

Data Mining Applications

Analyzing Business Data

Version 2.0.0

Gerald V. Post

University of the Pacific

Data Mining Applications/2e Analyzing Business Data

Copyright © 2013 by Gerald V. Post

All rights reserved. No part of this publication may be reproduced or distributed in any form or stored in any database or retrieval system without the prior written consent of Gerald V. Post.

Students:

Your honesty is critical to your reputation. No company wants to hire a thief—particularly for jobs as critical as application development and database administration. If someone is willing to steal something as inexpensive as an e-book, how can that person be trusted with billions of dollars in corporate accounts?

You are not allowed to "share" this book in any form with anyone else. You cannot give or sell any information from this publication in any form to anyone else.

A note on the cover photo:

Even in a wildflower preserve you can find patterns and clusters.

Or you can think of data mining as a way to search through acres of hills, flowers, sand, and ocean to find interesting facts.

Or can data mining software find the physical site of the image?

To purchase this book or other books: http://JerryPost.com/Books

For my students.

Preface

Business Applications of Data Mining

Most managers commonly report that they are buried in data. Database management systems, enterprise resource planning systems, and Web sites now collect and store transactions from all aspects of business and organizations. Managers have access to terabytes (or more) of historical data. But how is this data supposed to be used? Database management systems can create standard reports and charts, and query languages (SQL) can be used to answer specific questions. But it is not enough.

Managers need statistics to analyze data—but few managers are statisticians, and configuring and interpreting traditional statistical tools can require extensive experience. Data mining (DM) tools were created partly from statistics and partly from computer science to analyze large data sets. Some tools can run relatively unsupervised—simply select the data and run the routines to obtain results and recommendations. Other tools require more supervision, from selecting variables to tweaking models to interpreting results and reconfiguring the analysis.

If you want a job as a manager, you need to know how to use information technology. But it is not simply a matter of knowing how to use a word processor or spreadsheet. You need to use the technology to collaborate with other workers, to analyze data, and to find ways to improve your organization.

Over the past decade, the field of data mining, or business intelligence or analytics, has received increased attention by academics, managers, and tool vendors. Notably, the tools have improved dramatically in terms of ease of use and interpretation. Many books and Web sites focus on data mining; but most of them emphasize either the statistics or the computer science issues. Few of them deal with the managerial issues of how to configure the tools, apply them to business problems, and interpret the results to make decisions. This focus is the main purpose of this book.

This book primarily focuses on using SQL Server Analysis Services—the data mining component of SQL Server. This tool is useful because it is widely available to universities through the MSDN Academic Alliance. Trial versions are also available to anyone via the Microsoft Web site. It is also relatively easy to use—although a few tips and tricks are necessary to fully understand some of the tools. Other tools, including the open-source Weka tool are used to demonstrate a few techniques. Many other tools exist and could be used to analyze the data provided with this book.

Learning Assessment

After finishing the book, students should be able to understand the primary data mining tools, know what types of problems they are used to evaluate, and understand how to interpret the output and apply the results of the tools to help make business decisions.

Anyone who teaches this material knows that this learning objective is difficult to meet—because of the huge number of possible issues and the flexibility required in analyzing problems. To meet the objective, smaller, and more concrete goals are presented in each chapter. Each of these is spelled out as a series of questions at the start of the chapter. By the end of each chapter, students should be able to provide intelligent answers to the various questions.

Organization

The book begins with an introduction to database queries because queries are often used to configure data for specific tools and because queries are useful for finding answers to specific questions. Students do not need a database course to be able to use this book. But, this book only lightly covers queries and just touches on database design issues. Chapter 3 explains the purpose and configuration of OLAP data cubes and the basic cube browsers. It emphasizes the importance of identify-

ing facts and dimensions in any problem and then shows how the cube browser computes subtotals and filters data. It also explains how to configure hierarchies of various data dimensions. Chapter 4 reviews basic concepts in probability and statistics. The objective is to explain all of the concepts needed in the rest of the book. It would be best if students have already had a separate course in probability and statistics.

