			‘Aggregate	(YTD(),	[Measures].[Sale	Price])	‘
SELECT	
		{	[Measures].[Sale	Price],	[Measures].[MonthYTD]	}	on	0,
		{	[Month].Children	}	on	1
FROM	[RT	Sales]

Month Sale	Price MonthYTD
Jan-94 215836.97 215836.97
Feb-94 205952.48 421789.45
Mar-94 211128.77 632918.22
Apr-94 188159.83 821078.05
May-94 225387.63 1046465.68
Jun-94 210278.66 1256744.34
Jul-94 244788.67 1501533.01
Aug-94 197913.77 1699446.78
Sep-94 200731.22 1900178
Oct-94 219020.42 2119198.42
Nov-94 216574.56 2335772.98
Dec-94 219240.02 2555013
Jan-95 240050 240050

508Chapter 10: MDX

Because the MA(3) average always applies to three consecutive months, the cal-
culation continually moves forward one month at a time.

With moving averages, a question arises over how to handle the first data
points. For MA(3) over months, what should be done with the first two months?
At that point, not enough data exists to compute an average for 3 months. Should
the first two be skipped (null), or should the average simply use the data avail-
able? One point for the first month, and two points for the second month. With
MDX, this latter option is the easiest to create because the Avg function automati-
cally uses the number of data points available. It is possible to create null values
for the first months if desired—by using the IIF function.

The Visual Studio Designer has a template under the calculations tab that gen-
erates the syntax for creating a moving average. However, the syntax is easier
to understand using an actual example. Figure 10.26 shows two moving average
measures for monthly sales—one for 3 months and one for 12 months. The Avg
function does the actual work of computing the average. The trick is to get the
correct data range so that it moves with the month being displayed. The solution
is to use the Lag function to go back two months and then use the range operator
(:) to specify all of the months from that lagged value to and including the current
month. The 12-month moving average is included to show that the Lag function
goes back 11 months because 11 plus the current month equals the 12 months
needed.

The question of how to handle the first months—before reaching the number
requested—is automatically solved by the Avg and Lag functions. The Lag func-
tion returns null values when trying to reach earlier than the starting month; and
the Avg function ignores null values. So the MA(3) for the first month includes

Figure 10.26
Moving average examples. The Avg function does the work but the Lag function and
: operator set the data range.

WITH	
		MEMBER	[Measures].[MA03]	AS
				‘Avg([Month].CurrentMember.Lag(2):[Month],	[Measures].[Sale	Price])’
		MEMBER	[Measures].[MA12]	AS
				‘Avg([Month].CurrentMember.Lag(11):[Month],	[Measures].[Sale	Price])’
SELECT
		{	[Measures].[Sale	Price],	[Measures].[MA03],	[Measures].[MA12]	}	ON	0,
		{	[Month].Children	}	ON	1
FROM	[RT	Sales]

Month Sale	Price MA03 MA12
1994-01 215837 215837 215837
1994-02 205952.5 210894.7 210894.7
1994-03 211128.8 210972.7 210972.7
1994-04 188159.8 201747 205269.5
1994-05 225387.6 208225.4 209293.1
1994-06 210278.7 207942 209457.4
1994-07 244788.7 226818.3 214504.7

509Chapter 10: MDX

only one value and the second month includes two but the averages are computed
based only on the count available.

Several other useful functions exist in MDX, including year-to-date computa-
tions. They generally follow principles similar to the functions covered in this sec-
tion. A few more exotic functions exist, including Generate, and Sets. Documenta-
tion and examples of these functions can be found on the Web. A key concept for
many of them is that they create and modify sets of data. A powerful aspect of sets
is that a cube itself is a set, and many functions operate on sets. Hence, it is pos-
sible to use functions to create a cube, essentially save (name) it as a set, and then
apply MDX functions on those results. This iterative process is similar to saving
a query and then writing another query using those results. Some problems are
easier to solve by creating intermediate steps and applying calculations to those
initial results.

Summary
Multidimensional expression (MDX) queries are a powerful way to retrieve data
from OLAP cubes. MDX commands rely on four basic clauses: WITH to define
calculations, SELECT to specify cube axes and dimensions, FROM to indicate
the cube data source, and WHERE to set filters for the data. A key element of
MDX queries is that sums are computed automatically—virtually all data returned
consists of subtotals across selected dimensions. Dimensions, particularly hierar-
chies of dimensions, play an important role in MDX and in the terminology.

The SELECT statement contains sets of data for the various axes of a cube.
Typically a cube consists of at least two axes: Columns and Rows, which can also
be numbered 0 and 1. The Columns axis generally must contain values from the
Measures set—specifically numbers that can be added to compute totals and sub-
totals. Sets in the SELECT statement are generally enclosed within curly braces.
The cross join (*) is an important function in MDX because it combines all ele-
ments from one set of data with all elements from a second set. For example, a
cross join would be used to create a matrix or table of sales for each month against
model type in the Rolling Thunder Bicycles case.

New measures or columns of data can be calculated in a WITH statement by
assigning a new name to the variable and writing a calculation. Simple computa-
tions use basic arithmetic on data at the same level. More complex calculations
can reach across levels or dimensions. For example, percentages can be comput-
ed by dividing by the total value derived from the parent of the current member.
Changes from one period to the next can be computed using the PrevMember,
NextMember, Lag, or Lead functions. The ParallelPeriod function is a powerful
way of comparing data to similar levels at different points in the hierarchy tree.
For example, it is useful for comparing monthly sales to sales in the similar month
in the previous quarter.

MDX includes several functions to handle tree navigation, logical conditions,
sets of data, statistical computations, and operations with respect to time. Addi-
tional tools, such as string and value functions also exist. Some of the more com-
mon functions include Except, IIF, CoalesceEmpty, TopCount, and Avg. The main
syntax of MDX is designed to return values that match specified dimensions, so
the Except function is a negation method that returns data that matches items in a
list except the ones specified. The immediate if (IIF) function provides inline con-
ditional tests—returning different values if the condition is true instead of false.
The CoalesceEmpty function provides a convenient way to handle missing data

510Chapter 10: MDX

by converting null values to almost any other value. Several “Top” and “Bottom”
functions exist to return a smaller set of results. TopCount returns rows up to the
count specified, while TopSum and TopPercent are used to limit results based on
a running total. They are used to address business questions of the form: How
many states does it take to reach 50 million in sales? Moving averages are quickly
computed using the Avg and Lag function. The Lag function and range operator (
:) are used to specify the data points relative to the current location, and the Avg
function computes the average of those values.

Many other functions exist to solve complex business questions. Because MDX
is designed to work with sets, and OLAP cubes are also sets, difficult problems
can be solved by creating intermediate cubes and writing new queries against
those named sets. Several Web sites provide detailed descriptions and examples of
MDX functions and capabilities.

Key Words
* (cross join operator)
: (range operator)
Avg
axes
BottomCount
Children
columns
cross join
cube
dimensions
EXCEPT
FROM
hierarchical
IIF
Lag
Lead
Leaves
level
measure

Member
Multi-dimension expression or MDX
NextMember
NON EMPTY
ParallelPeriod
Parent
PrevMember
root
rows
SELECT
set
slice
TopCount
TopPercent
TopSum
tuple
WHERE
WITH MEMBER
YTD

511Chapter 10: MDX

Review Questions
1. What is a dimension hierarchy?

2. How are OLAP cube measures different from dimensions?

3. Compared to SQL, how is MDX better for dealing with OLAP cubes?

4. What is the main structure of an MDX query?

5. What would be the basic MDX query structure to list total sales by
state for half of the states?

6. What is the difference between using several dimension axes and a
cross join?

7. How do calculations involving percentages rely on the automatic sub-
totals in MDX?

8. Briefly explain how the following functions work and give an example
situation: Parent, PrevMember, Lag, Lead.

9. How is the ParallelPeriod function useful for common business ac-
counting reports that compare data to earlier time periods?