The second section explores the fundamental data mining tools used in business analysis. Note that the chapters are orgaChapter 1: Introduction

Part One: Fundamental Tools

Chapter 2 Finding and Storing Data

Chapter 3 OLAP Cubes

Chapter 4 Probability and Statistics Summary

Part Two: Business Analysis Chapter 5 Cluster Analysis

Chapter 6 Association and Market Baskets

Chapter 7 Evaluation of Dimensions Chapter 8 Time Series Analysis

Part Three: Specialized Tools

Chapter 9 Geographic and Sequence Analysis Chapter 10 Multidimensional Expressions (MDX)

nized by business goals as opposed to by individual tools. Chapter 5 examines basic clustering tools used to define groups—it is particularly useful in marketing to identify groups of customers that have certain attributes in common. Chapter 6 covers association or market basket analysis. It explains how probability computations are used to identify which items are associated or commonly purchased together. Chapter 7 is a long chapter because it explores how dimensions are related to fact dimensions using basic tools such as regression, logistic regression, and neural networks for nonlinear analysis. Chapter 8 covers the basics of time series analysis.

Clearly, all tools covered in this section could be explained in greater detail. In fact, individual books have been written about each type of analysis. But, the point of this book is not to make managers experts in every single tool. Instead, the goal is to make it possible for managers to apply the right technique needed for a specific decision and to correctly interpret the results and make better decisions.

Part Three is new in the second edition. Chapter 9 covers geographic information. This section is more about visualization and display of data than about searching. Many items in business are related to location and it is often helpful to examine decisions in that context. The chapter also introduces sequence analysis. Much of the hard-core work in sequences has been done in biology—specifically DNA analysis. But some of the tools are useful for certain business problems such as tracing Web browsing patterns. Chapter 10 introduces the basic foundations of multidimensional expressions (MDX). This language was initially defined by

Microsoft but has been adopted by many vendors. It is useful for creating complex computations that are difficult to evaluate with other methods.

Features That Focus on Solving Problems

Why do students need a textbook? Most definitions exist on the Web and many Web sites and blogs contain information on data mining, individual tools, and even how to solve specific problems. And yes, if you are serious about data mining, you should use all of these resources to learn as much as possible about the details. But students still need a textbook. This textbook provides a structure to the information. It teaches you how the many pieces fit together to solve business problems. It provides the context and ideas on how to analyze the millions of tidbits of data floating on the Web. Use the textbook to provide the foundation knowledge that describes data mining, how to configure data, and how to interpret results. As technology evolves and new problems are encountered, use the Internet to share ideas and solutions with others.

Each chapter contains several unique features to assist in understanding the material and in applying it to analyze data and make business decisions. The most important parts of each chapter are the examples. The chapters explain the basic problem, how to configure the data, how to run the analysis, and how to interpret the results. The writing explains the process, but it generally avoids a step-by-step presentation. The problem with step-by-step presentations is that readers focus too heavily on tracking steps and losing attention on the overall process. Also, as tools change, the steps quickly become obsolete, although the overall process remains the same.

Each chapter contains various features to explain the purpose of the chapter and help students understand and review the main concepts. The basic features are:

- What you will learn in this chapter. A series of questions highlight the important issues.
- **Chapter summary**. A brief synopsis of the chapter highlights—useful when reviewing for exams.
- **Key Words**. A list of words introduced in the chapter. A full glossary is provided at the end of the text.
- **Review Questions**. Designed as a study guide of the main topics in the chapter.
- Exercises. Problems that apply the knowledge learned in the chapter. Each set of exercises begins with a list of exercises that mirror the actions taken in that chapter (Book Exercises). Additional exercises using the main cases are next, followed by a set of exercises designed to be solved by a team of students. The team exercises involve work that can be partitioned among team members and combined to achieve a final answer.
- **Additional Reading**. References for more detailed investigation of the topics.

This Book Is Different from Other Texts

First, this book is a business text designed for an upper division or MBA course. It is not a statistics book and it is not a computer science book. Those types of books are useful and some excellent versions exist, but they are less useful to business students.

Second, this book relies on commonly available tools along with several realistic data sets to illustrate how to analyze business data. Students can use tools that already exist, apply them to the data sets provided, and immediately begin analyzing the results. Many other books require students to obtain tools with limited licenses and restricted capabilities, or to write their own programs. The goal is to get students analyzing business data as quickly and easily as possible, using commonly available tools.

Instructor Resources

Instructors have access to the following resources for course presentation and management. All the instructor supplements were created by the author, except the test bank:

- Instructor's Manual includes answers to all end-of-chapter review questions, exercises, and teaching notes for the industry-specific cases. Teaching tips and ties to the PowerPoint slides are included for each chapter.
- A test bank contains true/false, multiple choice, and short answer questions.
- Lecture notes are available as slide shows in Microsoft PowerPoint format. The slides contain all of the figures along with additional notes. The slides are organized into lectures and can be rearranged to suit individual preferences.
- Several databases and exercises are available online. The instructor can add
 new data, modify the exercises, or use them to expand on the discussion in the
 text. Most of the primary databases were created with custom data generators.
 These data generators are available to instructors (typically within Microsoft
 Access databases) so that new data with new patterns can be generated.
- The book's Web site at JerryPost.com provides resources for instructors and students using the text.

Installing the Sample Databases

The book uses several databases to demonstrate how to set up various tools and how to interpret results. These databases are used throughout the book and as exercises in each chapter. The individual databases are described in Chapter 1. Some of the databases were chosen to emphasize specific data mining topics. The Rolling Thunder Bicycle company database is used more than the others because it contains a wider variety of data. The data will be easier to understand if you learn a little about bicycles. Some background information is on the Web site: http://www.JerryPost.com.

In every case, you should approach the situation as if you were a manager or consultant. If necessary, visit a similar organization, talk to a manager or employee in the field, read annual reports for a firm in the industry, or find additional background information on the Web. It is easier to understand and apply the results when you understand the goals and decisions facing the organization.

Software

The majority of the book relies on Microsoft SQL Server and its associated SQL Server Analysis Services (SSAS). When SSAS tools depart from traditional applications, the book also uses traditional techniques to show the difference. The tools chosen, including SQL Server, were specifically selected because they are readily available to students and they are relatively easy to use.

Microsoft SQL Server

SQL Server can be obtained for educational use through the MSDN Academic Alliance, now known as DreamSpark. This organization does require a small fee (\$500 first year, \$320 a year for renewal), but it provides a license for all of Microsoft's development tools, including the right to provide copies to students. Many schools are already members, but additional details can be found at: https://www.dreamspark.com.

If you are working alone or unable to join MSDN-AA, a trial version of SQL Server can be downloaded free from Microsoft. It is valid for 180 days. Note that the SQL Server Express version will not work. You need the Standard, Enterprise, or Developer version. The Standard version does not support all of the Analysis Services options, but only a couple of them are used in this book. The examples in this book were built with the SQL Server 2012 Developer's Edition, which is equivalent to the Enterprise edition.

Installing SQL Server on a single computer is relatively straightforward. Just be sure to install the Analysis Services. Also, it is useful to specify Mixed Mode security—which sets SQL Server to accept logins using both Windows accounts and internal SQL Server accounts. When installing Reporting Services and Analysis Services, be sure to specify at least one administrator account that you control. The best approach is to install everything onto a single computer and give yourself administrator rights to each tool. This approach reduces the learning hurdles by minimizing interference from the security systems.

In a class environment, it is possible to install a single copy of the SQL Server database engine, Reporting Services, and Analysis Services on a central server. Individual student computers can then run just the Visual Studio and SQL Server Management Studio components and attach directly to the central server. However, it is necessary to configure security on the server to give relatively open access to each student. Do not use a production server! For the purposes of learning the tools, it is generally simpler to install all of the components on each student's computer and giving the student full control over that instance.