10. How does MDX handle reverse condition where an element is to be ex-
cluded from a total?

11. Which MDX function would be best used for each of the following
problems?

a. How many production days are required in each month to
reach 50 percent of the total output?

b. Classify customers as “whales” or “minnows” based on whether
their total purchases for a month exceed some fixed value.

c. Compute the percentage change in sales from year-to-year.

d. List all of the months in a year within a dimension hierarchy.

e. Treat missing values as 1 instead of null.

f. When listing sales by month keep a running total of year-to-
date sums.

g. Compute a moving average.

h. List the ten states with the lowest sales for each year.

512Chapter 10: MDX

Exercises

Book
1. Create and save the OLAP cube for Rolling Thunder Bicycles as ex-

plained in the chapter.

2. Use the MDX references to find two functions not covered in the chap-
ter. Explain the purpose of each function, and create a sample query
that uses the function.

3. Run the following query in both SQL Server Management Studio and
the Visual Studio Cube Browser. Explain any differences and rewrite
the query so that it runs the same in both tools. SELECT ([Measures].
[Sale Price], [State].[CA]) ON 0 FROM [RT Sales].

4. Modify the query in Figure 10.17 to compute the percentage change
from one year to the next.

5. Modify the query in Figure 10.19 to obtain the values from a year ago
for each month.

6. Modify the query in Figure 10.21 to list the sales by model type by
state but exclude models Hybrid and Track, and exclude Alaska and
Hawaii (AK, HI).

7. Create a query that shows the ten states with the lowest sales in 2010.

8. Modify the query in Figure 10.24 do perform the cross join as: State *
TopCount(Year) and explain what the results mean in the context of
the other two versions from that figure.

 Rolling Thunder Database

9. Create a new table (Region) that assigns states to regions (Northeast,
Midwest, Northwest, Southeast, South, Southwest, and West). Create
a new dimension hierarchy based on customer location using region,
state, and city. Write the MDX query to examine sales by location over
time.

10. Write the MDX query to compute the percentage change in sales over
time (year) for each employee/sales person.

11. Create three-month moving average columns for the model types but
exclude Hybrid and Track because of limited sales of those models.

12. Using the data from the previous exercise, transfer the results to an
Excel PivotTable (copy/paste), reformat the cube with months as rows
and the model types as columns. Plot the moving averages.

513Chapter 10: MDX

13. Using quarterly totals instead of monthly values, create the MDX
query to compute quarterly, YTD, and prior YTD totals for Sale Price.
Copy at least a couple of years’ worth of data to Excel and test the
computations.

 Diner

14. By week and gender, compute the average bill per person (diner).

15. Similar to the previous exercise, but edit the data source view and add
a named calculation to the table: BillTotal/Number and add that new
column to the cube measures (drag it in the designer). First, write a
similar query in SQL and find the average values for week 1. (Hint:
Use DatePart(wk, DineDate)). Now, write the MDX query that gener-
ates the same averages as the SQL query. Explain why these values
are different from those in the previous exercise.

Corner
Med

Corner
Med

Corner Med

16. Create an OLAP cube for the financial aspects of Corner Med—using
the Visit and Visit Procedures tables. Create the MDX statement to
compute the monthly totals paid by the insurance company and the
patient separately. Then include the year-to-date total that combines
both values.

17. Because two Measures tables exist, the Time hierarchy has to be con-
nected to both separately. The link from Time to Visit is handled as
a “regular” relationship as usual. The link from Time to Visit Proce-
dures is handled as a many-to-many relationship through the Visit
table. Create this second relationship and create the MDX query to
show the Procedure Amount charged per month.

18. Create the MDX query to list the number of procedures performed
each month by each category of employee.

19. Create a three-month moving average of the total amount charged for
procedures.

20. Compare the number of patient visits in a month for pa-
tients who use tobacco and those who do not. List the count of each
type by month and show the corresponding percentage of the number
of visits.