The first time you create an Analysis Services project usually requires some additional configuration steps. Some of the steps require experimentation. The most difficult one is the connection from the Analysis Services system to the database (impersonation). The tool provides four choices. You might have to test all four choices before finding one that works for your installation. The examples in the book suggest one choice that often works, but it does not work in all cases.

Weka

Weka is an interesting open source tool available from the University of Waikato in New Zealand at http://www.cs.waikato.ac.nz/ml/weka/. It is available for several operating systems and uses the GNU general public license. It supports several standard data mining algorithms for classification, clustering, association, and attribute selection. It also has some useful graphics tools for visualization. It can read some specialized data files, but is easiest to use with flat CSV files. Installation is straightforward—simply download and run the installation package from the Web site.

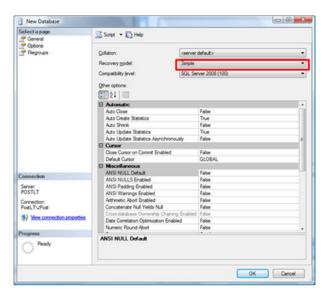
gretl

Data mining is heavily based on statistics and econometrics has developed several tools to analyze data. The details of many of the tools and the problems they

solve are beyond the scope of this book. However, many of the tools are relatively automated and can be used to handle specialized problems. High-end (read "expensive") statistical packages have been used for these tasks. However, Allin Cottrell and Riccardo Lucchetti have created the open source tool gretl that is both free and easy to use. It is available at http://gretl.soruceforge.net. Tasks involving regression and time series analysis are particularly useful in gretl. Again, the tool is easiest to use with flat CSV files. The process of extracting the data from SQL Server and creating a CSV file is explained in this book when the tool is used.

R

R or R System is not used in this book. However, it is a powerful open source statistics package that many other people are using for data mining. R is available free from http://www.r-project.org. The GUI interface Rattle is also useful and it is available from http://rattle.togaware.com. R is often run on the Linux platform, but versions exist for Windows. The interesting aspect of R is that it is designed for people to create new tools and algorithms. By itself, it is largely a platform. Developers create new tools that can be added to the system to analyze data. This approach makes it easy for others to contribute to the development of new tools, so R can grow. But, it makes it harder for new students to select the proper tool.


Database Installation

The data for the databases and set up scripts are available for download from the book's Web site. Each database is packed into a compressed ZIP file. Download each file and extract its contents into a separate folder. The contents consist of several CSV files and a setup SQL script. The script creates the individual tables in SQL Server and bulk loads the data from the CSV files. However, you have to make a couple of changes to the script to tell it where you stored the files. The process is described here for a single database. Repeat it for each database you wish to use.

Start SQL Server Management Studio. Log in with an account that has at least Create Database permissions—generally you want to use a DBA account, or the Windows account that was used to install SQL Server. Create a new database—right-click the Databases entry and choose New Database. Enter a name that represents the database, such as RT for Rolling Thunder. If you are building the database on a central server, you might want to change the file locations to improve performance, but it is not critical.

A more important change is to set the Recovery Mode. The default mode in SQL Server is designed for transaction databases where all data changes are logged to protect the data in the event of failures. This approach creates log files that can be several times larger than the database table files. As with most data warehouses, you can always reload the data, so recovery is unimportant. As shown in the figure, click the Options page and change the Recovery mode to Simple (instead of Full). This mode does not write any data to the log file and saves a considerable amount of space—particularly for the Bakery database because it has several million rows of data.

After the database has been created, you can load the data. Create a new query. The easiest method is to right-click the new database and choose New Query. Load the SQL script from the download into the query window. One quick method is to use the Windows Explorer to navigate to the downloaded files and drag the SQL file into the query window. You need to change two things in the script that tailor

it to your situation: <DB>, the name of the database, and <PATH>, the location of the CSV files.

Use Ctrl-H (or Edit/Find and Replace/Quick Replace) to start the replacement tool. Enter <DB> as the search text—including the brackets. Enter the name of your database (such as RT or Bakery). Click the Replace All button. Repeat the process and search for <PATH> with the brackets, and enter the full local path name of the folder that holds the CSV

files (such as C:\Downloads\Bakery\). You can usually copy the path name from Windows Explorer, but you need to add the trailing back slash (\). Click the button to replace all instances. Note that the CSV files should be on the same computer as the SQL Server program. If you are using a central server, you should copy the CSV folder to that physical server. Otherwise, you need to specify a network path and assign appropriate security permissions. When <DB> and <PATH> have been replaced, execute the script. After a few minutes, you will see a list of the tables and the number of rows. If you get error messages, read them to check for obvious problems. Then reload the script, and run the two replacement commands more carefully. The scripts have been tested on many different machines. Problems that arise are usually due to errors in the replacement path or to local security issues.

Brief Contents

1 Introduction

Part One: Fundamental Tools

- 2 Database Management Systems
- 3 OLAP Cubes
- 4 Probability and Statistics Summary

PART Two: Business Analysis

- 5 Cluster Analysis
- 6 Association and Market Baskets
- 7 Evaluation of Dimensions
- 8 Time Series Analysis

Part Three: Specialized Tools

- 9 Sequence and Geographic Analysis
- 10 Multidimensional Expressions (MDX)

Business Applications of Data Mining, v	Introduction to Cases, 30
Learning Assessment, v	Rolling Thunder Bicycle Company, 30
About the Book, vi	Diner, 31
Organization, vi	Corner Med, 31
Features That Focus on Solving Problems,	Basketball, 32
vii	Bakery, 32
This Book Is Different from Other Texts, vii	Cars, 32
Instructor Resources, viii	Summary, 33
Installing the Sample Databases, viii	Key Words, 34
Software, viii	Review Questions, 34
Database Installation , x	Exercises, 34
Introduction, 1	Additional Reading, 37
Introduction, 3	
Business Situation, 4	Fundamental Tools, 39
Finance, Risk, and Costs, 4	Database Management Systems, 40
Marketing, 6	Introduction, 42
Production and Supply Chain Management,	Relational Databases, 43
11	Tables, 43
Human Resources Management, 12	Data Types, 45
Perspectives, 14	Four Questions to Retrieve Data, 47
Probability and Statistics, 15	What Output Do You Want to See?, 48
Machine Learning, 16	What Do You Already Know?, 48
Computer Science: Challenges of Large	What Tables Are Involved?, 48
Data Sets, 16	How Are the Tables Joined?, 48
Management Applications, 16	Query Basics, 49
Database, 17	Single Tables, 50
Traditional Transactions Processing, 18	Introduction to SQL, 52
Data Warehouse and Analytical Processing,	Sorting the Output, 52
19	Criteria, 53
Data Sources, 19	Useful WHERE Clauses, 56
Data Extraction, Transformation, and	Computations, 57
Loading, 19	Basic Arithmetic Operators, 57
Software Tools, 20	Aggregation, 58
Data Mining Techniques, 20	Functions, 60
Data Mining Tools, 21	Subtotals and GROUP BY, 61
Statistical Tools, 22	Conditions on Totals (HAVING), 63
Production Systems and Scaling, 22	WHERE versus HAVING, 64
Potential Dangers, 24	The Best and the Worst, 65
Human Errors , 24	Multiple Tables, 66
Insufficient Data, 25 Bad Data , 25	Joining Tables, 66
•	Identifying Columns in Different Tables, 67
Over Fitting, 26 Random Chance, 27	Joining Many Tables, 68
Estimation Instability, 28	Views: Saved Queries, 69
Model Instability, 29	LEFT JOIN, 71
Model Histability, 29	UNION, 71