514Chapter 10: MDX

Basketball

21. Create a new OLAP cube based on the view for Team Game
Totals. You might have to build a named query using the
saved view in order to set the primary key correctly. Cre-
ate a time dimension hierarchy that at least includes year and
week; use a fiscal year for the season instead of a calendar year.
Choose a team and examine the total points per game scored by week.

22. Choose a team and examine items that might be different for wins and
losses [Won Loss]. Consider at least points per game, three points per
game, and total rebounds [TRB].

23. List the teams by conference and compute the total points scored by
each team per year. Within each year, compute the percentage of
points scored by each team for its conference. That is, find the highest-
scoring teams per conference. Use the Order function to sort the rows.

Bakery

24. Build an OLAP cube for sales that includes at least week and product
category as dimensions. Note that because the SaleDate includes time,
it will not join with a standard Time table. Hence, it is necessary to
create a new named calculation SaleDateAlone: Convert(date, Sale-
Date). Also, remember to create SaleAmount=SalePrice*Quantity in
the Sale Item table. Use MDX to create a four-week moving average
for total sales.

25. Use MDX to create a cube that shows total sales quantity (not value)
by year and category. Show the percentage of sales by category within
each year.

Cars

26. Create a new OLAP cube with just the Cars table (not sales). Use
MDX to create a cube that shows the average highway MPG by manu-
facturer (Make).

27. Use MDX to create a cube that lists the Drive type within each car
Category and shows the average weight and average highway MPG.
As a separate MDX query, compute the correlation coefficient between
weight and highway MPG across all cars [Car ID].

515Chapter 10: MDX

 Teamwork

28. Each team member should choose an MDX function not covered in this
chapter and trade it with a team member. Each person then uses the
received function in an MDX query for one of the databases.

29. Each team member should choose one database and write a business
question to be answered with an MDX query. Trade problems with an-
other team member and solve the received problem.

30. Each person should research a different software tool that supports
MDX. Briefly summarize any major differences or features in the im-
plementation. Combine the comments and draw a table comparing the
tools.

Additional Reading
IBM, MDX Language Reference, http://publib.boulder.ibm.com/infocenter/db2luw/
v9r7/index.jsp?topic=%2Fcom.ibm.dwe.cubemdx.doc%2Fmdx_concepts.html. [IBM’s
reference documentation for MDX.]

Carl Nolan, 1999, “Manipulate and Query OLAP Data Using ADOMD and
Multidimensional Expressions,” Microsoft Systems Journal, August. http://www.
microsoft.com/msj/0899/mdx/mdx.aspx. [Introduction to MDX with simple examples
and some discussion.]

Microsoft, Multidimensional Expressions (MDX) Reference, http://msdn.mi-
crosoft.com/en-us/library/ms145506.aspx. [Microsoft’s main reference site for
MDX, best for function reference.]

Microsoft, MDX (SQL Server 2000), http://msdn.microsoft.com/en-us/library/
aa216767(v=sql.80). [Microsoft overview and examples for MDX.]

SAS, SAS 9.2 OLAP Server MDX Guide, http://support.sas.com/documenta-
tion/cdl/en/mdxag/59575/HTML/default/viewer.htm#titlepage.htm. [MDX in-
troduction and examples from SAS.]

Russ Whitney, 2001, “MDX by Example,” SQL Magazine, http://www.sqlmag.com/
article/quering/mdx-by-example. [Interesting business problems with MDX samples.
Some sample code might not work with current versions.]

	Chapter 10: MDX Multi-dimension Expressions
	Introduction
	OLAP Cube Review
	Dimensions and Hierarchies
	Rolling Thunder Bicycles Cube

	Definitions and Concepts
	Main Syntax
	Basic Examples
	A First Example
	Adding a WHERE Condition
	Displaying Specific Dimension Values
	Cross Join

	Calculated Measures
	Complex Computations
	Percentages
	Compute Changes
	ParallelPeriod Function

	Some MDX Functions
	 EXCEPT: Taking Values Out of Totals
	Conditions with IIF and CoalesceEmpty
	TopCount Function
	Year to Date
	Moving Averages

	Summary
	Key Words
	Review Questions
	Exercises
	Additional Reading