Data Manipulation, 72	Excel PivotTables, 144
UPDATE, 73	Actions, 146
INSERT, 73	Key Performance Indicators, 149
DELETE, 74	Definition, 149
SQL Server Reports, 75	Creating KPIs, 150
Administration Configuration, 75	Browsing a KPI, 153
Creating a Report, 76	Summary, 154
Database Design Concepts, 82	Key Words, 155
Notation, 84	Review Questions, 155
First Normal Form, 86	Exercises, 156
Second Normal Form, 86	Additional Reading, 158
Third Normal Form, 87	Additional Reading, 150
Summary, 88	Probability and Statistics Summary, 159
Key Words, 89	Introduction, 161
Review Questions, 90	Probability Basics, 161
Exercises, 90	Discrete and Continuous Data, 163
Additional Reading, 93	Counting and Combinations, 163 Probability Rules, 166
OLAP Cubes, 94	Interdependencies: Joint Probabilities, 169
Introduction, 96	Contingency Tables, 170
Challenges with the Relational Model, 98	Tree Diagrams, 171
Indexes, 99	Bayes Theorem, 172
Data Warehouse, 99	Probability Distributions, 176
Extraction, Transformation, and Loading, 100	Discrete Data, 176
MOLAP, ROLAP, and HOLAP, 101	Continuous Data, 181
OLAP Design, 102	Joint and Conditional Probabilities, 182
Facts and Dimensions, 104	Expected Value (Mean) and Variance, 183
Star Design, 105	Important Continuous Distributions, 187
Snowflake Design, 107	Statistics, 195
Hierarchies, 107	Samples, 195
Creating a Cube with Microsoft Analysis	Common Statistics, 196
Services, 108	Confidence Intervals, 198
Data Sources, 109	Hypothesis Testing, 200
Data Source Views, 111	Chi-Square Hypothesis Tests, 203
Cubes, 116	Information Measure, 205
Dimensions, 120	Summary, 206
Hierarchies, 123	Key Words, 208
Time Dimensions, 124	Review Questions, 208
Custom Geographic Hierarchy, 128	Exercises, 209
Attribute Relationships, 130	Additional Reading, 214
Fine Tuning the Cube, 133	•
Calculations and Queries, 134	Business Analysis, 215
Perspectives, 138	Cluster Analysis, 216
Internationalization and Translations, 140	Introduction, 218
Performance: Partitions and Aggregations,	Business Situation, 220

142

Model, 221	Skewed Support Data, 286
Distance or Dissimilarities, 222	Continuous Data, 288
Combinatorial Searches with K-Means, 224	Quantity, 289
Statistical Mixture Model with EM, 227	Data, 290
Hierarchical Clusters, 229	Database Structure, 291
Other Statistical Methods, 233	Market Basket Structure, 291
Data, 236	Traditional Tools for Association Rules, 292
Attributes and Observations, 236	Goals, 293
Continuous and Discrete Data, 237	Data, 293
Missing Data, 238	Results, 293
Clustering on Products: Cars, 238	Microsoft Association Rules, 294
Goals, 238	Goals, 295
Data, 239	Data, 295
Microsoft Clustering, 241	Results, 296
Results from Microsoft Clustering, 243	Comparing Results, 298
Prediction, 246	Summary, 300
Larger Model and Parameter Changes, 248	Key Words, 301
Traditional EM Clustering, 251	Review Questions, 301
Goals and Data, 252	Exercises, 302
Results, 254	Additional Reading, 305
K-Means Clusters, 255	-
Comparison, 256	Evaluation of Dimensions, 306
Customer Clustering with Categorical Data, 258	Introduction, 308
Data, 258	Business Situation, 309
Microsoft Clustering Results, 259	Model, 309
Weka Clustering Results, 260	Data, 311
Summary, 262	Attributes and Observations, 312
Key Words, 263	Continuous and Discrete Data, 312
Review Questions, 263	Missing Data, 313
Exercises, 264	Linear Regression, 313
Additional Reading, 267	Goals, 314
•	Data, 316
Association and Market Baskets, 268	Tools, 318
Introduction, 270	Results, 322
Business Situation, 271	Attribute Evaluation, 327
The Bakery, 272	Prediction, 328
Product and Dimension Levels, 273	Logistic Regression, 330
Model, 274	Goals, 330
Goal, 275	Data, 332
Assigning Values to Rules, 276	Tools, 333
Problems with Dimensions, 282	Results, 334
The A Priori Algorithm, 283	Attribute Evaluation, 338
Issues in Setting Minimum Support and	Prediction, 339
Confidence, 284	Naïve Bayes, 340
Potential Problems, 285	Goals, 341
Simpson's Paradox, 285	Data, 345

Tools, 345	Forecasts, 404
Results, 346	Seasonality Evaluation, 405
Attribute Evaluation, 346	Microsoft Time Series Estimation, 406
Prediction, 348	Goals, 406
Decision Trees, 349	Data, 408
Goals, 350	Tools, 409
Data, 352	Results, 412
Tools, 353	ARTxp Model, 413
Results, 353	Forecasts, 415
Attribute Evaluation, 355	Seasonality Evaluation, 417
Prediction, 355	Cross Correlation and Linear Regression, 417
Neural Network, 358	Goals, 418
Goals, 359	Data, 418
Data, 361	Tools, 419
Tools, 361	Comparison, 425
Results, 361	Summary, 426
Attribute Evaluation, 362	Key Words, 427
Prediction, 363	Review Questions, 428
Model Comparisons, 365	Exercises, 428
Prediction, 366	Additional Reading, 431
Attribute Evaluation, 367	Additional Neading, 401
Nonlinear Complications, 368	Specialized Tools, 432
Summary, 369	Sequence Analysis and GIS, 433
Key Words, 370	Introduction, 435
Review Questions, 370	Sequence Analysis, 435
Exercises, 371	Business Situation, 437
Additional Reading, 373	
-	Model, 438
Time Series Analysis, 375	Classification, 439 Clustering: Business examples, 440
Introduction, 377	-
Business Situation, 378	Data, 442
Model, 379	Attributes and Observations, 442 Continuous and Discrete Data, 444
Time Series Components, 379	
Auto Regression, 381	Missing Data, 444 Web Log Data Files, 445
Moving Average, 384	SQL Server Sequence Clustering, 447
Trends, 387	Goals, 448
ARIMA, 389	Data, 448
Cross Correlations, 392	Tools, 449
Evaluating Models, 395	Results, 452
Data, 396	Prediction, 457
Attributes and Observations, 396	
Missing Data, 397	Other Tools, 458
Traditional ARIMA Estimation, 397	Sequence Summary, 458
Goals, 398	Geographic Analysis, 459
Tools, 398	Business Situation, 461
Results, 400	Data, 461

Model, 462

Microsoft MapPoint, 464

Other Tools, 467

Esri. 468

Google, 471

Bing, 472

Federal Government, 473

Geographic Summary, 474

Key Words, 474

Review Questions, 475

Exercises, 476

Additional Reading, 479

MDX, 480

Introduction, 482

OLAP Cube Review, 482

Dimensions and Hierarchies, 484

Rolling Thunder Bicycles Cube, 484

Definitions and Concepts, 487

Main Syntax, 489

Basic Examples, 490

A First Example, 491

Adding a WHERE Condition, 492

Displaying Specific Dimension Values, 494

Cross Join, 494

Calculated Measures, 495

Complex Computations, 496

Percentages, 497

Compute Changes, 498

ParallelPeriod Function, 499

Some MDX Functions, 501

EXCEPT: Taking Values Out of Totals, 501

Conditions with IIF and CoalesceEmpty, 502

TopCount Function, 504

Year to Date, 505

Moving Averages, 507

Summary, 509

Key Words, 510

Review Questions, 511

Exercises, 512

Additional Reading, 515